Theoretical hydrodynamics - BMEEOVVDT71 - 2024/25/2

I. Tantárgyleírás

- 1. Alapadatok
- 1.1 Tantárgy neve

Theoretical hydrodynamics

1.2 Azonosító (tantárgykód)

BMEEOVVDT71

1.3 Tantárgy jellege

Kontaktórás tanegység

1.4 Óraszámok

Típus	Óraszám / (nap)
Előadás (elmélet)	2

1.5 Tanulmányi teljesítményértékelés (minőségi értékelés) típusa

Vizsga

1.6 Kreditszám

3

1.7 Tárgyfelelős

név	Dr. János Józsa
beosztás	Egyetemi tanár
email	jozsa.janos@bme.hu

1.8 Tantárgyat gondozó oktatási szervezeti egység

Vízépítési és Vízgazdálkodási Tanszék

1.9 A tantárgy weblapja

https://epito.bme.hu/BMEEOVVDT71 https://edu.epito.bme.hu/course/view.php?id=2496

1.10 Az oktatás nyelve

magyar és angol

1.11 Tantárgy típusa

Ph.D.

1.12 Előkövetelmények

Recommended courses: Any courses on hydrodynamics and partial differential equations and vector fields.

1.13 Tantárgyleírás érvényessége

2022. szeptember 1.

Theoretical hydrodynamics - BMEEOVVDT71 - 2024/25/2

- 2. Célkitűzések és tanulási eredmények
- 2.1 Célkitűzések

The aim of the subject is to familiarize the student with the mathematical foundations and basic equations of fluid dynamics.

- 2.2 Tanulási eredmények
- A tantárgy sikeres teljesítése utána a hallgató

A. Tudás

- 1. Knowledge of the basic concepts of partial differential equations and vector fields.
- 2. Knowledge of the basic kinematic and dynamic concepts necessary to describe the liquid as a continuum.
- 3. Knowledge of the basic equation of fluid dynamics and its most important features.
- 4. Knowledge of the vorticity transport equation derived from the basic equation of fluid dynamics. Knowledge of the general geometric formulation of two- and three-dimensional hydrodynamics.

B. Képesség

- 1. Advanced problem-solving capacity in mathematics and physics, especially on algebraic manipulations.
- 2. Ability to formulate a hydrodynamic model, such as the complex of physical environment, mathematical equations and boundary conditions.

C. Attitűd

- 1. Cooperates with the instructor during the learning process.
- 2. Continuously and actively seeks ways of gaining knew knowledge even beyond the required curriculum and employs the internet for finding intuitive answers to research problems.
- D. Önállóság és felelősség
 - 1. Participates in lectures and prepares for the exam.
- 2.3 Oktatási módszertan

Lectures on theory.

Week	Topics of lectures and/or exercise classes
1.	Introduction: partial differential equations and vector
	fields.
2.	Introduction: partial differential equations and vector
	fields.
3.	Introduction: partial differential equations and vector
	fields.
4.	The continuum model of the fluid. Velocity,
	acceleration. The acceleration as a Lie-derivative.
5.	Description of streamlines. The velocity field as a
	transformation on streamlines. Continuous
	transformation groups.
6.	Conservation of the matter. Divergence of the velocity
	field.
7.	Rotation of a fluid element. Vorticity of the velocity
	field.
8.	Incompressible and irrotational plane flows. Laplace
	equation.
9.	The vorticity of the acceleration. Lie-bracket of vector
	fields. Commuting flows.
10.	Circulation. Vortex theorems.
11. 12.	The Cauchy stress tensor. Navier-Stokes equations.
	Navier-Stokes, Euler, and Bernoulli equations.
13.	The vorticity transport equations. Geometric picture of
	fluid flows.
14.	Dimensionless numbers. The dimensionless form of
	Navier-Stokes equations. The appearance of viscosity,

Részletes tárgyprogram

A félév közbeni munkaszüneti napok miatt a program csak tájékoztató jellegű, a pontos időpontokat a tárgy honlapján elérhető "Részletes féléves ütemterv" tartalmazza.

as a symmetry breaking.

2.5 Tanulástámogató anyagok

a) Textbooks:

- 1. Andreev, V.K., et al., 1998. Application of Group-Theoretical Methods in Hydrodynamics, Kluwer.
- 2. Arnold, V.I., 1974. Mathemtical Methods of Classical Mechanics, Springer.
- 3. Batchelor, G.K., 1967. An Introduction to Fluid Dynamics, Cambridge University Press.
- 4. Olver, P. J., 1986. Application of Lie Groups to Differential Equations, Springer.

2.6 Egyéb tudnivalók

None

2.7 Konzultációs lehetőségek

Time of consultations: previously agreed times.

Jelen TAD az alábbi félévre érvényes:

Theoretical hydrodynamics - BMEEOVVDT71 - 2024/25/2

II. Tárgykövetelmények

- 3. A tanulmányi teljesítmény ellenőrzése és értékelése
- 3.1 Általános szabályok

Evaluation of the participant's learning progress described in 2.2. is performed by an oral exam.

3.2 Teljesítményértékelési módszerek

Evaluation form	Abbreviation	Assessed learning outcomes
Oral exam	V	A.1-A.4; B.1-B.2; C.1-C.2; D.1

A szorgalmi időszakban tartott értékelések pontos idejét, a házi feladatok ki- és beadási határidejét a "Részletes féléves ütemterv" tartalmazza, mely elérhető a tárgy honlapján.

3.3 Teljesítményértékelések részaránya a minősítésben

Abbreviation	Score
V	100%
Sum	100%

3.4 Az aláírás megszerzésének feltétele, az aláírás érvényessége

At least 70% of the attendance of the classes is expected.

3.5 Érdemjegy megállapítása

If the grade for the exam is at least satisfactory, the final grade is the grade for the exam.

3.6 Javítás és pótlás

3.7 A tantárgy elvégzéséhez szükséges tanulmányi munka

Activity	Hours/semester
participation in contact classes	14×2=28
study from notes, textbooks, preparation for the exam	62
Sum	90

3.8 A tárgykövetelmények érvényessége

2022. szeptember 1.

Jelen TAD az alábbi félévre érvényes: