I. Tantárgyleírás

- 1. Alapadatok
- 1.1 Tantárgy neve

Theory and Application of GNSS

1.2 Azonosító (tantárgykód)

BMEEOAFMF-1

1.3 Tantárgy jellege

Kontaktórás tanegység

1.4 Óraszámok

Típus	Óraszám / (nap)
Előadás (elmélet)	2
Gyakorlat	1

1.5 Tanulmányi teljesítményértékelés (minőségi értékelés) típusa

Vizsga

1.6 Kreditszám

5

1.7 Tárgyfelelős

név	Dr. Rózsa Szabolcs
beosztás	Egyetemi docens
email	rozsa.szabolcs@emk.bme.hu

1.8 Tantárgyat gondozó oktatási szervezeti egység

Általános- és Felsőgeodézia Tanszék

1.9 A tantárgy weblapja

https://epito.bme.hu/BMEEOAFMF-1 https://edu.epito.bme.hu/course/view.php?id=3481

1.10 Az oktatás nyelve

1.11 Tantárgy típusa

Kötelező a Földmérő- és térinformatikai mérnök (MSc) szakon

1.12 Előkövetelmények

Recommended prerequisites:

• Numerical methods (BMEEOFTMK51)

1.13 Tantárgyleírás érvényessége

2022. szeptember 1.

2. Célkitűzések és tanulási eredmények

2.1 Célkitűzések

The course aims to introduce the operational background of the global navigation satellite systems (GNSS), to discuss the mathematical models, systematic error sources and the standaridzed data formats of satellite positioning. The students gain extensive knowledge on the applications of GNSS positioning in geodesy, geomatics, civil engineering navigation, precision agriculture, geodynamics, meteorology, hydrology). The course enables students to process GNSS observations for navigation as well as highly accurate positioning and to analyse GNSS observations and results to obtain valuable information for Earth observation.

2.2 Tanulási eredmények

A tantárgy sikeres teljesítése utána a hallgató

A. Tudás

- 1. overviews and understands the mathematical background of the GNSS observation processing for geodetic and GIS applications
- 2. overviews and understands the mathematical background of the GNSS observation processing for geodetic and GIS applications
- 3. knows the reference systems and frames used for GNSS positioning and their relationships
- 4. knows the systematic error affecting GNSS observations and understands the methods of their mitigation
- 5. has an outlook to the wide area of application of GNSS observations with a special focus on applications in civil engineering and earth sciences
- B. Képesség
 - 1. able to understans the whole process of GNSS positioning
 - 2. able to design the optimal realization of GNSS measurements
 - 3. able to understand, interpret and use the standard data structures of GNSS
 - 4. able to develop algorithms for GNSS data processing
 - 5. able to link the positioning result to the proper reference system
 - 6. able to solve coordinate transoformation problems between reference systems
 - 7. able to do literature research, process the information and present it in a short presentation
- C. Attitűd
 - 1. realizes the importance of GNSS observations for other branches of science
 - 2. open to the creative application of GNSS measurements
 - 3. open to the systematic way of thinking
 - 4. thrives to create elegant and effectice programming codes
 - 5. thrives to document the program codes

D. Önállóság és felelősség

- 1. carries out GNSS observation acquisition and observation processing calculations individually
- 2. eager to receive feedback on the submitted homeworks/assessments
- 3. processes the literature on his/her own and prepares a presentation on the topic

2.3 Oktatási módszertan

Lectures, instrumental observations and practicals in computer lab. individual literature research homework on proposed topics and summarizing the results in an oral presentation.

2.4 Részletes tárgyprogram

Hét	Előadások és gyakorlatok témaköre
1.	History and development of global navigation satellite
	systems. Introduction of the systems.
2. 3.	Reference systems and their relationships.
3.	GNSS time systems, satellite orbits and the calculation
	of satellite coordinates.
4.	Planning GNSS observations.
5.	Standard data formats of GNSS observations, data and
	coordinate solutions.
6.	The error sources of GNSS positioning (clock and orbit
	error, relativistic effects, propagation error, reception
	error)
8.	Accurate GNSS positioning techniques used for
	surveying, geodesy and geodynamics.
9.	Linear combinations of observations and their
	applications.
10.	Transformation of coordinates between reference
	systems
11.	The structure and the services of GNSS infrastructure.
	Ground Based and Satellite Based Augmentation
	Systems (GBAS and SBAS). The International GNSS
	Service and its services.
12.	Positioning using pseudoranges (SPP, DGPS, systematic
	error sources, corrections, data processing)
13.	Application of GNSS observation (civil engineering,
	agriculture, meteorology, hydrology, geodynamics,
	power grids, financial markets)
14.	GNSS observation processing for applications in
	geodynamics

A félév közbeni munkaszüneti napok miatt a program csak tájékoztató jellegű, a pontos időpontokat a tárgy honlapján elérhető "Részletes féléves ütemterv" tartalmazza.

2.5 Tanulástámogató anyagok

a) Downloadable material:

- 1. Manuals, handouts of the applied software and algorithms.
- 2. Lecture notes and syllabus of practicals on the website of the course.

b) Textbook:

- 1. Bernhard Hofmann-WellenhofHerbert LichteneggerElmar Wasle: GNSS Global Navigation Satellite Systems, Springer Verlag, ISBN: 978-3-211-73017-1
- 2.6 Egyéb tudnivalók

Attendance requirement on both the lectures and practicals is 70%.

2.7 Konzultációs lehetőségek

Personal consultation in the consultation hours defined on the course webpage or upon personal appointment request via e-mail.

Jelen TAD az alábbi félévre érvényes:

II. Tárgykövetelmények

3. A tanulmányi teljesítmény ellenőrzése és értékelése

3.1 Általános szabályok

The learning outcomes defined in Section 2.2 are assessed with an oral exam, 5 homeworks and a midterm test. The results of the literature research (HW 2) is presented in an oral presentation on the lecture specified in the <u>detailed course plan</u>. Lecture notes and handouts are available for download on the course webpage for continuous studying.

3.2 Teljesítményértékelési módszerek

Evaluation form	Abbreviation	Assessed learning outcomes
Oral exam (summarizing assessment)	E	A.1-A.5; B.1-B.3, B.5-B.6; C.1-C.3;
		D.2
Midterm test	MT	A.1-A.4
Homework 1	HW1	A.1; B.2; D.1-D.2
Homework 2	HW2	A.5; B.7; C.1-C.3; D.1-D.3
Homework 3	HW3	A.1-A.3; B.3-B.4; C.4-C.5; D.1-D.2
Homework 4	HW4	
Homework 5	HW5	

A szorgalmi időszakban tartott értékelések pontos idejét, a házi feladatok ki- és beadási határidejét a "Részletes féléves ütemterv" tartalmazza, mely elérhető a tárgy honlapján.

3.3 Teljesítményértékelések részaránya a minősítésben

Jele	Részarány
Összesen	100%

3.4 Az aláírás megszerzésének feltétele, az aláírás érvényessége

3.5 Érdemjegy megállapítása

Érdemjegy	Pontszám (P)
jeles (5)	
jó (4)	
közepes (3)	
elégséges (2) elégtelen (1)	

3.6 Javítás és pótlás

3.7 A tantárgy elvégzéséhez szükséges tanulmányi munka

Tevékenység	Óra/félév

Összesen	150

3.8 A tárgykövetelmények érvényessége

2022. szeptember 1.

Jelen TAD az alábbi félévre érvényes: