Below, there are some examples for using the most common types of calculators for DMS (Degree-Minute-Seconds) calculations and transforming between rectangular and polar coordinates.

1. Casio fx-220

	Calculations
3950709\%	The following is the input format for a sexagesimal value: \{degrees\} [0] \{minutes\} 0^{0} \{seconds\} 0^{0}.
	Note: You must always input something for the degrees and minutes, even if they are zero.
77 B 9 C AC	$2^{\circ} 20^{\prime} 30^{\prime \prime}+39^{\prime} 30^{\prime \prime}=3^{\circ} 00^{\prime} 00^{\prime \prime}$
$44^{5} 6 \times \times$	
$12^{3}+$	
	Convert $2^{\circ} 15^{\prime} 18^{\prime \prime}$ to its decimal equivalent.
	(Converts sexagesimal to decimal.) 2.255

Polar/Rectangular conversions

From rectangular to polar $(3,4) \rightarrow(r, \Theta)$

$3[R \rightarrow P] 4[=]$	$\mathbf{5}$
Press $[X \rightarrow Y]$ to switch between distance and angle $\mathbf{5 3 . 1 3 0 1} \ldots$	

From polar to rectangular $\left(8,52.24^{\circ}\right) \rightarrow(\mathrm{x}, \mathrm{y})$

$8[P \rightarrow R] 52.24[=]$	$\mathbf{4 . 8 9 8 8} \ldots$
Press $[X \rightarrow Y]$ to switch between	
X and Y coordinates	$\mathbf{6 . 3 2 4 6} \ldots$

■ Degree，Minute，Second（Sexagesimal）

Calculations

The following is the input format for a sexagesimal value：\｛degrees\}

Note：You must always input something for the degrees and minutes， even if they are zero．

$2^{\circ} 20^{\prime} 30^{\prime \prime}+39^{\prime} 30^{\prime \prime}=3^{\circ} 00^{\prime} 00^{\prime \prime}$	
	$3^{\circ} 0^{\circ} 0$.
－Convert $2^{\circ} 15^{\prime} 18^{\prime \prime}$ to its decimal equivalent．	
2 㦹15 18 國回	$2^{\circ} 15^{\circ} 18$.
（Converts sexagesimal to decimal．）－0．	2.255
	$2^{\circ} 15^{\circ} 18$.

Pol，Rec ：Pol converts rectangular coordinates to polar coordinates， while Rec converts polar coordinates to rectangular coordinates． See 8 ．

$\operatorname{Pol}(x, y)=(r, \theta) \quad$| $\operatorname{Rec}(r, \theta)=(x, y)$ |
| :--- | | Specify the angle unit |
| :--- |
| before performing |
| calculations． |

Calculation result θ is
displayed in the range
of $-180^{\circ}<\theta \leqq 180^{\circ}$.

Rectangular
Coordinates（Rec）
:---
Coordinates（Pol）

To convert rectangular coordinates $(\sqrt{2}, \sqrt{2})$ to polar coordinates Deg
fx－82MS／85MS／300MS／350MS：

（闌）（ F ）$\theta=45$ ．
 display the value of θ ．
fx－82SX PLUS／220 PLUS：

（shliff Fecil (y, θ) 回 $\quad \theta=45$ ．
－Press shirl poll (x, r) 国 to display the value of r ，or （sylr Becl (y, θ) 回 to display the value of θ ．
To convert polar coordinates（ $\sqrt{2}, 45^{\circ}$ ）to rectangular coordinates Deg
fx－82MS／85MS／300MS／350MS：
응 \tan（ F ）$\quad y=1$ ．
 display the value of y ．
 （synt recl (y, θ) 回 $\quad y=1$ ．
－Press sㅐㅐㅏ Poll (x, r) 国 to display the value of x ，or Ssint recl (y, θ) to display the value of y ．

DMS calculations

\#011 LINE

\#012 LINE

\#013

LINE

Polar/Rectangular conversion

\#036 Deg $(\mathrm{X}, \mathrm{Y})=(\sqrt{2}, \sqrt{2}) \rightarrow(r, \theta)$

$$
r=2, \theta=45
$$

\#037 LINE Deg $(r, \theta)=(2,30) \rightarrow(X, Y)$

To be able to use the values of r and Θ, recall them from the memory of the calculator. r is saved in variable X and Θ is saved in variable Y.

- $r: R C L X$
- $\Theta: R C L Y$

When converting from polar to rectangular, the X and Y values are saved in the X and Y variables.

4. SHARP EL-531WH / EL-W535X (and many more)

DMS calculations		
[10] DWS $\leftrightarrow D E G$		
$12^{\circ} 39^{\prime \prime} 18.05^{\prime \prime}$		
$\rightarrow[10]$	2ndF	12.65501389
123.678		$123^{\circ} 40^{\prime} 40.8^{\prime \prime}$
\rightarrow [60]		
$1234^{\circ} 56^{\prime} 12^{\prime \prime}+$	1234 (ृWS 56 [WW $12+$ +	
$0^{\circ} 0^{\prime} 34.567^{\prime \prime}$ = [60]	0 [WM 0 (『WS $34.567 \square$	$1234{ }^{\circ} 56^{\prime} 47$ "

Polar/Rectangular conversion

$$
\text { [11] } \rightarrow r \theta \leftrightarrow x y \square \rightarrow \leftrightarrow
$$

$\left(\begin{array} { l } { x = 6 } \\ { y = 4 } \end{array} \rightarrow \left(\begin{array}{l} r= \\ \theta=\left[{ }^{\circ}\right] \end{array}\right.\right.$	ON/C) 6 2ndF $\rightarrow 4$	4
	$2 \mathrm{ndF} \rightarrow \mathrm{ra}^{(1)}[r]$	7.211102551
	$2 \mathrm{ndF} \rightarrow \rightarrow[\theta]$	33.69006753
	2ndF $\leftrightarrows \rightarrow[r]$	7.211102551
$\left(\begin{array} { l } { r = 1 4 } \\ { \theta = 3 6 [{ } ^ { \circ }] } \end{array} \rightarrow \left(\begin{array}{l} x= \\ y== \end{array}\right.\right.$	14 2ndF $\square 36$	
	2ndF $\rightarrow x y[x]$	11.32623792
	2ndF \leftrightarrows ¢ y]	8.228993532
	2ndF $\leftrightarrows \rightarrow[x]$	11.32623792

