
Basics of Statics and Dynamics eB1

Reactions of simple structures

Definition.: An assembly composed of a single rigid body which is connected to its neighbourhood
by constraints and is able to remain in equilibrium under an arbitrary arrangement of loads is called
a  simple (load-bearing)  structure.  (material  properties or  failure are  not  considered here).  This
definition is often used in contrast to mechanisms that may not be in equilibrium but move under
certain  loads.  In  a  more  neutral  context,  the  term  assembly can  be  used  without  the  above
distinction.

A (kinematic)  constraint may be imposed on a body to disallow a particular component of the
displacement of that body. It appears in a form of supports or connections. The number of allowed
displacement components is called the (kinematic) degree of freedom (DOF for short) of the body
which is normally reduced by each constraint applied to the body. Different kinds of supports can
restrain displacement components of different number and type but they exert forces or torques on
the body in the sense of restrained displacements. These forces and torques transmitted from the
support to the body are called reactions. (in contrast to known forces that are acting on the body,
these latter ones are also called constraint forces or passive forces). Supports (connections) can be
characterized by the number of constraints they represent: this equals the number of scalars required
to  describe  reactions  at  a  support.  In  the  next  paragraph,  support  types  of  higher  relevance  in
engineering are introduced.

Figure B1.1 shows a straight beam supported by a roller (a) and another by a vertical link or bar (b)
at one end. Both supports have a single constraint: the roller prevents the body from being lifted
from or pushed into the surface it rolls on, while a link restrains any displacement parallel to its
direction.  The remaining two components of displacements are  both possible:  a roller  does not
restrain a sliding along the plane of support or a rotation about it,  as well as the link does not
restrain any displacement perpendicular to its axis (note that it holds only for small displacements)
or a rotation about its upper end. The beam is exerted upon by a force aligned with the restrained
component of displacement; that is, in a given line of action in both cases. Links are commonly
denoted by numerals, other supports are marked by uppercase letters. Forces transmitted from a link
to the body is ('force in a (link) member') are normally denoted as S with the number of the link in
the subscript. Reactions at other supports are normally referred to by the same uppercase letters
used for naming them. The reaction forces exerted on the beam are shown in the bottom figures.
Further examples for a single-constraint support is the simple support (i.e., without friction) and the
cable.

Figure B1.1: supporting by a roller (a) and a link or bar (b)
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Figure B1.2 shows a beam with hinged or pinned support (a) and another with a fixed or clamped
support (b). A pin-joint or hinge prevents the supported point from being translated in any direction
but a rotation of the body about the pin is still allowed. As it follows immediately, the line of action
of a force exerted on the body at a pin-joint always passes through the same pin-joint (which is
considered as a point with no extension in our model). A pin or hinge has two constraints, the
corresponding reaction can be given by two scalars (for convenience, two components). A fixed
support restrains any translation and the rotation of the body and has therefore three constraints. In
turn, a force of arbitrary direction as well as torque can be exerted on the supported body here. Note
that there exist other types of supports but they are not considered here for their lower importance in
civil engineering.

Figure B1.2: Pinned or hinged (a) and fixed or clamped (b) support

It is important to state that two-dimensional structures and problems are only dealt with here. Under
this assumption, an unsupported body has exactly 3 DOFs, so at least three constraints have to be
applied in order to assemble a load bearing strucure. Some examples for such simple structures are
shown in Figure B1.3. All three supports in part (a) have a single constraint. If the lines of action of
the three forces are neither concurrent nor parallel, the assembly behaves as a structure by being
able to carry loads of arbitrary arrangement. The beam in part (b) is supported by a roller and a pin
of  one and two constraints, respectively. If the fixed line of action (that could also pertain to a link
instead of a roller) does not pass through the pinpoint, then the beam is considered a structure again.
Part  (c)  displays a cantilever beam which has a single fixed support by definition: it  has three
constraints. At the present stage, structures with more than three constraints, as well as assemblies
with three constraints but with no equilibrium in some arrangements are not discussed.

Figure B1.3: Plane structures

Structures are exerted on by several loads, which can be classified either as live load (e.g., loads of
vehicles or furniture, environmental loads like of wind or snow) that are occasional or  dead load
(e.g., the weight of the structure) that are permanent. These loads are also qualified as active forces
opposed to reactions transmitted to the structure at its supports. Any force system composed of
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active and passive forces exerted upon a structure has to remain in equilibrium. Static analysis
therefore always begins  with  the  determination  of  reactions.  This  procedure  is  focused on and
developed step by step in the following lectures.

The first step of calculating reactions is called isolation. It means that the body in consideration is
freed from any supports which are replaced rather by reaction forces and torques arising at them: a
sketch of the body with all active and passive forces is called a free-body diagram (FBD). As soon
as  the body gets  isolated in  this  way,  a  formal  equilibrium statement is  made by declaring an
equivalence between the set of all active and passive forces exerted on the body and the zero force.
Since such a statement relates a  general system of plane forces,  three independent  equilibrium
equations for scalars (moments or (force) resolutions) can generally be set up. The solution to this
system of three equations yield values for all three components of reactions. It is important to check
results by evaluating (a) further equation(s) of different mechanical content (those equations are still
mathematically  dependent  on  the  previous  ones).  Computed  and  verified  results  are  usually
presented in a form of a final sketch (FS) which is not much different from a FBD, except that it
displays all reactions with their eventual sense and magnitude. The following examples provide
illustrations to the whole procedure traced above. 

Example 1
Determine support reactions of the simply supported beam shown below.

                               

Solution
Draw the free-body diagram first: replace supports by the corresponding reactions. The pinned
support at A is able to transmit a force of arbitrary direction which can also be given uniquely.
The FBD is drawn with the assumption that horizontal and vertical components  Ax and Az are
directed  right-  and  upwards,  respectively.  Note  that  unknown  reaction  components  can  be
assumed arbitrarily in a FBD (some practical exceptions will be mentioned later). The positive
or  negative  sign  of  any  particular  result  obtained  from  calculation  will  confirm  or  refute,
respectively, the correctness of assumed senses of arrows: in the former case, an arrow in the FS
is left as it appears in the FBD, in the latter, it should be reversed with respect to the sense
assumed in the FBD. The roller support at B allows horizontal sliding, that is why it can transmit
a vertical reaction component. Assume B as an upwards force in the FBD.

The free-body diagram of the structure:    

There are three forces acting upon the body: a given active load F and passive forces A and B at
the supports; they keep the structure in equilibrium. This fact can formally be expressed in an
equilibrium statement as follows:
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 (F , A ,B) =̇ 0 . 
An active load F is balanced here by a force passing through a given point (A) and another one
having a given line of action (B). A reaction force acting at a given point can be specified by
two scalar components, whereas the given line of action makes necessary to find a (signed)
scalar  magnitude  only.  In  summary,  there  are  three  unknowns  that  equals  the  number  of
independent  scalar  equations  that  can  be  written  for  a  general  plane  force  system.  When
calculating by hand, it is always intended to get the solution through a sequence of one-variable
equations: in the first equation, two out of three unknowns should therefore be eliminated. In the
calculation of simply supported beams it can be taken as a thumb rule that a balance of moments
about the pinned support yields the reaction at the simple support, as both components of the
reaction at the pin have a zero moment arm about the same pin-joint. In the current problem
there appears only the given force F and unknown B with nonzero moment arm in the balance of
moments about point A; thus, force B can be obtained directly from the equation:

∑M i
(A ) :−5⋅4+A x⋅0+A z⋅0+B⋅8=0    →    B=2.5 kN(↑) .

Moments  in  these  equations  are  always taken positive  if  they  represent  a  counterclockwise
rotation. Positive sign of the result means that force B actually has the same sense (upwards) as
assumed in the FBD. This sense obtained from calculation should be displayed after the unit of
the result.  In order to minimize the risk of miscalculation,  terms of particular forces should
always  be  written  in  an  equation  following  their  order  of  occurrence  in  the  equilibrium
statement. Moment equations need not contain terms that vanish due to the zero moment arm
but  they  are  still  displayed  on  the  first  few  occurrences  to  demonstrate  why  some  force
components (Ax and  Az) do not appear in the equation indeed. After the reaction at the roller
support having been found, each component of the reaction at the hinge could be obtained from
single-variable  resolution  equations  along  x and  z.  However,  this  method  involves  a
computational risk and thus it is generally not recommended: assume that B is miscalculated for
any reason: would a following vertical be resolution completely free of errors, it still gives a
false result because of the error of  B. Alternatively, it is worth looking for an equation in the
second step that includes Az only: such an equation can again be found by eliminating both Ax

and B by writing a balance of moments about the point of intersection of lines (of action) of Ax

and B,which is at point B. If the structure is still equilibrium, those moments should add up to
zero:

∑M i
(B) :−5⋅4+A x⋅0−A z⋅8+B⋅0=0    →    A z=2.5 kN(↑)

Note the positive answer and so the upward arrow just copied from the FBD for Az as well. With
the  same  considerations  as  above,  the  horizontal  reaction  at  the  hinge  is  obtained,  for
convenience, from an equation containing the only unknown Ax. It means the elimination of both
Az and B but now there is no point of intersection of Az and B as they are parallel. In such a case;
however, there is always a  direction perpendicular to both of them: let us write therefore the
resolution in x:

∑ F ix   →   A x=0 kN

Even if successive elimination of unknowns gives a certain safety against the accumulation of
mistakes in calculation, it still needs a check after the components having been obtained. Any
equation  with  different  mechanical content  from those  already  used  can  be  appropriate  for
verification but, of course, none of these new equations are mathematically independent of the
first  three  ones.  In  the  pesent  example,  the  vertical  has  not  been  written  yet;  use  it  for
verification:
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∑ F iz :5−2.5−2.5=0

After a successful check it is only left to draw the isolated body again, now with the real senses
of forces acting upon it. Reaction forces should be given now with their computed result (and
unit).

Final sketch:                        

Exercise 1
Find support reaction of the overhanging beam shown.

                                          

Solution
Free-body diagram from isolation:  
                                                              

Equilibrium statement:

Unknowns:

Number of independent scalar equations:

Analytic solution:

...

...

...

Verification:

....

Final sketch:
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Example 2
Find the support reactions as a function of given parameters for a simply supported beam.

                                                        

Solution
The solution begins with the step of isolation. The resultant P of distributed load is also drawn.

The FBD looks as follows:                 

Equilibrium statement: (( p) , A , B) =̇ 0 , 
The distributed load is replaced by its resultant in the calculation; it is of magnitude is P= p⋅l ,
bisecting the span of the beam. Reaction A can be given by two components, whereas reaction B
in a given line of action is sufficient to be specified by its signed magnitude: the total number of
scalar unknowns in the problem equals three. There exist three independent equations for any
general plane force system. Write first the balance of moments for the pinned support in order to
eliminate both components of  A and to get therefore  B. Next, eliminate  Ax and  B by writing
another moment balance about B; finally, let both vertical reaction components be eliminated in
a horizontal resolution to get . Mind the order of terms as they appear in the statement:

∑ M i
(A )

:−( p⋅l)⋅
l
2

+B⋅l=0    →    B=
p⋅l
 2

(↑)

∑ M i
(B) :( p⋅l)⋅l

2
−p⋅l

 2
⋅l=0    →   Az=

p⋅l
 2

(↑)

∑ F ix : A x=0

After all reactions having been found, check the results, e.g., by writing a vertical resolution: 

∑ F iz : (p⋅l )−
p⋅l
 2

−
p⋅l
 2

=0

After a successful check it is only left to draw the isolated body again, now with the real senses
of forces acting upon it. Reaction forces should be given now with their computed result (and
unit).

Final sketch:                                                  

Exercise 2
Find support reactions 
of the beam shown.
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Solution

FBD:  

                                                              

Equilibrium statement:                                                  
Number of independent scalar equations:
Unknowns:
Resultant of the distributed load, Q = 
Analytic solution:

...

...

...
Verification:
…

Final sketch:                                               

Example 3
Find support reactions of the cantilever beam as a function of given parameters.

                                                           

Solution
The isolation is done first. In addition to the distributed load, the beam is acted upon by support
reactions at  A: a force  A of unknown magnitude and direction at a given point and a support
moment reaction MA.

Free-body diagram:                               

Equilibrium statement: (( p) , A ,M A) =̇ 0
The body is kept in equilibrium by a general plane force system implying three independent
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scalar  equations  to  be  written.  The number  of  unknowns is  also  three:  two components  of
reaction force and the moment reaction at  A. Using the method of seeking for equations as
described above, two resolution equations and a moment equation (written about the centroid of
the  clamped cross  section)  is  always  obtained as  a  system of  three  one-variable  equations.
Resolution  equations  have  only  the  corresponding  unknown  force  component,  while  the
moment reaction stands alone in a moment equation about the support because of zero moment
arms of reaction force components. (A moment can never appear in a resolution equation, since
force vectors in any couple the moment is equivalent to add to the zero vector.) The equilibrium
equations are:

∑M i
(A ) :−p⋅l⋅l

2
+M A=0    →    M A=

p⋅l2

 2
(↶)

∑ F iz : p⋅l−A z=0    →    A z=p⋅l(↑)

∑ F ix : A x=0

After  the reaction components having been found,  check the results  by a moment equation
written about the free end of the cantilever (to the right):

∑M i
(r ) : p⋅l⋅l

2
−p⋅l⋅l+ p⋅l2

  2
=0  

Since the check is successful, draw the final sketch:

Finalsketch:                               

Exercise 3
Find support reactions of the beam shown.

                                                                          

Solution

FBD:                                                                  

Equilibrium statement:                                                  

Number of independent scalar equations:

Unknowns:

Resultant of the distributed load, P = 
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Analytic solution:

...

...

...

Verification:

....
Final sketch:

                                                                           

Example 4
Find the reactions of the beam supported by three bars as shown in the figure.

                   

Solution
The isolation is done first. In addition to the active force, the body is kept in equilibrium by
three reaction forces along the supporting links (those three forces are therefore of known line of
action). Forces in bar members are always assumed to be tensile, which means that there is
tension in the interior of the bar member and there is also a tensile force exerted by the bar on
the beam and on the ground at the same time. The force in the ith bar is denoted by S i  (i=1, 2,
3).

The free-body diagram:                       

Equilibrium statement: (F , S 1, S 2, S3) =̇ 0
All three forces in bars can be given by a signed magnitude each, these mean three unknowns of
the problem. The number of independent  equations  is  also three since the equilibrium of a
general plane force system is analysed. The problem of balancing a body with three forces of
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given  lines  of  action  is  commonly  solved  by  Ritter's  method:  three  moment  equations  are
written;  each  of  them  is  about  a  point  of  intersection  of  lines  of  unknown  forces.  These
equations contain only one unknown member force out of the three. If a member force Si is the
only unknown force not passing through a point (i.e., having a nonzero moment arm about it),
then  that  point  is  denoted  by  Oi and  is  called  the  principal  point  of  the  ith  member.  The
following figure shows all three principal points as intersection of lines of action.

                                                           

After  the  principal  points  having  been  found  by  some  geometric  arguments,  let  moment
equations about all three principal points be written an d the equations solved:

∑M i
(O 1):−2⋅3.5+S1⋅3.5=0               →    S1=2kN( tension)

∑M i
(O 2):−2⋅7−S2⋅cos(45°)⋅7=0    →    S2=−2.828 kN(compression)

∑M i
(O 3):−2⋅7−S3⋅cos(45 °)⋅7=0    →    S3=−2.828kN(compression)

In the second (third) equation, force S
2
 (S

3
) is resolved into components at point O

3
 (O

2
), making

sufficient to account only for horizontal force components in evaluation of moments. A positive
result indicates tensile behaviour (as it was originally assumed), while negative answers refer to
bar members rather in compression. The tensile or compressive property of a bar is of extreme
importance in design,  that is  why it  is  always referred to within brackets  together with the
calculated result.
Since moment balances were only used in the solution, both 'remaining' resolutions can be used
for verification:

∑ F ix :−2.828⋅cos(45°)+2.828⋅cos(45 °)=0

∑ F iz :2+2−2.828⋅sin (45°)−2.828⋅sin (45°)=0

After a successful check having been completed, a final sketch is made with true senses of
arrows of bar member forces.

Final sketch:
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Exercise 4
Find the reactions of the beam supported by three bars as shown in the figure.

                                                      

Solution

Free-body diagram:                                                                

Equilibrium statement: 

Locating principal points:

                                                                        

Number of independent scalar equations:

Unknowns:

Analytic solution:

...

...
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...

Equation(s) for verification:

...

...

Final sketch:

                                                                         

Example 5
Find the reactions at A and B of the simply supported beam shown.
  

                                                      

Solution

Isolate the structure first. A reaction perpendicular to the oblique surface arises at the roller:
assume that it points towards right and up. Pinned support exerts a force of unknown magnitude
and direction on the beam, assume that horizontal and vertical components of that reaction force
point to the right and upwards, respectively.

The free-body diagram  :                        

The body is kept in equilibrium by active force F and support reactions A and B:
 (F , A ,B) =̇ 0 . 

The active force is balanced here by a force with given line of action (A) and another one with
known point of application (B): this latter  one can be specified by two components (signed
scalars), while the former one can be given by a single scalar only. The system of forces is still a
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general one in plane, so three independent equations can be set up which equals the number of
unknowns.
If  the  reaction  component  A is  sought,  a  moment  about  the  point  of  intersection  of  other
unknowns (i.e., the pinned support) should be written that yields reaction A directly:

( )

Positive sign of the result confirms the orientation of reaction  A as assumed in the FBD. In a
quite similar manner, write now a balance of moments about point A in order to find the vertical
component of B: 

∑M i
(A ) :−5⋅4+B z⋅8=0→B z=2.5 kN(↑)

Following  the  scheme  of  finding  reactions  by  numerically  independent  equations,  now  an
equation not including  A or  Bz would follow. Such an equation could be obtained by writing
moments about the point of intersection of an inclined and a vertical line but that point might
sometimes  be  difficult  to  find:  it  must  be  considered  whether  such  preliminary  geometric
calculations  involve  more  risk  than  the  use  of  recently  obtained  numeric  values  in  further
equilibrium equations. Here an example is given for the latter approach by writing a simple
horizontal resolution that is also based on the value of force A:

∑ F ix :2.887⋅sin (30 °)+B x=0→Bx=−1.444 kN(←)

After all unknown reaction components having been found, let a vertical resolution equation is
written for checking our results:

∑ F iz :5−2.887⋅cos (30 °)−2.5=−0.0002≈0     

The 'small' error obtained on the right hand side is due to roundoff. It is never evaluated on its
own but should be compared to the order of magnitude of forces appearing in the same equation.
Since there is a difference still of at least three orders of magnitude, the results can be accepted
(note that the error itself is not evaluated for four significant figures because only its order of
magnitude is relevant).
Since the check is successful, find the magnitude and direction of the force at B:

B=√(1.444)2+(2.5)2=2.887kN

αB=arctan
  2.5
1.444

=59.99 °

FInally, make a final sketch:
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Exercise 5
Find the reactions at A and B of the simply supported beam shown.

                                                               

Solution

The free-body diagram:                          

Equilibrium statement: 

Analytic solution:

Verification:

Final sketch:                                                
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Statical determinacy

The behaviour of structures essentially depends on the arrangement of supports and their number of
constraints. All structures considered in the preceding lectures were simple ones with exactly three
constraints arranged in a way that an equilibrium statement could be satisfied for any load. Support
reactions for such structures can always be obtained from three independent equilibrium equations.
The conditions above can be generalized for assemblies composed of more than one rigid bodies to
set up a formal definition for statical determinacy.

Definition: An assembly is said to be  statically determinate or  isostatic if it is able to remain in
equilibrium under arbitrary arrangement  of loads and its  reactions can uniquely be found from
equilibrium equations.

Statical  determinacy  requires  therefore  two conditions  to  hold.  If  any of  them is  not  met,  the
assembly is qualified differently.

Definition: An assembly is said to be  statically overdeterminate or  hypostatic if there exists an
arrangement of loads for which the assembly cannot be balanced (i.e., there is no solution to the
system of equilibrium equations because of a contradiction among them).

Definition:  An assembly is  said to be  statically indeterminate or  hyperstatic if  there exists  an
arrangement of loads for which the assembly can be balanced in many different ways (i.e., there are
several solutions to the system of equilibrium equations, or alternatively, reactions of the assembly
cannot be determined uniquely just from equilibrium equations). Such structures frequently appear
in engineering because of some its advantageous properties (numerical methods for their solutions
will be discussed later in the subject 'Structural Analysis I').

Let us consider some examples for the cases above from the set of assemblies composed of a single
body.  Figure  B2.1  lists  statically  determinate  structures:  assemblies  shown  to  the  left  are  all
supported at  three points with one constraint each. The arrangement of constraints prevents the
body from translations or rotation: all three components of displacement of the body are restrained.
The  assembly  in  part  (c)  also  has  a  total  of  three  constraints  and  is  still  prevented  from any
displacement since the hinge at  A disallows any translation but the roller at  B also restrains the
rotation about A. Part (d) illustrates the determinacy of a cantilever beam: the support disallows any
translations or rotation; a single body with one fixed support is always statically determinate.

    

Figure B2.1: Statically determinate (isostatic) simple structures

Statically  overdeterminate  assemblies  are  shown  in  Figure  B2.2:  all  of  them  are  variants  of
structures (a), (b) and (c) of Figure B2.1 that are obtained by a special rearrangement of some of

1

A B

A

(b)

(c)

A

(a)

B C

1 2 3

(d)



Basics of Statics and Dynamics eB2

their supports. Obviously, this does not affect the number of constraints  (it remains still  three);
nevertheless, there can be found a load with no possibility of equilibrium for each assembly. In the
case (a), all three reactions are concurrent, which means that the beam can rotate about that point of
intersection B (force F in the figure would generate a counterclockwise rotation). Viewing the same
from the aspect of statical determinacy, the equilibrium of moments can never be restored if the
moment of active loads about point B is nonzero. The assembly shown in part (b) is supported by
three parallel links; thus, the beam can be translated in a direction perpendicular to them (force F
generates a leftwards translation).  In terms of Statics,  the sum of components of reactions in a
direction perpendicular to the links is always zero which makes horizontal equilibrium impossible
under  an  active  load  with  nonzero  horizontal  force  resultant.  Finally,  the  beam in  part  (c)  is
supported by a pin and a roller in a way that the line of action of the force in the roller passes
through the pinned support, causing a degeneracy of supports similar to that found in part (a). Force
F would result in a clockwise rotation about  A; or in terms of equilibrium, active forces with a
resultant  not  passing through the pin cannot  be balanced.  IMPORTANT: matching numbers  of
unknown  reaction  components  and  independent  equilibrium equations  (u = e)  DO  NOT imply
statical determinacy of an assembly: that relationship constitutes only a necessary but not sufficient
condition for the structure to be statically determinate (isostatic).

Figure B2.2: Statically overdeterminate (hypostatic) assemblies (u = 3)

Any simple assembly (i.e., composed of a single body) is statically overdeterminate if the number
of its constraints is less than three. This is a sufficient but not necessary condition for the statical
overdeterminacy. It was shown earlier that three components of displacement of a rigid body in a
plane can only be blocked by at least three constraints (see the definition of constraint). In some
kind of a dual approach it can also be seen that equilibrium conditions for a general plane force
system (with arbitrary active loads) cannot be satisfied with less than three reaction components: an
unrestrained displacement is just generated according to Newton's second law by unbalanced forces
in the same sense. Figure B2.3 exemplifies assemblies with less than three constraints. All of them
are drawn with components of allowed displacements and violated equilibrium conditions. It should
be emphasized that a  single arrangement of loads with no possibility of equilibrium is  already a
proof for statical overdeterminacy (it is often realized by finding an equation with no unknowns
involved).
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Figure B2.3: Statically overdeterminate (hypostatic) structures (u < 3)

Statically indeterminate structures are shown on the left hand side of Figure B2.4. Total number of
constraints  of  supports  amounts  to  four  in  examples  (a),  (b)  and  five  in  example  (c).  These
assemblies are able to remain in equilibrium for arbitrary loading (thus, they can indeed be called
'structures')  because  they  can  be  transformed  into  statically  determinate  structures  simply  by
removing some of its constraints. On the right hand side of the figure one can see such determinate
structures  obtained  by  removal  of  constraints:  any  removed  constraint  is  replaced  by  a
corresponding reaction force component. Note here again that a roller is interpreted to be able to
exert a reaction force also against lifting from the surface it is lying on. As we put no restrictions on
the magnitude of active forces, these forces at removed constraints are also of arbitrary magnitude
(if such a force can be balanced by the unknown ones, its n-tuple can as well). This means that the
original  structure  could  be  in  equilibrium  with  an  arbitrary  scaling  of  the  force  system;
consequently, reactions of an indeterminate assembly cannot be found uniquely even in the lack of
active forces. If the number of constraints exceeds that of independent equations, the assembly is
sure to be statically indeterminate; however, as it will be seen later, it is not a necessary condition
for statical indeterminacy.

Figure B2.4: Statically indeterminate (hyperstatic) structures (u > 3)
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On the  left  hand side  of  Figure  B2.5  a  beam supported  by  three  parallel  links  is  drawn.  The
replacement of one of the links by a vertical force  S 2  yields a structure and a load that can be
balanced on it. If the equilibrium exists for some vertical load S 2  then it still exists for an arbitrary
n-tuple of it: the reactions cannot be found from equilibrium equations even if no active loads were
present on the structure.

This assembly has already been qualified as statically overdeterminate: it means that an assembly
can be statically in- and overdetereminate at the same time. It can be shown that if the number of
constraints (reaction components) and that of independent equations are equal and the assembly is
statically  overdeterminate  then  it  is  statically  indeterminate  at  the  same  time  and  vice  versa
(indeterminacy implies overdeterminacy as well).

Figure B2.5: A statically indeterminate (hyperstatic) structure (u = 3)
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Reactions of simple structures II.

Example 1
Qualify the given frame with respect to statical determinacy. Find all support reactions.

                                                               

Solution
Prepare the free-body diagram first:

                                                                        

The equilibrium statement must contain all active and passive forces exerted on the frame:
(F ,( p) , A , B) =̇ 0 . 
Let the statical determinacy of the assembly be analyzed before starting calculations. All active
forces are balanced by a reaction A passing through a given point and another one (B) lying in a
given line of action. Thus, forces exerted at point A and B can be given by two and one scalar
variable,  respectively:  the  total  number  of  unknowns  is  three  (u = 3).  There  are  three
independent equilibrium equations for a general force system in a plane (e = 3). The number of
scalar  unknowns  and  that  of  independent  scalar  equations  are  equal  (e = u),  making  the
necessary but not sufficient condition of statical determinacy be satisfied. Sufficiency can be
tested by tracing the procedure of solution: its uniqueness can now be seen from the property
that  any  unknowns  can  be  found by systematic  elimination  of  the  others:  vertical  reaction
components  are  obtained  from  moments  written  about  points  where  remaining  force
components intersect; the horizontal component can be found from a resolution independent of
any vertical forces. This means that the assembly  is statically determinate indeed: those three
equilibrium equations (with one variable each) can always be solved for unknown components
with arbitrary active forces.
For the purposes of further calculation, let the distributed force be replaced by its resultant: its
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line of action is vertical and bisects the span; its magnitude is P=1.2⋅10=12kN (↓) .
Following the method described above, component B is obtained from moments written about
point A as follows:

∑M i
(A ) :−4⋅3−12⋅5+B⋅10=0    →    B=7.2kN(↑)

The positive sign means here that the assumption for the sense of B was correct, it can then be
confirmed by an upwards arrow. Likewise, vertical  component of the reaction at  hinge  A is
found from the balance of moments about B:, hiszen a B erőt korábban már meghatároztuk (B
előjele az egyenletben azért negatív, mert felfelé, a z tengely negatív irányába mutat):

∑M i
(B) :−4⋅3+12⋅5−A z⋅10=0    →    A z=4.8 kN(↑)

The  result  is  positive  again,  showing  that  vertical  component  at  A is  directed  upwards  as
assumed.
The horizontal reaction component at the same point is obtained from a resolution equation in
the direction of x, not influenced by any unknown vertical components:

∑ F ix :4+ Ax=0   →   Ax=−4kN(←)

Here the result is found to be negative: it simply means that the arrow of original assumption
must  be reversed in  the final  sketch (it  points  to the left  rather  than to  the right).  Now an
equation is set up and evaluated in order to check the recently obtained results. For that purpose
one can use, e.g., a vertical resolution equation:

∑ F iz :12−4.8−7.2=0

After the reactions having been checked, let the reaction force at A be given by magnitude and
direction as follows:

A=√(42+4.82)=6.248 kN

αA=arctan
4.8
4

=50.19 °

Finally, draw the isolated body with all forces exerted on it. Calculated scalar magnitudes wuth
their units should be written out in details.

Final sketch::                
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Exercise 1
Determine the support reactions of the frame.

Solution
The free-body diagram:  

                                                                                                

Equilibrium statement:
Unknowns:                                            u =         Number of independent scalar equations: e=
Before the analytic solution, determine lines of action for passive forces based on inspection.
Analytic solution:

.

.

.

Verification:

.

A=

α
A
=

Final sketch::                                                                                  
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Example 2
Determine the support reactions of the body shown.

                                                                   

Solution
Isolation is done first  (see the figure to the left).  Forces in links are always assumed to be
tensile.

                        

Equilibrium is maintained by two active and three passive forces (in links), so the statement
reads (F ,G ,S1 , S 2 , S3) =̇ 0 .
Each force in a link can be given by a signed scalar variable, so the number of unknowns is
three (u = 3). It also equals the number of independent scalar equations since a general plane
force system is dealt with (e = 3). In a problem of balancing with three forces in given lines of
action,  Ritter's  method  is  applied:  balances  of  moments  about  principal  points  (points  of
intersection of lines of remaining unknowns) are evaluated. Sometimes the calculation must be
preceded by the determination of positions of principal points. distances x and y can be obtained
from considerations on elementary geometry:
(x+8.4)⋅tan 30°=6.5   →   x=2.858 m
y=x⋅tan 30°                →   y=1.650 m

Once the principal points are already located, equations for moments are set up and solved:
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∑M i
(O 1):−1200⋅sin(70 °)⋅2.858−500⋅7.058−S1⋅2.858=0    →    S1=−2362 N(compression)

∑M i
(O 2):−500⋅4.2+S2⋅cos (30 °)⋅1.650=0                              →    S2=1470 N( tension)

∑M i
(O 3):1200⋅cos(70°)⋅1.650−500⋅4.2−S3⋅1.65=0            →    S3=−862.3 N(compression)

The second equation involves only a horizontal component of force S
2
 since it was resolved into

components  at  point O
3
.  The  complete  solution  is  based  exclusively  on  moments,  so  both

resolution is left for checking:

∑ F ix :−1200⋅cos(70 °)+1470⋅cos (30 ° )−862.3=0.3≈0

∑ F iz :1200⋅sin(70 °)+500−2362+1470⋅sin (30 °)=0.6≈0

Note that the obtained error in both cases is smaller by about three orders of magnitude than
active or passive forces in the equations; the results are successfully checked. In the last step, the
final sketch is drawn with all forces exerted on the body (in their computed sense), completed
by the corresponding numeric results.

Final sketch::                                                                      

                                                                                    

Exercise 2
Determine the support reactions of the body shown.
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Solution
The free-body diagram:  

                                                                                                 

Equilibrium statement:                                                  
Number of independent scalar equations:
Unknowns:
Finding positions of principal points:

                                                                                      

Analytic solution:

.

.

.

Equations for checking the results:

.

.

Final sketch::                                                                       

10
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Example 3
Find support reactions at point A. The reaction force may be given by components in the final
sketch.

                                                           

Solution
Let the structure be isolated first, then an equilibrium statement is formulated. In addition to
active forces, the frame is exerted on by a reaction force A of unknown magnitude and direction
and a torque MA at the clamping.

The free-body diagram:                                        

Equilibrium is stated as (F ,( p) , A ,M A) =̇ 0
The body is in equilibrium under the effect of a general plane force system, making possible to
write  three  independent  scalar  equations.  This  matches  the  number  of  unknown  scalar
components  (two from the  reaction  force,  one  from the  torque).  A cantilever  structure  can
always  be  uniquely  solved by three  one-variable  equations  (two resolution  equations  and a
balance of moments written about the support). Write and solve these equations:

∑ F iz :0.7−Az=0    →    A z=0.7 kN(↑)

∑ F ix :−0.2⋅3.2+A x=0    →    Ax=0.64 kN(→)

The determination of components is always followed by a check, let it  now be written as a
balance of moments about the point of application of force F:

∑ M i
(F ) :−0.2⋅3.2⋅1.6−1.724+0.7⋅1+0.64⋅3.2=0  

A successful check is then followed by presenting the final sketch with computed results:
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Final sketch::                                                   

Exercise 3
Find support reactions at point  A. The reaction force may be given by components in the final
sketch.

                                                                  

Solution

The free-body diagram:                                               

Equilibrium statement:                                                  
Analytic solution:

.

Verification: 
.

Final sketch::
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Compound structures I

Assemblies that are composed of more than one rigid bodies and are able to remain equilibrium
under  an  arbitrary  arrangement  of  loads  are  called  compound  structures.  Bodies  in  such  a
compound are connected to each other or to the fixed neighbourhood by constraints. Constraints at
connections to the neighbourhood of the compound are called external (these are the same kinds of
supports learnt in simple assemblies), whereas constraints between bodies within the compound are
called  internal.  Figures  13.1  –  13.4  illustrate  statical  models  of  most  frequent  structural  types
appearing in building and bridge construction. 

                  

Figure B3.1 Statical models of roofs: single roof (to the left) and collar roof (to the right)

Figure B3.2 Compound beams (Gerber beams)

Figure B3.3 Compound frames

Figure B3.4 Queen post structure (to the left) and inverted queen post structure (to the right)
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Calculation of reactions of compound structures

A compound structure can only be in equilibrium if all of its components are also in equilibrium.
Steps of finding reactions of compound structures are analogous to that discussed in simple ones.

 Firstly, rigid members are isolated and their individual free-body diagrams are drawn one by one,
following the main rule of isolation of compounds: multi-force members (i.e., members acted upon
by more than two forces or torques) are only isolated. It must be noted that forces are counted here
by physical contacts and not by components: an external force, a two-component reaction at a hinge
or a single-component reaction at a roller are all counted once. The final number of FBDs must be
equal to the number of isolated bodies (those involved in the analysis of equilibrium). 

Secondly,  equilibrium statements are  made for  each FBD: an  individual  statement  contains  all
active and passive forces and torques acting upon the body in case. It means that if the equilibrium
of the entire structure is also stated, it can contain external active and passive forces and torques
only, that is, no internal reactions can appear in it. Equilibrium statements of bodies that have a
nonzero extension ('finite bodies' for short) are related to a general plane force system, so they
imply  three  independent  scalar  equations  each.  Isolation  of  joints  results  in  a  statement  of
equilibrium of a concurrent plane force system that makes possible to write two independent scalar
equations  only.  If  equations  are  written based on the statement  of  equilibrium of  the complete
structure, there can also be found three independent ones but those are not independent of other
equations derived from the individual statements. Analytic solution of the  problem means the setup
and solution of the system of equilibrium equations (in contrast to some graphical and grapho-
analytical solution methods that are not dealt with in details here). In calculations by hand, it is still
aimed  at  writing  and  solving  one-variable  equations  one  after  each  other.  Unlike  in  simple
structures, however, equations that are completely free of all but one unknown reactions are not
always possible to be found in compounds: one can be forced either to use recently obtained values
in finding further unknowns or even to give up looking for one-variable equations and solve rather a
system in two variables. Since in compounds it is not obvious which is the body the calculation
should be started at, first a comparison between the numbers of equations and unknowns is made
for each body: equations are normally written first for a statement involving not more unknowns
than the number of independent equations that can be written for the same. It will be seen later that
not  only  individual  statements  but  a  statement  of  equilibrium of  an  arbitrary  set  of  connected
components (e.g., the complete structure) can serve as a point of departure. 

The following task is to  set up and solve equations sucessively for internal and external reaction
components. As in earlier problems, checking of results is made afterwards by (an) equation(s) not
yet used (in compound structures it needs special care to find equations that perform a real check
ratheer than a formal one, details will be given later). The last event in the preocedure of solution is
still the preparation of a final sketch which follows the structure of FBDs as earlier: each isolated
member has to be drawn separately with active and passive (internal and external) forces or torques
exerted on it.

Statical models of roof structures are shown in Figure B3.1. The main difference between their
behaviour is that vertical loads result in horizontal components of reaction in the case shown on the
left hand side only. Examples for both structures will be given below.

2
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Example 1
Determine external and internal reactions (calculated forces can be given by components).

Solution

The solution is started by the isolation: multi-force members are isolated only. Body I is a four-
force member since it has theree physical neighbours in addition to the active force F: it needs
therefore isolation. Body II is a three-force member even without active load on it, it should also
be isolated. Any of the internal pin-joints (A, C, D, E) are two-force members only and the same
holds for member 1 (identified as an internal link or bar member): none of them will be isolated.
It is only left to decide on the number and type of external and internal reaction components to
be assumed in the (two) FBDs.
Support A and B is a hinge and roller, respectively, so reaction components are assumed there as
earlier (arrowheads can be drawn in either sense). Point C represents a hinged connection where
bodies I and II exert forces of unknown magnitude and direction upon each other: it implies two
force components to be drawn in both FBDs according to Newton's third law. The principle of
action and reaction has an immediate consequence that internal reactions appear always in pairs
of  opposite  orientation:  a force exerted on body I  by body II  has the same magnitude and
opposite sense compared to the force exerted on body II by body I. Although there is absolutely
no algebraic difference between those forces, one of them is normally distinguished by a prime
in FBDs, equilibrium statements and equations in order to prevent confusion in assumed senses
of arrows. Pin-joints (hinges) D, E, as well as member 1 are not part of the FBDs but they still
represent a series of physical connection. With reference to an earlier experience of dealing with
links, they are simply replaced by a pair of forces  S and S' following the direction of the link
(still assumed to be tensile).
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Now  it  will  be  shown  why  two-force  members  are  not  isolated.  If  an  object  is  kept  in
equilibrium by two forces (say, P and Q), then equilibrium equations prove that they must have
equal  magnitude,  opposite  sense  and  must  lie  in  the  same line  of  action.  If  that  object  is
connected to another one, e.g., at a point where P is applied, then the adjacent object is acted
upon  by  the  force  P' which  has  (this  time  in  the  sense  of  Newton's  third  law)  the  same
magnitude,  opposite  sense  and  the  same  line  of  action  as  P.  It  means  therefore  that  any
information  about  Q directly  applies  to  P',  so  it  is  simply  unnecessary  to  assume  them
independently in an isolation. 
A two-force member can either have a finite extension or not. A pin-joint, idealized as a point,
can be in equilibrium under the action of a pair of forces of arbitrary direction: it needs an
assumption of two force components. A link is, on the contrary, a finite body where the point of
application of the two forces specifies a unique line of action for both forces: in a FBD it appeas
therefore as a force unknown up to one scalar only.

After the isolation is complete, write equilibrium statements for each separate body as well as
for the entire structure.

  e  u   new u
I  :( F , A ,C , S ) =̇ 0 3 5 5
II :(B ,C ' , S ' ) =̇0 3 4 1
Str:(F , A ,B) =̇ 0 (3) 3  

Next to the statements, numbers of independent equations (e), unknown reaction components
(u) are shown. In addition to them, unknowns that have not appeared before (with or without a
prime) are also counted as new unknowns. Number three is bracketed next to the statement of
the complete structure because those equations are not independent of previous ones. 
In order to find an appropriate sequence of one-variable equations, the number of independent
equations  and  unknowns  should  be  compared;  calculation  can  normally  be  started  with  a
member where these numbers match. In the current problem, equilibrium statements of bodies I
and II both involve more unknowns than the number of equations but those are equal for the
complete structure. Let equations be written therefore based on the overall equilibrium of the
roof. If the structure is dealt with as a whole, it can be modelled as an assembly isolated from its
external supports only: its equilibrium statement must not contain any internal reactions (this
statement can also be obtained as a kind of addition of statements of isolated bodies where an
internal component and its primed pair automatically cancel each other). 
Equilibrium equations in a compound structure can only be written with an explicit reference to
the structural part they are written about (e.g., any isolated members: 'I', 'II'  or the complete
structure: 'Str'). Now one can start by finding external reactions exactly as in simple structures:
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Str∑ M i
(A ):−2⋅2+B⋅8=0    →   B=0.5 kN(↑)

Str∑ M i
(B ): 2⋅6−A z⋅8=0    →   A z=1.5 kN(↑)

Str∑ Fix : A x=0

As soon as the external reactions are all found, the number of unknowns in the statement of
member I is reduced to 3 from 5; the three scalar equations for member I looks sufficient for
their determination (note that some results of former calculations must be used here):

I ∑M i
(C ):2⋅2+S⋅1−1.5⋅4=0    →   S=2  kN (t)

I ∑ F ix :Cx+2=0    →   C x=−2  kN (←)    →   C x
' =2  kN (→)

I ∑ F iz :2−1.5−C z=0    →   C z=0.5 kN(↑)    →   C z
' =0.5 kN(↓)

The  horizontal  component  of  internal  reaction  C  is  found  to  be  negative,  showing that  its
assumed sense must be reversed later in the final sketch. Magnitudes (and signs) of internal
components C' are exactly the same as of C but their arrows are of different sense (if they were
assumed correctly, they are both confirmed as a pair of opposite arrows, otherwise they are both
reversed).  Because  of  this  algebraic  equivalence,  internal  components  are  sufficient  to  be
displayed with a single value but two arrows. 
At this point, all external and internal reactions became known. The results can be checked by
equations assembled on the basis of equilibrium statement of member II yet not used at all:

After checking the results, it is left only to prepare a final sketch: each isolated member should
be drawn with all active and passive forces acting on it with their true senses. The figure should
also contain the values of reactions; values of internal reaction components are sufficient to be
given only once.
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Exercise 1
Determine external and internal reactions (calculated forces can be given by components).

Solution

Free-body diagrams:

Equilibrium statements:

                                     e             u          new u
        
I  :    

   
II :    

   
Str:    

Analytic solution:

Str∑M i
(A) :

Str∑M i
(B) :

Str∑ F ix :
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I  ∑ M i
(C) :

I  ∑ F ix :

I  ∑ F iz :

Check:

II ∑ F ix :

II ∑ F iz :

Final sketch:

Example 2
Determine external and internal reactions (calculated forces can be given by components).

Solution

The solution starts with isolation. All multi-force members (i.e., those acted upon by more than
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two forces)  should  be  displayed  separately  (members  with  less  than  three forces  are  not
isolated). Body I is kept in equilibrium by the active force  F, external reaction  A and internal
reaction C. Since there are only two forces exerted on internal hinge C, they should exactly be
negatives of each other. Body II is acted upon by the negative of internal reaction C, the external
reaction B at the pinned support to the right.
The free body diagams are as follows: 

After the structure having been isolated, equilibrium of each separate member as well as of the
entire structure should be stated. Next to the equilibrium statements, the number of independent
equations and of unknown reaction components pertaining to the given force system should be
written.  In  addition,  the  number  of  new unknowns  (that  is,  not  appearing  in  any  previous
statements of equilibrium) are also displayed:

  e  u   new u
I  :( F1 , A ,C) =̇ 0 3 4 4
II :(F 2 , B ,C ' ) =̇ 0 3 4 2
Str:(F1 , F2 , A , B) =̇ 0 (3) 4  

Independent statements of equilibrium imply six scalar equations which matches the number of
unknowns in the problem: the necessary condition of statical  determinacy is satisfied again.
Unfortunately;  however,  the  number  of  scalar  equations  is  always  less  than  the  number  of
reaction components in each statement. This property would normally require a two-variable
system of equations to be written and solved but special gemometry of the problem still allows
the  solution  of  a  one-variable  equation.  Based  on  the  equilibrium  of  the  entire  structure,
moments can be written about one of the external supports: it will only contain one of the four
unknown components:

Str∑ M i
( A ):−4⋅2.5−6⋅7.5+B z⋅10=0    →    B z=5.5 kN(↑)

Str∑ M i
(B ):+4⋅7.5+6⋅2.5−A z⋅10=0    →    A z=4.5 kN (↑)

As soon as vertical components of the external reactions became known, number of unknowns
is reduced to three in both bodies I and II. Solving equations for, e.g., body I, the horizontal
component of external reaction at A, as well as both components at C are obtained as follows:

I  ∑ M i
(C) : 4⋅2.5−4.5⋅5+Ax⋅3=0    →   A x=4.167 kN(→)

I  ∑ F ix :4.167+C x=0    →   C x=−4.167  kN (←)    →   C ' x=4.167  kN (→)
I  ∑ F iz : 4−4.5−C z=0    →   C z=−0.5  kN (↓)    →   C ' z=0.5  kN (↑)
The last  unknown,  Bz can  then  be  found,  e.g.,  from moments  about  hinge  C based  on the
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equilibrium of body II. 

II ∑ M i
(C):−6⋅2.5+5.5⋅5−Bx⋅3=0    →   Bx=4.167  kN (←)

Check the results based on the equilibrium of body II using two resolution equations:

II ∑ F ix :4.167−4.167=0

II ∑ F iz :6−5.5−0.5=0

Warning:  in  order  to  avoid  confusion  of  arrowheads,  all  equations  are  written  first,  for
convenience,  still  with  the  original  assumptions  of  unknowns;  calculated  results  should  be
substituted into the equation together with their  signs afterwards.  Arrows are only modified
when a successful check has been made. In our case, both components of the internal reaction
must be reversed in the final sketch because of their negative signs; including arrows of force C'
exerted on body II. Note that negative signs are not necessary to be shown in the final sketch,
since arrows give the senses of forces uniquely. The final sketch

Exercise 2
Determine external and internal reactions (calculated forces can be given by components).

 

Solution

Free-body diagrams:
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Equilibrium statements:

                                     e             u          new u
        
II :    

   
C :    

   
Str:    

Analytic solution:

  ∑  

  ∑  

  ∑  

  ∑  

  ∑  

Check:

  ∑  

  ∑  

Final sketch:
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Example 3

Isolate the structure (draw the minimum necessary number of FBDs). Write the corresponding
equilibrium statements and count unknown components as well as independent scalar equations.

Solution

The solution starts with isolation. All multi-force members (i.e., those acted upon by more than
two forces) should be displayed separately. Beam I is acted upon by five forces: active force P,
external reaction at  A and three internal reactions:  member forces S1,  S2 and a force  E at the
central hinge. Beam II is kept in equailibrium by four forces: external reaction at  B and three
internal reactions: member forces S3, S4 and a force E' at the central hinge (the hinge itself is a
two-force member and is not isolated, that is why forces E, E' on beams I and II are considered
to be pairs in a single contact. Hinges H and I; however, need isolation because they are both
three-force members.
Free-body diagrams:

When the isolation is complete, write equilibrium statements for each separate body as well as
for the entire structure. Count independent scalar equations and scalar unknowns.

  e  u   new u
I:  ( P , S 1 , S 2 ,E , A) =̇ 0 3 6 6
II: (S 3 , S4 , E ' , B) =̇ 0 3 5 3
H: (S ' 1 , S ' 2 , S 5) =̇ 0 2 3 1
I:  (S ' 3 , S ' 4 , S ' 5) =̇ 0 2 3 0
Str:(P , A , B) =̇ 0 (3) 3  

The number of independent scalar equations as well as of unknowns is both equal to ten in the
problem  (e = u): the necessary condition of statical determinacy is satisfied. 
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Exercise 3

Isolate the structure (draw the minimum necessary number of FBDs). Write the corresponding
equilibrium statements and count unknown components as well as independent scalar equations. 

Solution

Free-body diagrams:

 

Equilibrium statements:
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Compound structures II

A compound assembled of at  least  one  fixed and one  suspended part  is  called a  Gerber beam
(Gerber's  beam)  after  a  patent  of  a  german  engineer  Heinrich  Gerber  (1866).  There  is  some
discrepancy among terms used worldwide by engineers: fixed part is often referred to as simply
supported beam or cantilever beam (depending on its structural design), while suspended parts are
commonly  called  drop-in beams.  Likewise,  the  whole  compound  is  commonly  called  also
multispan hinged beam. Among several parts of a compound, a structural part (body) is called fixed
if  it  can  be  balanced  merely  by  its  external  supports  (i.e.,  without  any  contribution  of  other
members) in a statically determinate (isostatic) fashion. Despite that, a suspended part itself of a
structure would be statically overdeterminate (hypostatic): it is able to carry loads when supported
to other parts of the structure. Notice that a Gerber beam can have more than one suspended parts.
Numeric solution of a Gerber beam is reduced to a series of solutions of simple beams. Internal
reaction components obtained on the suspended part are applied to the fixed part as external loads,
making therefore possible to calculate external reactions of the suspended part as has been done in
simple structures.

The  structure  shown in  Figure  B4.1  is  a  Gerber  beam with  part  I  and II  being  the  fixed  and
suspended part, respectively. Body I is supported by three constraints altogether: it corresponds to
the usual supporting system of a simple statically determinate beam. Body II has a single external
constraint  only which would result in a statical overdeterminacy. However, this structural unit is
also connected to the fixed part by two internal constraints, making body II able to carry loads as
well.

Figure B4.1 A Gerber beam (above) with its fixed (I) and suspended (II) parts (below); only
external supports are displayed.

The structure shown in Figure B4.2 is also a Gerber beam, where bodies II and I are the fixed and
suspended  parts  of  the  structure.  Body  II  with  its  three  external  constraints  correspond  to  a
completely supported cantilever beam. Body I is supported externally by only one constraint, hence
it would be statically overdeterminate in itself. This suspended part, however, is attached to the
fixed part through a pin-joint: together with the support A, a system of three constraints provides the
structure with a load-bearing capacity.
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Figure B4.2 A Gerber beam (above) with its suspended (I) and fixed (II) parts (below); only
external supports are displayed.

Example 1
Determine  external  and  internal  reactions  of  the  Gerber  beam  (reactions  can  be  given  by
components).

Solution
The solution starts with isolation. All multi-force members (i.e., those acted upon by more than
two forces)  should  be  displayed  separately  (members  with  less  than  three forces  are  not
isolated). The fixed part (I) of the Gerber beam is kept in equilibrium by external reactions A, B
and internal reaction C. There are only two forces exerted on hinge C, therefore it need not be
considered separately. Finally, the suspended part (II) is acted upon by active force F, internal
reaction C' and external reaction D.
The free body diagrams are as follows:

 

After the structure having been isolated, equilibrium of each separate member as well as of the
entire structure should be stated. Next to the equilibrium statements, the number of independent
equations and of unknown reaction components provided by the given force system should be
written.  In  addition,  the  number  of  new unknowns  (that  is,  not  appearing  in  any  previous
statements of equilibrium) are also displayed:

  e   u   new u
I:   ( A , B ,C) =̇ 0 3 5 5
II:  (F ,C ' , D) =̇ 0 3 3 1
Str:(F , A , B , D) =̇ 0 (3) 4  
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Independent statements of equilibrium imply six scalar equations which matches the number of
unknowns in the problem: the necessary condition of statical determinacy is therefore met. In
order  to  find  an  appropriate  order  (and type)  of  equilibrium equations  to  be  written  down,
numbers of independent scalar equations and unknown reaction components are compared for
each statement. As a general rule, calculation is worth being started at the member where these
numbers are equal. The solution of Gerber-type structures is always started at the suspended
part. (if there are more than one suspended parts, calculation starts at the member having equal
number of scalar equations and unknowns).
Let the solution be started at the suspended part:

II∑ M i
(C) :−6⋅4+D⋅3=0    →   D=8 kN(↑)

II∑ Fix :C ' x=0    →     C x=0

II∑ Fiz :6+C ' z−(8)=0    →    C ' z=2 kN(↓)    →    C z=2 kN (↑)

By  determining  both  components  of  internal  reaction  at  C,  the  original  number  five  of
unknowns at body I reduces to three, making three other scalar equations to be sufficient for
obtaining a unique solution.

I∑M i
(A ) :B⋅4+(2)⋅5=0    →   B=−2.5  kN(↓)

I∑ F ix : Ax=0

I∑M i
B:−A z⋅4+(2)⋅1=0    →    A z=0.5kN(↑)

Now all external and internal reactions are determined; let (for instance) a vertical resolution for
the complete structure be written down in order to check the equilibrium:

Str∑ Fiz :6−0.5−(−2.5)−8=0

After the correctness of the results having been verified,  a final sketch of results should be
made. Precisely it means a repetition of free body diagrams with adjusting all arrows of internal
and external reaction components according to their calculated senses. The final sketch must
also be provided with all calculated scalar values.
Final sketch:
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Exercise 1 
Determine  external  and  internal  reactions  of  the  Gerber  beam  (reactions  can  be  given  by
components).

Solution

Isolation:

   
            

Equilibrium statements:

                                                                   e                 u           new u
        
I:    

   
C:    

   
II:    

   
Str:    

Analytic solution:

∑
∑
∑
∑
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∑
∑
∑
∑

Check:

∑
Final sketch:

    

Example 2
Determine  external  and  internal  reactions  of  the  Gerber  beam  (reactions  can  be  given  by
components).

Solution

Let the solution be started again by the isolation. All structural units acted upon by more than
two forces (torques) should be considered separately. Body I is in equilibrium under the action
of active distributed load p, external reaction A and internal reaction C. Since there are only two
forces exerted on internal hinge  C, they should exactly be negatives to each other. Body II is
acted upon by the negative of internal reaction C, the external reaction B and torque M

B  
at the

fixed support. 
The free body diagams are as follows:
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After the structure having been isolated, equilibrium of each separate member as well as of the
entire structure should be stated. Next to the equilibrium statements, the number of independent
equations and of unknown reaction components provided by the given force system should be
written.  In  addition,  the  number  of  new unknowns  (that  is,  not  appearing  in  any  previous
statements of equilibrium) are also displayed:

   e   u   new u
I:   (( p) , A ,C ) =̇ 0 3 3 3
II:  (C ' , B , M B) =̇ 0 3 5 3

Str:(( p) , A , B , M B) =̇ 0 (3) 4  

Independent statements of equilibrium imply six scalar equations which matches the number of
unknowns in the problem: the necessary condition of statical  determinacy is satisfied again.
Comparing  number  of  scalar  equations  against  the  number  of  reaction  components  it  is
experimented  that  these  numbers  match  only  for  the  suspended  part.  Consequently,  the
calculation starts by writing equilibrium equations based on the equilibrium staement of the
suspended part itself. It is still aimed at finding equations with only one unknown if possible: 

I∑M i
(C ):3⋅1⋅2.5−A⋅2=0    →   A=3.75 kN (↑)

I∑ F ix :C x=0    →   C ' x=0

I∑ F iz :3⋅1−(3.75)−C z=0    →   C z=−0.75  kN (↓)    →   C ' z=−0.75  kN(↑)

As soon as components of reaction  C' are obtained, there are only three unknowns left in the
equilibrium statement written for the fixed part and they can be therefore determined as follows:

II ∑ F ix : Bx=0

II ∑ F iz : (−0.75)−B z=0    →   B z=−0.75  kN(↓)

II ∑M i
(B) :(−0.75)⋅4+MB=0     →    M B=3 kNm (↶)

Now all  external and internal reactions are determined; let  a moment about point  A for the
complete structure be written down in order to check the equilibrium:

Str∑ M i
( A ):3⋅1⋅0.5+(−0.75)⋅6+3=0

After the results having been determined, make the final sketch:
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Exercise 2 
Determine  external  and  internal  reactions  of  the  Gerber  beam  (reactions  can  be  given  by
components).

Solution

FBDs:

   

            

Equilibrium statements:

                                                e                 u          new u
        
I:      

   
II:     

   
III:    

   
Str:    

Analytic solution:

∑
∑
∑
∑
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∑
∑
∑
∑
∑

Check:

∑
Final sketch:
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Example 3
Determine external and internal reactions (calculated forces can be given by components).

Solution

The solution is started by the isolation. Body I is acted upon by  external reactions  A,  M
A  

and

internal reaction  C. Since there are only two forces sxerted on internal hinge  C, they should
exactly be negatives to each other. Body II is acted upon by active distributed load p, internal
reaction C' and external reaction B. 
The free body diagams are as follows:

When calculating reactions, a distributed load can be replaced by its resultant of magnitude
P=3⋅4=12 kN .

After the isolation is complete, write equilibrium statements for each separate body as well as
for the entire structure. Count independent scalar equations and scalar unknowns.
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 e   u   new u
I:   ( A , M A ,C ) =̇ 0 3 5 5
II:  (( p) ,C ' , B) =̇0 3 3 1
Str:(( p) , A , M A , B) =̇ 0 (3) 4  

Independent statements of equilibrium imply six scalar equations. The number of unknowns in
the problem is also six: the necessary condition of statical determinacy is still satisfied. The
number of scalar equations and also the number of reaction components for body II is three, so
the solution process starts here: 

II∑ M i
(C) :−12⋅2+B⋅4=0    →   B=6  kN(↑)

II∑ Fix :C ' x=0    →   C x=0

II∑ Fiz :12+C ' z−6=0    →   C ' z=−6  kN(↑)    →   C z=−6  kN (↓)

After  components  of  reaction  C having been obtained,  the  equilibrium statement  of  body I
remains with three unknowns only. They can be calculated, e.g., as:

I∑ F ix : Ax=0

I∑ F iz :−A z−(−6)=0    →   A z=6  kN(↑)

I∑M i
(A ) : M A+(−6)⋅4=0     →    M A=24 kNm(↶)

Now all  external  and internal  reactions  are  determined;  let  moments  about  point  B for  the
complete structure be summed up in order to check the equilibrium:

Str∑ M i
(B ):12⋅2−(6)⋅8+24=0

After checking the results, it is left only to prepare a final sketch:
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Exercise 3
Determine external and internal reactions of the structure shown below.

Solution
FBDs:

   

Equilibrium statements:

                                                e                 u           new u
        
I:    

   
II:    

   
Str:    
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Analytic solution:

∑
∑
∑
∑
∑
∑

Check:

∑
Final sketch:

   

12
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Compound structures III

One of the most common compounds is the three hinged structure (frame, arch), composed of two
pin-jointed  members,  both  supported  to  the  ground  by  a  further  pin-joint.  Figure  B5.1 shows
different (typical) geomeries for three hinged structures. 

Figure B5.1 Three hinged arch and frames

A typical problem of calculation of these three hinged structures is a smaller number of independent
equations than that of unknowns implied by an equailibrium statement of any isolated bodies or
even  the  entire  compound.  Nevertheless,  generally  there  is  no  need  of  solving  a  system with
multiple equations: a system with two unknowns and equations is always suitable to start with, and
all  other  unknowns  can  be obtained afterwards  by  single  equations  each.  Moreover,  in  such a
special (but not extraordinary) case when two external supports are at the same height, all reaction
components can be obtained using single-variable equations only.

Example 1
Determine all external and internal reactions of the three hinged frame shown. 

Solution
The solution is started by the isolation. Both members of the structure are acted upon by more
than two forces. Body I carries the left half of distributed load  p and is balanced by external
reaction  A  and  internal  reaction  C  at  the  middle  hinge,  both  of  unknown  magnitude  and
direction. Hinge  C does not need isolation because only two forces from adjacent bodies are
exerted on it.  Note that  a  hinge is  assumed to have infinitely small  extension and thus the
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resultant of the distributed load over it is also infinitely small. Body II is exerted upon by the
right half of load p, as well as external reaction B and internal reaction C' at the middle hinge,
both are of unknown magnitude and direction.
Free body diagrams are as follows:

After the structure having been isolated, equilibrium of each separate member as well as of the
entire structure should be stated. Next to the equilibrium statements, the number of independent
equations and of unknown reaction components provided by the given force system should be
written.  In  addition,  the  number  of  new unknowns  (that  is,  not  appearing  in  any  previous
statements of equilibrium) are also displayed:

  e   u   new u
I:   (( p) , A ,C ) =̇ 0 3 4 4
II:  (( p) , C ' , B) =̇ 0 3 4 2
Str:(( p) , A , B) =̇ 0 (3) 4  

Independent statements of equilibrium imply six scalar equations which equals the number of
unknowns in the problem: the necessary condition of statical determinacy is therefore met. It is
common to three hinged structures,  however,  that any statement of equilibrium implies less
independent scalar equations than unknowns but, a system of at most two equations and two
variables is sufficient to start the solution. Focusing on two unknown components at a given
hinge, e.g., at  B, makes possible to extract two equations from two different statements, both
having only the components B

x
,  B

z
. Let therefore the sum of moment about point A be written

for the equilibrium of the entire structure and, simultaneously,  another sum of moments about
point C for the equailibrium of body II only:

Str∑ M i
( A ):−3⋅8⋅4+Bz⋅8+Bx⋅2=0    

II∑ M i
(C) :−3⋅4⋅2+B z⋅4−Bx⋅4=0

The component B
x 
is expressed from the first equation as follows:

Bx=48−4⋅B z

and writing it into the second one yields:

−24+ 4⋅B z−192+ 16⋅B z=0 .

From this expression, one obtains B
z
 as

B z=10.8 kN(↑)

and then B
x
 is
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Bx=4.8 kN(←) .

After both components of  B having been determined, any components of  A can be obtained
from resolution equations written for the entire structure:

Str∑ Fix : Ax−(4,8)=0    →   A x=4,8 kN(→)

Str∑ Fiz :3⋅8−A z−(10.8)=0    →   A z=13.2 kN(↑)

Now all external reactions are determined, let the equilibrium be checked by writing the sum of
moments about point C, based on the equailibrium of body I:

I∑M i
(C ):3⋅4⋅2−(13.2)⋅4+(4.8)⋅6=0    

Having the correctness of external reaction components been verified, determine components of
internal reaction C based on the equilibrium of body I:

I∑ F ix :(4.8)−C x=0    →   C x=4.8 kN(←)    →   C ' x=4.8 kN(→)

I∑ F iz :3⋅4−(13.2)+C z=0    →   C z=1.2 kN(↓)    →   C ' z=1.2 kN(↑)

At this  point,  all  internal  reaction  components  became known.  The results  can  be  checked
through summing up moments about point B with respect to the statement of body II:

II∑ M i
(B ):3⋅4⋅2−(1.2)⋅4−(4.8)⋅4=0    

Since all checks were successful, make a final sketch: 
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Exercise 1
Determine all external and internal reactions of the three hinged frame shown. 
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Solution

Free body diagrams:

Equilibrium statements:

                                                                  e                 u           new u
        
I:      

   
II:     

   
Str:    

Analytic solution:

Str∑ M i
(B) :

I∑ M i
(C ) :

Express component A
x
 from the first equation:

Ax=
and plug it into the second one:

...
This yields:

Az=  

Ax=
All further equations are of a single variable:

∑
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∑
Checking external reactions:

∑
Determine now the components of reaction C:

∑
∑

Check:

∑
Final sketch:

Example 2
Determine external and internal reactions of the three hinged frame shown. 
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Solution

The first step is the isolation. Member I is acted upon by external reaction  A and an internal
reaction at the middle hinge  C,  that is,  they must be the negatives of each other. Likewise,
member II is kept in equilibrium by an exernal reaction B and an internal one at hinge C, that is
only possible again if they are also negatives of each other. As an immediate consequence of
these conditions, both internal reactions of the hinge C also pass through an external hinge (A or
B), or conversely, both external reactions pass also through point  C. Hinge  C should now be
isolated because of the three forces acting on it; and its free body diagram will be the only one
after isolation:

State the equilibrium of joint C :

 e  u   new u
C:(F , A ,B) =̇ 0 2 2 2

Note  that  the  equilibrium statement  of  the  entire  structure  involves  the  same three  forces,
making it unnecessary to be written separately. The statement implies two independent scalar
equations and there are also two unknowns in it, since the line of action of both external reaction
forces are known. Let moment equilibria be written about both external supports:

C∑M i
(B)

:2⋅4−A⋅
3
5
⋅8=0    →   A=1.667 kN (⭯ )

C∑M i
(A )

:−2⋅4+B⋅
3
5
⋅8=0    →   B=1.667  kN (⭯ )

(Support reactions A and B are resolved into components in points A and B, respectively.)
Now, check the obtained results by a resolution equation written for joint C:

C∑ F ix :(1.667)⋅
4
5

−(1.667)⋅
4
5

=0

At the end, make a final sketch:

C

F=2 kN

A=1.667kN B=1.667 kN

6

F

A B
C
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Exercise 2 
Determine external and internal reactions of the three hinged frame shown.

Solution

Free body diagram:

   

            

Equilibrium statement(s):

                                                                                                              

Draw lines of  both support reactions  into the figure.                    

Analytic solution:

∑
∑
∑

Equation for checking:

∑

7

I II

A B

C

p=2 kN/m

3 m 3 m

5 
m

x

z

I II

A B

C

II



Basics of Statics and Dynamics eB5

Final sketch:

Example 3
Determine external and internal reactions of the structure given below. 

x

z F=240 N

2.6 m

3.
5 

m

A

B

C

D

I

II

1

1.
6 

m

Solution

The first step is the isolation. Member I is acted upon by external reactions A, M
A
 and internal

reactions at hinges  C and  D. All the hinges themselves and even member  CD are two-force
members only, so they will not be isolated. Member II, however, carries an active load F and
balanced by internal  reactions  at  D (force  S'

1 
with given line of action)  and  B (force  B'  of

unknown magnitude and direction). The FBDs are then as follows:
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After  the  isolation  is  done,  write  equilibrium statements  for  separate  bodies  and  the  entire
structure. Count independent scalar equations as well as unknown reaction components.

  e    u    new u
I:   ( A , M A , B , S 1) =̇ 0 3 6 6
II:  (F , S ' 1, B ' ) =̇ 0 3 3 0
Str:(F , A ,M A) =̇ 0 (3) 3  

Equilibrium statements imply six independent scalar equations for six unknown components,
hence the necessary condition of statical  determinacy is satisfied.  Equilibrium of member II
implies three equations and its statement involves three unknowns as well; it is convenient to
start the calculations here: 

II∑ M i
(B )

:240⋅2.6−S ' 1⋅
       1.6

√1.62+2.62
⋅2.6=0    →   S1=458.0  N( t)

II∑ M i
(C) :240⋅2.6−B' x⋅1.6=0    →   B ' x=390 N(←)    →   B x=390 N (→)

II∑ M iz
(D ) :B ' z=0    →   B z=0

Equilibrium  statement  of  the  entire  structure  allows  for  writing  three  independent  scalar
equations as well for three unknowns which are the external reactions of the compound:

Str∑ M i
(A ):240⋅2,6+M A=0     →   M A=−624  Nm ( )↷

Str∑ Fix : Ax=0

Str∑ Fiz :240−A z=0    →   A z=240  N(↑)

At this point, all internal and external reactions are known. Check the equailibrium by writing
two resolution equations for member I as follows:

Str∑ Fix :390−(458.0)⋅
       2.6

√1.62+2.62
=0.04≈0   

Str∑ Fiz :−240+(458,0)⋅
       1.6

√1.62+2.62
=0.03≈0   

Make a final sketch after the results having been checked:

9
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F

I

II

A=240 N

M A=624 Nm

B=390 N
B'

S1
'

S1=458.0 N( t)

Exercise 3
Determine external and internal reactions of the structure given below.

x

z

F=240 N

2.6 m

3.
5 

m

A

B

C
D

I

1

1.
6 

m
2

Solution
Free body diagrams:

   

Equilibrium statements:

10

I.

D



Basics of Statics and Dynamics eB5

                                                e                 u           new u
        
I:    

   
D:    

   
Str:    

Analytic solution:

∑
∑
∑
∑
∑

Check:

∑
Final sketch:

11
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Statical determinacy

Definitions with respect to statical determinacy were given at the analysis of simple structures in a
way that they also generalize to compounds. In the present lecture only determinate structures were
dealt  with  so  far,  but  now  here  follow  some  examples  of  statically  indeterminate  and
overdeterminate compound structures. Let former definitions be revisited as follows:

Definition: A structure is said to be  statically determinate (isostatic) if it remains in equilibrium
under arbitrary loads and all its reactions can uniquely be determined from equilibrium equations. 

Statical determinacy requires therefore two conditions to be satisfied simultaneously. If any of here
conditions is not met, the structure has a different classification. 

Definition: A structure is said to be  statically overdeterminate (hypostatic) if there exists a load
under which the structure does not remain in equilibrium (i.e., the system of equilibrium equations
has no solution).

Definition:  A structure is said to be  statically indeterminate (hyperstatic) if  there exists  a load
under  which  the  system of  equilibrium equations  can  be  solved  (i.e.,  the  structure  remains  in
equilibrium) but this solution is not unique. In other terms, reactions cannot be determined uniquely
just from equilibrium equations. 

Analysis  of  statical  determinacy  of  a  structure  is  commonly  started  by  the  comparison  of  the
number e of scalar equations implied by the different equilibrium statements and the number u of
scalar  unknowns involved in  them.  If  the  number  of  equations  exceeds  that  of  unknowns,  the
structure is sure to be statically overdeterminate: relation  e > u is a sufficient (but not necessary)
condition of statical overdeterminacy. It can also be said that such structures need further supports
to be able to carry loads of arbitrary arrangement. Figure B5.2 shows statically overdeterminate
structures obeying the condition e > u. When analysing an entire structure from the aspect of statical
determinacy, numbers of equations and unknowns are determined on the basis of the  complete
isolation of the structure. In the lack of any specified load, all members in a compound should be
treated as possibly exposed to some active load, and should therefore be isolated one by one. It is an
important  note  that  statical  determinacy,  in-  or  overdeterminacy  of  an  assembly  is  a  property
independent from any load acting on it; it is strictly inherent to the structure itself.

If the number of scalar equations is less than that of scalar unknowns, there can surely be found a
load under which the equilibrium equations can be solved but not uniquely. The relation e < u is a
sufficient (but not necessary) condition of statical indeterminacy.  structure is sure to be statically
overdeterminate:  Abban  esetben,  ha  az  ismeretlenek  száma  nagyobb,  mint  a  felírható
skaláregyenletek száma, akkor biztosan van olyan teher,  ami esetén nem tudjuk a reakcióerőket
csupán az egyensúlyi egyenletek alapján egyértelműen meghatározni. Figure B5.3 shows statically
indeterminate structures obeying the condition  e < u. It can also be said that such structures have
too many supports (more generally: too many internal or external connections) to get all reaction
components uniquely from the equilibrium equations only.

As has  already been seen  in  simple  structures,  fulfilment  of  e=i does  not  automatically  imply
statical determinacy of the structure (relation e = u is only a necessary (but not sufficient) condition
of  statical  determinacy).  All  examples  shown  in  Figure  B5.4  are  statically  indeterminate  and
overdeterminate three hinged assemblies at the same time. Both structures have their three hinges
incident to a straight line: if the middle hinge C is loaded only, both adjacent members are balanced
by just  two forces,  making their  lines of action to pass hinge  C.  With his  special  geometry,  a
resolution equation perpendicular to this common line of internal reactions is not satisfied whenever
the load on C has any component in the equation. This proves the existence of a load under which

12
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the structure is unable to remain in equilibrium: the structure is statically overdeterminate. If the
structure is not acted upon by any external load,  any pair  of reactions of equal magnitude and
opposite direction through A and C is able to maintain equilibrium. It is a direct proof again for the
system of equilibrium equations  to  have more than one solution,  making thus  the condition of
statical indeterminacy satisfied: there exists a load under which the structure is in equilibrium but
the solution of equilibrium equations is not unique.

Figure B5.2 Statically overdeterminate compound structures

Figure B5.3 Statically indeterminate compound structures
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Figure B5.4 Statically in- and overdeterminate compound structures
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Trusses

Structures composed of several bars with pin-jointed connections at each ends are called trusses, see
Figure B6.1. Bars in a truss are normally straight; a truss can only be supported by links (rollers)
and pin-joints. Loads on a truss are commonly admitted on joints only. Note that trusses in the
engineering practice are not precisely built with pin-jointed connections; however, a bar-and-joint
statical model considerably simplifies computing tasks, while it provides a reliable approximation
even in the case of rigid (e.g., welded) connections.

Figure B6.1 Truss loaded at its joints

Trusses are a special kind of compound structures, therefore all its internal and external reactions
can be determined using techniques discussed so far. A special care about this family of structures
is  justified  either  by  their  frequent  application  or  by  some  special  procedures  that  have  been
developed and spread over the world for the calculation of truss members. In order to verify the
necessary condition of statical determinacy of a truss, let a complete isolation of a truss be prepared
first (see Figure B6.2). Forces in members connecting joints  i and j (i<j) will be denoted by their
signed magnitude S

i,j
 henceforth. We adopt a convention that first subscript in a member force refers

always to the node labeled by the smaller number. In FBDs, any member force exerted on a joint is
denoted by an arrow and provided with a scalar magntude of that force keeping the assumption that
tensile bars are said to have positive member forces.  Two forces exerted by a member on two
connected joints are obviously negative to each other which can also be seen from opposite arrows
drawn to joints. For the sake of simplicity, prime notation of opposite member forces (i.e., in the
sense of Newton's third law) are omitted.

Figure B6.2 Isolated joints of a truss loaded at its joints only

The procedure of isolation means a separate analysis of joints only, since all bars are acted upon
exactly by two forces. Those forces must share a line of action and should therefore pass through
both joints adjacent to the truss member. Each separate joint represents a concurrent force system in
2D and implies therefore two independent scalar equations.  This leads to a total  number  2c of
equations  where  c stands  for  the  number  of  joints  inside  a  truss.  Unknowns  in  the  system of
equilibrium equations are member forces and external reaction components; their total number adds
up to r + k with r being the number of truss members and k is the total degree of constraints. The
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necessary but not sufficient condition of statical determinacy is that the number of independent
scalar equations should be equal to the number of scalar unknowns (e = u) that can be translated for
trusses as 2c = r + k. 

Members of special position within a truss have their own names. Truss members forming top and
bottom boundaries  of  the  structure  are  called  top  chord members and  bottom chord members,
respectively; their complete series is referred to as top chord and bottom chord of the truss. If top
and bottom chord members are all parallel to each other, the truss is named parallel chord truss or
flat  truss.  Trusses with triangular side view (mostly used in roof structures)  are  called  pitched
trusses. Members running between chords are called web members and can further be divided into
columns/struts or ties, depending on their typical (compressive or tensile) loads. Figure B6.3 shows
examples  for  members  in  different  position.  Not  that  trusses  are  commonly  drawn  without
displaying hinges at nodes, nevertheless, calculation is made assuming pinned connections.

Figure B6.3 Truss member terminology

Figs. 16.4 -16.8 show different truss types which are (except for X- or Brown trusses of Figure
B6.7)  alll  statically  determinate.  Note  that  statical  indeterminacy  of  Brown  trusses  are  not
influenced by whether or not there are also pin-joints at crossings (the example at the bottom and
top is with and without pin-joints, respectively), since insertion of a new pin-joint comes along with
two  new  web  members,  leaving  the  difference  between  numbers  of  equations  and  unknowns
unchanged.

Figure B6.4 Warren truss
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bottom chord members (bottom chord)

(web)

(web)



Basics of Statics and Dynamics eB6

Figure B6.5 Pratt truss.

Figure B6.6 K truss

Figure B6.7 Brown truss (X-truss)

Figure B6.8 Baltimore truss (with secondary bracing)

In the following sections, two methods (method of joints and method of sections) will be presented
for calculating truss member forces in the case when active loads are assumed to act exclusively at
nodes.

3



Basics of Statics and Dynamics eB6

The method of joints is based on the analysis of equilibrium of an individual joint and is applicable
in two cases: 1) If a joint is exerted on by not more than two unknown member forces, then two
equations (either resolution or moment equations) yield the member forces. 2) If all but one member
adjacent to a joint (either of known or unknown forces) are aligned with each other, the remaining
member force can be determined from a resolution equation perpendicular to all other members. 

The method of sections is mainly applied for so-called triple sections: three members of the truss
are replaced by their member forces such that the truss is split into two disjoint substructures. Note
that it is a special kind of partial isolation that can also be recovered from the complete one by the
unification  of  all  joints  on either  side  of  that  section.  If  the  three  member  forces  act  on  both
substructures, they both should remain in equilibrium. Equilibrium equations written for either side
of the section provides a solution to three scalars (assume that external reactions of the entire truss
are determined beforehand) In a slightly generalized context, both methods could be unified under
the name 'method of sections', since the method of joints is also derived from a special section
where all members adjacent to a node are cut (replaced by forces). 

Members that are neither tensile nor compressive under a given load are called zero force members
and denoted by a small circle drawn to their axis. In some special cases, zero force members can
easily be detected. If a joint with no active load or external reaction component exerted on it (call it
'unloaded' for brevity henceforth) is adjacent to two non-parallel members only, both members are
zero force members (Figure B6.9a). This statement can easily be justified by resolution equations
written in a direction perpendicular to each member. Similarly, if an unloaded joint is adjacent to
three members from which two are collinear, a resolution perpendicular to them yields immediately
for the third one to be a zero force member (Figure B6.9b). It is still not very different if there are
only two members adjacent to a joint which is loaded either by an active or passive force whose line
of action is incident to one of the two member axes. A resolution perpendicular to parallel lines
proves again the remaining member to be a zero force member (Figure B6.9c). 

Figure B6.9 Special joints with zero force members

Calculated member forces  are  easier  to  be presented rather  in  a  table  format  than in  graphical
sketches (being possibly different because of the different sections applied). The first column of a
member force table lists the names of members, while columns 2 and 3 contain values of tensile and
compressive  member  forces,  respectively.  (This  strict  separation  of  tensile  and  compressive
members  is  justified  by  the  essential  difference  in  their  mechanical  behaviour:  unlike  tensile
members, compressive members can buckle even at a relatively small level of load: difference in
signs DOES mind.)
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Example 1
Determine forces in all marked members of the truss shown. 

Solution

Let the solution be started by determining external reactions: this task is done as if the truss was
a  single  rigid  member:  reactions  are  calculated  as  in  simply  supported  beams  (even  if  no
separate FBD is provided at this stage). Equilibrium of the truss is influenced by the only active
load F and two support reactions:
Str: (F , A , B) =̇ 0

All reaction components are obtained from moment equilibria about supports and a horizontal
resolution:

Str ∑M i
(A ) :−5⋅9+B⋅12=0    →   B=3.75 kN(↑)

Str ∑M i
(B) :5⋅3−A z⋅12=0    →   A z=1.25 kN(↑)

Str ∑ F ix : A x=0

In order to check them, write a resolution equation along z:

Str ∑ F iz :5−1.25−3.75=0

In view of those reactions, member forces S
2,3

, S
2,8

, S
7,8

 can already be determined from a triple

section. Let all these members be removed and replaced by their member forces; both parts to
the left and right of the section continues to be in equilbrium. Draw free body diagrams of both
substructures and state their equilibrium one by one:

Triple section, FBDs of separate substructures:

Equilibrium statements are as follows:

5
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left: (S2,3 , S 2,8 , S7,8 , A) =̇ 0

right: (F , S2,3 , S 2,8 , S7,8 , B) =̇ 0

Both statements contain the same three unknown forces and both statements imply three scalar
equilibrium equations. These triples of equations are not independent of each other: equilibrium
of the entire assembly has already been ensured by finding external reactions, and equilibrium
of either substructure implies then directly the equilibrium of the other one. Eventually there are
three independent scalar equations; for the sake of simplicity, they are mainly written based on
that equilibrium statement which requires the less forces to be dealt with (for the same reason,
FBD of  the  other  side  is  not  even drawn usually).  Continue  now calculating  based on the
equilibrium of the left hand side: reaction A is balanced by three forces in known lines of action.
It  is  always  possible  to  set  up  three  single-variable  equations  to  calculate  unknown forces
involved in a triple section. Member force S

2,3
 is worth calculating from a moment equilibrium

about the point of intersection (8) of two remaining forces as follows:

left ∑ M i
(8):−S2.3⋅4−1.25⋅6=0    →   S2.3=−1.875  kN(c)

Force S
2,8

 is obtained from a resolution equation perpendicular to both remaining forces:

left ∑ F iz : S2.8⋅
4
5

−1.25=0    →   S2.8=1.563  kN( t)

Force  S
7,8

 is still  calculated preferably from an equation not involving any recently obtained

member forces. Write a moment equation about the point of intersection (2) of two remaining
forces as follows:

left ∑M i
(2): S7,8⋅4−1.25⋅3=0    →   S7,8=0.9375  kN( t)

In order to check all forces in the same section, let a horizontal resolution be written down:

left ∑ F ix :(−1.875)+(1.563)⋅
3
5

+(0.9375)=0.0003≈0

Force S
4,9

 can be obtained from a section driven through members (4,5), (4,9) and (8,9). Use the

equilibrium of the right hand side of the section.
FBD:

Equilibrium statement:

right: (S 4,5 , S4,9 , S 8,9 , A) =̇ 0

Since both chords are parallel, this member force is obtaind from a resolution perpendicular to
both chords: 

right∑ F iz :−S4,9−3.75=0    →   S4,9=−3.75  kN(c)

Forces in members (1,6) and (6,7) are determined using the method of joints applied at joint 6.

6

B

5

9
10

S 4,5
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FBD:

Equilibrium statement:
6 :(S1,6 , S 6,7 , A) =̇ 0

From a horizontal resolution it follows that member (6,7) is a zero force member (S
6,7

=0).

Force S
1,6

 can finally be determined from a vertical resolution equation as follows:

6∑ F iz :−1.25−S1,6=0    →   S1,6=−1.25  kN(c)

Calculated values are normally given in a table of member forces. Headings of columns refer to
1) member ID, 2) tensile forces 3) compresssive forces. Zero force members are displayed in
both columns 2 and 3.

Table of member forces:

Member ID Tensile [kN] Compressive [kN]

(1,6) 1.25

(2,3) 1.875

(2,8) 1.563

(4,9) 3.75

(6,7) 0 0

(7,8) 0.9375

7

A
S 6,7

S 1,6
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Exercise 1 
Find zero force members (justify each of your choices by an appropriate equation). Calculate
forces in all marked members of the truss shown. 

Solution

Zero force members:

External reactions:

Triple section:

8
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Table of member forces:

Member ID Tensile [kN] Compressive [kN]
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Trusses and statical determinacy

Definitions  of  statical  determinacy,  indeterminacy  and  overdeterminacy  have  already  been
discussed in former lectures. These definitions also extend to trusses.

Sufficient but not necessary condition of statical overdeterminacy of a structure has been given in
the form  u < e, this can be rewritten for  planar  trusses (with  u = r + k  and  e = 2c) as  r + k < 2c.
Figures  B7.1a  and  B7.1b  show  structural  examples  satisfying  this  sufficient  condition.  The
assembly  of  Figure  B7.1a  cannot  be  balanced  against  the  horizontal  force  F (the  horizontal
resolution equation is not satisfied), while node 2 of the truss shown in Figure B7.1b where the
conditions of equilibrium of node 2 imply that it  could only be balanced by a  tensile  force of
magnitude  F in  member  (1,2)  which  contradicts  the  condition  of  equilibrium  of  node  1.  In
summary, there exist a load for both assemblies which results in no solution of the equilibrium
equations.

Figure B7.1 Statically overdeterminate (a,b), statically indeterminate (c,d) and statically both
indeterminate and overdeterminate (e,f) trusses

Sufficient but not necessary condition of statical indeterminacy of a structure has been given in the
form  u > e, this can be rewritten for  planar  trusses  as  r + k > 2c. Figures B7.1c and B7.1d show
structural examples satisfying this sufficient condition. Force in member (3,4) of the structure of
Figure B7.1c can be of arbitrary magnitude because the lateral supports can balance any kind of
load transmitted by the members. This also means that force  S

3,4
 cannot be uniquely determined

even in the lack of any active load on the structure. The structure shown in Figure B7.1d can be
made statically determinate by the removal of any single member.  If  the force in  the removed
member is applied at both adjacent joints, all remaining member forces can be determined uniquely

1
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and the structure remains in equilibrium. In other words, by prescribing one of the member forces,
all  other  member  forces  can  restore  equilibrium,  that  is,  member  forces  cannot  be  determined
uniquely even if no active load is exerted on the truss at all.

Necessary but not sufficient condition of statical determinacy of a structure has been given in the
form  u = e,  this  can  be  rewritten  for  planar  trusses  as  r + k = 2c.  All  Examples  and  Exercises
presented in Lecture B6 and B7 are statically determinate trusses. Figures B7.1e and B7.1f show
structural examples satisfying this necessary condition, too, but these are statically indeterminate
and statically  overdeterminate at  the same time.  Statical  overdeterminacy of  these  structures  is
proven by applying a load  F as shown in the figures: this load cannot be balanced. Assemblies
under Figures B7.1e-f yield contradiction in calculating member force  S

1,2
 and overall horizontal

equilibrium, respectively. Statical indeterminacy is proven like was done for structures of Figures
B7.1c-d. Member (3,4) of the assembly of Figure B7.1e is able to carry arbitrary force even without
external loading; in the assembly of Figure B7.1f, any member force can arbitrarily be prescribed
and all other member forces will balance it with zero external reactions: for some loads there exist
solutions  that  cannot  be  determined  uniquely  from  equilibrium  equations  even  in  the  lack  of
external loading.

Example 1
Find forces in members (1,2), (1,8), (7,8), (2,8) of the truss shown. 

Solution

The first task is to determine external reactions. The entire truss is regrded as a simple rigid
body in this procedure, reactions are obtained as for a simply supported beam (but the FBD of
the simply supported beam is not drawn yet). The equilibrium of the entire truss is maintained
by active force F and two passive forces A and B:
Str: (F , A , B) =̇ 0

Unknown components of reactions are obtained from moment equilibrium equations about the
supports as well as from a horizontal resolution:

Str∑ M i
(A ):−3⋅6+B⋅18=0    →   B=1 kN(↑)

Str∑ M i
(B ):3⋅12−A z⋅18=0    →   A z=2 kN(↑)

Str∑ Fix : Ax=0

Verification of results is made by a resolution equation along z:

Str∑ Fiz :3−2−1=0

2

0.
6

3m 3 m 3m 3 m 3 m 3 m

4 
m

2
1

3

6
7 8 9

4
5

12
10 11

F=3 kNA B

x

z
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In view of these reactions, member forces  S
1,2

,  S
1,8

,  S
7,8

 can be calculated from the same triple

section. Let those members be removed from the structure and replaced by their member forces;
this modification does not affect the equilibrium of substructures both to the left and right of the
section. 
Let the substructure rather on left hand side be analysed, since it is only acted upon by reaction
A (beyond, of course, the member forces considered). Make a FBD for that part and state its
equilibrium as follows:

The equilibrium statement reads:

left: (S1,2 , S 1,8 , S 7,8 , A) =̇ 0

Here reaction A is balanced by three unknown member forces. As already known for such cases,
there always can be written three equations  in  one variable  each to  gst  froces  in  the triple
section. Le t the method of principal points be applied, that is, a member force will be calculated
from a momrent equilibrium about the point of intersection of lines of action of the remaining
two forces. Let the angle of member (1,2) to the horizontal be denoted by α. Its numeric value
will NOT be required in calculations but its sine and cosine will, let both be expressed therefore
by proportions of  horizontal and vertical legs and the hypotenuse (1-2) of a right triangle. For
this purpose, we need the length of diagonal segment l1,2 :

l1,2=√32+0.62=3.059m

Member force S
1,2

 is obtained therefore from a moment equilibrium equation written about joint

8, accounting for a resolution of force S
1,2

 at joint 2 into horizontal and vertical components:

left ∑M i
(8)

:−S1,2⋅
3

3.059
⋅4.6−2⋅6=0    →   S1,2=−2.660  kN(c)

For calculating member force  S
1,8

,  principal  point  O
1,8

 (intersection of lines  (1,2)  and (7,8))

should be determined:

The right triangle defined by nodes (1), (7) and principal point O
1,8

 is similar to that considered

previously, that is,
x

4m
=

3 m
0.6m

→ x=20 m .

3

1

6
7

S 1,2

S 1,8

S 7,8
A

1

6
7

S 1,2

S 1,8

S 7,8
A

O1,8

α

x
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It  is  now possible  to  write  the  balance  of  moments  about  point  O
1,8

,  with  force  S
1,8

 being

resolved into components at node 8:

left ∑M i
(O 1,8) :−S1,8⋅

4
5
⋅23+2⋅17=0    →   S1,8=1.848 kN( t)

Member  force  S
7,8

 ris  calculated  from  a  moment  equation  written  about  the  point  1  of

intersection of two remaining members as follows:

left ∑M i
(1 ): S7,8⋅4−2⋅3=0    →   S7,8=1.5 kN ( t)

In order to check all forces in the current triple section, let a resolution along x be considered:

left ∑ F ix :(−2.660)⋅
3

3.059
+(1.848)⋅

3
5
+(1.5)=0.0005≈0 .

Member force  S
2,8

 is calculated from a section involving members (1,2), (2,8) and (8,9). Use

now the equilibrium of the right hand side structural unit for calculation.
Here is the free body diagram:

The equilibrium is stated as:

right: (S1,2 , S 2,8 , S8,9 , B) =̇ 0

Member  force  S
2,8

 is  determined  from  the  balance  of  moments  about  principal  point  O
2,8

(coincident with point O
1,8

), that is, about the point of intersection of members S
1,2

 and S
8,9

: 

right ∑M i
(O 2,8) :−S2,8⋅23+1⋅35=0    →   S2,8=1.522 kN ( t)

Let member  forces S
1,8  

 and S
2,8

 be checked by a  vertical  resolution  equation  based on the

equilibrium of joint 8:

8 ∑ Fiz :3−(1.848)⋅
4
5

−(1.522)=−0,0004 ≈0

All calculated results are finally given in a table of member forces as follows:

Member ID Tensile [kN] Compressive [kN]

(1,2) 2.660

(1,8) 1.848

(2,8) 1.522

(7,8) 1.5

4

B

2 3

9

4
5

12
10 11

S 1,2

S 2,8

S 8,9
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Exercise 1 
Find forces in members between numbered joints of the truss shown.

Solution

5
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F=3 kNA B
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Table of member forces:

Member ID Tensile [kN] Compressive [kN]

(1,2)

(1,3)

(1,4)

(1,7)

(2,9)

(3,5)

(3,6)

(3,7)

(4,7)

(4,8)

(4,9)

(5,6)

(6,7)

(7,8)

(8,9)

Example 2
Determine forces in members (4,7), (5,7), (5,9), (6,9), (7,8) and (8,9) of the K-truss shown. 

7

2 m2 m2 m2 m2 m2 m

A BF=4 kN

x

z

1

2

3

4 7

5 8

6 9

2 
m

2 
m
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Solution
The first step of solution is still the determination of external reactions (yet without any details
presented):
A=2 kN(↑) ; B=2kN (↑)

The method of solution to a K-truss is pecial, as notriple sections can be found for that structure
(by the removal of three members, the truss is not yet split into two disjoint parts). In order to
have such a complete separation of two parts,  at  least  four members should be „cut”.  This
means, however, that there will be found four unknown member forces in the corresponding
equilibrium statement, while the number of independent scalar equations continues to be three.
Nevertheless, due to the special geometry of the web, it is still possible to obtain some member
forces appearing in a four-fold section.
If member forces S

4,7
 and S

6,9
 are aimed at, let members (4,7), (4,5), (5,6) and (6,9) be removed.

An advantage of this section, in contrast to another one involving two chord members and two
oblique ones, is that two out of four members in the same section share a single line of action.
This fact makes possible to write two moment equations involving just one unknown member
force each. Let the structural unit to the left of the section be analysed:

Equilibrium statement for the analysed structural part reads:

right: (F , B , S 4,7 , S 4,5 , S5,6 , S 6,9) =̇ 0

Member force  S
4,7

 is obtained from a balance of moments about the point of intersection (at

node 6) of three other members in the section:
right ∑M i

(6 ):−4⋅4+2⋅10+S4,7⋅4=0    →   S4,7=−1  kN(c)
Member force S

6,9
 is obtained from a balance of moments about node 4:

right ∑M i
(4) :−4⋅4+2⋅10−S6,9⋅4=0    →   S6,9=1 kN(t)

Forces in members  S
5,7

 ,  S
5,9

 will be determined from the equilibrium of joints 7 and 9, but

before that, forces in members S
7,10 

, S
9,11

 should be obtained from another four-fold section (this

preliminary step is necessary because currently there are three unknown member forces in the
equilibrium statement of both joint 7 and 9). Let a section through members (7,10), (7,8), (8,9)
and  (9,11)  be  considered  and  the  equilibrium of  the  structural  part  at  the  right  hand  side
analysed:

8

BF

7

5

9

S 4,7

S 6,9

S 5,6

S 4,5

A BF=4 kN

1

2

3

4 7

5 8

6 9

10

11
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Equilibrium statement of the structural unit analysed:

right: (F , B , S 7,10 , S7,8 , S 8,9 , S9,11) =̇ 0

Both chord member forces are obtained from equilibrium of moments as follows:

right ∑M i
(9):−4⋅2+2⋅8+S7,10⋅4=0    →   S7,10=−2  kN(c)

right∑ M i
(7) :−4⋅2+2⋅8−S9,11⋅4=0    →   S9,11=2 kN ( t)

Forces in members (5,7) and (7,8) can now be obtained using the method of joints. Equilibrium
staement for node 7 reads:
7: (S 4,7 , S5,7 , S 7,8 , S7,10) =̇ 0

Member force S
5,7

 is the only unknown variable in a horizontal resolution equation:

7 ∑ F ix :1−S5,7⋅cos (45 °)−2=0    →   S5,7=−1.414  kN(c)

Using this latter result, the vertical resolution equation includes only one unknown:

7 ∑ F iz : (−1.414)⋅sin(45 °)+S7,8=0    →   S7,8=1 kN( t )

Forces  in  members  (5,9),  (8,9)  are  calculated  accordingly,  with  respect  to  the  equilibrium
statement for node 9,
9: (S 5.9 , S6.9 , S8,9 , S 9,11) =̇ 0 :

9 ∑ Fix :−S5,9⋅cos(45 °)−1+2=0    →   S5,9=1.414 kN( t)

9 ∑ Fiz :−(1.414)⋅sin (45 ° )−S8,9=0    →   S8,9=−1  kN(c)

In the end, prepare the table of member forces:

Member ID Tensile [kN] Compressive [kN]

(4,7) 1

(5,7)  1.414

(5,9) 1.414

(6,9) 1

(7,8) 1

(8,9) 1

9

A BF=4 kN

1

2

3

4 7

5 8

6 9

10

11

8

10

11
BF

S 7,10

S 8,9

S 7,8

S 9,11
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Exercise 2
Find (and justify by equations) zero force members. Find forces in marked members of the K-
truss shown.

Solution

10
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A BF=4 kN

x

z
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Table of member forces:

Member ID Tensile [kN] Compressive [kN]
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