
Basics of Statics and Dynamics eC1

Internal forces

In the previous chapters reactions between rigid bodies or between a body and its support were
focused on. Now the discussion will be concerned with forces inside rigid members of assemblies
that are assumed to be in equilibrium. More precisely, assemblies built of long and slender members
(bars)  are  considered;  individual  bar  members  are  sometimes referred to  as  beams or  columns
depending on the role they play in load bearing. The direction along the largest extension of a bar is
called axial direction, while a plane shape cut from the bar by a plane perpendicular to that axis is
called cross section. In a more general approach, the axis of a bar that is not completely straight is
usually defined as a series of centroids of successive cross sections of a bar (be careful with that
definition, since cross sections were just defined using the concept of axis; sometimes it is not easy
to find an axis that obeys these definitions). Once an axis is known, each cross section can be
referred to by its position along the axis. Note that this new concept of bar is much wider than that
of link (e.g., as a truss member), for example, hinged connection is not required, as well as loads of
arbitrary distribution on bars are also allowed. From now on, bar structures (frames) are understood
to be built of bars in the sense of the new definition.

According  to  the  principle  stated  at  compounds,  global  equilibrium of  a  structure  implies  the
equilibrium for all its parts. The equilibrium analysis of such a part is possible by accounting for
both the external loads exerted on it  and forces (reactions) arising at cuts needed to isolate the
respective  part:  those  internal  reaction  components  at
cuts are termed internal forces. Let the bar structure be
cut  therefore  at  one  of  its  cross  sections.  Due  to  the
principle mentioned above, remaining parts at both sides
of the cut still  have to  be in equilibrium one by one.
Under the action of arbitrary loads it is only possible in
the presence of (pairs  of internal)  reactions at  the cut
that correspond to the reactions of a fixed support. These
are  a  force  of  arbitrary  magnitude and sense (passing
through the centroid of the cross section for the sake of
uniqueness) as well as a torque on one side and pairs of
those three on the other, obeying Newton's third law on
action and reaction. For practical reasons, vectors of that
force  and  torque  are  not  taken  by  components  along
global coordinate directions  x,  y and  z but rather in a
way that components correspond to different mechanical
effects they have on a bar.

The component of the force vector parallel to the axis of the bar is called normal force and denoted
by N (as a reference to that the axial force is parallel to the normal direction of the cross section). A
component of the force vector that lies within the plane of cross section is called shear(ing force)
and denoted by  V (but  there can also be found letters  T or  Q for  the same in
literature). In a 3D problem, shear can always be resolved into two independent
scalar components, for convenience, in a local frame set to the cross section itself.
In a plane problem, out-of-plane shear is always zero.

The component of the torque vector parallel to the axis of the bar is called twisting
moment and denoted by T. Twisting moments are always zero in plane problems, A
component of the torque vector that lies within the plane of cross section is called
bending moment and denoted by  M. In a 3D problem, the bending moment can
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Basics of Statics and Dynamics eC1

always be resolved into two independent scalar components, for convenience, in the same local
frame as mentioned with shear.  In a plane problem, in-plane vector component of the bending
moment is always zero.

In summary, any cross section in plane problems has three internal force components: one normal
force, one shearing force and one bending moment component.

Signs of internal forces

For the sake of uniqueness of internal force values as scalars, some rules on their signs are fixed as
follows.

A normal force is positive if is directed outwards from the part of the bar it is exerted upon, that is,
if it causes tension in the respective cross section. A negative normal force corresponds therefore to
compression  and  is  characterized  by  an  arrow directed  towards  the  cut.  (This  definition  is  in
accordance with the sign rule applied to forces in links.)

A  twisting  moment is  positive  if  its  vector  is  directed  outwards  from the cross  section  (i.e.,  it
represents a counterclockwise rotation if seen in front of the same cross section).

In a general case of 3D, there is no such a simple sign rule for shear and bending, that is why a
convention valid only for plane problems is adopted here.

A shear force is defined to be positive if it is obtained by a clockwise rotation of the positive sense
of the normal force by 90 degrees.

In order to decide upon the sign of a bending moment, it is necessary to set one and the other side of
the axis of the bar to be positive and negative, respectively. A bending moment represented by a
curved arrow on a cross section is defined to be positive if it causes tension at the positive side of
the bar at the cross section (i.e., if the arrow starts at the positive and ends at the negative side of the
bar). In practice, horizontal or nearly horizontal segments are mostly assumed to have their positive
side at the bottom.

Calculating internal forces

Internal forces can obviously be found using the definitions given above.

Example 1 

Find internal forces at section K of the structure given below.

Solution

The support reactions are calculated first.

Isolation:
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∑M i
(A ) :  −15sin60 °⋅4+B⋅6=0→B=8.660 kN(↑)

∑M i
(B) :  15 sin 60 °⋅2−A z⋅6=0→A z=4.330kN(↑)

∑ F ix :  15 cos60 °−Ax=0→Ax=7.5 kN(←)

Check: ∑ F iz=15⋅sin 60 °−4.330 –8.660=0.0004≈0

Final sketch:

Internal forces based on the equilibrium of the structural part to the left of K:

Isolation:

∑ F ix :−7.5+N=0→N=+7.5kN

∑ F iz :−4.330+V=0→V =+4.330kN  

∑M i
(K ):−4.330⋅2+M=0→M=+8.660 kNm  

Internal forces based on the equilibrium of the structural part to the right of K:

Isolation: :

∑ F ix :−N+15cos60 °=0→N=+7.5kN

∑ F iz :−V +15sin 60 °−8.660=0→V=+4.330 kN

∑M i
(K ):−M−15sin 60 °⋅2+8.660⋅4=0→M=+8.659 kNm

Exercise 1 

Find internal forces at section K of the structure given below.

Solution
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Support reactions of the beam found from equilibrium equations:

∑    :                                                            →A=

∑    :                                                            →Bz=

∑    :                                                            →Bx=

Check:∑    :
Final sketch:

Internal forces based on the equilibrium of the structural part to the left of K:

 Isolation: 

∑    :                                                            →N=

∑    :                                                            →V=

∑    :                                                            →M=

Internal forces based on the equilibrium of the structural part to the right of K:

Isolation:  

∑    :                                                            →N=

∑    :                                                            →V=

∑    :                                                            →M=

The examples above illustrate that there are always at least two methods for finding any internal
force component in a cut that must provide the same result (any difference can only be due to
round-off  errors;  this  has  already  been experimented  in  trusses).  In  practice,  it  is  sufficient  to
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calculate the results just once.

Finding internal forces via reduction into a force-couple system

Assume that internal forces at cross section K are to be found. Let the resultants of external forces
acting upon each side of the cut at K be denoted by R1  and R2 , respectively. Because of the global
equilibrium of the structure, those two resultants also maintain equilibrium:

(R1, R2)=̇ 0 .

Let internal forces required for the equilibrium of each side be denoted by I1  and I2 , respectively.
Because of the equilibrium of each side,

(R1, I1)=̇ 0  and (R 2, I2)=̇ 0 .

The three above statements of equilibrium yield that

I1=̇ R2  (and I2 =̇R1) ;

meaning that internal forces at one (the other) side of the cut are equivalent to external forces acting
upon the structural part at the other (the original) side. If internal forces I1  (or I2 ) are expressed
with  force  and couple  components  exerted  at  the  cross  section,  the  problem means finding an
equivalent force-couple system at the same cross section (reduction of external forces at one or the
other side of K to the same cross section).

This procedure has a purely numeric advantage, that is, one side of the corresponding equation
contains the respective internal force component alone. If the positive sense for the equation is set
according  to  the  positive  internal  force  component,  no  reordering  of  the  equation  is  needed
(reducing so the chance of miscalculation).

Example 2 

Find internal forces at section K of the structure given below.

Solution

Isolation:

∑M i
(A ) :−16−21⋅6+B⋅2.5=0→B=+56.8kN(←)  Final sketch        

∑M i
(C ):−16−21⋅6+A x⋅2.5=0→ A x=+56.8 kN(→)  

∑ F iz :−A z+21=0→A z=+21kN(↑)

Check: ∑ F ix :56.8−56.8=0
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Internal forces at K based on forces to the left of K:

(now from A x , A z ,M ) Positive senses:

∑ F i← :  N=−56.8 kN

∑ F i↑ :  V=+21 kN

∑M i↷
(K ):  M=+21⋅4+16=+100 kNm

Internal forces at K based on forces to the right of K:

(now from F ,B ) Positive senses:

∑ F i→ :  N=−56.8 kN

∑ F i↓ :  V=+21 kN

∑M i↶
(K ):  M=−21⋅2+56.8⋅2.5=+100 kNm

Exercise 2 

Based on known support reactions, find internal forces at section K of the structure.

Solution

Internal forces from left:

Forces to be considered: Positive senses:

..............................................

N=

V=

M=
Internal forces from right:

Forces to be considered: Positive senses:

.............................................

N=
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V=

M=

If not earlier, by completing this solution it could became obvious that active forces and reactions
are not distinguished while finding internal forces: in any case, the calculation was based on all
external forces acting on either (just one or just the other!) side of the section at K.

Finding internal forces from the same at another section

It is already known that if a structure is cut into two parts and both parts are acted upon by internal
forces at the cut then both parts remain in equilibrium. Any new cut of such a part in equilibrium
makes possible the calculation of internal forces there based on the equilibrium of the respective
structural part instead of the complete structure.

Example 3 

Find internal forces at cross section K1  located to the left of the point of application of force
F  by  an  infinitesimally  small  distance.  Based  on  them,  find  internal  forces  also  at  cross

sections K2  (slightly to the right of the point of application of F ) and K3 .

     

Solution

Internal forces at K1 , for convenience, from the left:

N 1=0 kN,    V 1=+4.619 kN,   M 1=+4.619⋅2=+9.238kNm

These internal forces can be drawn as external forces to the structural part to the right (real
directions and senses can be drawn in accordance with the sign rules).

Internal forces at K2  from left:

(to be considered: internal forces at K1  and force F )

N 2=0+8cos60 °=+4 kN

V 2=+4.619−8sin 60 °=−2.309 kN

M 2=9.238+4.619⋅0−8 sin 60 °⋅0=+9.238kNm

Internal forces at K3  from left:

(to be considered: internal forces at K1  and force F )

N 3=0+8cos60 °=+4 kN

V 3=+4.619−8sin 60 °=−2.309kN

M 3=9.238+4.619⋅1.5−8sin 60 °⋅1.5=+5.774 kNm
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Exercise 3 

Find internal forces at cross section K1  located to the left of the point of application of torque M
by an infinitesimally small distance. Based on them, find internal forces also at cross sections
K 2  (slightly to the right of the point of application of M ) and K 3 .

Solution

The support reactions (without details): 

Internal forces at K1  (from either side):

N 1=

V 1=

M 1=

Draw actual arrows of internal force components on both stubs at the section.

Internal forces at K2  (from left, since components at K1  are to be used):

Draw actual arrows of internal force components at K1 .

Force and torque components to be considered:  .............................. .

N 2=

V 2=

M 2=

Internal forces at K3  (from left, since components at K1  are to be used):

Draw actual arrows of internal force components at K1 .

Components to be considered:  .............................. .

N3=

V 3=

M 3=

Conclusions: there is a jump between two values of the normal and shear forces at two sides of an
external concentrated force: the magnitude of the jump equals the corresponding projection of the
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concentrated force. Likewise, there is a jump in bending moments at two sides of a concentrated
external torque: the magnitude of the jump equals the magnitude of torque, while there is no change
in values of other internal force components.

Internal forces at cross sections of a compound structure

In compounds there are even more possibilities for finding internal forces than in simple structures.
It is explained by that an equilibrium not only for the complete structure but also for individual rigid
bodies must hold; consequently, a substructure containing a given cross section is also suitable for
finding internal forces there. At the same time, each internal force component can be calculated
from right or left, making the minimal number of possible calculations to be four. It continues to
hold; however, that any calculation is still sufficient to be performed only once. For this reason, the
first step of the solution will be later on to find the simplest way among those four possibilities.

Example 4

Find internal forces at cross sections K1 , K2  and K 3 .

Solution

This is a problem about a Gerber beam. External and internal reactions are found first on the
suspended then on the fixed part. Results without detailed calculations are given below.

Final sketches for member I (to the left) and member II (to the right) separately:

Final sketch of the complete structure:

The  axis  of  the  beam is  horizontal  at  each  cross  section,  causing  all  normal  forces  to  be
horizontal as well. At the same time, all external (active and passive) forces are vertical, so no
horizontal components could be written in formulae for normal forces; thus, N 1=N2=N 3=0 .
Only shear forces and bending moments are dealt with henceforth in this problem.
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section K1 from left based on member I:
V 1=22.5−5⋅7=−12.5 kN
M 1=22.5⋅4−(5⋅7)⋅3.5=−32.5kNm

section K1 from right based on member I:
V 1=15+5⋅5−52,5=−12.5 kN
M 1=−15⋅5−(5⋅5)⋅2.5+52.5⋅2=−32.5kNm

K 1 from right based on the complete structure:
V 1=22.5−5⋅7=−12.5 kN
M 1=22.5⋅4−(5⋅7)⋅3.5=−32.5kNm

 

K1 from right based on the complete structure:
V 1=−15+5⋅11−52.5=−12.5kNm
M 1=15⋅11−(5⋅11)⋅5.5+52.5⋅2=−32.5 kNm

K 2 from left (member I):
V 2=22.5−5⋅11+52.5=+20kN
M 2=22.5⋅8−(5⋅11)⋅5.5+52.5⋅2=−17.5 kNm

K 2 from left (member I):
V 2=15+5⋅1=+20kN
M 2=−15⋅1−(5⋅1)⋅0.5=−17.5 kNm

K 2 from left (complete structure):
V 1=22.5−5⋅11+52,5=+20kN
M 1=22.5⋅8−(5⋅11)⋅5.5+52.5⋅2=−17.5 kNm

K 2 from right (complete structure):
V 2=−15+5⋅7=+20kNm
M 2=15⋅7−(5⋅7)⋅3.5=−17.5kNm

K 3 from left (member II):
V 3=15−5⋅2=+5 kN
M 3=+15⋅2−(5⋅2)⋅1=+20kNm

K 3 from right (member II):
V 3=−15+5⋅4=+5kN
M 3=+15⋅4−(5⋅4)⋅2=+20kNm

K3 from left (complete structure):
V 3=22.5−5⋅14+52.5=+5kN
M 3=+22.5⋅11−(5⋅14)⋅7+52.5⋅5=+20 kNm

K 3 from right (complete structure):
V 3=−15+5⋅4=+5kN
M 3=+15⋅4−(5⋅4)⋅2=+20kNm

Exercise 4

Find internal forces at cross sections K1 , K2  and K 3  based on support reactions.

Final sketches for member I (to the left) and member II (to the right) separately:
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External forces acting upon the entire assembly:

Solution

Calculation of normal forces

Which forces do contribute to the normal force of a section with horizontal (normal) axis?

...................................................................................................................

Accounting for them all, N 1=            N 2=             N 3=          

Calculation of shear forces and bending moments

Positive senses for forces taken from left:  , for forces taken from right: 

Internal forces at K1  based on member I:

from left: 
V 1=

M 1=

from right:
V 1=

M 1=

Internal forces at K1  based on the complete structure:

from left:
V 1=

M 1=

from right:
V 1=

M 1=

Internal forces at K2  based on member II:

from left: 
V 2=

M 2=
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from right:
V 2=

M 2=

Internal forces at K2  based on the complete structure:

from left:
V 2=

M 2=

from right:
V 2=

M 2=

Internal forces at K3  based on member II:

from left: 
V 3=

M 3=

from right:
V 3=

M 3=

Internal forces at K3  based on the complete structure:

from left:
V 3=

M 3=

from right:
V 3=

M 3=

As illustrated by the above example, there are always more than one possibilities for calculating
internal forces at a given section. For convenience, it is decided first which of the equations for the
same component can be set up and solved by minimum effort and/or maximum safety. Sometimes
it is necessary to consider aspects that contradict each other: a more compact expression is easier to
evaluate but the less are recently obtained scalars involved, the higher is the reliability of the final
result. Based on these observations, some thumb rules can be formulated as follows:

• Internal forces at a section on a cantilever beam or overhang are always obtained from the
side of its free end (that is, no reactions are involved in the calculation).

• If concentrated forces or moments (either as active loads or internal / external reactions) are
known  at  one  end  of  a  beam  (which  can  therefore  be  physically  attached  to  another
member), internal force components at the same end of the beam member can be obtained
directly from them. Those values are often zero; if not, only their signs are to be decided.

12
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Appendix: Non-straight bars

In all previous examples bars (beams) with a horizontal axis were only dealt with. In some of the
forthcoming problems one will have to count with forces projected to variable directions in order to
get internal force components. This procedure is demonstrated by the last example.

Example 5M

Find internal forces at cross section K of the semicircular arc subjected to a uniform radial load.

Reactions:

Solution

Internal forces are calculated from right. The load is distributed perpendicularly to the surface, it
is transformed into projected loads according to the figure to the right.

Three forces are considered:

The reaction at the roller support: p⋅R

The resultant of vertical projection of the load: Pv=p⋅R (1−cos α)

The resultant of horizontal projection of the load: Ph=p⋅R sinα

In calculating normal  and shear  forces,  first
the  sign  for  each force  component  then  the
corresponding  trigonometric  function  is
chosen:

N=+ p⋅R cos α−p⋅R(1−cosα)cosα−

      + p⋅R sinα sinα=

  =+p⋅R cos2
α+ p⋅R sin2

α=+ p⋅R

V=+ p⋅R sinα−p⋅R (1−cos α)sinα−

     −p⋅R sinαcos α=0

M=−p⋅R⋅R (1−cos α)+ p⋅R(1−cosα)
R(1−cosα)

        2
−

  + p⋅R sinα
R sinα

    2
=p⋅R2(−1+cosα+

1
2
−

2 cos α

    2
+

cos2
α

   2
+

sin2
α

   2 )
  =0
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Exercise 5M

Find internal forces at cross section  K of the semicircular arc subjected to a projected vertical
load.

Reactions:

Solution

Forces  on  one  structural  part  located  at
either side of a given cross section should
be considered only.

Mark those forces in the figure and specify
positive  senses  for  all  internal  force
components.

How much is  the resultant  of distributed
force that should be calculated with?

Internal forces are as follows:

N=

V=

M=
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Internal force diagrams

It has recently been shown how internal forces at an arbitrary section of a body in equilibrium can
be found. By considering also the relationship between internal forces of cross sections close to
each other, a qualitative information could be obtained about changes in internal force diagrams
along the axis of a member. It would still be more effective to have a tool for expressing internal
forces at all sections, that is, as a function of the position along the axis. For clarity and simplicity,
those functions are plot in practice against the axes of members in a structure. Knowing that a plane
problem implies the existence of three different internal force components, it is spoken about the
normal force diagram,  shear force diagram and  bending moment diagram; a collective name for
them is internal force diagram. In those diagrams, a given ordinate pertaining to a cross section K is
plotted against the member axis at K. One side of the axis is considered positive in the same way as
it was done in defining the sign rule of bending moment values.

It seems to be logical that internal force functions are drawn on the basis of function assignments as
suggested by their definition but it is typically avoided. It is habitual in civil engineering instead
that the character (order) of the function is identified at each segment in accordance with the load;
then some characteristic values are calculated that are already sufficient to make the function be
uniquely defined.

Such a character of the function can be constant when the displayed function runs parallel to the
axis of the bar. Furthermore, a function can be linear which is defined by two values at its ends (and
can be represented, of course, by a straight line segment between them) ; or it can be parabolic (that
is, a second-order polynomial) which needs one more value to be specified in addition to those at its
ends.

The relationship between loads and internal forces

If an elementary small segment of a beam is isolated and internal force components acting at both
cross sections as well as (elementary) external loads are drawn in a FBD, valuable conclusions can
be  drawn from equilibrium equations  as  follows.  The  first  derivative  of  the  bending  moment
function is proportional to the value of shear; the first derivative of the shear force function is
proportional  to  the local  value of  intensity  of  load perpendicular  to  the axis,  whereas  the  first
derivative of the normal force function is proportional to the axial intensity of load. These three
relationships serve as a basis for deriving some more rules, although their direct application is not
always possible because of  singularities exemplified by concentrated forces or torques. Another
difficulty is that calculation normally proceeds in an opposite sense, aiming at the evaluation of
internal force functions from the load function. For that purpose, however, it is not sufficient to say
'integral'  instead of 'derivative'  since a constant  C of  integration is  to be found from boundary
conditions  at  each  segment.  Nevertheless,  qualitative  conclusions  can  easily  be  drawn  from
differential relationships listed above. For example, a bending moment diagram is flatter (steeper)
under  smaller  (larger)  values  of  shear  and  a  zero  shear  implies  a  local  extremum (horizontal
tangent) of the bending moment diagram. Likewise,  the shear diagram is flatter (steeper) under
smaller (larger) intensity of distributed perpendicular load.

Relationships that are most commonly used can also be found simply by thinking over what kind of
equations could we obtain those values from. This is discussed in the following paragraphs. 

Normal and shear forces on straight beam segments with no external load there will be of constant
value. (It goes back to that the calculation of those internal forces at two different sections from the
same side is done using the same force components under the same rules for signs.)

1
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Straight beam segments without external loads will be associated with a linear bending moment
function. (It is explained by that the bending moment at any two sections on that segment is found
from the  same resultant  from the  same side  and so  under  the  same rules  for  signs.  In  such a
calculation, only the moment arms for the two sections are different: it can be shown by similar
triangles that the change in moments is proportional to the distance between the two sections.)

In  the  presence  of  a  concentrated  external  torque,  normal  and  shear  forces  are  found  from
unchanged force resolutions; that is why there is no change in normal and shear force diagrams at
concentrated torques. Moment diagram, however, will have a jump there as bending moments at
opposite  sides of an external torque are found from the same force components with the same
moment arms except the torque itself  which does and does not appear in the sum of moments
depending on whether the section is located at the right or left hand side of the torque. (Note that no
other change than a jump is produced in a moment diagram under a concentrated torque, slopes of
the diagram at both sides of the jump are equal.) 

In the presence of a concentrated external force, normal and shear forces are found from unchanged
force  resolutions  except  the  force  itself  (more  precisely,  the  force  component  parallel  and
perpendicular  to  the  axis,  respectively),  which  does  and does  not  appear  in  the  sum of  forces
depending on whether the section is located at the right or left hand side of the force.  Thus, a
normal force (shear) diagram will have a jump under a concentrated force perpendicular (parallel)
to the beam axis. In the calculation of bending moments, however, the presence or absence of a
concentrated force component between infinitely close sections makes no difference as its moment
is written about a point on its line of action in both cases. (Despite the coincidence of moment
values, the slopes on opposite sides are different and so a kink is formed if there is a jump in the
shear diagram.)

Let parallel and perpendicular components be distinguished also for distributed loads on a straight
segment of a member. The parallel component has an influence on the function of normal forces,
making its diagram to be linear. It is explained by that the amount of forces in axial direction to be
included in calculations grows proportionally with the length.  The remaining two internal force
functions are independent of this load component.

In  the  presence  of  a  distributed  load  perpendicular  to  the  axis  of  the  member,  successive
calculations of the shear force involves more force components proportionally with the length. As a
result, the shear diagram will be linear. When the bending moment is calculated, linear growth of
forces to be accounted for occurs together with a linear growth in their moment arm, that is why the
moment function as a product of two linear terms follows the shape of a parabola. A segment of a
quadratic function can be specified, in addition to its endpoints, by its depth (which is the maximum
deviation  measured  perpendicularly  to  the  member  axis  between  the  parabola  and  a  chord
connecting its endpoints): it is always found in the middle of the segment. The depth of a parabola
can be given by the formula ql2

/8  where q is the intensity of perpendicular load component and l is
the length of the entire segment under a constant load.

Use of the depth for drawing parabolas: bending moment ordinates at two endpoints are connected
by a straight chord first. A line segment perpendicular to the member axis is drawn
through the midpoint of the chord and a distance of ql2

/8  is measured twice along
it from the chord in the direction of load. (Mind that depth is always perpendicular
to the member axis, not to the chord.) By connecting this point with both ends of
the chord, tangent lines to the parabola at its endpoints are obtained. According to
the definition of depth, the point at ql2

/8  from the chord is not only incident to the
parabola but its tangent is parallel to the chord. Based on these three points and

2

q l2

 8
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tangents, the parabolic segment can easily drawn with free hand. Notice that the procedure can be
continued recursively if more points are needed on a long segment: any two existing points can be
used to repeat the above construction for smaller parts of the diagram.

All discussed relationships must hold also in reverse order: any jumps, kinks or curved parts in a
diagram must be justified by an external effect that causes it. The most common cases of related
load and internal force diagrams are shown in the following figure.

The relationship between the load and the bending moment diagram can be verified in a  quite
ingenuous way by imagining the load to be exerted on a rubber string. The shape of the string
corresponds then to the bending moment diagram: unloaded segments remain straight, concentrated
and distributed forces cause kinks and curvatures in it, respectively.

3
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Values used for drawing internal force diagrams are written to the right of the same diagrams. The
corresponding values are numbered from left according to the section they belong to (e.g.,  M 2

stands for the moment in the second section from the left). The order of determination of internal
forces is arbitrary, hence ordinates with larger subscripts will sometimes be found first (e.g.,  at
overhangs where internal forces do not depend on support reactions of the assembly). Any internal
force diagrams must be documented so that it could uniquely be reproduced based on the results. It
means, e.g., that it is not necessary to write ordinates at both ends of a constant segment if the
constant property is also written out in the diagram.

Drawing internal force diagrams based on (static) calculations

Example 1

Draw internal force diagrams for the structure based on (static) calculations.

Final sketch:

 

   

  

About the M diagram: Moment is zero at both ends (calculated from outside). Reactions point
upwards that causes a kink with respect to the fictitious constant zero on inexistent overhangs.
There is also a kink (but no jump in the lack of concentrated torque) at the external force F.

4

Solution
Support reactions should still be found first:

∑M i
(A ) :−13⋅1.7+B⋅4.5=0→B=4.911 kN(↑)

∑M i
(B) :13⋅2.8−A z⋅4.5=0→ A z=8.089kN(↑)

∑ F ix : A x=0 kN

Check:∑ F iz :13−4.911−8.089=0

M

lin.           kink                lin.

+

+13.75
[kNm]

-
+

N
[kN]

const.                             const.

-
+

F=13kN

1.7m                  2.8m
A                                      B 

13kN

8.089kN 4.911kN
N

M M

N

V

V

V

const.        jump               const.

+

-

+8.089

-4.911

[kN]

-
+

The diagram of bending moments consists of two 
linear segments with a kink (but no jump) in between.
At each end of the beam, the bending moment is zero. 
Under force F :
M 1=+8.089⋅1.7=13.75 kNm (from left)
(would be M1=4.911⋅2.8=13.75 kNm  from right)

The shear force diagram consists of two linear 
segments with a jump between them. Its magnitude 
corresponds to the vertical component of force F :
V 1=+8.089kN  (for convenience, from left)
V 2=−4.911 kN (for convenience, from right)

The normal force diagram consists of two constant 
segments. There is a jump between them of a magnitude
corresponding to the horizontal component of force F 
(which is now zero). In a calculation from any side on 
any member there is no force having a horizontal 
component at all, so the diagram is a constant of zero.

Small circle drawn onto the axis means a notification 
that it is 'calculated' instead of being forgotten.
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Exercise 1

Draw internal force diagrams for the structure based on calculations.

Final sketch (global equilibrium):

    
What kind of functions is the diagram composed of?
What is their connection like?

N1=  
N 2=  

   

What kind of functions is the diagram composed of?
What is their connection like?

V 1= 
V 2= 

    
What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  
M 3=  

Check the existence and sense of jumps and kinks.

5

Solution
Reactions:

∑     :

∑     :

∑     :

F=8.2kN

4.2m               1.2m

8.2kN

N
[kN]

-
+

M
[kNm]

-
+

V
[kN]

-
+
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Example 2

Draw internal force diagrams for the structure based on calculations.

Final sketch:

The normal force diagram is composed of constant
segments again. Their value is zero because no 
horizontal force components act upon the structure.

The shear force diagram consists of two linear 
segments with a jump corresponding to force B . 
If values to the right of B  are calculated from right:
they are obviously zero, the shear between supports 
based on a calculation from either side is:
V=−1.619kN

The type of loading corresponds to two linear segments
in the diagram. On the overhang it is more special with 
a constant value because of the zero shear. Its value 
obtained from right is:
M 2=−6.8 kNm (At both ends of the segment, so
                        those ordinates could have
                        been connected as a linear part.)
At the right hand side of the segment between supports 
the value is still −6.8 kNm, since there is no change 
in the moment under the force B .
At the left end, calculated from left we have
M 1=0  (But also from right it would be 
            −6.8+1.619⋅4.2=−0.0002≈0 .)

About the M diagram: There is no force but a torque only on the overhang, so there is no shear
there either. Thus, the diagram will be constant there, with an ordinate drawn to the top side
because the tension appears at the top as well.

6

Solution
Reactions:

∑M i
(A ) :−6.8+B⋅4.2=0→B=1.619kN(↑)

∑M i
(B) :−6.8−A z⋅4.2=0→A z=−1.619 kN(↓)

∑ F ix : A x=0

Check:∑ F iz :1.619−1.619=0

6.8kNm

4.2m                1.2m

A                                  B

6.8kNm

1.619kN1.619kN

N
[kN]

-
+

const.                           const.

M
[kNm]

-
+

lin.                       kink const. jump

−

−6.8

N

M M

N

V

V

V
[kN]

-
+

const.                 jump    const.

−

−1.619
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Exercise 2

Draw internal force diagrams for the structure based on calculations.

Final sketch (global equilibrium):

 

What kind of functions is the diagram composed of?
What is their connection like?

N1=  

What kind of functions is the diagram composed of?
What is their connection like?

V 1= 

What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  
M 3=  
M 4=  

Check the existence and sense of jumps and kinks, as well as whether or not some lines are
parallel to each other.

7

12.5kNm

1.7m                  2.8m

12.5kNm

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Solution
Reactions:

∑     :

∑     :

∑     :



Basics of Statics and Dynamics eC2

Example 3

Draw internal force diagrams for the structure based on calculations.

Final sketch:

     

The normal force diagram is composed of a single
constant segment. Its value is zero because no 
horizontal force components act upon the structure.

The shear force diagram consists of a single linear 
segment. The shear at both endpoints is obtained 
as follows. On the right hand side,
V 2=−17.67kN  (from right)
On the left hand side,
V 1=17.67kN  (from left)
Zero is found exactly in the middle of the beam.

About the M diagram: There are zero values at both ends (in the absence of any torque there).
The load is directed downwards, therefore the depth of parabola is measured downwards as
well.

8

Solution
Reactions:

∑M i
(A ) :−(5.7⋅6.2)⋅3.1+B⋅6.2=0→B=17.67 kN(↑)

∑M i
(B) :(5.7⋅6.2)⋅3.1−A z⋅6.2=0→A z=17.67kN(↑)

∑ F ix : A x=0

Check:∑ F iz :5.7⋅6.2−17.67−17.67=0

5.7kN/m

6.2m
A                                      B 

5.7kN/m

17.67kN 17.67kN

N
[kN]

cst.

-
+

V

lin.

+

−

+17.67

−17.67

[kN]

-
+

M

2nd

+

+27.39

[kNm]

-
+

N

M M

N

V

V

The bending moment diagram is composed of a single 
parabolic segment with zero values at both ends 
(obtained for convenience from outside in both cases). 
The chord between them is coincident to the axis.

The depth of the parabola is 
q l2

 8
=

5.7⋅6.22

    8
=27.39kNm.

It is measured twice downwards  (because of the sense 
of the load) from the midpoint of the chord. The first 
distance extends to a point of the parabola, the second
one points to the intersection of tangents. The middle 
tangent is parallel to the (horizontal) chord, so the value 
+27.39 kNm is also a maximum of the bending moment.
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Exercise 3

Draw internal force diagrams for the structure based on calculations.

Final sketch:

       

What kind of functions is the diagram composed of?
What is their connection like?

N1=  

What kind of functions is the diagram composed of?
What is their connection like?

V 1= 
V 2= 

What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  

parabola: 
q l2

 8
=

          
  

=

9

6.2kN/m

5.7m
A                                      B 

6.2kN/m

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Solution
Reactions:

∑     :

∑     :

∑     :
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Example 4

Draw internal force diagrams for the structure based on calculations.

Final sketch:

The normal force diagram is composed of two 
constant segments. Their value is zero because no 
horizontal force components act upon the structure.

The moment diagram is composed of a parabolic 
and a linear segment. Starting and final values
of the parabolic part:
M 1=0,  M 2=−1.2⋅1.3⋅0.65=−1.014 kNm,

its depth is 
q l2

 8
=

1.2⋅1.32

    8
=0.2535 kNm.

(The double of the depth just reaches the baseline,
making the tangent to the rightmost point be 
horizontal as shown also by the zero shear there.)
At the left end of the linear segment the moment
equals −1.014 kNm, which is not modified locally 
by force A . At the right end (seen from right),
M 3=0 kNm.

About the M diagram: There is no concentrated force or torque at the end of the overhang, hence
the (parabolic) segment starts from zero and with a zero slope there. The parabola is convex
from below because the load is directed downwards. Due to the support reaction, the diagram
has a kink at the right hand side of parabolic segments and continues linearly to the rightmost
point. The right endpoint of the diagram is zero because of the absence of any concentrated
torque again.

10

Solution
Reactions:

∑M i
(B) :(1.2⋅1.3)⋅4.55−A⋅3.9=0→A=1.82kN(↑)

∑M i
(A ) :(1.2⋅1.3)⋅0.65+B z⋅3.9=0→Bz=−0.26kN(↓)

∑ F ix :B x=0

Check:∑ F iz :1.3⋅1.2−1.82+0.26=0

M

2nd     kink                       lin.
−1.014

[kNm]

-
+

0.2535

−

V

lin.     jump                  const.

+

− −1.56 +0.26

[kN]

-
+

N
[kN]

cst.

-
+

1.2kN/m

1.82kN 0.26kN

1.2kN/m

1.3m          3.9m
A                            B 

N

M M

N

V

V

As seen from the loads, the shear diagram is 
composed of a linear and a constant segment. 
Starting and final values of the former one is 
found from left: 
V 1=0,   V 2=−1.2⋅1.3=−1.56 kN
The value of the constant part is got better from right:
V 3=+0.26 kN (from B .)
(There is a jump corresponding to A  between them.)
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Exercise 4

Draw internal force diagrams for the structure based on calculations.

Final sketch:

 

What kind of functions is the diagram composed of?
What is their connection like?

N1=  
N 2=  

What kind of functions is the diagram composed of?
What is their connection like?

V 1= 
V 2= 
V 3=  

What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  
M 3=  

parabola: 
q l2

 8
=

          
  

=

11

2.9kN/m

2.8m                2.0m
A                    B 

2.9kN/m

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Solution
Reactions:

∑     :

∑     :

∑     :
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Example 5

Draw internal force diagrams for the structure based on calculations.

Solution
Reactions are not needed in a cantilever problem, 
calculations are done from outside (now from left).

There is no force with horizontal component, 
that is why the normal force is all zero.

The shear force diagram is composed of a single 
straight segment of value V=0 kN.

The bending moment diagram is composed of a single
linear segment in the absence of load; here it is simplified
to a constant due to the zero shear. Its value is 
M=−27 kNm.

About  the  M diagram:  There  is  no  force  at  all  on  the  cantilever,  hence  the  shear  is  zero
everywhere. Following from that, the moment diagram starts with a horizontal tangent at the
free end and is drawn up to the support on the side of tension. 

Exercise 5

Draw internal force diagrams for the structure based on calculations.

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:

What kind of functions is the diagram composed of?
What is their connection like?

N1=  
What kind of functions is the diagram composed of?
What is their connection like?

V 1= 
What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  

12

M=27kNm

2.1m     

N
[kN]

const. 

-
+

V
[kN]

const. 

-
+

−

−27.00

M
[kNm]

lin.(cst.)

-
+

M=17kNm

3.1m     

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

N

MV
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Example 6

Draw internal force diagrams for the structure based on calculations.

Solution
Reactions are not needed in a cantilever problem, 
calculations are done from outside (now from right).

There is no force with horizontal component, 
that is why the normal force is all zero.

The shear force diagram is composed of a single 
straight segment of value V=+6.1kN.

The bending moment diagram is composed of a single
linear segment. Values at both its ends found from
outside (from right): 
M 2=0,   M 1=−6.1⋅2.4=−14.64 kNm.

Support reactions can be obtained by reinterpreting internal forces at the leftmost section from 
left:

N=0→Ax=0
V=6.1kN →A y=6.1kN(↑)

M=−14.64kNm→M A=14.64 kNm (↶)

About  the M diagram:  The diagram will  be linear with a zero value at  the free end of the
cantilever. There must be a (fictitious) kink there with respect to the (fictitious) continuation of
the diagram outside the member such that the kink and the arrowhead of the force causing it
should match. For that reason, the diagram should increase on the top side until the support.

13

F=6.1kN

2.4m     

N
[kN]

const. 

-
+

+

+6.1V
[kN]

const. 

-
+

−

−14.64

M
[kNm]

lin. 

-
+

M

N
V

N

MV
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Exercise 6

Draw internal force diagrams for the structure based on calculations.

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:

What kind of functions is the diagram composed of?
What is their connection like?

N1=  

What kind of functions is the diagram composed of?
What is their connection like?

V 1= 

What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  

Determine support reactions from internal forces at the cross section next to the support.

14

F=2.6kN

5.1m     

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+
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Example 7

Draw internal force diagrams for the structure based on calculations.

Solution
Reactions are not needed in a cantilever problem, 
calculations are done from outside (now from right).

There is no force with horizontal component, 
that is why the normal force is zero everywhere.

The shear force diagram has a single linear segment.
Starting and final values are:
V 2=0 kN, V 1=+8.2⋅3.7=+30.34 kN.

The moment diagram is composed of a single 
parabolic segment. Starting and final values
of the parabolic part:
M 2=0,  M 1=−8.2⋅3.7⋅1.85=−56.13kNm,

its depth is 
q l2

 8
=

8.2⋅3.72

    8
=14.03 kNm.

The double of the depth just reaches the baseline,
making the tangent to the rightmost point be 
horizontal as shown also by the zero shear there.
(Construction lines and distances to be measured 
are shown in the bottom figure.)

About the M diagram: There is no concentrated force or torque at the free end of the cantilever,
hence the parabolic segment starts from zero and with a zero slope there. The parabola is convex
from below because the load is directed downwards. 

15

8.2kN/m

3.7m     

N
[kN]

const. 

-
+

+

+30.34V
[kN]

lin. 

-
+

−

−56.13

M
[kNm]

2nd

-
+

−56.13

−14.03

M

N
V
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Exercise 7

Draw internal force diagrams for the structure based on calculations

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:

What kind of functions is the diagram composed of?
What is their connection like?

N1=  

What kind of functions is the diagram composed of?
What is their connection like?

V 1= 
V 2= 

What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  

parabola: 
q l2

 8
=

          
  

=

16

4.9kN/m

1.2m     

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+
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Example 8

Draw internal force diagrams for the structure based on calculations

Final sketch:

There is no force with horizontal component, 
that is why the normal force is zero everywhere.

As seen from the loads, the shear diagram is 
composed of a constant and a linear segment. 
The value of the constant part is found from left: 
V 1=+5.7 kN.
It equals the starting value of the linear segment.
The rightmost value found from right:
V 2=−11.4 kN (from B ).
The linear part will intersect the baseline at some point.
Let its position relative to the left end of distributed 
forces be marked by x . The shear here (from left) is
V (x )=+5.7−5.7⋅x=0   →   x=1.0 m. 

The bending moment diagram is composed of a  
linear and a parabolic segment. Starting and final 
values of the linear part are:
M 1=0,  M 2=+5.7⋅1.5=8.55 kNm.
This latter one equals the leftmost value of the 
parabola; at its other end, M 3=0 .

The depth of the parabola:
q l2

 8
=

5.7⋅3.02

    8
=6.413 kNm.

Slopes of final tangents are opposite: where it 
becomes zero, a local maximum is found.
Its position has already been obtained at the shear
diagram. The maximum of moment there is found as 
Mmax=5.7⋅2.5−(5.7⋅1.0)⋅0.5=+11.4 kNm.

Check: the tangent to the leftmost point of the parabola coincides with the linear segment.

17

5.7kN/m

1.5m               3.0m
A                                      B 

5.7kN/m

5.7kN 11.4kN

N
[kN]

cst.

-
+

V

const.                          lin.

+

−

+5.7

−11.4
[kN]

-
+

x=1.0m

Solution
Reactions:

∑M i
(A ) :−(5.7⋅3.0)⋅3.0+B⋅4.5=0→B=11.4 kN(↑)

∑M i
(B) :(5.7⋅3.0)⋅1.5−A z⋅4.5=0→A z=5.7kN (↑)

∑ F ix : A x=0

Check:∑ F iz :5.7⋅3.0−5.7−11.4=0

M

lin.                            2nd

+

+8.55

[kNm]

-
+

M
max

=11.4kNm 6.413

N

M M

N

V

V
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Exercise 8

Draw internal force diagrams for the structure based on calculations

Final sketch:

What kind of functions is the diagram composed of?
What is their connection like?

N1=  
What kind of functions is the diagram composed of?
What is their connection like?

V 1= 
V 2= 
V 3=  

What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  
M 3=  

parabola: 
q l2

 8
=

          
  

=

Is there a maximum?→Has the shear diagram a zero? 
Where?

V m=                                   =0
xm=
How much the moment is here?

Mmax=

18

2.34kN/m

1.8m                3.6m
A                                      B 

2.34kN/m

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Solution
Reactions:

∑     :

∑     :

∑     :
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Internal force diagrams of cantilever beams

Any previous method for producing internal force diagrams obviously applies for cantilever beams
as well. However, calculations are essentially simplified by the fact that any internal force value can
be found from the free end without the need of calculating any components of reaction. Although
the whole procedure still begins with the identification of segments and their connections, the entire
diagram is drawn started at the free end towards the support by accounting for concentrated and
gradual changes in ordinates. This technique makes even possible to draw qualitative diagrams with
no numbers but of a correct shape.

Successive ordinates calculated for any diagram in the following examples are still numbered from
left to right but their determination always proceeds from the free end towards the support.

Example 1

Draw internal force diagrams for the structure based on calculations.

   
Normal force in a horizontal beam can only be due to 
horizontal force components. The distributed force is 
vertical, so the diagram is constant with a value of
N1=−5.2cos 80 °=−0.9030 kN.

   
The shear force diagram has a single linear segment.
Starting and final values are:
V 2=+5.2sin 80 °=+5.121 kN,
V 1=+5.121+2.1⋅2.3=+9.951 kN.

   

The moment diagram is composed of a single 
parabolic segment. Starting and final values
of the parabolic part:

M 2=0kNm

M 1=−5.2 sin 80 °⋅2.3−(2.1⋅2.3)⋅
2,3
 2

=−17.33kNm

The depth of the parabola is 
2.1⋅2.32

    8
=1.389kNm

1

2.1kN/m

2.3m     

5.2kN
80°

N
[kN]

const. 

-
+

−

-0.9030

−

−17.33

M
[kNm]

2nd

-
+

−17.33

1.389

1.389

Solution
Reactions are not needed in a cantilever problem. 
Internal forces are found proceeding from the 
free end to the support, calculations 
are done from outside (now from right).M

N

+

+9.951V
[kN]

lin. 

-
+

+5.121
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Exercise 1

Draw internal force diagrams for the structure based on calculations.

   
What kind of functions is the diagram composed of?
What is their connection like?

N 1=  
   

What kind of functions is the diagram composed of?
What is their connection like?

V 1= 
V 2= 
zero: V m=0=

   
What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  

parabola: 
q l2

 8
=

          
  

=

maximum: Mmax=

2

5kN/m

3.6m     
6.75kN

N
[kN]

-
+

M
[kNm]

-
+

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:

V
[kN]

-
+
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Example 2

Draw internal force diagrams for the structure based on calculations.

Normal forces can change due to horizontal forces here.
In their absence the diagram is constant with a value of
N1=0 kN.

The shear diagram is composed of a linear and 
a constant segment with no jump between. 
Values at the boundaries of segments are as follows:
V 1=0 kN, V 2=−5⋅2.7=−13.5 kN.

The bending moment diagram is composed of a parabolic 
and a linear segment. There is a jump between them but
slopes of tangents at both sides are equal.
Values at the boundaries of segments are as follows:
M 1=0kNm,
M 2=−(5⋅2.7)⋅1.35=−18.23 kNm (parabolic part), 
M 3=−(5⋅2.7)⋅1.35+9=−9.225 kNm,
M 4=−(5⋅2.7)⋅4.05+9=−45.68kNm (linear part). 

The depth of the parabola is 
5⋅2.72

  8
=4.556 kNm

The double of the depth just reaches the baseline,
making the tangent to the rightmost point be 
horizontal as shown also by the zero shear there.

3

5kN/m

2.7m            2.7m     
9kNm

N
[kN]

-
+

const.                    const.

V
[kN]

-
+

  lin.          kink      const.

−

−13.50

Solution
Reactions are not needed in a cantilever problem. 
Internal forces are found proceeding from the 
free end to the support, calculations 
are done from outside (now from left).

N

M

M
[kNm]

-
+

−

2nd         jump       lin.

−18.23 −45.68
−9.225

4.556
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Exercise 2

Draw internal force diagrams for the structure based on calculations.

What kind of functions is the diagram composed of?
What is their connection like?

N 2=  
N1=  
What kind of functions is the diagram composed of?
What is their connection like?

V 3=  
V 2= 
V 1= 
What kind of functions is the diagram composed of?
What is their connection like?

M 3=  
M 2=  
M 1=  

parabola: 
q l2

 8
=

          
  

=

4

1.8kN/m

1.6m             2.0m5kN
60°

N
[kN]

-
+

M
[kNm]

-
+

V
[kN]

-
+

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:
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Example 3

Draw internal force diagrams for the structure based on calculations.

Normal forces can change due to horizontal forces here.
In their absence the diagram is constant with a value of
N1=0 kN.

The shear force diagram is composed of two linear 
segments parallel to each other and with a jump 
between them due to the vertical load there. 
Values at the boundaries of segments are as follows:
V 4=0 kN, V 3=+3⋅2.4=+7.2 kN,
V 2=+7.2+4=11.2 kN, V 1=+11.2+3⋅2.4=18.4 kN.

The bending moment diagram is composed of two 
parabolic segments with a jump between them; slopes of 
tangents at two sides of the 4-kN force are also different. 
Values at the boundaries of segments are as follows:
M 4=0kNm, 
M 3=−(3⋅2.4)⋅1.2=−8.64 kNm, 
M 2=−(3⋅2.4 )⋅1.2−5=−13.64 kNm,
M 1=−(3⋅4.8)⋅2.4−5=−49.16 kNm.

The depth of each parabola is 
3⋅2.42

   8
=2.16kNm

(Tangents to the curves opposite  the jump are drawn 
 in dashed lines. It makes clearly visible that not only
 a jump due to the concentrated torque but also a kink
 caused by the concentrated force appears in the figure.)

5

3kN/m

2.4m            2.4m

4kN

5kNm

N
[kN]

áll. 

-
+

+

+18.4V
[kN]

lin.         jump        lin.

-
+

+11.
2

+7.2

Solution
Reactions are not needed in a cantilever problem. 
Internal forces are found proceeding from the 
free end to the support, calculations 
are done from outside (now from right). M

N

−49.16

M
[kNm]

2nd       kink       2nd
             jump

-
+

2.16

2.16

2.16

2.16

−8.64−13.64

−



Basics of Statics and Dynamics eC3

Exercise 3

Draw internal force diagrams for the structure based on calculations.

   
What kind of functions is the diagram composed of?
What is their connection like?

N1=  

   
What kind of functions is the diagram composed of?
What about the slope of each segment?
What is their connection like?

V 1= 
V 2= 
V 3=  
V 4= 

   
What kind of functions is the diagram composed of?
What is their connection like?

M 1=  
M 2=  
M 3=  
M 4=  

parabola: 
q l2

 8
=

          
  

=

6

3kN/m

2.4m            2.4m

4kN

5kNm

N
[kN]

-
+

M
[kNm]

-
+

V
[kN]

-
+

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:
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Example 4

Draw internal force diagrams for the structure based on calculations.

Normal forces can change due to horizontal forces here.
In their absence the diagram is constant with a value of
N1=0 kN.

The shear diagram is composed of two linear 
segments with no jump between. 
Values at the boundaries of segments are as follows:
V 3=0 kN, 
V 2=−4⋅2.0=−8.0 kN,  
V 3=−8.0+4⋅2.8=+3.2kN.
zero value: Tm=−4⋅2+4⋅xm=0→ xm=2.0 m.

The moment diagram is composed of two 
parabolic segments with a common tangent. 
(The parabola to the right is convex from above.)
Values at the boundaries of segments are as follows:
M 3=0kNm, 
M 2=+(4⋅2.0)⋅1.0=+8.0kNm, 
M 1=+(4⋅2.0)⋅3.8−(4⋅2.8)⋅1.4=+14.72kNm. 

Depths of parabolas: 
4⋅2.02

    8
=2.00kNm (upwards)

                                  
4⋅2.82

    8
=3.92kNm (downwards)

The maximum value is
Mmax=+(4⋅2.0)⋅3.0−(4⋅2.0)⋅1.0=+16.00kNm

7

4kN/m

2.8m            2.0m

4kN/m

N
[kN]

const. 

-
+

+14.72

M
[kNm]

   2nd                      2nd

-
+

+

+8.0

2.0

3.92
M

m
=+16.0

+3.2

V
[kN]

lin.          kink       lin.

-
+

−8.0+

−

x
m
=2.0m

Solution
Reactions are not needed in a cantilever problem. 
Internal forces are found proceeding from the 
free end to the support, calculations 
are done from outside (now from left). M

N
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Exercise 4

Draw internal force diagrams for the structure based on calculations.

What kind of functions is the diagram composed of?
What is their connection like?

N 1=  
What kind of functions is the diagram composed of?
What is their connection like?

V 4= 
V 3=  
V 2= 
V 1= 
change of signs?

What kind of functions is the diagram composed of?
What is their connection like?

M 4=  
M 3=  
M 2=  
M 1=  

parabolas: 
q l2

 8
=

          
  

=

maximum: ?

8

7kN/m

1.2m      1.2m    1.2m

N
[kN]

-
+

M
[kNm]

-
+

V
[kN]

-
+

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:
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Effect of generally distributed loads on internal force diagrams

The intensity of a load along a beam is not always constant. A typical example of that can be the
load of wind load where the velocity of wind and so the intensity of load increases with height; or
the distributed weight of piles of granular material on the ground which varies approximately with
the local height  within the pile.  There are several ways to draw diagrams from loads of given
function  of  distribution.  If  such  a  function  is  a  polynomial,  then  the  shear  force  and  bending
moment will be described by polynomials of higher order by one and two, respectively. Although
no general drawing rules for higher-order polynomials are introduced here, note that tangents at
ends of a segment intersect on the line of action of the resultant of the load on the same segment.

Example 5

Draw internal force diagrams for the structure based on calculations.

Normal forces can change due to horizontal forces here.
In their absence the diagram is constant with a value of
N1=0 kN.

9

6kN/m

8.0m     

N
[kN]

const. 

-
+

−

−64.00

M
[kNm]

3rd

-
+

+

+24V
[kN]

2nd

-
+

Solution
Reactions are not needed in a cantilever problem. 
Internal forces are found proceeding from the 
free end to the support, calculations 
are done from outside (now from right).

M

N

The shear force diagram is quadratic because of the linear 
distributed load. Its tangent is horizontal at the free end 
because of the zero load intensity there; it gets steeper
monotonically when proceeding to the left. Final ordinates: 

V 2=0 kN,    V 1=+
6⋅8
 2

=+24 kN.

(Since tangents to a parabola at its final points intersect 
in the middle of the horizontal extension of the parabola,
the tangent to the leftmost point can then be constructed
to get a more precise figure.)

As seen from the linear distributed load, the moment diagram 
will be cubic. Its values at endpoints are
M 2=0 kNm, 

M 1=−
6⋅8
 2

⋅
8.0
 3

=−64 kNm.

The tangent at the free end is horizontal because of the zero 
shear there. Due to the force directed downwards, the diagram 
is convex from below. Further help for drawing is that the 
resultant of the load passes through the centroid of triangle in 
the load diagram; the leftmost tangent must pass through the 
intersection of the resultant and the rightmost tangent.
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Exercise 5

Draw internal force diagrams for the structure based on calculations.

 
What kind of functions is the diagram composed of?
What is their connection like?

N 1=  

 
What kind of functions is the diagram composed of?
What is their connection like?
Where will the tangent be horizontal?

V 3=  
V 2= 
V 1= 

 
What kind of functions is the diagram composed of?
What is their connection like?
Where are different segments convex from?
How do slopes change along the segments?

M 3=  
M 2=  
M 1=  

10

6kN/m

2x2.5m 
    

N
[kN]

-
+

M
[kNm]

-
+

V
[kN]

-
+

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:
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Example 6

Draw internal force diagrams for the structure based on calculations.

Normal forces can change due to horizontal forces here.
In their absence the diagram is constant with a value of
N1=0 kN.

11

N
[kN]

const. 

-
+

−

−6,25
M

[kNm]

  3rd                        3rd

-
+

−37,5

6kN/m

2x2.5m 

Solution
Reactions are not needed in a cantilever problem. 
Internal forces are found proceeding from the 
free end to the support, calculations 
are done from outside (now from left).

N

M

−

-−7.5
V
[kN]

 2nd                   2nd

-
+

−15.0

The shear force diagram is composed of two parabolic
segments. Values at the boundaries are as follows:
V 1=0 kN, 

V 2=−
6⋅2.5
  2

=−7.5kN, 

V 3=−7.5−
6⋅2.5
  2

=−15 kN. A két parabola közös

The parabolas have a common tangent, whereas tangents at 
zero load intensities are horizontal. Tangents at both ends 
intersect exactly in the middle of the beam.

The bending moment diagram is composed of two cubic.
segments; both are convex from below. Ordinates at the 
boundaries are as follows:
M 1=0kNm, 

M 2=−
6⋅2.5
  2

⋅
2.5
 3

=−6.25 kNm,

M 3=−
6⋅2.5
  2

⋅(2.5+
2.5
 3 )−

6⋅2,5
  2

⋅2
2.5
 3

=−37.5 kNm.

The leftmost tangent is horizontal because of the zero shear 
there; another one in the middle of the beam intersects it 
exactly under the centroid of the triangular load to the left. 
This tangent is common to both segments and intersects the 
rightmost tangent under the centroid of the triangular load 
to the right. 



Basics of Statics and Dynamics eC3

Exercise 6

Draw internal force diagrams for the structure based on calculations.

What kind of functions is the diagram composed of?
What is their connection like?

N1=  
What kind of functions is the diagram composed of?
How do the slopes change?
Is there a known slope somewhere?

V 1= 
V 2= 
What kind of functions is the diagram composed of?
How do the slopes change?
Is there a known slope somewhere?

M 1=  
M 2=  
Where do tangents to endpoints intersect?

R1=               xR1=     
R2=               xR2=      
R=               
         R1 xR1+R2 x R2=R xR

xR=              

12

3.6kN/m

4.5m     

1.8kN/m

N
[kN]

-
+

M
[kNm]

-
+

V
[kN]

-
+

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:
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Example 7

Draw internal force diagrams for the structure based on calculations.

Normal forces can change due to horizontal forces here.
In their absence the diagram is constant with a value of
N1=0 kN.

The shear diagram is composed of two parallel 
linear segments with a jump in between. 
Values at the boundaries of segments are as follows:
V 1=+6.75kN, 
V 2=+6.75−5⋅1.8=−2.25 kN,
V 3=−2.25+6.75=+4.5kN,
V 4=+6.75−5⋅3.6+6.75=−4.5kN.
There are two zeroes:
V m1=+6.75−5⋅x1=0→ x1=1.35m
V m2=+4.5−5⋅x2=0→ x2=0.9m

The bending moment diagram is composed of two 
parabolic segments with a kink in between. 
Values at the boundaries of segments are as follows:
M 1=0kNm,
M 2=+6.75⋅1.8−(5⋅1.8)⋅0,9=+4.05 kNm, 
M 3=+6.75⋅3.6−(5⋅3.6)⋅1.8+6.75⋅1.8=+4.05kNm.

Depths of parabolas: 
5⋅1.82

  8
=2.025kNm (both)

Maximum values are

Mm1=+6.75⋅1.35−(5⋅1.35)
1.35
  2

=+4.556 kNm

Mm2=+6.75⋅2.7−(5⋅2.7)
2.7
 2

+6.75⋅0.9=+6.075 kNm

13

5kN/m

1.8m              1.8m

6.75kN 6.75kN

N
[kN]

-
+

const.                 const.

M
[kNm]

-
+

2nd         kink        2nd

+

+4.05+4.05

2.025
Mm1=+4.556

Mm2=+6.075

V
[kN]

-
+

lin.          jump       lin.

+

+6.75

+

−−

+4.5

−4.5
−2.25

x
1
=1.35m         x

2
=0.9m

Solution
Reactions are not needed in a cantilever problem. 
Internal forces are found proceeding from the 
free end to the support, calculations 
are done from outside (now from left). N

M
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Exercise 7

Draw internal force diagrams for the structure based on calculations.

What kind of functions is the diagram composed of?
What is their connection like?

N1=  
What kind of functions is the diagram composed of?
What is their connection like?

V 2= 
V 1= 

What kind of functions is the diagram composed of?
What is their connection like?

M 4=  
M 3=  
M 2=  
M 1=  

parabolas: 
q l2

 8
=

          
  

=

14

5kN/m

2.4m              2.4m
6kNm 6kNm

N
[kN]

-
+

M
[kNm]

-
+

V
[kN]

-
+

Solution
Reactions?
Which side the values are got from?
Positive senses for internal forces:
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Internal force diagrams of simply supported beams

Example 1

Draw internal force diagrams for the structure based on calculations.

Final sketch:

 

  

Notice that all internal force diagrams on the overhang are zero.

1

4.8kN/m

6.50kN 5.853kN

2.002kN

N
[kN]

const.                                 jump  cst.

-
+

−

−2.002

V
[kN]

const.  kink         lin.            kink      const.   jump  cst.

-
+

+

+6.50
−

−5.50

xm=1.354m

M
[kNm]

-
+

lin.                       2nd                       lin.        kink   lin.     
                                                                             (cst.)

+

+9.75

3.75 Mmax=14.15kNm

+11.0

Solution
Reactions:

∑M i
(A ) :−(4.8⋅2.5)⋅2.75+B cos20 °⋅6.0=0

   →   B=5.853kN(↖)

∑M i
(B) :(4.8⋅2.5)⋅3.25−A z⋅6.0=0

   →   A z=6.50kN(↑)

∑ F ix : A x−5.853sin 20°=0→ A x=2.002kN(→)

Check:

∑ F iz : 4.8⋅2.5−5.853⋅cos20 °−6.5=−2⋅10−5
≈0

N

M M

N

4.8kN/m

1.5m         2.5m           2.0m     1.0m
A B 20° 

Normal forces are only influenced by Ax  and 
the horizontal component of B , the diagram is
composed of two constant segments:
N 1=−2.002 kN,   N 2=0kN

The shear force is linear under the constant 
load and there is a jump at force B  in the
diagram. Other three segments are constant.
V 3=0 kN,  
V 2=−5.583cos20 °=−5.50 kN
V 1=−5.50+4.8⋅2.5=+6.50 kN
The zero on the linear part is found at xm :
V m=+6.50−4.8⋅xm=0→xm=1.354m

The moment diagram is composed of one 
parabolic and two linear parts between the 
supports and a constant segment on the 
overhang (it is specifically zero here). 
Moment values at boundaries: M 4=0 kNm,
M 3=+5.853 cos20 °⋅2.0=+11.00kNm
M 2=+6.5⋅1,5=+9.75 kNm, M 1=0 kNm

The depth is 
4.8⋅2.52

    8
=3.75 kNm

The value of maximum:

Mmax=+6.5⋅2.854−(4.8⋅1.354)
1.352
   2

=

        =+14.15 kNm
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Exercise 1

Draw internal force diagrams for the structure based on calculations.

Final sketch:

What kind of functions is the diagram 
composed of? What is their connection like? 

N1=  
N 2=  
What kind of functions is the diagram 
composed of? What is their connection like? 

V 1= 
V 2= 
V 3=  
zero:V m=0= 

What kind of functions is the diagram 
composed of? What is their connection like? 

M 1=  
M 2=  
M 3=  
M 4=  

parabola: 
q l2

 8
=

          
  

=

maximum: Mmax=

2

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Solution
Reactions:

∑     :

∑     :

∑     :

4.8kN/m

1.5m         2.5m           2.0m     1.0m

A B 

15° 
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Example 2

Draw internal force diagrams for the structure based on calculations.

Final sketch:

 

Remark: the bracketed product in the formula of the maximum equals 9.36 just based on the method used in the
calculation of xm = 3.12 m; thus, the maximum could also be obtained as +9.36⋅3.12/2 .

3

3.0kN/m

9.36kN 19.44kN

5.0kN/m

N
[kN]

const.      
 

-
+

V
[kN]

lin.             kink      lin.          jump  lin.

-
+

+

+9.36
−−1.44

x
m
=3.12m

+

+6.0

−13.44

Solution
Resultants:R1=3.0⋅3.6=10.8kN, R2=5.0⋅3.6=18kN
Reactions:

∑M i
(A) :−10.8⋅1.8−18⋅5.4+B⋅6.0=0

→      B=19.44 kN(↑)

∑M i
(B) :10.8⋅4.2+18⋅0.6−A z⋅6.0=0

→      A z=9.36 kN(↑)

∑ F ix : A x=0

Check:∑ F iz : 3.0⋅3.6+5.0⋅3.6−9.36−19.44=0

M
[kNm]

-
+

2nd                         2nd        kink  2nd

+

+14.26

M
max

=14.60kNm

0.9

3.60

−3.60

4.86

−

N

M M

N

3.0kN/m

3.6m           2.4m      1.2m
A B 

5.0kN/m

There are no normal forces in a horizontal beam
in the absence of horizontal external forces.

The shear force diagram is composed of three 
linear segments connected by a kink and a jump
(from left to right); the last two are parallel to each
other, the first one has a smaller slope. 
Values at the boundaries are as follows:
V 5=0 kN, V 4=+5.0⋅1.2=6.0 kNm
V 3=+5.0⋅1.2−19.44=−13.44 kNm
V 2=+5.0⋅3.2−19.44=−1.44 kNm,V 1=+9.36 kNm
The zero is on the first segment:
V m=+9.36−3.0⋅xm=0→ xm=3.12 m

The moment diagram is composed of three 
parabolic segments with a continuous and kinked 
connection on the left and right hand side, 
respectively. Values at boundaries: M 4=0 kNm,

M 3=−
5⋅1.22

  2
=−3.6kNm, M 1=0kNm

M 2=9.36⋅3.6−10.8⋅1.8=+14.26 kNm.

Depths of parabolas: 
3.0⋅3.62

    8
=4.86kNm,

   
5,0⋅2.42

    8
=3.60 kNm,

5.0⋅1.22

    8
=0.9kNm

The value of maximum is

Mmax=+9.36⋅3.12−(3.0⋅3.12)
3.12
  2

=+14.60kNm
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Exercise 2

Draw internal force diagrams for the structure based on calculations.

Final sketch:            

What kind of functions is the diagram 
composed of? What is their connection like? 

N1=  

What kind of functions is the diagram 
composed of? What is their connection like? 

V 1= 
V 2= 
V 3=  
V 4= 
V 5=  
zero: V m=0=

What kind of functions is the diagram 
composed of? What is their connection like? 

M 1=  
M 2=  
M 3=  
M 4=  
Maximum value:

Mmax=

4

3.0kN/m
5.0kN/m

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Solution

Resultants:  
Reactions:

∑     :

∑     :

∑     :

parabolas: 
q l2

 8
=

          
  

=                  
        
  

=                      
        
  

=      

3.0kN/m

1.2m       2.4m        3.6m
A B 

5.0kN/m
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Example 3

Draw internal force diagrams for the structure based on calculations.

Final sketch:

Remark: While preparing the moment diagram, reactions were only used in finding local minimum only. Such a
moment diagram could then be used to derive also the shear force diagram: slopes at overhangs can easily be
calculated; moreover, the height of the point of intersection of two final tangents to the parabola can also be found
as (−8−14.4)/2+2⋅3.456=−4.288kNm . Slopes  of  the  same  tangents  (that  is,  shear  forces  at  the  ends  of  the

middle segment) are |−8−(−4.288 )

        1.2 |=3.093 and |−14.4−(−4.288)

         1.2 |=8.427 (signs can rather be found from

inspection based on the senses of slopes).

5

4.8kN/m

3.093kN 20.43kN

12kN8kNm

N
[kN]

const.                          const.

-
+

Solution
Reactions:

∑M i
(A ) :8−(4.8⋅2.4)⋅1.2−12⋅3.6+B⋅2.4=0

    →B=20.43kN (↑)

∑M i
(B) :8+(4.8⋅2.4)⋅1.2−12⋅1.2−A z⋅2.4=0

    →A z=3.093kN (↑)

∑ F ix : A x=0

Chk:∑ F iz : 4.8⋅2.4+12−3.093−20.43=−0.003≈0

V
[kN]

const.   jump         lin.               jump   const.

-
+

++3.093

− +12

xm=0.6444m

+

−8.427

N

M M

N

4.8kN/m

1.2m            2.4m           1.2m  
A B 

12kN8kNm

M
[kNm]

-
+

lin.(cst.) kink           2nd             kink    lin.

−

−8 −14.4Mext=−7.003kNm

3.456

Normal forces could arise from horizontal forces; 
in their absence the diagram is constant with a zero 
value.

The shear force diagram is composed of two 
constant segments and a linear one between them; 
any segmants are connected by jump 
Important values (first on overhangs!):
V 1=0 kN, V 4=+12 kN, V 2=+3.093kN,
V 3=+3.093−4.8⋅2.4=−8.427 kN.
A zero will be found at the linear segment:
V m=+3.093−4.8⋅xm=0→ xm=0.6444m

The moment diagram is composed of a constant
(see the zero shear to the right), a quadratic and 
a linear segment. Values at the boundaries: 
M 1=−8kNm,
M 2=−12⋅1.2=−14.4kNm, M 3=0kNm.

The depth of the parabola: 
4.8⋅2.42

    8
=3.456 kNm

There is a local minimum:

M ext=−8+3.093⋅0.6444−(4.8⋅0.6444)
0.6444
   2

=

        =−7.003 kNm
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Exercise 3

Draw internal force diagrams for the structure based on calculations.

Final sketch:

          

What kind of functions is the diagram 
composed of? What is their connection like? 

N 1=  

What kind of functions is the diagram 
composed of? What is their connection like? 

V 1= 
V 4= 
V 2= 
V 3=  
zero: V m=0=

What kind of functions is the diagram 
composed of? What is their connection like? 

M 1=  
M 3=  
M 2=  

parabola: 
q l2

 8
=

          
  

=

maximum: M __=

6

9.2kN/m 8kN6kNm

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Solution
Reactions:

∑     :

∑     :

∑     :

9.2kN/m

1.2m            4.0m            1.2m 
A B 

8kN6kNm
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Example 4

Draw internal force diagrams for the structure based on calculations.

Final sketch:

7

4.2kN/m

1.5m                6.0m                  2.0m

A B 15kN10kN

4.2kN/m

18.29kN 21.61kN 15kN10kN 5kN

N
[kN]

const.  jump                                      const.

-
+

−

−10 −15

V
[kN]

lin.  jump                      lin.                       jump   lin.

-
+

+

−

−13.21

xm=2.855m

−

+

−6.3

+11.99 +8.4

N

M M

N

Solution
Reactions:

∑M i
(A ) :−(4.2⋅9.5)⋅3.25+B⋅6.0=0

   →B=21.61 kN(↑)

∑M i
(B) :(4.2⋅9.5)⋅2.75−A z⋅6.0=0

   →A z=18.29kN(↑)

∑ F ix :10+A x−15=0→Ax=5 kN(→)

Check:∑ F iz : 4.2⋅9.5−18.29−21.61=0

M
[kNm]

-
+

2nd  kink                        2nd                    kink   2nd

+

1.181

−8.4

Mm=12.39kNm

--

−4.725
18.9

2.1

The normal force diagram is composed of a 
1.5-m and an 8.0-m long segment with a 
jump in between. Important values (found
from oustide on overhangs first):
N1=−10kN, N2=−15kN.

The shear force diagram is composed of
three parallel linear segments with jumps
at connections according to the reactions.
Values at boundaries:V 1=0 kN,
V 2=−4.2⋅1.5=−6.3 kN, V 6=0 kN,
V 5=+4.2⋅2.0=+8.4 kN, 
V 4=+8.4−21.61=−13.21 kN,
V 3=−13.21+4.2⋅6.0=+11.99 kN.
A zero will be found on the middle segment:
V m=+11.99−4.2⋅xm=0    →xm=2.855m

The moment diagram is composed of three
parabolas connected through kinks. Values
at the boundaries: M 1=0kNm, M 4=0kNm,

M 2=−(4.2⋅1.5)⋅
1.5
 2

=−4.725 kNm,

M 3=−(4.2⋅2.0)⋅
2.0
 2

=−8.4 kNm.

Depths:
4.2⋅1.52

    8
=1.181kNm,

4.2⋅2.02

    8
=2.1kNm, 

4.2⋅6.02

    8
=18.9kNm

The maximum value is

Mmax=+18.29⋅2.855−(4.2⋅4.355)
4.355
   2

=

        =+12.39kNm
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Exercise 4

Draw internal force diagrams for the structure based on calculations.

Final sketch:

          

 

8

3.3kN/m

  2.0m              5.0m                 2.5m

A B 5kN12kN

3.3kN/m

5kN12kN

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Solution
Reactions:

∑     :

∑     :

∑     :

parabolas: 
q l2

 8
=

          
  

=            

  
          
  

=                 
          
  

=       

maximum: Mmax=

What kind of functions is the diagram 
composed of? What is their connection like? 

V 1= 
V 2= 
V 6=  
V 5=  
V 3=  
V 4= 
zero: V m=0=

What kind of functions is the diagram 
composed of? What is their connection like? 

N1=  
N 2=  

What kind of functions is the diagram 
composed of? What is their connection like? 

M 1=              M4=           
M 2=  
M 3=  
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Example 5

Draw internal force diagrams for the structure based on calculations.

Final sketch:

9

N
[kN]

    const.           jump                const.

-
+

−

−12.99

V
[kN]

cst.  jump     cst.    jump      cst.     jump      cst.

-
+

+

−1.14
−+6.36+16.36

−16.14

N

M M

N

Solution
Reactions:

∑M i
(A ) :−10⋅2−15 sin 30 °⋅5−15⋅8+B⋅11=0

   →B=16.14 kN(↑)

∑M i
(B) :10⋅9+15sin 30 °⋅6+15⋅3−A z⋅11=0

   →A z=16.36kN(↑)

∑ F ix : A x−15cos30 °=0→ Ax=12.99 kN(→)

Chk:∑ F iz :10+15 sin 30 °+15−16.36−16.14=0

M
[kNm]

-
+

lin.   kink       lin.       kink       lin.      kink      lin.

+32.72 +51.84 +48.42

+

 2m           3m           3m          3m

A B 

10kN 15kN 15kN

12.99kN
10kN 15kN 15kN

16.36kN 16.14kN

The normal force diagram is composed of two
constant segments connected by a jump equal 
to the horizontal component of the oblique 
force. The values are as follows: 
N 1=−12.99kN, N2=0kN.

The shear force diagram is composed of four
constant segments separated by jumps defined 
by vertical force components. Values: 
V 1=+16.36 kN, V 2=+16.36−10=+6.36 kN, 
V 3=+6.36−15 sin 30 °=−1.14 kN, 
V 4=−16.14 kN.

The moment diagram is composed of four
linear segments connected through kinks:
M 1=0kNm, M 2=+16.36⋅2=+32.72kNm,
M 3=+16.36⋅5−10⋅3=+51.84kNm,
M 4=+16.14⋅3=+48.42kNm, M 5=0kNm.
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Exercise 5

Draw internal force diagrams for the structure based on calculations.

Final sketch:

          

What kind of functions is the diagram 
composed of? What is their connection like? 

N3=  
N1=  
N 2=  
What kind of functions is the diagram 
composed of? What is their connection like? 

V 4= 
V 1= 
V 2= 
V 3=  
What kind of functions is the diagram 
composed of? What is their connection like? 

M 5=  
M 4=  
M 1=  
M 2=  
M 3=  

10

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Solution
Reactions:

∑     :

∑     :

∑     :

 2m           3m           3m          3m

A B 

15kN 15kN 15kN

15kN 15kN 15kN
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Example 6

Draw internal force diagrams for the structure based on calculations.

Final sketch:

11

N

M M

N

15kN 3kN/m

15kNm
17.81

12.19

N
[kN]

const. 
  

-
+

V
[kN]

cst.  jump                lin.

-
+

+ −17.81

−

−2.81

+12.19

M
[kNm]

-
+

lin.   kink    2nd   jump       2nd

+36.57 +39.93

3.375

+

+24.93

1.5

Solution
Reactions:

∑M i
(A ) :−15⋅2−3⋅5⋅5.5−15+B⋅8=0

   →B=17.81 kN(↑)

∑M i
(B) :15⋅5+3⋅5⋅2.5−15−A z⋅8=0

   →A z=12.19kN(↑)

∑ F ix : A x=0

Check:∑ F iz :15+3⋅5−12.19−17.87=0

 3m            2m         3m

A B 

15kN 3kN/m

15kNm

Normal forces could arise from horizontal forces; 
in their absence the diagram is constant with a zero 
value.

The shear force diagram is composed of a constant 
and a linear segment separated by a jump of  
magnitude of the concentrated load: 
V 1=+12.19kN, 
V 2=+12.19−15=−2.81 kN, 
V 3=−17.81kN.

The moment diagram is composed of one linear and 
two quadratic segments. The linear part is separated 
by a jump, while there is a jump between parabolas 
(their tangents are parallel at the jump). Values:
M 1=0kNm, 
M 2=+12.19⋅3=+36.57 kNm, 
M 5=0kNm,
M 4=17.81⋅3−3⋅3⋅1.5=+39.93 kNm,
M 3=17.81⋅3−3⋅3⋅1.5−15=+24.93kNm,

depths: 
3⋅22

 8
=1.5kNm ,

3⋅32

 8
=3.375kNm
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Exercise 6

Draw internal force diagrams for the structure based on calculations.

Final sketch:

          

What kind of functions is the diagram 
composed of? What is their connection like? 

N1=  

What kind of functions is the diagram 
composed of? What is their connection like? 

V 1= 
V 2= 
V 3=  
zero: V m=0=

What kind of functions is the diagram 
composed of? What is their connection like? 

M 1=  
M 2=  
M 3=  
M 4=  
M 5=  

parabolas: 
q l2

 8
=

          
  

=

                    
          
  

=           

maximum: Mmax=

12

15kN 5kN/m

15kNm

N
[kN]

-
+

V
[kN]

-
+

M
[kNm]

-
+

Megoldás
Reakciók:

∑     :

∑     :

∑     :

 3m            3m         2m

A B 

15kN 5kN/m

15kNm



Basics of Statics and Dynamics eC5

Internal force diagrams of Gerber beams

Observations made on the calculation of individual values of internal forces in compounds can be
generalized to diagrams. In a compound structure, there are even more ways of finding internal
force values than in a simple one. It resides in the fact that equilibrium must be hold not only for the
entire compound but for any of its components; that is why any substructure containing the cross
section in case can be used for calculation. Moreover, values can be found from two sides for any
such substructure  or  even  the  entire  compound.  However,  it  still  holds  that  one  calculation  is
sufficient for any value in practical problems. Thus, the first step still remains to be the decision on
the simplest way possible of the calculation.

Example 1

Draw internal force diagrams for the structure based on calculations.

 

Solution

Calculation of the reactions: susp.∑ F ix :Bx=0 kN ,  fixed∑ F ix : D x=0kN

susp.∑M i
(B) :6⋅7.0⋅3.5– A⋅4.0=0→A=36.75 kN(↑)

susp.∑M i
(A ):−6⋅7.0⋅0.5+B z⋅4.0=0→B z=5.25 kN(↑)

fixed∑M i
(D ):5.25⋅9.0+6⋅9.0⋅4.5– C⋅5.0=0→C=58.05 kN(↑)

fixed∑M i
(C ):5.25⋅4.0−6⋅9.0⋅0.5+D z⋅5.0=0→D z=1.2kN(↑)

Check: str∑ Fiz :6⋅16 – 36.75– 58.05 –1.2=0

Final sketches by members:

It is also possible to make a final sketch for the entire structure as follows:

In the forthcoming procedure, internal forces will be obtained from
both sides, so both reference frames are given in the figure to the
right. Since there are only vertical force components acting on the
beam, the normal force diagram is a constant zero:

1

6kN/m

3.0m               4.0m                4.0m                  5.0m

B A C D 

6kN/m

5.25kN

5.25kN

36.75kN 58.05kN 1.2kN

N

MM

N

6kN/m

1.2kN36.75kN 58.05kN
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With reference to the final sketch, the shear force diagram is composed of three linear segments
with jumps at supports A, C and D. In addition, the shear at the internal hinge is also commonly
specified, which means the determination of seven values. Ordinates on the overhanging part of
the  suspended  (drop-in)  beam  are  dealt  with  first:  V 1=0 kN ,  V 2=−6⋅3.0=−18kN ,
V 3=−6⋅3.0+36.75=18.75 kN ,  V 4=−6⋅7.0+36.75=−5.25 kN .   (The last  value could have
been obtained even more quickly from right on the drop-in beam.) Shear force at the left end of
the fixed part is the same  V 4=−5.25 kN  as calculated above (it  can be seen more directly
looking at the entire structure, since there is no concentrated active or passive force there). The
remaining three values are got for convenience from the fixed part (one from left and two from
right) as follows: V 5=−5.25– 6⋅4.0=−29.25 kN , V 6=−1.2+6⋅5.0=+28.8kN , V 7=−1.2kN
. 

There  are  two points  of  change of  signs  in  the  diagram.  Their  positions  are  looked for  as
distances to the left of points B and D such that the shear force is expressed in terms of those
distances  (based  on  the  isolated  parts,  for  convenience,  from  right):
V (x1)=−5.25+6⋅x1=0→ x1=0.875 m , V (x2)=−1.2+6⋅x2=0→ x2=0.2m .

As seen again from the final sketch of the entire assembly, the moment diagram is composed of
three parabolic segments with kinks at supports  A,  C and  D. Based on the equilibrium of the
entire assembly, no kink or jump can occur at internal hinge B that means a smooth connection
there; moreover, the moment is zero there as seen from individual final sketches of adjacent
separate members.

The  calculation  is  started  again  on  the  overhang  of  the  suspended  part:  M 1=0 kNm ,
M 2=−6⋅3.0⋅1.5=−27kNm , the depth of the parabola is:  6⋅3.02

/   8=6.75 kNm . In order to
draw the parabola on the overhang, the bending moment at point  B is required: it is got from
right  based  on  the  suspended  part  as  M 3=0 kNm  with  a  depth  of  parabola  of
6⋅4.02

/   8=12kNm . 

The solution continues at the overhang of the fixed part. The moment at point  B is obtained
again  as  M 3=0 kNm  from  outside.  At  support  C,  M 4=−5.25⋅4.0 –6⋅4.0⋅2.0=−69kNm
based on the isolated member; the depth of of segment BC is 6⋅4.02

/   8=12 kNm . Finally, the
moment at support D is obtained from right as M 5=0 kNm . The depth of the parabola here is
6⋅5.02

/   8=18.75kNm .

Maxima of moment are calculated at zeros of shear from right, based on the isolated part:

2

[kN]

-
+

−1.2

+18.75 +28.8

-29.25
−5.25−18

V
[kN]

-
+

x1=0.875m x2=0.2m

lin. lin. lin. lin. j. j. j. 

−
−

+ +

−
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M 1max=+5.25⋅0.875– 6⋅0.875⋅
0.875
 2

=+2.297kNm ,

M 2max=+1.2⋅0.2– 6⋅0.2⋅
0.2
2

=+0.12kNm .

Remark: as concluded from the equilibrium of the entire assembly, there is a single distributed
load only between supports A and C, that is why the moment diagram there is a single parabolic
segment. It could also be drawn between ordinates of −27 and −69 kNm. The depth is now
6⋅82

/8=48kNm , construction lines pertaining to this parabola are drawn in red. Recall that a
parabola obtained in this way must coincide to that is drawn in two separate parts (with an
emphasis on the zero value of moment at the internal hinge).

Exercise 1 

Draw internal force diagrams for the structure based on calculations.

Solution

All forces external to each isolated body:

All external forces exerted on the structure:

Normal forces on a horizontal beam can only produced by horizontal
forces. Here all forces are vertical, so thediagram is a constant zero:

The shear diagram is piecewise ..................... . The diagram is drawn first on the suspended part.

3

−69

−27

M1max=+2.297kNm M2max=+0.12kNm

6.75 12
18.7512

M
[kNm]

-
+

2nd 2nd 2nd2ndk. k. k. cont.

−
−

+

+

5kN/m

3.0m                   6.0m                      3.0m                     6.0m  

B A C D 

5kN/m 5kN/m

15kN 15kN

15kN

22.5kN 52.5kN

5kN/m

22.5kN 52.5kN 15kN

[kN]

-
+

N

M M

N
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The arrangement of forces resembles that of a simply supported beam with a constant distributed
load. The shear force values needed to draw a linear segment are as follows:

V 6= V 7=

The shear force at the end of the right overhang of the fixed part just became known; to the right
of support B we have

V 5=

Shear forces at two ends of segment between supports A and B:

V 4= V 3=

The shear on the left overhang is found rather from left, independently from all preceding values.

V 1= V 2=

Check whether the jump at support A corresponds to the concentrated force there.
Check the slopes of the diagram for uniformity.

Zeros correspond to possible maxima of moments. Determine their positions:

V (x1)= →x1=

V (x2)= →x2=

The moment diagram is piecewise ...................... . The diagram is drawn first on the suspended
part.  The arrangement of forces resembles  that  of a simply supported beam with a constant
distributed load. The bending moment values needed to draw a parabolic segment are as follows:

M 4= M 5=

The depth of the parabola: 
       

=

The bending moment at the end of the right overhang of the fixed part just became known; at
support B we have

M 3=

The depth of the parabola to the right of B is 
       

=

The bending moment on the left overhang is found rather from left again.

4

V
[kN]

-
+
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M 1= M 2=

The depth of the parabola between them: 
       

=

Moments at both supports A and B are already known. The depth of the parabola between them

is 
       

=

Two extreme values at positions determined earlier are

M 1max=

M 2max=

Check the connection of segments at the internal hinge for smoothness.

Example 2 

Draw internal force diagrams for the structure based on calculations.

Solution

External and internal reactions on each rigid member (horizontal components of reactions are all
zero, so they are not drawn in the figure):

All external forces exerted on the structure:
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Normal forces could only arise from horizontal force components here. In their absence:

The shear force diagram is composed of three constant and a linear segment. The diagram on the
rightmost  suspended part  corresponds to that  of a  simply supported beam with final  values
V 4=−12kN  and V 3=+12kN . The zero is in the middle of the segment. As can be seen from
the forces exerted on the entire beam, V 3  is also the value of the constant segment between C
and D. The remaining two constant segments have values V 2=8 kN  and V 1=+7kN .

The moment diagram is composed of three linear and a parabolic segment. The parabola over
the suspended part looks as in simply supported beams with final values M 4=M 5=0kNm  and
depth 4.8⋅52

/8=15 kNm , which now corresponds also to a local maximum. The linear segment
between  C and  D is connected smoothly (without a jump or kink) to the parabola,  bending
moment at the support equals  M 3=−12⋅2=−24 kNm . At the right end of the linear segment
between  B and  C, the same value is found, while at hinge  B M 2=0kNm  is obtained from
forces acting on the member  BD. Moment at hinge  B is also zero on the leftmost member as
clearly seen from its isolation; finally, the moment at the support is M 1=−7⋅2=−14 kNm . 

Exercise 2 

Draw internal force diagrams for the structure based on calculations.

Solution

Active forces and (nonzero) reactions by members:
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External forces and (nonzero) reactions acting on the entire structure:

What kind of segments is the normal force diagram composed of?

After identifying types and relative connections of segments, characteristic values of the shear
force diagram are as follows:

V 1= V 2=

V 3= V 4=

After identifying types and relative connections of segments, characteristic values of the bending
moment diagram are as follows:

M 1= M 2=

M 3= M 4=

M 5=

How the slopes of linear segments are related to each other?
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Frames

Frames are composed of members of variable axial directions. As an immediate consequence, the
direction of both the normal and shear forces change whenever such a change in the axial direction
occurs: such corner points are always points of division between segments of those diagrams. A
corner  point  (with  two small  stubs  of  beams there)  has  still  to  be  in  equilibrium.  This  makes
possible to check the equilibrium of moments by a simple look on the diagram, with reference to the
drawing rule that ordinates are always shown on the tensile side. On oblique parts of beams, both
the normal and shear force have to be calculated, of course, from oblique resolutions.

Example 3 

Draw internal force diagrams for the structure based on calculations. (Reactions are given in the
figure to the right.)

Solution

Let the 'left-to-right'  orientation of beam segments in internal  force
calculations be set from  A to  B consistently: in other words, let the
positive side of the beam be set to the bottom right side of the axis. It
makes positive senses of internal forces to be as drawn in the top right
figure. Just below that, angles and components Ax and Az are drawn in
order to help finding adequate signs and trigonometric functions.

The normal force diagram is composed of a single constant segment on
both the horizontal and inclined parts. The normal forces are as follows:

N 1=+Ax⋅cosα+A z⋅sinα=6.4⋅0.6+3.2⋅0.8=+6.4 kN , N 2=0 kN

The shear force diagram is also composed of a single constant segment on
both the horizontal and inclined parts. Their values are

V 1=+A x⋅sinα−A z⋅cosα=+6.4⋅0.8−3.2⋅0.6=+3.2kN ,
V 2=−8kN
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The moment diagram is linear all over the inclined part, while it has two parallel linear segments
separated by a jump on the horizontal part.  There are two connected segments at the corner
point. If the bending moment is calculated from the same direction at either side of the corner,
then positive senses for both moments will be identical. In addition, both moment values are
sums of moments of the same forces about the same point, making the moment value to be
identical at both sides of the corner.

In  accordance  with  this  observation,  characteristic
values of the bending moment are as follows:

M 1=M 5=0kNm ,  M 2=+6.4⋅4−3.2⋅3=+16kNm ,
M 3=+8⋅1.5−8=+4 kNm , M 4=+8⋅1.5=+12 kNm .

Balance of moments about a corner

Let  the  corner  be  isolated  from its  neighbourhood
and  let  the  stub  be  drawn  with  bending  moments
exerted on it at both cuts. (Normal and shear forces
are irrelevant now from the aspect of equilibrium, since they would all be associated with a zero
moment arm; for that reason, they are not even drawn in the figure.)
Bending moments are read from the diagram; the curved arrow of the
moment is started with its tail at the side of the cut where the respective
ordinate is drawn. In the current case, a clockwise arrow on the bottom
left end of the stub is directed from the bottom right towards the top left
side, while the arrow at the opposite end starts at the bottom and points towards the top side in a
counter-clockwise sense. Both moments are of a magnitude of 16 kNm , their signs in a moment
balance are decided just based on the graphic appearance of arrows: 16−16=0 .

Exercise 3 

Draw internal force diagrams for the structure based on calculations (reactions are given).
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Solution

As a preliminary step, decide upon positive sides of different parts and draw the positive arrows
of internal force components accordingly. Find the angle that the inclined axis makes with the
horizontal and draw it into the figure as well.

α=

What kind of segments is the normal force diagram composed of? What are its characteristic
values?

N1=

N 2=

What kind of segments is  the shear  force diagram composed of? What are its  characteristic
values?

V 1=

V 2=

What kind of segments is the moment diagram composed of? What are its characteristic values?

M 1=

M 2=

M 3=

M 4=

M 5=
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Example 4 

Draw internal force diagrams for the structure based on calculations.

Solution

Reactions as well as positive senses of internal force components are shown in the figures below
(the bottom side is taken positive for all three segments).

The  normal  force  diagram is  composed of  three  constant  segments  (two horizontal  and an
inclined one). On horizontal parts, any normal force is due to horizontal components. Since all
external forces are vertical, those are all zero: N 1=N3=0kNm .  If a value on the inclined part
is  calculated  from (bottom)  left,  normal  resolutions  of  reaction  A and  distributed  load  (of
intensity 2.8 kN/m) should be considered:
N 2=−2.967⋅sin 26.57°+2.8⋅1.0⋅sin 26.57 °=−0.07470 kN

The shear force diagram is linear over horizontal segments and constant over the inclined part.
Values at two ends of the bottom horizontal part are  V 1=0  and  V 2=−2.8⋅1=−2.8 kN . The
same  for  the  top  horizontal  part:  V 4=+1.8⋅1=+1.8 kN  and  V 5=0 kN .  The  value  on  the
inclined part is calculated from left by accounting for shearing components of reaction  A and
distributed load (of intensity 2.8 kN/m):
V 3=+2.967⋅cos26.57°−2.0⋅1.0⋅cos 26.57 °=+0.1494 kN
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The bending moment diagram is parabolic over horizontal segments and linear over the inclined
part.  Values  at  two  ends  of  the  bottom  horizontal  part  are  M 1=0  and
M 2=−2.8⋅1⋅0.5=−1.4 kNm . The depth of the parabola is 2.8⋅1.02

/8=0.7 kNm . The same for
the  top  horizontal  part:  M 5=−1.8⋅1.0⋅0.5=−0.9 kNm  and  M 6=0kNm .  The  depth  of  the
parabola  here  is  1.8⋅1.02

/8=0.45 kNm .  Two  endpoints  of  the  inclined  part  coincide  with
corners of the frame where moments can be calculated from the same equations as have already
been  used  on  the  opposite  side,  so  the  values  are  unchanged:  M 3=−1.4kNm  and
M 4=−0.9 kNm . These two ordinates should be connected by a straight line.

Exercise 4 

Draw internal force diagrams for the structure based on calculations.

Solution

The length of inclined part: 

l=
Angle between the inclined axis and the horizontal: 

α=
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Reactions:

Where will positive arrows point to 
on different segments in calculations
from different sides?

Decide upon the order of segments in the normal force diagram. Find characteristic values:

N 1= N 4=

N 2=

N3=

Decide upon the order of segments in the shear force diagram. Find characteristic values:

V 1=

V 2=

V 3=

V 4=

13
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Decide upon the order of segments in the bending moment diagram. Find characteristic values:

M 1=

M 2=

M 3=

M 4=

In order to find the depth of the parabola, the distributed load component
perpendicular to the inclined axis must be known:

q⊥=

which yields the depth as:

q⊥⋅l
2

8
=

Where is a maximum of bending moment? (The answer should be given
based on the shear force diagram.)

Find its value:

M max=

14

M

-
+

-
+

[kNm]

α
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Internal force diagrams of oblique and bifurcating frames I.

Example 1
Draw internal force diagrams of the structure shown. 

Solution

The  solution  starts  by  finding  all  reaction
components; they are sketched in the figure to the left
(the  method  of  their  calculation  has  already  been
demonstrated in Example 1 of Lecture 11).
All  cross  sections  where  internal  forces  should  be
calculated  are  marked  with  numbers  in  the  same
figure.  Internal  forces  must  always  be  given  at
supports,  at  points  of  application  of  concentrated
loads and at points where the frame axis changes its
direction. Cross sections in all previous cases are set
at  an  infinitely  small  distance  (practically  at  0  m)
from reactions,  concentrated  active  loads  or  corner

points of the frame. Positive side of the frame is set to the bottom of horizontal segments; thus,
for convenience, the inner side is considered positive in both vertical segments. Cross sections
K

1
-K

5 
and K

6
-K

8
 are calculated from the side of support A and B, respectively. Sign conventions

for the left hand side vertical segment (calculation from the bottom side), for the horizontal
segment (from left and from right), as well as for the right hand side vertical segment (from the
bottom) are as follows:

Let the normal force diagram be considered first. The frame axis is vertical at both supports,
therefore vertical and horizontal reaction components are aligned with normal and shear force
components, respectively. Any cross sections of the left hand side column are calculated from
the bottom side: all forces found below the cross section in case are replaced by an equivalent
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force-couple system at the centroid of the cross section. The normal force is constant all along
the column, since force F is perpendicular to the axis of the column. The reaction component A

z

is directed upwards and results therefore in compression (negative normal force):
N 1=N 2=N 3=N 4=−4.8 kN

The normal force is still constant all along the horizontal segment on the top because it is not
influenced by the perpendicular distributed load. The normal force in cross section  K

5  
can be

obtained from the left (from A
x
 and F) as follows:

N 5=4−4=0 kN
It can be verified that the normal force at K

6

is also obtained as N 6=0 kN , since there is
no  horizontal force component acting on the
left hand side of the cross section. 
On the right  hand side column,  the normal
force is constant: looking at the bottom part,
reaction B causes compression:
N 7=N 8=−7.2kN

The shear force diagram is divided into two constant parts on the left column, connected to each
other by a jump. In the region below the active load, there is only the horizontal component of A
that causes shear (which is positive by the sign convention):
V 1=V 2=4 kN
In calculating shear  in cross sections above the concentrated load,  force F together with  A

x

should also be accounted for:
V 3=V 4=4−4=0 kN
Due to the constant intensity of load along the horizontal part, the shear force diagram is linear
there. Considering forces to the left of  K

5
, the shear force component is positive since  A

z
 is

directed upwards:
V 5=4.8kN
Considering forces to the right of K

6
, upwards reaction B yields a negative shear:

V 6=−7.2 kN
After the linear segment between K

5
 and K

6 
having been drawn, the cross section of zero shear

(where the moment has a local extremum) is found. The shear force obtained from the left side
is V ( x)=4.8−1.2⋅x=0 , whence x=4.8/1.2=4m

On the right hand side column there is no shear at all:
the only force B at the bottom part has a component just
parallel to the current frame axis; thus,
V 6=V 7=0 kN .
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The moment diagram on the left hand side column consists of two linear segments. The value of
moment at the pin-jointed support is zero:

M
1
= 0 kNm

In  the  cross  section  of  concentrated  load,  the  moment
diagram has a  kink.  In both cross sections immediately
above  and  below  F,  a  moment  causing  tension  on  the
inner  side  arises  from reaction  A

x 
(directed to  the left).

This  bending  moment  is  therefore  positive  (in  the
calculation of moment in cross section K

3
 from below, the

moment arm of force F is zero):
M 2=M 3=4⋅3=12 kNm .

The bending moment does not change between K
3
 and K

4
:

M 4=12 kNm , 

since the value of shear and thus the slope of moment function is zero here. On the horizontal
part; however, the bending moment function is quadratic.
Magnitudes of moments M

4
 and M

5
 must be equal due to the equilibrium of the top left corner of

the frame; if  M
4
 represents a clockwise rotation,  M

5
 should rotate against the clock, that is, it

causes tension at the bottom (positive) side.
The bending moment is zero at the rightmost cross section of the horizontal part, because the
moment arm of the only force B on the bottom right part equals zero.

The depth of the parabolic segment is p⋅l 2

 8
=

1.2⋅102

    8
=15kNm .

All cross sections of the right hand side column undergo zero bending (M
7
=M

8
=0), since the

moment arm of force B (standing alone below such cross sections) is zero.
Tangents to the parabolic segment at both its endpoints and at the midpoint can be obtained as
usual. Local maximum of the bending moment is obtained at zero shear; calculated from the
right hand side as follows:

M max=7.2⋅6−
1.2⋅62

   2
=21.6 kNm .

Exercise 1
Draw internal force diagrams of the structure shown.
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Solution
Reactions:

            

Internal force diagrams
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Example 2
Draw internal force diagrams of the structure shown.

Solution
Reactions are determined first: external and internal reaction components are shown in the next
figure (the method for calculation of reactions of three hinged structures have already been
shown in details at compound structures). All cross sections where internal forces should be
calculated are marked with numbers in the figure at the right hand side.

Positive side of horizontal segments of the frame is set to the bottom; thus, for convenience, the
inner side is considered positive in both vertical segments. Sign conventions for the left hand
side vertical segment (calculation from the bottom side), for the horizontal segment (from left
and from right), as well as for the right hand side vertical segment (from the bottom) are as
follows:

Let the normal force diagram be considered first. The frame axis is vertical at both supports,
therefore vertical and horizontal reaction components are aligned with normal and shear force
components, respectively. Any cross sections of the left hand side column are calculated from
the bottom side: all forces found below the cross section in case are replaced by an equivalent
force-couple system at the centroid of the cross section. The normal force is constant all along
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the column, since only force A
z 
 is not perpendicular to the axis of the column. Such an upwards

force results in compression (negative normal force):
N 1=N 2=−18 kN

The normal  force,  calculated from left  and right  on the left  and right hand side overhangs,
respectively, is constant zero, since distributed load components perpendicular to the current
frame axis do not result in normal force:
N 3=N 4=N 7=N 8=0 kN

The normal force between two bifurcations (corners) of the frame axis is constant because the
perpendicular  distributed  load  makes  still  no  change in  the  normal  component.  Its  value  is
obtained in cross section K

5
 from left, considering the component A

x
 causing compression:

N 5=−3kN
Of course, the same value is obtained from right,
based on the force component  B

x
, e.g., in cross

section K
6
:

N 6=−3kN .

The  normal  force  is  constant  along  the  right
hand  side  column,  it  can  be  calculated  easily
from  the  bottom  part,  based  on  the  upwards
component B

z
  causing compression again:

N 9=N10=−18kN .

The shear force along the left  hand column is
constant: there is only the horizontal component of reaction A that generates shear if calculated
from below. Its inwards sense means that the sher is negative:
V 1=V 2=−3kN .
The diagram is linear on the left overhang. There is no concentrated force at the extremity of
that overhang; thus, a calculation from the left yields:
V 3=0kN .
Calculating at cross section  K

4
 from the left,  the resultant of vertical distributed load on the

overhang should be accounted for, which results in a negative shear:
V 4=−3⋅2=−6 kN .
The shear  force  diagram is  linear  along the  middle horizontal  segment  due to  the constant
intensity of distributed load. Looking at all forces to the left of the cross section K

5
, component

A
z
 upwards and the resultant of load on the left overhang downwards has a positive and negative

contribution to the shear, respectively:
V 5=18−3⋅2=12 kN .

Similarly, the shear force at cross section K
6
 is calculated

from  the  right  by  accounting  for  a  negative  shear
component from B upwards and a positive one from the
vertical distributed load on the overhang downwards:
V 6=−18+ 3⋅2=−12 kN .

The  zero  value  between  cross  sections  K
5
 and  K

6
 is

exactly at the hinge due to symmetry. 
The shear force diagram is linear between K

7
 and K

8
. At

6
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the end of the right overhang, the shear force is obtained as zero from the right, since there is no
concentrated load at the end of overhang. The shear in K

7
 is determined from the right merely by

the resultant of the distributed load on the overhang which is equivalent to a positive shear force
V 7=3⋅2=6kN .
Important: slopes of three linear segments of the shear force diagram over horizontal parts of the
frame are equal, since the intensity of distributed load is the same for all of them.

The bending moment diagram is linear along all vertical parts; moment values at pin-joints are
zero. Calculating from the part below cross section  K

2
, the reaction component A

x 
(inwards)

results in tension on the left hand side of the column and is therefore negative:
M 2=−3⋅6=−18 kNm

Similarly, if the moment in K
9
 is calculated from

below,  the  reaction  component  B
x 

(inwards)

results  in tension on the right hand side of the
column and is therefore negative:
M 9=−3⋅6=−18 kNm .

The bending moment diagram on all horizontal
parts  of  the  frame  is  quadratic  and  is  convex
from below due to the downwards orientation of
the distributed load. The moment is zero at the
end of both overhangs.
The distributed load results in tension at the top
of both overhangs; thus, the moment is negative:
M 4=M 7=−3⋅2⋅1=−6 kNm .

Because of the zero shear at each free end of overhangs, the slope of the moment diagram is also
zero there. The quadratic curve can be drawn based on its initial and final value as well as an
initial slope (these arguments also apply to a simple cantilever beam).
Consider the equilibrium of member I only, and calculate moment in K

5
 from the right: it is only

influenced by the distributed load between K
5
 and C, since internal reaction at C is found to be

horizontal  and has therefore a  zero moment arm.  Similarly,  forces  on the left  hand side of
member II  lead to the same moment in  K

6
 .  Both moments are drawn to the negative side

because of the tension arising on the top: M 5=M 6=−3⋅4⋅2=−24 kNm .
The depth of the parabolic segment between corners is p⋅l 2

/  8=3⋅82
/  8=24 kNm .

The result can be verified at the internal hinge where the moment should be zero (it is also seen
from the FBD, since moment arm of either C or C' is zero about the centroid of adjacent cross
sections). The tangent to the moment diagram at C is now horizontal due to zero shear.

Finally,  nodal  moment  equilibrium of  each
bifurcation  should  be  checked.  Accounting
for tensile sides of all cross sections, arrows
of bending moments are drawn to the nodes
and their sums are calculated.
left node∑ M i :6−24+18=0

right node∑ Mi :24−6−18=0

7

24 kNm6kNm

18 kNm

6kNm

18 kNm

24 kNm

M   [kNm]

−  + +   −

−18−18

−6−6

−24−24
2nd

2nd

lin.

2nd

lin.

3⋅82

8
=24
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Exercise 2
Draw internal force diagrams of the structure shown.

Solution
Isolation:

Equilibrium statements:

                                                                  e                 u           new u
I:    

   
II:    

   
Str:    

Analytic solution:

∑

∑

∑

∑

∑

∑

8

I II

5 kN

3 kN/m 3 kN/m

I II

A B

C

p=3kN/m

2 m

4 
m

x

z

2 m2 m 2 m 2 m 2 m

F=5kN 2 
m
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Final sketch of reactions:

Internal force diagrams:

9

I II
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Example 3
Draw internal force diagrams of the structure shown.

Solution
Reactions are determined first: external and internal reaction components are shown in the next
figure (the method for calculation of reactions of similar structures have already been dealt with
in Example 2 of Lecture 13). All cross sections where internal forces should be calculated are
marked with numbers in the figure.

The inclination of both oblique axes to the horizontal is

10

M   [kNm]−  + +   −
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−
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m
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m

F
1
=4 kN

A B

C

I II

F
2
=6 kN

2.5 m 2.5 m

x

z

2.5 m 2.5 m

I II

C'x
C'z

F
1

F
2

A x=4.167 kN

A z=4.5 kN B z=5.5kN

Bx=4.167 kN

C x=4.167 kN

C z=0.5 kN

K4

K3

K2

K1

K5
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α=arctan
3
5

=30.96 ° .

Positive side of the frame is set to the bottom. Sign conventions for the left hand side (for
calculation from either left or right), as well as for the right hand side (from left and from right)
are as follows:

Let the normal force diagram be considered first: it consists of two constant segments on either
side; both jumps are due to the concentrated load not perpendicular to the frame axis. Looking
left  from all  cross  sections  between  K

1
 and  K

2
,  reactions  A

z
 and  A

x
 result  both in  negative

components of normal force:
N 1=N 2=−4.5⋅sinα−4.167⋅cos α=−5.888kN .

Likewise, in any cross section between K
3
 and K

4
 , normal forces are obtained negative from left

due to either C
z
 or C

x
 :

N 3=N 4=−0.5⋅sinα−4.167⋅cosα=−3.831kN .

Between  K
5
 and  K

6
,  the  normal  force  obtained  from  the  left  hand  side  is  positive  from

component C'
z
 but is negative from C'

x
 :

N 5=N 6=0.5⋅sinα−4.167⋅cosα=−3.316 kN .

In cross sections between K
7
 and K

8
, both B

z
 and B

x
 causes a negative normal force (forces are

now taken from the right hand side):
N 7=N 8=−5.5⋅sinα−4.167⋅cosα=−6.403kN .

The shear force diagram still consists of two constant segments on both sides; two jumps are
due to the concentrated forces not parallel to the frame axis. Considering all forces to the left of
cross sections between K

1
 and K

2
, reactions A

z
 and A

x
 generate a positive and a negative shear,

respectively:
V 1=V 2=4.5⋅cosα−4.167⋅sinα=1.715 kN .

Between K
3
 and K

4
, looking at forces on member I to the right of all cross sections, C

z
 results in

11
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a positive, C
x
 in a negative component of shear:

V 3=V 4=0.5⋅cosα−4.167⋅sinα=−1.715kN .

Looking left on member II, cross sections between K
5
 and K

6
 undergo positive shear due to both

components C'
z
 and C'

x
 :

V 5=V 6=0.5⋅cosα+4.167⋅sin α=2.573kN .

Forces to the right from all cross sections between K
7
 and K

8
 are subjected to a negative and a

positive shear force component from reactions B
z
 and B

x
, respectively:

V 7=V 8=−5.5⋅cosα+4.167⋅sinα=−2.573 kN .

The bending moment diagram consists of two linear segments on both members; kinks are due
to the concentrated loads not parallel to the frame axis. Moments in all external and internal
hinges are strictly zero. A common value of moment for cross sections K

2
 and K

3
 is obtained

from the left hand side as the sum of a positive moment of A
z
 and a negative moment of A

x
 :

M 2=M 3=4.5⋅2.5−4.167⋅1.5=5.000 kN .

Similarly but looking at forces on the right hand side, equal moments of K
6
 and K

7
 can be

obtained by adding the negative moment of B
z
 to that positive of B

x
 :

M 6=M 7=5.5⋅2.5−4.167⋅1.5=7.500kN .

12

V    [kN]
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Exercise 3
Draw internal force diagrams of the structure shown.

Solution
Isolation:

Equilibrium statements:

                                                                  e                 u           new u
I:    

   
II:    

   
Str:    

Analytic solution:

∑

∑

13
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A B
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I II

q
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x

z

4 m 4 m

q
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=3 kN/m

I

q
1
=2 kN/m

II

q
2
=3 kN/m
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∑

∑

∑

∑

Final sketch of reactions:

Internal force diagrams:

14
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q
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=2 kN/m

II

q
2
=3 kN/m
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15

V    [kN]

M   [kNm]
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Exercise 4 (if needed)
Determine the correct shapes of internal force diagrams of the structures shown.

       

Solution
Draw lines of action and sense of reaction forces.

Internal force diagrams:

16
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Internal force diagrams of oblique and bifurcating frames II.

Example 1
Draw internal force diagrams of the structure shown.

Solution

The solution starts by finding all internal and external reactions.
FBD's are as follows:

Equilibrium statements:

  e   u   new u
I:   ((q left ) , A , S ,C ) =̇ 0 3 5 5
II:  ((qright) , C ' , S ' , B) =̇ 0 3 4 1
Str:((q) , A , B) =̇ 0 (3) 3  

Calculation of reactions:

Str ∑M i
(A ) :−1.2⋅8⋅4+B⋅8=0   →   B=4.8 kN(↑)

Str ∑M i
(B) :1.2⋅8⋅4−A z⋅8=0   →   A z=4.8kN(↑)

Str ∑ F ix : A x=0

1

2 
m

A B

C

II

x

z

4 m 4 m

q=1.2 kN/m

I
D ES

1 
m

α α

III

C'x
C'z

C x

C z

A x

A z B

S '

q

S

q
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II ∑M i
(C):−1.2⋅4⋅2+4.8⋅4−S '⋅1=0   →   S '=9.6 kN( t)

II ∑ F ix :C ' x−9.6=0   →   C ' x=9.6 kN(→)

II ∑ F iz :1.2⋅4−C ' z−4.8=0   →   C ' z=0kN

The following figure shows all cross sections where internal force values should be calculated in
order to draw their  diagrams. All marked cross sections are infinitely close to points where
internal or external effects take place,  as well  as to points where the frame axis change its
direction.

Positive side is set to the bottom of each oblique member. Calculations from the left and right
hand side on either member I or II are performed on the basis of sign conventions shown below:

For the sake of simplicity, internal force diagrams for the horizontal member with two pinned
connections are  not  drawn. In the lack of  any direct  external  load,  such a  straight  member
undergoes a uniform normal force N (being equal to the member force S) and has zero shear or
bending in each of its cross sections.
Internal forces of any cross section are calculated from equilibrium conditions of the member (I
or II) it belongs to. Let normal forces be considered first. Instead of the angle itself, let  the
cosine and sine of angle α of inclination of oblique members to the horizontal be determined:

cosα=
4
5
=0.8    sinα=

3
5
=0.6 .

The normal force diagram consists of two linear segments on both members. The slope of each
diagram is proportional to the axial component of the intensity
of the distributed load.  Meanings of load components parallel
and perpendicular  to  the  current  axis  (q

N
 and  q

V
,  causing the

change in  N and  V diagrams,  respectively)  are  shown in  the
figure on the left for both members. Intensity q

l 
is understood as

that of a load distributed over the axis of an inclined member.

2

III

C'x

C=9.6kN

A=4.8kN B=4.8 kN

S=9.6 kN

q

S '

q

K4

K3

K 2

K1

K5

K6
K7

K8

N
M

M
N

N

M

M

N

+

−

+

−
+

−

+

−

q l

qV

qN

α αqV

q l
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Since q l⋅5=q⋅4   both equals the resultant of distributed loads over a member,

q l=q⋅
4
5
=0.96 kN/m .

Components directed along N and V can be expressed by trigonometry as follows:
qN=ql⋅sinα=0.576kN/m
qV=ql⋅cos α=0.768 kN/m
As a consequence of member force S, both sides of the diagram contain a jump in the normal
force diagram; its magnitude equals the component of S along the axis of the frame:

S N=S⋅cos α=9.6⋅0.8=7.68kN .

(The component perpendicular to the axis,
S V =S⋅sinα=9.6⋅0.6=5.76 kN

modifies the value of shear.)
As will be shown, the normal force diagram can be prepared without the determination of the
magnitude of jump, but it is worth checking as soon as the solution is complete.
Internal forces in cross section K

1
 are calculated for convenience from the left. Axial component

of reaction A upwards results in compression, making the normal force to be negative:
N 1=−4.8⋅sinα=−2.88kN .

Cross section K
2
 is also calculated from the left. The horizontal projection of the strucural part

on the left of  K
2
 is 2.667 m by similar triangles. Axial component of reaction  A upwards and

distributed load downwards result in compression and tension, respectively:
N 2=(−4.8+1.2⋅2.667)⋅sinα=−0.9598kN .

Internal forces in K
3
 are better to get from the right hand side. The horizontal projection of the

strucural part on the right of K
3
 is 1.333 m by similar triangles. Both axial component of internal

reaction  C leftwards and distributed load downwards (now on the right of the cross section)
result in compression:
N 3=−9.6⋅cosα−1.2⋅1.333⋅sin α=−8.640 kN .

K
4
 is calculated from the right; reaction C directed to the left causes compression:

N 4=−9.6⋅cosα=−7.68kN .
K

5
 is calculated from the left; reaction C' directed to the right causes compression:

N 5=−9.6⋅cosα=−7.68kN .
K

6
 is calculated from the left; reaction C' directed to the right and distributed load on the left of

K
6
 causes compression as well:

N 6=−9.6⋅cosα−1.2⋅1.333⋅sin α=−8.640 kN

3

N    [kN]

−2.88

−0.9598
−8.640

−7.68

−2.88

−0.9598
−8.640

−7.68

−
+

−
+

S

S V S N

α
S

S VS N

α
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Calculation in K
7
 is done from the right. Reaction B upwards and distributed load down wards

result in compression and tension, respectively:
N 7=(−4.8+1.2⋅2.667)⋅sinα=−0.9598 kN .

Finally, the normal force in cross section K
8
 is obtained from the right; reaction B upwards gives

rise to compression:
N 8=−4.8⋅sinα=−2.88kN .

The magnitude of jump betweeen linear segments must coincide with the component of member
force  S parallel to the axis of the frame; it  provides a check after the diagram having been
drawn:
−0.9598−(−8.640)=7.680 kN=S N .

The shear force diagram consists of two linear segments on both members. The slope of each
diagram  is  proportional  to  the  component  q

V
 of  the  intensity  of  distributed  load  in  a

perpendicular  direction  to  the  axis.  Due  to  S again,  the  diagram contains  a  jump on  both
members of a magnitude equal to the component of S perpendicular to the axis. Calculation of
cross  section  K

1
 is  done from the  left.  According to  the  sign convention  taken,  transversal

component (i.e., perpendicular to the axis) of reaction A upwards result in a positive shear:
V 1=4.8⋅cos α=3.84kN .
K

2
 is calculated from the left. Reaction A upwards and distributed load downwards result in a

positive and negative shear, respectively:
V 2=(4.8−1.2⋅2.667)⋅cosα=1.280 kN .

K
3
 is calculated from the right. Reaction  C leftwards and distributed load on the right of the

cross section result in a negative and positive shear, respectively:
V 3=−9.6⋅sin α+1.2⋅1.333⋅cosα=−4.480 kN .
K

4
 is calculated from the right. Reaction C leftwards causes a negative shear:

V 4=−9.6⋅sinα=−5.76kN .
K

5
 is calculated from the left. Reaction C' rightwards causes a positive shear:

V 5=9.6⋅sinα=5.76kN .
K

6
 is calculated from the left. Reaction C' rightwards and distributed load on the left of the cross

section result in a positive and negative shear, respectively:
V 6=9.6⋅sinα−1.2⋅1.333⋅cosα=4.480 kN .
K

7
 is calculated from the right. Reaction B upwards and distributed load on the left of the cross

section result in a negative and positive shear, respectively:

4

V    [kN]−
+

−
+

−4.480

−5.76

1.280

3.84

−1.280

−3.844.480
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V 7=(−4.8+1.2⋅2.667)⋅cosα=−1.280kN .
Finally, K

8
 is calculated from the right. Reaction B upwards causes a negative shear:

V 8=−4.8⋅cosα=−3.84kN .
The magnitude  of  jump betweeen  linear  segments  must  coincide  with  the  component  of  S
perpendicular to the axis of the frame; it provides a check after the diagram having been drawn:
1.280−(−4.480)=5.76 kN=SV .

The diagram of bending moment consists of two parabolic segments on each structural member.
Force  S results  in a  kink in  the diagram. Moment values  at  internal  hinges and pin-jointed
supports are zero:
M 1=M 4=M 5=M 8=0 kNm .

If cross sections next to the point of application of  S (K
2
 and  K

3
) are calculated from the left,

moment of reaction A and of the distributed load causes tension on the positive and the negative
side of the frame, respectively (in K

3
, the moment arm of S is 0 m):

M 2=M 3=4.8⋅2.667−
1.2⋅2.6672

        2
=8.534 kNm .

Similarly, calculating  K
6
 and  K

7
 from the right, reaction  B and the distributed load generates

tension on the positive and negative side of the frame, respectively:

M 6=M 7=4.8⋅2.667−
1.2⋅2.6672

        2
=8.534 kNm .

In order to find depths of parabolas, lengths of oblique segments above and below the short link
are needed:

l 12=l 78=
2
3
⋅5=3.333 m,    l34= l56=

1
3
⋅5=1.667 m  

In calculating depths, only components of the distributed load in a direction perpendicular to the
axis should be accounted for. The depths below and above the short link are as follows:

qV⋅l 12
2

   8
=

0.768⋅3.3332

       8
=1.066 kNm ,

qV⋅l 34
2

   8
=

0.768⋅1.6672

       8
=0.2668kNm .

Note that symmetric loading (including active and passive forces exerted on the structure) on
symmetric structures yield always symmetric normal and bending moment diagrams and an
anti-symmetric  shear  force  diagram.  This  last  term  refers  to  the  property  that  ordinates  in
symmetric position are of equal magnitude but opposite sign.

5

− M   [kNm]
+

−
+

8.534
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Exercise 1
Draw internal force diagrams of the structure shown.

Solution
Isolation:
            

Equilibrium statements:

                                                                  e                 u           new u
I   :    

   
II  :    

   
Str:    

Analytic solution:

∑

∑

6

3 
m

A B

C

II

x

z

4 m 4 m

q=1.2kN/m

I

III
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C'z
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Bx
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∑

∑

∑

∑

Final sketch of reactions:

Internal force diagrams:
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Example 2
Draw internal force diagrams of the structure shown.

Solution
Internal  and external  reactions  are  found first.  The  sight  hand side of  the  structure  is  now
isolated even if it is acted upon by two forces only. The reason for doing so is that the current
problem is about a statical model typical for roof structures and, typically again, these structures
undergo   meteorological  loads  (wind  and  snow)  responsible  for  bending  in  both  structural
members  (see,  e.g.,  Exercise 1 above or Exercise 3 of  Lecture 25).  The current  scheme of
loading corresponds to the partial  snow load as it  appears in design standards  as well.  The
solution, of course, would be correct if the unloaded right hand side has not been isolated but
treated as a short link (bar).

Isolation:

8

M   [kNm]
−
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−
+

III

C'x

C'z

C x

C z

Ax

A z B z

B x

q
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II
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z

4 m 4 m

q=1.2kN/m
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Equilibrium statements:

   e     u    new u
I   :((q) , A , C ) =̇ 0 3 4 4
II  :(C ' , B) =̇ 0 3 4 2
Str:((q) , A , B) =̇ 0 (3) 3  

Calculation of reactions:

Str ∑M i
(A ) :−1.2⋅4⋅2+B⋅8=0   →   B z=1.2 kN(↑)

Str ∑ M i
(B) :1.2⋅4⋅6−A z⋅8=0   →   A z=3.6kN(↑)

II   ∑M i
(C):1.2⋅4−Bx⋅3=0   →   B x=1.6 kN (←)

Str ∑ F ix : A x−1.6=0   →   Ax=1.6 kN(→)

II   ∑ F ix :C ' x−1.6=0   →   C ' x=1.6 kN(→),   Cx=1.6 kN(←)

II   ∑ F iz :−C ' z−1.2=0   →   C ' z=−1.2 kN(↓),   C z=−1.2kN(↑)

In  the  next  figure,  all  cross  sections  where  internal  forces  should  numerically  be  given  in
diagrams are marked. 

Positive side is set to the bottom of each oblique member. Calculations from the left and right
hand side on either member I or II are performed on the basis of sign conventions shown below:

Internal forces of any cross section are calculated from equilibrium conditions of the member (I
or II) it belongs to. Let normal forces be considered first. Instead of the angle itself, let  the
cosine and sine of angle α of inclination of oblique members to the horizontal be determined:

cosα=
4
5
=0.8    sin α=

3
5
=0.6

9
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The normal force diagram consists of a linear segment on the right and a constant
segment on the left hand side member, respectively. both members. The slope of
the ldiagram on the left is proportional to the axial component of the intensity of
the distributed load. Meanings of load components parallel and perpendicular to
the axis  of the left member (q

N
 and q

V
, causing the change in N and V diagrams,

respectively) are shown in the figure on the left, the method of finding them has
already been shown in Example 1.
Calculations are done from the left hand side in cross section  K

1
;  both reaction

components A
z
 (upwards) and A

x
 (rightwards) gives rise to a negative normal force:

N 1=−3.6⋅sin α−1.6⋅cosα=−3.44kN .
K

2
 is calculated from the right; the upwards reaction C

z
 and leftwards reaction C

x
 together cause

compression:
N 2=1.2⋅sinα−1,6⋅cos α=−0.56 kN .

Calculation in K
3
 and K

4
 is done from the left. Both reactions C'

z
 downwards and C'

x
 rightwards

result in compression:
N 3=N 4=−1.2⋅sinα−1.6⋅cosα=−2kN .

The shear force diagram is linear on the left, whereas constant on the right hand side member.
K

1
 is calculated from the left. Reaction  A

z
 upwards and  A

x
 rightwards result in a positive and

negative shear, respectively:
V 1=3.6⋅cosα−1.6⋅sinα=1.92kN .

K
2
 is easier to be calculated from the right. Both reactions C

z
 upwards and C

x
 leftwards cause a

negative shear:
V 2=−1.2⋅cosα−1.6⋅sin α=−1.92kN .
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Calculation in cross sections K
3
 and K

4
 is done from the left. Both reactions C'

z
 downwards and

C'
x
 rightwards cause a positive shear:

V 3=V 4=−1.2⋅cosα+1.6⋅sin α=0 kN .

The bending moment diagram is parabolic on its left and linear on its right hand side. Moment
values at internal hinges and pin-jointed supports are zero.
The depth of parabola on the right hand side is obtained from the transversal component of
intensity of the distributed load as follows:

 
qV⋅l 12

2

   8
=

0.768⋅52

       8
=2.4kNm .

On the right hand side member, the value of shear is zero, that is, the slope of the moment
diagram is also zero. Because of the zero values at both ends, all values in between are still zero.

Exercise 2
Draw internal force diagrams of the structure shown.

Solution
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Isolation:

Equilibrium statements:

                                                                  e                 u            new u
I   :    

   
II  :    

   
Str:    

Analytic solution:

∑

∑

∑

∑

∑

∑

Final sketch of reactions:
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Internal force diagrams:
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