SUBJECT DATASHEET

I. SUBJECT SPECIFICATION

1 BASIC DATA

1.1 Title
SURVEYING I.

1.2 Code
BMEEOAFAT41

1.3 Type
Module with contact hours

1.4 Contact hours

<table>
<thead>
<tr>
<th>type</th>
<th>hours/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>lectures</td>
<td>1</td>
</tr>
<tr>
<td>exercise classes</td>
<td>2</td>
</tr>
</tbody>
</table>

1.5 Evaluation
midterm grade

1.6 Credits
3

1.7 Coordinator
name: Dr. Szabolcs Rózsa
title: Associate Professor
e-mail: rozsa.szabolcs@epito.bme.hu

1.8 Department
Department of Geodesy and Surveying (http://www.epito.bme.hu/department-of-geodesy-and-surveying?language=en)

1.9 Website
www.oktatas.bme.hu/BMEEOAFAT41

1.10 Language of instruction
Hungarian and English

1.11 Curriculum requirements
Compulsory in the Civil engineering (BSc) programme

1.12 Prerequisites
None

1.13 Effective date
September 1, 2017.

2 OBJECTIVES AND LEARNING OUTCOMES

2.1 Objectives
The aim of this course is to learn the basic concepts of Surveying, the structure of surveying instruments and the basic surveying observations and their processing, such as the optical levelling (line levelling, detail point levelling), the application of the theodolites and total stations and horizontal and vertical angular observations. Students will learn and practise the units used in surveying as well as the math solutions of coordinate and elevation computations.

2.2 Learning outcomes

Upon successful completion of this subject, the student:

A. Knowledge
 1. Knows the basic concepts and functions of surveying and geodesy
 2. Understands the structure and the variants of surveyors’ levels.
 3. Knows the possible solutions of height determination.
 4. Knows the implementation of line levelling and detail point levelling as well as the processing of measurements.
 5. Knows the systematic errors of levelling and the procedure and rules of levelling
 6. Knows the way of implementation of trigonometric heighting and the systematic errors and their considerations
 7. Knows the structure of the theodolite as well as the basics of its examination
 8. Knows the systematic errors of angular observations and how to handle them
 9. Knows the basics units used in surveying
 10. Has a general knowledge of the projections and control networks used in practise and also know how to access surveying data
 11. Knows the fundamental tasks of surveying calculations and the orientation of mean directions
 12. Understands the fundamentals of mapping

B. Skills
 1. Able to use the units used in surveying and to convert between them
 2. Able to perform height determination with levelling
 3. Able to set up theodolites/total stations and to carry out measurements of directions and zenith angles
 4. Able to process measurements of directions and zenith angles as well as to correct the systematic errors
 5. Able to reduce distance observations to the reference level (mean sea level)
 6. Able to orient the observed mean directions, and to calculate the horizontal coordinates of unknown points using the 1. and 2. fundamental tasks of surveying

C. Attitudes
 1. Collaborate with the professor and other students
 2. Attempts to acquire the knowledge to use the necessary instruments to perform surveying tasks
 3. Attempts to effectively use built-in programs and memory functions of calculators
 4. Attempts for accurate and error-free calculations, take advantage of control alternatives

D. Autonomy and responsibility
 1. Independently practise the usage of theodolite and prepare for the practical test
 2. Openly receives the well-founded critical comments

2.3 Methods
Lectures, computation and measurement exercises, communication in writing and oral, use of IT tools and techniques, tasks independently and teamwork, logistic techniques.

2.4 Course outline

week: Topics of lectures and exercise classes
The principle of positioning. Height, altitude measurement. The structure of surveyors’ level.

Surveying: science and profession. Basic Calculation techniques: units. Calculations with angles. Trigonometric functions and their determination with a calculator. Trigonometric theorems

Basics of coordinate geometry: Rectangular and polar coordinate systems. Conversions between rectangular and polar coordinate systems with a calculator. Equation of line, intersection of lines.

The rules and the systematic errors of levelling. Line levelling, detail point levelling.

Principle of levelling, the usage of surveyors’ level.

Determination of vertical control points with levelling.

Horizontal measurements. Angular observations, the theodolite. Detail point levelling.

Summary­ height determination with levelling
The theodolite and its role in angular observations.

Systematic errors of angular observations. Examination of the theodolite. Mean direction, direction observations, zenith angle. Computation of excentric angular observations.
Usage, set-up and direction observation with the theodolite.

Usage of the theodolite: horizontal and vertical angular observations, calculation of mean direction and zenith angle of a point and the zenith angle of a point.

Usage of the theodolite: measurement and processing of angular observations.

Summary­ the usage of theodolite

Trigonometric heighting. Definition of distances: corrections, reductions Fundamental tasks of surveying calculations

Orientation of mean directions at a known point.

Summary-lecture and exercise class overview.

Optional practise.

The above program is tentative and subject to changes due to calendar variations and other reasons specific to the actual semester. The exact schedule is available on the subject’s website under the “Detailed course schedule” topic.

2.5 Study materials

a) Printed lecture notes
 1. Bannister-Raymond-Baker: Surveying (Prentice Hall)

b) Online materials
 oktatas.epito.bme.hu/BMEOAFAT41
2.7 Consultation

Appointments:

As specified on the department’s website, or in consultation with the course instructors via e-mail

II. SUBJECT REQUIREMENTS

3. ASSESSMENT AND EVALUATION OF THE LEARNING OUTCOMES

3.1 General rules

The assessment of the learning outcomes specified in clause 2.2.2 above and the evaluation of student performance occurs via a control test, a practical report, a midterm test.

3.2 Assessment methods

<table>
<thead>
<tr>
<th>Evaluation form</th>
<th>abbrev.</th>
<th>evaluated learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. control test</td>
<td>CT1</td>
<td>A.2-A.5., B.1-B.2., C.3., .</td>
</tr>
</tbody>
</table>

Date of midterm tests and deadlines of assignments/homework can be found in the „Detailed course schedule“ on the subject’s website.

3.3 Evaluation system

<table>
<thead>
<tr>
<th>abbrev.</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT1</td>
<td>20%</td>
</tr>
<tr>
<td>PR1</td>
<td>0% (must be fulfilled)</td>
</tr>
<tr>
<td>MT1</td>
<td>80%</td>
</tr>
</tbody>
</table>

in total: 100%

To successfully complete the subject it is compulsory to acquire at least 50% of the points of the midterm tests.

To complete the subject, the practical report must also be completed. To successfully complete the practical report, the given measurement and data processing task has to be completed correctly, within a specified time limit.

3.4 Requirement and validity of signature

Signature could not be obtained from the subject.

3.5 Grading system

Practical reports must be successfully completed. The final exam is successful if the student has earned at least 50% of the overall points. There is no success criterion for CT1.
The mid-term result is determined by summing the points obtained for the CT1 and MT1 performance assessments (P) from which the final grade is given as follows:

<table>
<thead>
<tr>
<th>grade</th>
<th>points (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent (5)</td>
<td>88<=P</td>
</tr>
<tr>
<td>Good (4)</td>
<td>73<=P<88%</td>
</tr>
<tr>
<td>Satisfactory (3)</td>
<td>60<=P<73%</td>
</tr>
<tr>
<td>Passed (2)</td>
<td>50<=P<60%</td>
</tr>
<tr>
<td>Failed (1)</td>
<td>P<50%</td>
</tr>
</tbody>
</table>

3.6 Retake and repeat

1) There is no minimum requirement for the control test so it could not be retaken.
2) In case of retaking an assessment the second result will be taken into account from the new and previous results.
3) In case of failing the retake, there is a possibility for a second retake – after the payment of the pre-determined fee - in the completion week.

3.7 Estimated workload

<table>
<thead>
<tr>
<th>Activity</th>
<th>hours/semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>contact hours</td>
<td>14×3=42</td>
</tr>
<tr>
<td>preparation for the practice</td>
<td>14×2=28</td>
</tr>
<tr>
<td>preparation for the assessments</td>
<td>4+6+10=20</td>
</tr>
<tr>
<td>in total</td>
<td>90</td>
</tr>
</tbody>
</table>

3.8 Effective date

September 1, 2017.