Practical 2: Surveying and geodesy. Coordinate systems. Orthogonal and polar coordinates. Conversion between orthogonal and polar coordinates

Accessories to be used:

1 scientific calculator for each student

Contents:

Refreshing elementary coordinate geometry calculations
Coordinate systems used in surveying

Coordinate systems used in matematics

Position of points on the plain are defined by coordinates. We need a coordinate reference system for this. Two types of coordinate systems are used generally:

- Cartesian (orthogonal) coordinate system
- polar coordinate system

Cartesian coordinate system:

To define the coordinate system first the origin have to be set up, the intersection point of the two perpendicular coordinate axises. The horizontal axis is called \mathbf{x} axis. The positive rotation is counter clockwise. The other, \mathbf{y} axis is got rotating \mathbf{x} axis by $+90^{\circ}$. The axises divide the plan into four quadrants.

Polar coordinate system:

A point is also chosen here as the pole (origin) and a ray from this point is taken as the polar axis, which is usually horizontal in mathematics. A point is defined on the plain by the counterclockwise angle from the polar axis and the distance from the pole.

If the origin of a Cartesian coordinate system and the x axis are identical to the pole and polar axis of a polar coordinate system, exchange between x , y coordinates and r, Θ can be done.

$x=r \cdot \cos (\theta)$
$y=r \cdot \sin (\theta)$
$r=\sqrt{x^{2}+y^{2}}$

$\alpha=\arctan \left|\frac{y}{x}\right|$ | Quadrant | \mathbf{x} | \mathbf{y} | Θ |
| :---: | :---: | :---: | :---: |
| I | + | + | $\theta=\alpha$ |
| II | - | + | $\theta=180^{\circ}-\alpha$ |
| III | - | - | $\theta=180^{\circ}+\alpha$ |
| IV | + | - | $\theta=360^{\circ}-\alpha$ |

Polar to Cartesian

Exercise 1:

$$
\begin{array}{lr}
r_{A}=\sqrt{2} & \theta=45 \\
x_{A}=1 & y_{A}=1
\end{array}
$$

Exercise 2:

$$
\begin{array}{ll}
r_{A}=10.45 & \theta=122-52-43 \\
x_{A}=-5.67 & y_{A}=8.78
\end{array}
$$

Cartesian to polar

Exercise 3:

$$
\begin{array}{ll}
x_{A}=1 & y_{A}=1 \\
r_{A}=\sqrt{2} & \alpha=\theta=45^{\circ}
\end{array}
$$

Exercise 4:

$$
\begin{array}{ll}
x_{A}=-1 & y_{A}=1 \\
r_{A}=\sqrt{2} & \alpha=45^{\circ}
\end{array} \quad \theta=180^{\circ}-\alpha=135^{\circ}
$$

Exercise 5:

$$
\begin{array}{ll}
x_{A}=-1 & y_{A}=-1 \\
r_{A}=\sqrt{2} & \alpha=45^{\circ} \quad \theta=180^{\circ}+\alpha=225^{\circ}
\end{array}
$$

Exercise 6:

$$
\begin{array}{ll}
x_{A}=1 & y_{A}=-1 \\
r_{A}=\sqrt{2} & \alpha=45^{\circ} \quad \theta=360^{\circ}-\alpha=315^{\circ}
\end{array}
$$

Exercise 7:

$$
\begin{array}{lll}
x_{A}=-5.67 & y_{A}=8.78 \\
r_{A}=10.45 & \alpha=57-08-46 & \theta=122-51-14
\end{array}
$$

Using scientific calculator

Polar to Cartesian:

$\operatorname{Rect}($	r_{A}	,	θ_{A}	$=$	x_{A}	RCL	F	y_{A}

Cartesian to polar

$\operatorname{Pol}($	x_{A}	,	y_{A}	$=$	r_{A}	RCL	F	θ_{A}

Distance of two points

Equation of a line

Coordinate systems used in surveying

There are differences between mathematical and surveyor's coordinate systems. The x axis is often called Easting (E) and the y axis is often called Northing (N). The polar axis is going to North and the positive angles are measured clockwise and called bearing.

Cartesian coordinates Polar coordinates

Bearing

Bearings

Whole circle bearing

Quadrant in which bearing lies	Conversion relation
NE	$\alpha=\theta$
SE	$\alpha=180^{\circ}-\theta$
SW	$\alpha=\theta-180^{\circ}$
NW	$\alpha=360^{\circ}-\theta$

Fig. 13.4

Orthogonal and polar coordinates
Conversion between orthogonal and polar coordinates
Calculation of coordinates from a known point and relative polar coordinates.

$$
\begin{aligned}
& E_{B}=E_{A}+d_{A B} \cdot \sin \left(W C B_{A B}\right) \\
& N_{B}=N_{A}+d_{A B} \cdot \cos \left(W C B_{A B}\right)
\end{aligned}
$$

