5. punchig shear in flat slab

a.) Check the flat slab bellow for punching shear at an internal column! Horizontal forces are taken by appropriate shear walls .
b.) Design the punching reinforcement using $\varnothing 12$ double-headed studs as shear reinforcement Consider the detailing rules!

Data:
$\mathrm{V}_{\mathrm{Ed}}=467 \mathrm{kN}$
$\mathrm{e}_{\mathrm{x}}=95 \mathrm{~mm}$

$$
\mathrm{e}_{\mathrm{y}}=105 \mathrm{~mm}
$$

$\mathrm{b}_{\mathrm{x}}=400 \mathrm{~mm}$
$\mathrm{b}_{\mathrm{y}}=200 \mathrm{~mm}$
$\mathrm{v}=200 \mathrm{~mm}$
$l_{\mathrm{x} 1}=7,00 \mathrm{~m} \quad l_{\mathrm{x} 2}=7,60 \mathrm{~m}$
$l_{\mathrm{y} 1}=6,00 \mathrm{~m}$

$$
l_{\mathrm{y} 2}=6,80 \mathrm{~m}
$$

Concrete: C25/30
Steel: S500
Tensile (top) reinforcement:
$\mathrm{a}_{\mathrm{sx}}=2513 \mathrm{~mm}^{2} / \mathrm{m} \quad \mathrm{d}_{\mathrm{x}}=131 \mathrm{~mm}$
$\mathrm{a}_{\mathrm{sy}}=2681 \mathrm{~mm}^{2} / \mathrm{m}$
$\mathrm{d}_{\mathrm{y}}=147 \mathrm{~mm}$

Solution

a.) Check the floor slab at an internal column!

The horizontal loads are resisted by a shear wall system.

I. Data

Characteristic strength of the connrete : $\quad f_{c k}=25 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
Design strength of the connrete:

$$
\mathrm{f}_{\mathrm{yk}}=500 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Characteristic strength of the steel: $\quad f_{y k}=500 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
Design strength of the steel:

$$
\mathrm{f}_{\mathrm{cd}}=\frac{\mathrm{f}_{\mathrm{ck}}}{1.5}=16.7 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

$$
\mathrm{f}_{\mathrm{yd}}=\frac{\mathrm{f}_{\mathrm{yk}}}{1.15}=434.8 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Distance of the columns:

$$
\begin{array}{ll}
\mathrm{l}_{\mathrm{x} 1}=7.00 \mathrm{~m} & \mathrm{l}_{\mathrm{x} 2}=7.60 \mathrm{~m} \\
\mathrm{l}_{\mathrm{y} 1}=6.00 \mathrm{~m} & \mathrm{l}_{\mathrm{y} 2}=6.80 \mathrm{~m}
\end{array}
$$

Column section:

$$
\mathrm{b}_{\mathrm{x}}=400 \mathrm{~mm} \quad \mathrm{~b}_{\mathrm{y}}=200 \mathrm{~mm}
$$

Slab thickness:

$$
\mathrm{v}=200 \mathrm{~mm}
$$

Top reinforcement of the slab:

$$
\begin{array}{ll}
\mathrm{a}_{\mathrm{SX}}=2513 \mathrm{~mm}^{2} & \mathrm{a}_{\mathrm{sy}}=2681 \mathrm{~mm}^{2} \\
\mathrm{~d}_{\mathrm{x}}=131 \mathrm{~mm} & \mathrm{~d}_{\mathrm{y}}=147 \mathrm{~mm}
\end{array}
$$

Effective height:
Design value of the shar force:

$$
\mathrm{V}_{\mathrm{Ed}}=467 \mathrm{kN}
$$

II. Basic calculations

Effective height:

Rinfoercment ratio of the slab:

$$
\begin{aligned}
& d=\frac{d_{x}+d_{y}}{2}=139 \cdot \mathrm{~mm} \\
& \rho_{\mathrm{lx}}=\frac{\mathrm{a}_{\mathrm{sx}}}{1000 \mathrm{~mm} \cdot \mathrm{~d}_{\mathrm{x}}}=0.0192 \\
& \rho_{\mathrm{ly}}=\frac{\mathrm{a}_{\mathrm{sy}}}{1000 \mathrm{~mm} \cdot \mathrm{~d}_{\mathrm{y}}}=0.0182 \\
& \rho_{\mathrm{l}}=\sqrt{\rho_{\mathrm{lx}} \cdot \rho_{\mathrm{ly}}}=0.0187 \leq 0,02
\end{aligned}
$$

III. Design value of the specific shear force

Columns' perimeter:

$$
\mathrm{u}_{0}=2 \cdot \mathrm{~b}_{\mathrm{x}}+2 \cdot \mathrm{~b}_{\mathrm{y}}=1.2 \mathrm{~m}
$$

the first punching perimeter:

$$
\mathrm{u}_{1}=2 \cdot \mathrm{~b}_{\mathrm{x}}+2 \cdot \mathrm{~b}_{\mathrm{y}}+2 \cdot 2 \cdot \mathrm{~d} \cdot \pi=2.95 \mathrm{~m}
$$

Eccentricity of the shear force: $\quad e_{x}=95 m m \quad e_{y}=105 \mathrm{~mm}$
Calculation of β that takes the eccentricity of the shear force into assumption:
There are several methods for this in the EC2:
A.) If the spans of the neighboiring slab panels do not differ mor than 25% and the horizontal loads are supported by an adeuate stiffening system than the following approximate values could be used for consideration the eccentricity:

- internal column: $\beta=1,15$
- side column: $\beta=1,4$
- corner column: $\beta=1,5$.

Now an internal column is analysed. Difference of spans:

$$
\frac{\mathrm{l}_{\mathrm{x} 2}}{\mathrm{l}_{\mathrm{x} 1}}-1=8.6 \cdot \% \quad \text { and } \quad \frac{\mathrm{l}_{\mathrm{y} 2}}{\mathrm{l}_{\mathrm{y} 1}}-1=13.3 \cdot \%
$$

The difference is smaller then 25%. The horizontal forces are taken by shear walls. This way the eccentricity factor:

$$
\beta_{\mathrm{A}}=1.15
$$

B.) In case of biaxial eccentricity there is a more accurate - however still approximate method available:

$$
\begin{aligned}
& h_{x}=b_{x}+2 d=678 \cdot \mathrm{~mm} \text { (see the previous figure) } \\
& h_{y}=b_{y}+2 \cdot d=478 \cdot \mathrm{~mm} \\
& \beta_{B}=1+1.8 \cdot \sqrt{\left(\frac{e_{x}}{h_{x}}\right)^{2}+\left(\frac{e_{y}}{h_{y}}\right)^{2}}=1.47
\end{aligned}
$$

In the further calculations for $\boldsymbol{\beta}$ will be used the value obtained from a more sophisticated analysis: $\beta=1.38$

Design values of the pecific shear firce modified with the eccentricity:
Specific shear firce along the column's perimeter: $\mathrm{v}_{\mathrm{Ed} .0}=\beta \cdot \frac{\mathrm{V}_{\mathrm{Ed}}}{\mathrm{d} \cdot \mathrm{u}_{0}}=3.87 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
Specific shear firce along the u_{1} perimeter: $\quad v_{E d}=\beta \cdot \frac{V_{E d}}{d \cdot u_{1}}=1.58 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$

$$
\mathrm{k}=\min \left(1+\sqrt{\frac{200}{\mathrm{~d}}}, 2\right)=2 \quad \mathrm{~d} \text { is substituted in } \mathrm{mm}
$$

Min. value of the specific shear resistance:

$$
\mathrm{v}_{\min }=0.035 \cdot \mathrm{k}^{\frac{3}{2}} \cdot \mathrm{f}_{\mathrm{ck}}^{\frac{1}{2}}=0.49 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

The shear resistance of the concrete:

$$
\mathrm{v}_{\text {R. } . \mathrm{c}}=\frac{0.18}{1.5} \cdot \mathrm{k} \cdot\left(100 \cdot \rho_{\mathrm{l}} \cdot \mathrm{f}_{\mathrm{ck}}\right)^{\frac{1}{3}}=0.86 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \geq \quad \mathrm{v}_{\min }=0.49 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Checking:

$$
v_{\text {Rd.c }}=0.86 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}<\mathrm{V}_{\mathrm{Ed}}=1.58 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Reinforcement is needed for punching shear!
V. Upper boundary of the shear resistance

Effectiveness factor:

$$
\nu=0.6 \cdot\left(1-\frac{\mathrm{f}_{\mathrm{ck}}}{250}\right)=0.54 \quad \mathrm{f}_{\mathrm{ck}} \text { is in } \mathrm{N} / \mathrm{mm}^{2}
$$

Upper limit for punching resistance:

$$
\mathrm{v}_{\mathrm{Rd} . \max }=0.5 \cdot \boldsymbol{v} \cdot \mathrm{f}_{\mathrm{cd}}=4.5 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}>\quad \mathrm{v}_{\mathrm{Ed} .0}=3.87 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

The upper limit of the punching resistance of the slab (capacity of the compression strut) is adequate. Othewise the slab hight should be increased.
b.) Design the punching reinforcement by using $\varnothing 12$ bars. Consider the construction rules!
VI. Calculation of the required punching reinforcement

Applied diameter:
The aera of 1 piece of stud:
angle of shear stud to the horizontal:
The effective strength of the studs:

$$
\phi_{\mathrm{w}}=12 \mathrm{~mm}
$$

$$
\mathrm{A}_{\mathrm{sw}}=\phi_{\mathrm{w}}{ }^{2} \cdot \frac{\pi}{4}=113 \cdot \mathrm{~mm}^{2}
$$

$$
\alpha=90^{\circ}
$$

$$
\mathrm{f}_{\mathrm{yd} . \mathrm{ef}}=250+0.25 \cdot \mathrm{~d}=285 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \leq \mathrm{f}_{\mathrm{yd}}
$$

Punching resistance of the slab supplied with shear reinforcement:

$$
\mathrm{v}_{\text {Rd.cs }}=0.75 \cdot \mathrm{v}_{\text {Rd.c }}+1.5 \cdot \frac{\mathrm{~d}}{\mathrm{~s}_{\mathrm{r}}} \cdot \frac{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{sw}} \cdot \mathrm{f}_{\mathrm{yd} . e \mathrm{f}}}{\mathrm{~d} \cdot \mathrm{u}_{1}} \cdot \sin (\alpha)
$$

Where n is the numer of studs along a punching perimeter, s_{r} distance between the studs in radial direction.

Determine the radial distance of the studs according to constructional rules:
Allowable maximum radial distance:
The appliesd distance:

$$
\mathrm{s}_{\mathrm{r} \cdot \max }=0.75 \cdot \mathrm{~d}=104.3 \cdot \mathrm{~mm}
$$

According to this the number of studs along a circle could be calculated:

It is required:

$$
\mathrm{v}_{\mathrm{Ed}} \leq \mathrm{v}_{\mathrm{Rd} . \mathrm{cs}}
$$

Supposing equality:

$$
\mathrm{n}=\frac{\mathrm{v}_{\mathrm{Ed}}-0.75 \cdot \mathrm{v}_{\mathrm{Rd} . \mathrm{c}}}{1.5 \cdot \mathrm{~d} \cdot \mathrm{~A}_{\mathrm{sw}} \cdot \mathrm{f}_{\mathrm{yd} . \mathrm{ef}} \cdot \sin (\alpha)} \cdot \mathrm{s}_{\mathrm{r}} \cdot \mathrm{~d} \cdot \mathrm{u}_{1}=5.67 \mathrm{db}
$$

Apply along a circle: $\mathrm{n}_{\text {app }}=6$ pieces

The punching reinforcement concicts of duble headed studs arranged in concentric circles. In a circle 6 pieces of studs are used. The radial distance of the circles is 100 mm .

Checking:
$\mathrm{v}_{\text {Rd.cs }}=0.75 \cdot \mathrm{v}_{\text {Rd.c }}+1.5 \cdot \frac{\mathrm{~d}}{\mathrm{~s}_{\mathrm{r}}} \cdot \frac{\mathrm{n}_{\text {alk }} \cdot \mathrm{A}_{\text {sw }} \cdot \mathrm{f}_{\mathrm{yd} . \mathrm{ef}}}{\mathrm{d} \cdot \mathrm{u}_{1}} \cdot \sin (\alpha)=1.63 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}>\mathrm{v}_{\mathrm{Ed}}=1.58 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
The quantity of the pubching reinforcement is adequate!
VII. Detailing rules

The checked perimeters:
$u_{\text {out }}$ - where no reinforcement is needed. The concrete is capable to resist the shear.

$$
\left(\mathrm{v}_{\mathrm{Rd} . \mathrm{c}}=\mathrm{v}_{\mathrm{Ed}}\right)
$$

$u_{s w}$ - the most extreme perimeter where punching reinforcement is still needed,
u_{in} - the first perimeter where punching reinforcement is needed.

- Distance of the most extreme $\mathbf{u}_{\text {out }}$ punching perimeter from the column

Length of the punching perimeter being x distance from the column:

$$
\mathrm{u}_{\mathrm{i}} \mathrm{x}()=2 \cdot \mathrm{~b} \quad \mathrm{x}+2 \mathrm{~b}_{\mathrm{y}}+2 \mathrm{x} \cdot \pi
$$

The specific shear force along the perimeter (x distance from the column):
$v_{E d . i}(x)=\beta \cdot \frac{V_{E d}}{\cdot d u_{i}} \mathrm{X}()$
At the out most perimeter the specific shear force is just equal with the shear resistence of the concrete:
$\mathrm{v}_{\text {Ed. } \mathrm{i}}(\mathrm{x})=\mathrm{v}_{\text {Rd.c }} \quad$ substituting:

$$
\beta \cdot \frac{\mathrm{V}_{\mathrm{Ed}}}{\mathrm{~d} \cdot\left(2 \cdot \mathrm{~b}_{\mathrm{x}}+2 \cdot \mathrm{~b}_{\mathrm{y}}+2 \cdot \mathrm{x} \cdot \pi\right)}=\mathrm{v}_{\mathrm{Rd} . \mathrm{c}}
$$

Rearranged the distance of the $\mathrm{u}_{\text {out }}$ perimeter from the column:

$$
x_{\text {out }}=\frac{\beta \cdot \frac{\mathrm{V}_{\mathrm{Ed}}}{\mathrm{~d} \cdot \mathrm{v}_{\mathrm{Rd} . \mathrm{c}}}-2 \cdot \mathrm{~b}_{\mathrm{x}}-2 \cdot \mathrm{~b}_{\mathrm{y}}}{2 \cdot \pi}=665 \cdot \mathrm{~mm}
$$

- The distance of the $\mathbf{u}_{\text {sw }}$ perimeter from the column (still shear reinf. needed)

According to the deteiling rules the out most studs' distance from the $\mathrm{u}_{\text {out }}$ primeter must not be greater then $1.5 * \mathrm{~d}$:

$$
\mathrm{x}_{\mathrm{sW}}=\mathrm{x}_{\text {out }}-1.5 \cdot \mathrm{~d}=456 \cdot \mathrm{~mm}
$$

- The distance of the $\mathbf{u}_{\mathbf{i n}}$ perimeter from the column

According to the deteiling rules the studs (orother type of shear reinforcement) in the first perimeter could be placed in adistance max. $0,5 d$ from the column, but closer than $0,3 d$ to the column studs are not needed. For the first perimeter:
$0.3 \cdot \mathrm{~d}=41.7 \cdot \mathrm{~mm} \leq \mathrm{x}_{\mathrm{in}} \leq 0.5 \mathrm{~d}=69.5 \cdot \mathrm{~mm}$
Let the radius of the first perimeter to be: $x_{\text {in }}=60 \mathrm{~mm}$.

The applied punching reinforcement with the detailing rules:

Prefabricated shear reinforcement consists of 2 or 3 studs welded to a steel rod. These could be combined:

a stud

