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PREFACE

Preface

This lecture notes of the MSc course Structural Dynamics is devoted for the civil engineer-
ing students of the Budapest University of Technology and Economics. The objective of the
course is to introduce the basic concepts of the dynamical analysis of engineering structures.
The topics that are covered in this course are equations of motion of single- and multi-degree-
of-freedom systems, free and steady-state vibrations, analytical and numerical solution tech-
niques, and earthquake loads on structures. Both continuum and discrete mechanical systems
are considered.

In civil engineering practice structures are aimed to be in equilibrium. However, due to
continuous disturbances (effects of wind, heat, traffic, movement of the foundations, etc.), the
structures undergo vibrations. Some of these motions are slow, allowing us to treat them as
a quasi-statickinematic load, and to neglect the inertial effect of the mass of the structure.
But some of them happen fast enough to exert a significant dynamical impact on the structure.
Many of these cases are still handled as a quasi-static load with a proper dynamical factor,
but other cases really require the engineers to accomplish dynamical analysis. The goal of the
semester is to prepare our students for these tasks.

Dynamics play an important role in many fields of structural engineering. Earthquakes, fast
moving trains on bridges, urban traffic generated or machineinduced vibrations, etc. Mod-
ern materials enable the fabrication of lighter, more flexible structures, where the effects of
vibrations can be significantly high. Additionally, investment companies desire cost effective
structures, which also tends the engineers towards more accurate computations, which implies
dynamical analysis, too.

Not only theory is given in this notes, but there are also manyproblems solved. The authors
hope that these examples help our students to comprehend allthe introduced concepts. In these
problems the calculations are done following thecare your unitsapproach. It means that we use
a consistent system of units, which does not require us to carry the units during the operations.
Every number is substituted in the formulae in a common system of units, in SI (International
System of Units), hence the results are also obtained in SI.

We offer these notes to our readers under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License, in the hope itwill help them understand
the basics of structural dynamics. Please feel free to shareyour thoughts about it with us.

Budapest, 29th August, 2013
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

Chapter 1

Dynamics of single- and
multi-degree-of-freedom systems

In this chapter first we repeat the basics of vibration of elastic structures. The motion of
continuous structures is often approximated by the displacements of some of its points. In
these models the mass of the structure is concentrated into discrete points. The concentrated
masses are assumed to be rigid bodies, and the elasticity andthe viscoelasticity of the structure
is modeled by massless springs and damping elements, respectively. These models are called
mass-spring-dampersystems.

We introduce thedegree-of-freedom(DOF) as the number of independent variables required
to define the displaced positions of all the masses. If there is only one mass, with one direction
of displacement, then we talk about asingle-degree-of-freedom(SDOF) system. If there are
more than one masses, or one mass with more than one directions of displacement, then we
have amulti-degree-of-freedom(MDOF) system. If we try to describe the deformed shape of
a continuous structure with the displacements of all of (infinitely many of) its points, then we
use a continuum approach, where there are infinitely many degrees of freedom.

In Section1.1 we start with the free vibration of SDOF systems, then harmonic forced
vibration of SDOF systems, and support vibration of SDOF systems are discussed. Then SDOF
systems excited by a general force are studied in Section1.2. Section1.3is devoted for the free
vibration of MDOF systems. We also present an approximate method capable to solve the
generalized eigenvalue problem occurring in the analysis of MDOF systems. At the end of the
chapter, in Section1.4 we present a few summation theorems useful to approximate the first
natural frequency of a structure.

1.1 Vibration of single-degree-of-freedom systems

Civil engineering structures are intended in general to be inequilibrium. Despite the com-
mon requirements, many of the loading situations result in motion of the structures. The most
simple motion occurs when we can describe it by one single space variable.

Examples for these type of dynamical systems are horizontalgirders with a significant mass
(e.g. a machine, where the mass of the girder can be neglectedwith respect to the mass of the

1
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

machine) (Figure1.1 (a-b)), frame structures with significant mass on the rooftop (Figure1.1
(c)), chimneys and water towers (Figure1.1(d)), etc..

Figure 1.1: Common examples of single-degree-of-freedom structures:(a) fixed girder, (b) hinged-hinged
girder, (c) single frame with mass on rooftop, (d) chimney orwater-tower, and (e) common mechanical model.

The common in the above examples is that any displacement from the equilibrium state
results a force pulling the DOF back to the initial state. Thesimplest mechanical model of this
behaviour is the material particle (lumped mass) connectedby a linear spring to a rigid wall
(Figure1.1(e)).

1.1.1 Derivation of the equation of motion

If we analyse the motion of a structure caused by a small disturbance, then we can see that in
the absence of external forcing the amplitude of the vibration around the original state decreases
with the time. This is caused by internal friction in the material and at the connections. Effect
of external dampers can be considered as well. The mathematically easiest way to deal with
damping is the viscous damping. (In this case the damping force is proportional to the velocity.)
The mechanical model of the viscous damping is adashpot. Figure1.2 (a) shows a damped,
elastically supported system with a dashpot of damping coefficient c, a linear elastic spring
of stiffnessk, and a time dependent exciting forceF (t). Our goal is in general one of the
followings:

• to find the displacement function as a function of time

• to find the elongation of the spring as a function of time

• to find the force in the spring or in the dashpot as a function oftime

• to find the possible maxima of the above functions

2
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

Figure 1.2: (a) A mass-spring-damper model: a lumped massm is connected to a support through a massless
linear springk and a massless viscous damperc. The mass excited by the time dependent forceF (t) undergoing

a single-degree-of-freedom vibration. (b) Free body diagram of the mass-spring-damper model.

The free body diagram (FBD) of the massm can be seen in Figure1.2(b). Newton’s second
law of motion can be written for the body:

F (t)− fs(t)− fd(t) = ma(t), (1.1)

whereF (t) is the external force,fs(t) is the elastic force from the massless spring,fd(t) is
the damping force from the massless dashpot,m is the mass anda(t) is the acceleration. As-
suming a linear springfs(t) = ku(t), wherek is the spring stiffness, andu(t) is the elon-
gation of the spring. Assuming a viscous dampingfd(t) = cu̇(t), wherec is the damping
coefficient, andu̇(t) is the derivative of the elongationu(t) with respect to time (i.e. it is the
elongation-velocity). (The dot over a variable denotes differentiation with respect to time.) The
accelerationa(t) is the second derivative of the displacement of the body withrespect to time:
a(t) = ẍ(t). So the equation of motion is:

F (t)− ku(t)− cu̇(t) = mẍ(t). (1.2)

(Note: in many textbook authors write a so called kinetic equilibrium equation using the principle
of d’Alembertwith an inertial forcefI = −ma(t). Then, Eq. (1.1) would have the form:F (t)−fs(t)−
fd(t) + fI(t) = 0. In formal calculation it leads to the same result, but during calculations by hand
the correct interpretation of the minus sign in the definition offI requires a deep understanding of the
concept, at which level writing the classic formula makes no problem. Because of that we will avoid
writing kinetic equilibrium equations. )

In most cases we are interested in the internal deformationsand the corresponding internal
forces of the structures. These are represented in this model by the elongation of the spring,
so we have to write the displacement of the body as a function of elongation. If the support is
fixed, then these two values are equal (x(t) = u(t)) and the same applies to their derivatives
(ẍ(t) = ü(t)). Substituting these into Eq. (1.2) we get:

mü(t) + cu̇(t) + ku(t) = F (t) . (1.3)

This non-homogeneous, linear, second order ordinary differential equation of constant co-
efficients describes the motion of the forced vibration of the damped SDOF-system.
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

For the solution of the differential equation (1.3) we introduce its complementary differen-
tial equation:

mü(t) + cu̇(t) + ku(t) = 0. (1.4)

which is a homogeneous differential equation. Thecomplete solutionof Eq. (1.3) can be written
in the form:

u(t) = u0(t) + uf (t),

whereu0(t) is the solution of the complementary equation (the index 0 refers to the 0 right
hand side of the homogeneous equation), whileuf (t) is a particular solution of the original,
nonhomogeneous equation (the indexf refers to the forcing).

If initial conditions are given (e.g. the displacement and the velocity at a given time), then
they must be fulfilled for the sum ofu0(t) anduf (t) with the free parameters occurring inu0(t).

1.1.2 General solution of the homogeneous ODE

Eq. (1.4) describes the free vibration of the mechanical system. Since it is a linear, homo-
geneous ODE with constant coefficients, the solution can be obtained with an ansatz function
u(t) = eλt, which is substituted back in Eq. (1.4) alongside with is derivatives. The result is
the quadratic polynomial equation

mλ2 + cλ+ k = 0. (1.5)

The roots of the above equation are:

λ1,2 =
−c±

√
c2 − 4mk

2m
. (1.6)

These roots might be either real or complex valued, depending on the ratio of the system
parameters.

• If c ≥ 2
√
km, the discriminant in Eq. (1.6) is non-negative, thus bothλ1,2 are negative

real numbers, and the solution of Eq. (1.4) is the sum of two exponential function asymp-
totically approaching zero. (Figure1.3 (a) shows some typical graphs of this vibration.)
We call this damping as heavy damping, the system is an overdamped system. The limit
value2

√
km is the critical dampingccr.

• If c < 2
√
km (or c < ccr), the discriminant is negative, the solution of Eq. (1.5) is a

conjugate pair of complex numbers. UsingEuler’s formula (e ix = cos x + i sin x) the
solution of Eq. (1.4) can be rewritten in the form:

u0(t) = e−ξω0t (A cos(ω∗
0t) + B sin(ω∗

0t)) , (1.7)

where
ξ =

c

2
√
km

=
c

ccr

is therelative dampingcoefficient

ω∗
0 = ω0

√
1− ξ2
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

is thenatural circular frequencyof the (under)damped system,

ω0 =
√
k/m

is thenatural circular frequencyof the undamped system with the same mass and stiff-
ness. The parametersA andB are two free parameters depending on the initial condi-
tions. (Figure1.3 (b) shows some typical graphs of this vibration.) We call this case as
underdamped system.

The solution Eq. (1.7) is a harmonic term(A cos(ω∗
0t) +B sin(ω∗

0t)) multiplied by an
exponential term

(
e−ξω0t

)
. The latter one indicates an exponential decay in the oscillatory

motion of the body, which can be seen as an exponential envelope of the oscillating
harmonic function in Figure1.3 (b). A higher level of damping has two effect on the
motion. First, the exponential decay will be more significant, second, the damped natural
circular frequency will be lower.

Figure 1.3: Typical time-displacement diagrams of free vibration of a damped, elastic supported SDOF system.
(a) Overdamped system, no vibration. (b) Underdamped system: harmonic oscillation with the amplitude

decaying exponentially.

There are further quantities in use, to describe the vibration of a SDOF system.Natural
cyclic frequencyf is the number of total oscillations done by the body in a unit time: f =
ω0/(2π). The natural periodT0 is the time required to make a full cycle of vibration, i.e.
T0 = 1/f = 2π/ω0. Both of the above values can be written for the damped system as well,
called the damped natural cyclic frequencyfD and the damped natural periodTD. They are
interrelated to each other with:fD = ω∗

0/(2π) andTD = 1/fD = 2π/ω∗
0.

Logarithmic decrement

Let us analyse the displacements of a mass during its damped free vibration. We have seen,
that at a given time instantt the displacement is (Eq. (1.7)):

u0(t) = e−ξω0t (A cos (ω∗
0t) + B sin (ω∗

0t)) .

5

by Németh & Kocsis
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Using the previously introduced damped natural periodTD, we can write the displacement after
a whole period of motion as well:

u0(t+ TD) = e−ξω0(t+TD) (A cos (ω∗
0(t+ TD)) + B sin (ω∗

0(t+ TD))) .

The ratio of the displacements can be written as:

u0(t)

u0(t+ TD)
=

e−ξω0t (A cos (ω∗
0t) +B (sinω∗

0t))

e−ξω0(t+TD) (A cos (ω∗
0(t+ TD)) + B sin (ω∗

0(t+ TD)))
.

SinceTD is the damped period of the motion, the harmonic terms in bothtime instants have the
same value, so we can simplify the above formula as

u0(t)

u0(t+ TD)
= eξω0TD = e

(

2ξπ/
√

1−ξ2
)

. (1.8)

This ratio is constant, and depends only on the dampingξ. Since we did not have any constraint
on t, Eq. (1.8) holds for any two displacements measured in a time distanceTD. In practice,
the natural logarithm of Eq. (1.8) is used for the measurement of damping

ϑ = ln
u0(t)

u0(t+ TD)
= 2ξπ/

√
1− ξ2.

Hereϑ is called thelogarithmic decrementwhich is a system property. In typical engineering
structuresξ ≪ 1, so the

√
1− ξ2 ≈ 1 approximation can be used:

ϑ = ln
u0(t)

u0(t+ TD)
≈ 2ξπ. (1.9)

Free vibration of undamped systems

The vibration of undamped systems can be derived in a similarway as we did it for the
damped system, or we can analyse our damped results in the limit c → 0. According to
Eq. (1.3) the differential equation of motion can be written as:

mü(t) + ku(t) = F (t).

The complementary equation describes the undamped free vibration:

mü(t) + ku(t) = 0.

The solution of the free vibration is directly obtained fromEq. (1.7) at c = 0 (andξ = 0):

u0(t) = A cos(ω0t) + B sin(ω0t).

Hereω0 =
√
k/m is thenatural circular frequencyof the undamped system. The parameters

A andB can be calculated from the initial conditions. The purely harmonic motion can be
rewritten into the form:

u0(t) = C sin (ω0t+ ϕ) ,

with the amplitude of the motionC =
√
A2 +B2 and the phase angleϕ = arctan A

B
.
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1.1.3 Particular solution of the non-homogeneous ODE with harmonic
forcing

A simple example for a harmonic excitation force is a rigid body (e.g. a machine) rotating
with a constant angular velocityω around an axis which is not going through its center of
gravity (COG). The distance between the axis and the center ofgravity is called the eccentricity
and denoted byrC .) The COG of the body undergoes a planar motion on a circular path with an
angular velocityω. From kinematics of rigid bodies the acceleration of the COG equalsan =
mω2rC , its direction varies with the motion, its component parallel with an arbitrary chosen, but
fixed direction can be written as a harmonic function of time,and the same applies for the net
force acting on the rigid body. The opposite of this force acts on the axis of rotation, resulting
in a harmonic excitation force on the load bearing structure. (The orthogonal component of
the force should be taken into account as well, but the vibration can be prevented by structural
constraints, or by applying two well-tuned body rotating inthe opposite direction.)

Without loss of generality (for harmonic functions one can translate the time scale to have
any other harmonic function with the same frequency and amplitude), we will write the har-
monic excitation force in the form:

F (t) = F0 sin (ωt) .

HereF0 is the amplitude of the force, andω is the circular frequency of the forcing. Substituting
this forcing in the right hand side of (1.3) yields:

mü(t) + cu̇(t) + ku(t) = F0 sin (ωt) . (1.10)

To solve Eq. (1.10) we assume that the particular solution is of the form:

uf (t) = uf0 sin (ωt− ϕ) ,

i.e. it is a harmonic function with the same frequency as the forcing, but with a phase shift of
ϕ. We substitute our ansatz into Eq. (1.10):

−mω2uf0 sin (ωt− ϕ) + cωuf0 cos (ωt− ϕ) + kuf0 sin (ωt− ϕ) = F0 sin (ωt) .

We apply trigonometrical identities for the sums in the sineand cosine functions:

−mω2uf0 sin (ωt) cos(−ϕ)−mω2uf0 cos (ωt) sin(−ϕ) + cωuf0 cos (ωt) cos(−ϕ)
− cωuf0 sin (ωt) sin(−ϕ) + kuf0 sin (ωt) cos(−ϕ) + kuf0 cos (ωt) sin(−ϕ) = F0 sin (ωt) .

Now we separate the sinusodial and cosinusoidal parts:

uf0 cos (ωt)
(
mω2 sinϕ+ cω cosϕ− k sinϕ

)

+ uf0 sin (ωt)
(
−mω2 cosϕ+ cω sinϕ+ k cosϕ

)
= F0 sin (ωt) .

This equation must hold for any timet.
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• Whensin (ωt) = 0, thencos (ωt) 6= 0, so

mω2 sinϕ+ cω cosϕ− k sinϕ = 0

must hold, which is true, when

cotϕ =
k −mω2

cω
=
m

c

ω2
0 − ω2

ω
, (1.11)

with 0 ≤ ϕ ≤ π. (See Figure1.4 (a) for the dependence of phase angle on the ratio of
the forcing and natural frequency.)

• Whencos (ωt) = 0, thensin (ωt) 6= 0, so

uf0
(
−mω2 cosϕ+ cω sinϕ+ k cosϕ

)
= F0

must hold.

We use the identitiescosϕ = cotϕ/
√

1 + cot2 ϕ andsinϕ = 1/
√

1 + cot2 ϕ to get

uf0
−mω2 cotϕ+ cω + k cotϕ√

1 + cot2 ϕ
= F0

and solve the above equation foruf0 using Eq. (1.11):

uf0 = F0

√
1 + (k−mω2)2

c2ω2

(k −mω2) k−mω2

cω
+ cω

.

Multiplying both the nominator and the denominator withcω leads to

uf0 = F0
1√

(k −mω2)2 + c2ω2

=
F0

k

1√(
1− m

k
ω2
)2

+ c2

k2
ω2

Using the natural circular frequency and the fraction of critical damping coefficient (ω0 =√
k/m, ξ = c/(2

√
km)) the solution foruf0 is

uf0 =
F0

k

1√(
1− ω2

ω2
0

)2
+ 4ξ2 ω

2

ω2
0

. (1.12)

From the above results the particular solution of the differential equation (1.10) of the harmon-
ically forced vibration is:

uf (t) =
F0

k

1√(
1− ω2

ω2
0

)2
+ 4ξ2 ω

2

ω2
0

sin


ωt− arccot

1− ω2

ω2
0

2ξ ω
ω0


 . (1.13)
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The complete solution of Eq. (1.10) is the sum of Eq. (1.13) and (1.7):

u(t) =
F0

k

1√(
1− ω2

ω2
0

)2
+ 4ξ2 ω

2

ω2
0

sin


ωt− arccot

1− ω2

ω2
0

2ξ ω
ω0




+ e−ξω0t (A cos (ω∗
0t) +B sin (ω∗

0t)) .

(1.14)

The second part of Eq. (1.14) becomes very small after a sufficiently long time for any small
damping. That part is called thetransient vibration. The first part, which is equivalent to
the particular solution Eq. (1.13), is called thesteady-statesolution of the problem. Since
the transient vibration decays exponentially with time, ona long time scale the steady-state
vibration determines the dynamics. Usually we are not interested in the phase of the motion,
but in the amplitude of the vibrationuf0, given by Eq. (1.12). In that formula the quotientF0/k
can be regarded as thestatic displacementunder a static forceF0 (which is the amplitude of
the harmonic forcing). We will refer to it as the static displacementust. The static displacement
ust = F0/k is multiplied by a coefficient in Eq. (1.12), which depends on the damping and
on the ratio of the circular frequency of the forcing to the natural circular frequency of the
system. We call this quantity as theresponse factor, and denote it byµ. Figure1.4 (b) shows
the dependence of the response factor on the ratio of frequencies.

Figure 1.4: Responses of a damped SDOF system to a harmonic excitation: (a) phase angleϕ as a function of the
forcing frequencyω, (b) response factorµ as a function of the ratio of the forcing and natural frequenciesω/ω0.

In short, the amplitude of the steady-state vibration can bewritten as:

uf0 = ustµ ,

where

ust =
F0

k
(1.15)

and

µ =
1√(

1− ω2

ω2
0

)2
+ 4ξ2 ω

2

ω2
0

. (1.16)
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Now we further analyse the response factor functionµ. For smallω/ω0 it is small, but big-
ger than1. As ω/ω0 approaches1 it reaches a maximum. One can derive, that the maximum
occurs atω/ω0 =

√
1− 2ξ2, but in the practical range of dampingξ of engineering structures,

the difference can be neglected, so in general we can say, that the maximal amplitude is ap-
proximately atω = ω0 with the magnitudeµmax

∼= 1/(2ξ). The state whenµ is maximal is
called theresonance. For the case, whenω > ω0, the response factor decreases asymptotically
to zero.

The spring force from the steady-state part of the motion canbe calculated from the elon-
gation of the spring:

FS0 = kustµ = F0µ,

i.e. the amplitude of the excitation force multiplied by theresponse factor, thus for fast exci-
tation with largeω or flexible structure with lowω0 the spring force will be small due to the
decaying response factorµ. But if we are looking for the force transmitted to the base, wealso
have to take into account the forcefD in the damping element, which may result higher base
forces.

Effect of zero damping on the phase angle and response factor

The vibration of undamped systems can be derived in a similarway as for the damped
system, or we can analyse our damped results in the limitc → 0. In the latter case we can
conclude, that the particular solution of the non-homogeneous differential equation (1.10) is
a harmonic vibration. The amplitude of the vibration can be calculated from Eq. (1.12) with
ξ → 0:

uf0 =
F0

k

1√(
1− ω2

ω2
0

)2 =
F0

k

1

|1− ω2

ω2
0

|
.

It is the product of the static displacement and the (undamped) response factor (see Fig.1.4
(b)). In contrast to the damped case, this response factor has an infinite maximum in the state
of resonance (ω = ω0).

For the phase angleϕ we can conclude from Eq. (1.11) that it is zero whenω < ω0, and
it is π whenω > ω0 (see Fig.1.4 (a)). In the first case the mass movesin-the-phasewith the
excitation force, in the second case the mass movesout-of-the-phasewith the excitation force.
At the resonance stateω = ω0 the phase angle isϕ = π/2.

Ideal damping

Analysis of the damped response factor Eq. (1.16)) and its derivative with respect toω
ω0

results that an increasing damping coefficientξ decreases the location and the value of the
maximum ofµ (see Fig.1.4(b)). If ξ reaches1/

√
2, then the location of the maximum reaches

ω = 0, and the value of the maximum reaches1. Further increase of the damping decreases the
response factor, but the maximum will be always1 atω = 0. This damping valueξid = 1/

√
2

(or cid =
√
2km) is called theideal damping.

10

by Németh & Kocsis



CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

1.1.4 Support vibration of SDOF systems

In many cases the support of the structure is not in rest. During an earthquake or because of
the noise of traffic the base (which was assumed until now to bein rest) might move, making
the structure to vibrate.

In this subsection we will show how to handle the support motion for undamped systems.
The steps of the solution would be the same for a damped systemas well.

In the case of support vibration we have to modify our mechanical model shown in Fig.1.2
(a) such that we set the damping to zero (c = 0) and apply a support motionug(t) (where the
indexg refers to the ground motion). Figure1.5(a) shows this model.

If we draw the free body diagram, there is only one force acting on the body from the spring,
so we can write Newton’s second law of motion based on Figure1.5(b) as

−fS(t) = ma(t),

or by substituting the spring forcefS(t) = ku(t) and the accelerationa(t) = ẍ(t) as

− ku(t) = mẍ(t). (1.17)

Figure 1.5: Support vibration of an undamped system (a) mechanical model, (b) free body diagram

The elongation of the spring is now

u(t) = x(t)− ug(t), (1.18)

and the second derivative of the Eq. (1.18) results:

ü(t) = ẍ(t)− üg(t). (1.19)

One can follow two different approaches.

• Substitution ofu(t) from Eq. (1.18) in Eq. (1.17) leads to

−kx(t) + kug(t) = mẍ(t),

which is a differential equation for the displacementx(t) of the body. If we write it in a
canonical form

mẍ(t) + kx(t) = kug(t) (1.20)

one can see, that it is a simple forced vibration.
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• Substitution of̈x(t) from Eq. (1.19) in Eq. (1.17) implies

−ku(t) = mü(t) +müg(t),

which is a differential equation for the elongationu(t) of the spring. If we write it in a
canonical form

mü(t) + ku(t) = −müg(t), (1.21)

we obtain a simple forced vibration again.

In the next subsections we will show the solutions of the derived differential equations for
a harmonic support vibration, i.e.ug(t) = ug0 sin(ωt).

Steady-state solution of the elongation of the spring due toa harmonic support motion

To find the solution of Eq. (1.21) we have to substitute the second derivative ofug(t)

üg(t) = −ω2ug0 sin(ωt)

into Eq. (1.21):
mü(t) + ku(t) = mω2ug0 sin(ωt).

This is the same equation as Eq. (1.10) with c = 0 andF0 = mω2ug0. Therefore, the amplitude
of the steady-state solution will be (see Eq. (1.12)):

uf0 =
mω2ug0

k

1√(
1− ω2

ω2
0

)2 = ug0
ω2

ω2
0

1

|1− ω2

ω2
0

|
.

The amplitude of the elongationu(t) will be the amplitude of the support vibration multiplied
by a response factor and by the square of the ratio of the forcing and natural frequencies. The
spring forcefS(t) is related to the elongationu(t) of the spring so its amplitude will be:

fmax
S = kug0

ω2

ω2
0

1

|1− ω2

ω2
0

|
= f st

S

ω2

ω2
0

1

|1− ω2

ω2
0

|
.

Heref st
S is the static force, which would cause an elongationug0 in the spring.

Figure1.6shows the product of two multipliers(ω2/ω2
0 and1/|1− ω2/ω2

0|) as the function
of the ratio of the forcing and natural frequencies.

Steady-state solution of the displacementx(t) for harmonic support vibration

To find the solution of Eq. (1.20) we have to substituteug(t) into Eq. (1.20):

mẍ(t) + kx(t) = kug0 sin(ωt).

This is the same equation as Eq. (1.10) with c = 0 andF0 = kug0. Thus, the amplitude of the
steady-state solution is (see Eq. (1.12)):

xf0 =
kug0
k

1√(
1− ω2

ω2
0

)2 = ug0
1

|1− ω2

ω2
0

|
.
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Figure 1.6: Response factor of the elongation of the spring as a functionof the ratio of the forcing and natural
frequencies due to a harmonic support vibration

1.2 General forcing of SDOF systems

1.2.1 Duhamel’s integral

Static (or quasi-static) loads and harmonic forcing represent only a small segment of the
possible loads acting on a structure. Although many of the time-dependent loads can be treated
as a quasi-static, or a sum of harmonic loads, there are important excitation forms (impact,
support vibration due to earthquakes, etc.) where the transient behavior of the structure must
be analyzed. For this type of problem the equation of motion Eq. (1.3)

mü(t) + cu̇(t) + ku(t) = q(t) (1.22)

contains an arbitrary functionq(t) on the right hand side (see Figure1.7 (a)). We are looking
for the particular solutionuf (t) of Eq. (1.22) for the t > 0 interval, with the assumption that
we know the initial displacement and velocity in the time instant t = 0. We denote these two
initial conditions withuf (0) = u0 and u̇f (0) = v0. We remind the reader that the solution
of a non-homogeneous differential equation always consists of the solution of the complemen-
tary equation (the free vibrational part) with free parameters, and a particular solution of the
non-homogeneous equation. The free vibration follows the classical scheme we presented in
Subsection1.1.2.

We assumed linear response of the elastic and damping elements (k andc are constants),
so the differential equation is linear, and the rule of superposition holds. If the excitation force
can be written in the formq(t) =

∑N
i=1 qi(t), then the particular solution can be expressed as

uf (t) =
∑N

i=1 ufi(t), where eachufi is a particular solution of the differential equation

mü(t) + cu̇(t) + ku(t) = qi(t).

Let us choose a sufficiently small time interval∆τ at the time instantt = τ , as shown in
Figure1.7 (a), and let us examine the effect of the forceq(τ) during the interval∆τ on the
displacementuf (t). This specific part of the forcing is shown in Figure1.7 (b). We denote
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Figure 1.7: (a) General time-dependent forcing. (b) Small impulseq(τ)∆τ of the forcing. (c) Increment of
displacement function from the impulseq(τ)∆τ .

the effect ofq(τ) on uf (t) by ∆u(t, τ). Since∆τ is small, the change of the force during the
interval can be neglected, so the impulse transmitted from the force to the mass isq(τ)∆τ .
From the theorem of change of linear momentum the impulse results a sudden∆v(τ) change
in the velocity:

m∆v(τ) = q(τ)∆τ → ∆v(τ) =
q(τ)

m
∆τ. (1.23)

After this sudden change the forceq(τ) will be zero, so the mass-damper-spring system
starts a free vibration with initial velocity∆v(τ). It is reasonable to assume that the force
q(τ) does not have any effects on the displacements backwards in time, so we can say that the
displacement of the mass before the force is applied is zero:

∆u(t, τ) = 0, t ≤ τ. (1.24)

The time evolution of the increment of displacement∆u(t, τ) is obtained from the previously
derived solution (1.7) of the free vibration of a mass-damper-spring system. For this specific
case the initial conditions of Eq. (1.22) come from Eqs. (1.23) and (1.24):

∆u(τ, τ) = 0, ∆̇u(τ, τ) =
q(τ)

m
∆τ. (1.25)

The exponentially decaying increment of the displacement∆u(t, τ) comes from Eq. (1.7)
with initial conditions (1.25) fulfilling the differential equation (1.22) and the initial conditions
(1.25) will be:

∆u(t, τ) = e−ξω0(t−τ)

(
q(τ)

mω∗
0

∆τ sin (ω∗
0(t− τ))

)
.

(Note thatξ = c/(2
√
km) andω∗

0 =
√
k/m

√
1− ξ2.) This result is shown in Figure1.7(c).

If ∆τ tends to0, then∆u(t, τ) becomes an elementary incrementdu(t, τ). For any timet
we have to integrate these elementary changes for all the past forces, i.e. forτ < t:

u(t) =

∫ t

0

q(τ)

mω∗
0

e−ξω0(t−τ) sin (ω∗
0(t− τ)) dτ. (1.26)
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The above formula is theDuhamel’s integral.

1.2.2 Numerical solution of the differential equation

For many types of excitation forcesDuhamel’s integral (1.26) can be computed only nu-
merically. Instead of numerical integration of the formula(1.26) the step-by-step calculation of
the displacements and velocities directly from the differential equation (1.22) is possible.

In the numerical calculations it is a quite usual step to reformulate the second order dif-
ferential equation into two, first order equations. For that, first we introduce a new variable
function, the velocity:

v(t) =
du(t)

dt
,

and put it and its derivative with respect to time in the original, second order differential equa-
tion (1.22). The resulting system of first order differential equations is:

du(t)

dt
= v(t),

dv(t)

dt
= − c

m
v(t)− k

m
u(t) +

q(t)

m
,

(1.27)

with initial conditionsu(t0) = u0 andv(t0) = v0.

Cauchy-Euler method

Let us assume, that we know the displacement and the velocityat a given time instantti,
and we want to calculate them at the time instantti+1. (Let the difference betweenti+1 andti
be a chosen constant∆t = ti+1 − ti.) We denote the displacement and the velocity atti by ui
andvi. From Eq. (1.27) we can calculate the differences∆ui/∆t and∆vi/∆t:

∆ui
∆t

=
ui+1 − ui

∆t
= vi,

∆vi
∆t

=
vi+1 − vi

∆t
=

(
− c

m
vi −

k

m
ui +

q(ti)

m

)
.

The estimated values of both variablesui+1 andvi+1, are

ui+1 = ui + vi∆t,

vi+1 = vi +

(
− c

m
vi −

k

m
ui +

q(ti)

m

)
∆t.

We can iterate the above map starting withi = 0, i.e. with the given initial valuesu0, v0.
Figure1.8 (a) shows the concept of the algorithm, and one can see the main problem of

this method as well. Using the Cauchy-Euler method involves asmall error in every step,
accumulating during the calculation. The error depends on the step-size (∆t). Smaller step-
size causes smaller error, but it requires more steps to reach the same time. The most important
question of numerical methods is the convergence and the stability, but the discussion of these
properties are beyond the scope of this lecture notes. In order to avoid false solutions and crash
of the procedure, one has to set the time step∆t sufficiently small.
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Figure 1.8: Explanation of (a) the Cauchy-Euler method and (b) the second order Runge-Kutta method. The
continuous is the exact solution, the arrows represent tangents and increments.

Higher order methods

The key idea behind the higher order methods is to use a betterapproximation for the
increments∆ui, ∆vi, than we had from the tangents calculated at the end-point ofstep i.
It seems to be reasonable, that we rather calculate the tangent somewhere along the current
segment (based on one, or more points). These methods are called theRunge-Kuttamethods.
In the second order Runge-Kutta method we calculate the tangent at the middle of the current
segment. So, we go forward with a half step-size, calculate the tangents there, and use those
values to make the actual step-size. It means, that we have tocalculate the derivatives twice as
much, but we get a higher precision. The algorithm is of the following steps. First we compute
the differences just as before:

∆u0i
∆t

=
ui+1 − ui

∆t
= vi,

∆v0i
∆t

=
vi+1 − vi

∆t
=

(
− c

m
vi −

k

m
ui +

q(ti)

m

)
.

Next we step forward with a half step-size:

u
1/2
i = ui +∆u0i /2,

v
1/2
i = vi +∆v0i /2.

Then we compute the differences at the mid-point (this will be the direction of the actual step):

ui+1 − ui
∆t

= v
1/2
i ,

vi+1 − vi
∆t

=

(
− c

m
v
1/2
i − k

m
u
1/2
i +

q(ti +∆t/2)

m

)
.

Finally, the map of the iteration is

ui+1 = ui +∆ui = ui + v
1/2
i ∆t,

vi+1 = vi +∆vi = vi +

(
− c

m
v
1/2
i − k

m
u
1/2
i +

q(ti +∆t/2)

m

)
∆t.
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Figure 1.9: Explanation of the finite difference approximation of velocity and acceleration using secant lines

Central difference method

Let us assume, that we know the displacement and the velocityat the given time instances
ti−1 andti, and we want to calculate them at the time instantti+1. (Let the difference between
two time instants be constant:∆t = ti+1 − ti = ti − ti−1.) We denote the displacement and the
velocity atti by ui andvi, at ti−1 by ui−1 andvi−1, respectively.

We can write the approximation for the velocity (see Figure1.9):

vi = u̇i ∼=
ui+1 − ui−1

2∆t
, (1.28)

while the approximation of the acceleration is:

ai = üi ∼=
u̇i+0.5 − u̇i−0.5

∆t
∼= (ui+1 − ui)− (ui − ui−1)

∆t2
=
ui+1 − 2ui + ui−1

∆t2
. (1.29)

The equation of motion is (1.22):

müi + cu̇i + kui = q(ti) = qi.

Let us substitute the velocity (Eq. (1.28)) and the acceleration (Eq. (1.29)) into the above equa-
tion:

m
ui+1 − 2ui + ui−1

∆t2
+ c

ui+1 − ui−1

2∆t
+ kui = qi. (1.30)

One can solve Eq. (1.30) for ui+1:

ui+1 =

qi + ui

(
2m

∆t2
− k

)
+ ui−1

( c

2∆t
− m

∆t2

)

m

∆t2
+

c

2∆t

. (1.31)

Eq. (1.31) is the map of the iteration containing only the displacements of the previous two
steps (but no velocities). Therefore, not only the displacementu0 in the initial time instant, but
also the displacementu−1 is needed to start the iteration. This latter condition can be computed
from u0 andv0 as

u−1 = u0 − v0∆t.
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1.3 Vibration of multi-degree-of-freedom systems

Behaviour of real life engineering structures usually cannot be described by the displace-
ment of only one point of the structure. In fact, the exact description of the motion requires
an approach considering the structure as a continuum. In many cases however, the motion of
the continua can be reduced to the motion of a finite-degree-of-freedom system. In a multi-
storey building with rigid slabs the displacements of the ends of the columns depend only on
the displacements of the floors. In a spatial structure this would be three degree-of-freedom
on each level (two translations in the horizontal plane and arotation around a vertical axis, see
Figure1.10(a) for a floor plate of one level). If the building is reduced to a planar problem, the
translation of each level can be regarded as a degree of freedom. (see Figure1.10(b)). Even
numerical methods applied in Finite Element programs do thesame: they approximate the dis-
placements by interpolating from the displacements of the degrees of freedom. Figure1.10(c)
shows a simple mechanical model for a two-degree-of-freedom system: two bodies are con-
nected to each other by a spring, one of the bodies is supported by another spring, the other
body has an excitation forceF (t).

Figure 1.10: Examples of multi-degree-of-freedom structures (a) threedegrees of freedom of one level of a
spatial multi-storey building (u andv are the translations,ϕ is the rotation), (b) mechanical model of a

three-storey frame structure (planar frame with three degrees of freedom) (c) mechanical model of an undamped
two-degrees-of-freedom system excited at its second degree of freedom

1.3.1 Equation of motion of MDOF systems

There are several ways to derive the equations of motion for aMDOF system. Here we
show one for the system on Figure1.10(c). The FBD of the system is shown in Figure1.11.
The only displacement which is not constrained is the horizontal translation of the massesm1

andm2. Variablesx1(t) andx2(t) denote the translations of these masses, respectively. The
number of degrees of freedom is thereforetwo. Newton’s second law of motion is written for
the two masses:

− fS1(t) + fS2 = m1a1(t),

− fS2(t) + F (t) = m2a2(t).
(1.32)

The forces in the linear springs depend on the elongation of each spring:fS1(t) = k1∆ℓ1(t),
fS2(t) = k2∆ℓ2(t). For the first spring∆ℓ1(t) = x1(t) (assuming a fixed support) and for the
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Figure 1.11: Free body diagrams of the model shown in Figure1.10(c)

second spring∆ℓ2(t) = x2(t) − x1(t). So the spring forces are:fS1(t) = k1x1(t), fS2
(t) =

k2(x2(t)− x1(t)). The acceleration of each body is the second derivative of its translation with
respect to time, i.e.:a1(t) = ẍ1(t), a2(t) = ẍ2(t). Substituting these results into Eq. (1.32) we
get

− k1x1(t) + k2x2(t)− k2x1(t) = m1ẍ1(t),

− k2x2(t) + k2x1(t) + F (t) = m2ẍ2(t),
(1.33)

which can be written in the following form:

m1ẍ1(t) + k1x1(t) + k2x1(t)− k2x2(t) = 0,

m2ẍ2(t)− k2x1(t) + k2x2(t) = F (t).
(1.34)

What we obtained is a coupled system of second order ordinary differential equations. Is it
worth noting that each equation corresponds to one body (theith) with the external force acting
on that body (or zero when there is none) on the right hand sideof the current equation. On the
left hand sides there is always the correspondingmiẍi(t) term (inertial term), and the spring
force. The springs appearing in each equation such that the spring stiffness multiplied by the
displacement of the degree of freedom is added to the equation of the corresponding DOF
(k1x1(t) for the first spring in the first equation,k2x1(t) andk2x2(t) for the second spring in
the first and second equation respectively). If a spring connects two degrees of freedom, then
it couples the equations of the connected DOFs (−k2x2 term in the first and−k2x1 term in
the second equation). The sign of the coupling terms dependson the sense of the coupled
DOFs, but is always the same in both equations. If two DOFs arenot connected directly, their
equations are not coupled directly.

Equation (1.34) can be written in a short form:

Mü(t) +Ku(t) = q(t) (1.35)

as a matrix differential equation. Here vectoru(t) contains the displacement variables, the
quadratic matricesM andK are the mass and stiffness matrices, respectively, while vectorq(t)
contains the external forces acting on each degree of freedom. (For anN -degree-of-freedom
system the vectors haveN entries, while the size of the matrices isN by N ). Properties
explained after Eq. (1.34) yields that the matrices are symmetric matrices.
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For the example shown in Figure1.10(c) the elements are:

M =

[
m1 0
0 m2

]
,K =

[
k1 + k2 −k2
−k2 k2

]
,u(t) =

[
x1(t)
x2(t)

]
, ü(t) =

[
ẍ1(t)
ẍ2(t)

]
,q(t) =

[
0

F (t)

]
.

Similarly to the single-degree-of-freedom vibrations, wedivide the problems described by
Eq. (1.35) in two groups:

• if q(t) = 0, then the system of differential equations is homogeneous,and the resulting
motion is the free vibration.

• if q(t) 6= 0, then the system of differential equations is non-homogeneous, and it is called
a forced vibration.

Equations of motion of a two-storey frame

Let us analyse the equations of motion for a two-storey framestructure with a machine
exerting a force on the upper level. The floors are rigid, so weonly have two degrees of free-
dom. Figure1.12(a) shows the structure and one possible displacement system. Figure1.12
(b) shows the free body diagrams for the same structure. The internal forcesfS1 (from the
columns 1 and 1’) andfS2 (from the columns 2 and 2’) depend on the inter-storey driftsx1
andx2 − x1, respectively. Assuming linear elastic columns one can calculate the equivalent
stiffness coefficientsk1 andk2 for the columns on each level. Writing the equations of motion
and the elements of the mass and stiffness matrices are left for the reader as an exercise.

Figure 1.12: Two-storey frame structure with rigid floors. (a) Mechanical model, (b) free body diagram.

Equations of motion with different variables

The deformed state of the structure in Figure1.12can be described not only with the global
coordinates of each level, but with the inter-storey driftsas well. (In accordance with the earlier
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notation we will denote them by∆ℓ1 and∆ℓ2.) Then we have to substitutex1(t) = ∆ℓ1(t),
x2(t) = ∆ℓ1(t) + ∆ℓ2(t) and their derivatives into Eq. (1.32), and we get

−∆ℓ1(t) + k2∆ℓ2(t) = m1∆̈ℓ1(t),

− k2∆ℓ2(t) + F (t) = m2∆̈ℓ1(t) +m2∆̈ℓ2(t)

instead of Eq. (1.33). One can see, that using this description of the problem results non-
symmetric mass- and stiffness matrices. This is due to the fact, that the equations still belong
to the globalx1 andx2 translations, while our variables are the relative displacements∆ℓ1
and∆ℓ2. Symmetry of the system matrices is often used during the calculations, so we can
conclude, that this hybrid approach should be avoided if possible.

1.3.2 Free vibration of MDOF systems

During the analysis of a multi-degree-of-freedom system the solution of Eq. (1.35) follows
the same steps as for SDOF systems. The free vibration of the system is analysed using the
complementary equation of Eq. (1.35). That is the homogeneous matrix differential equation

Mü(t) +Ku(t) = 0. (1.36)

We search for the solution of Eq. (1.36) in the form:

u(t) = u (a cos (ω0t) + b sin (ω0t)) , (1.37)

i.e. the displacement functionu(t) is assumed to be a product of a constant vectoru0 describing
the ratio of the degrees of freedom to each other and a harmonic function depending on time,
natural frequencyω0 and two parametersa andb. The cases whenu = 0 or a = b = 0 would
lead to the trivial solution of the Eq. (1.36). We are looking for the nontrivial solutions.

The second derivative of the displacement vectoru(t) is

ü(t) = u(−ω2
0) (a cos (ω0t) + b sin (ω0t)) .

We substituteu(t) andü(t) into the homogeneous differential equation (1.36):

Mu(−ω2
0) (a cos (ω0t) + b sin (ω0t)) +Ku (a cos (ω0t) + b sin (ω0t)) = 0. (1.38)

This equation must hold for any timet, thus either(a cos (ω0t) + b sin (ω0t)) = 0, or
Mu(−ω2

0)+Ku = 0. The equation(a cos (ω0t) + b sin (ω0t)) = 0 holds for allt only with the
trivial solutiona = b = 0, therefore the time-independent matrix equationMu(−ω2

0)+Ku = 0

must be fulfilled, so it is rewritten in the more classical form
(
K− ω2

0M
)
u = 0. (1.39)

The above equation is a system of a homogeneous, linear equations, which is called a general-
ized eigenvalue problem in mathematics. It has nontrivial solutions if and only if the matrix of
coefficients is singular, or equivalently if and only if its determinant is zero. The equation:

det
(
K− ω2

0M
)
= 0
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leads to a polynomial of degreeN for ω2
0 (whereN is the degree of freedom of the system).

Typically it hasN real, distinct solutions, denoted byω2
01 < ω2

02 < . . . < ω2
0N (i.e. the first one

is the smallest), and their positive square roots

ω01 < ω02 < . . . < ω0N

are the natural circular frequencies of the system. We can defineN natural period of the system
as:

T01 =
2π

ω01

> T02 =
2π

ω02

>, . . . , > T0N =
2π

ω0N

.

In the next step we have to find the elements of vectoru0 of Eq. (1.37). Since we have
N natural circular frequencies, we will haveN different vectors. We will denote the vector
corresponding toω0j by uj. The vectoruj must fulfill Eq. (1.39):

(
K− ω2

0jM
)
uj = 0. (1.40)

Because of the matrix
(
K− ω2

0jM
)

is singular,uj has onlyN −1 independent rows, i.e. it has
not a uniqueuj solution. Ifuj is a solution, then the vectorαuj will be a solution for any real-
valuedα. These vectors are the (generalized) eigenvectors of the system. The meaning of the
jth eigenvectoruj is that if we displace the degrees-of-freedom in the same proportion as the
elements of the eigenvector, then it will move such a way thatthe ratios of the displacements
will be the same during the motion with frequencyω0j. In this case the structure vibrates in
its jth mode. The shape of the vibration (the modal shape) is described by the eigenvector (or
mode vector).

Normalized eigenvectors

For further calculations we have to make the eigenvector unique. It can be done in different
ways:

• making the first element of the vector be equal to 1,

• making the largest (in absolute value) element of the vectorbe equal to 1,

• making the length of the vector be equal to 1 (i.e.uT
j uj = 1),

• making the vector be normalized to the mass matrix (i.e.uT
j Muj = 1).

The first method is useful when the calculations are done by hand. The second method has an
important role in numerical solution of the eigenvalue problem. The third method would result
in possible small numbers in the case of a large system. The last method has positive conse-
quences on further results so we assume that the eigenvectors are normalized to the mass matrix.
(If we have a non-normalized eigenvectoruj, we can still calculate the productuT

j Muj = αj.
It follows from the rules of matrix operations that the vector (1/

√
αj)uj will be normalized to

the mass matrix.)
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If we substitute thejth normalized eigenvector into Eq. (1.39), and multiply it with the
transpose of the same vector from the left we get:

uT
j Kuj − ω2

0ju
T
j Muj = 0.

Because of the eigenvector is normalized, the vector-matrix-vector product on the left hand side
equals 1, resulting in:

uT
j Kuj = ω2

0j . (1.41)

Orthogonality of eigenvectors

Let us take two different natural circular frequenciesω0i 6= ω0j, and the corresponding
eigenvectorsui anduj. Then it holds from Eq. (1.40) that

Kui = ω2
0iMui, (1.42)

Kuj = ω2
0jMuj. (1.43)

Multiplying Eq. (1.42) by uT
j and Eq. (1.43) by uT

i from the left and subtracting the resultant
equations lead to:

uT
j Kui − uT

i Kuj = ω2
0iu

T
j Mui − ω2

0ju
T
i Muj.

Due to the symmetry of matricesK andM

uT
j Kui = uT

i Kuj, uT
j Mui = uT

i Muj, (1.44)

so we have:
0 =

(
ω2
0i − ω2

0j

)
uT
j Mui.

The above equality only holds for differentω0i andω0j if:

uT
j Mui = 0 . (1.45)

Dividing both side of Eq. (1.42) by ω2
0i, then multiplying the result byuT

j from the left,
dividing both side of Eq. (1.43) by ω2

0j, then multiplying the result byuT
i from the left, finally

subtracting the resultant equations lead to:

1

ω2
0i

uT
j Kui −

1

ω2
0j

uT
i Kuj = uT

j Mui − uT
i Muj.

Due to Eq. (1.44) (
1

ω2
0i

− 1

ω2
0j

)
uT
j Kui = 0,

which holds for different nonzeroω0i andω0j only when:

uT
j Kui = 0 . (1.46)

We refer to this latter properties as the orthogonality of the eigenvectorsui anduj to the
mass matrix (Eq. (1.45)) and to the stiffness matrix (Eq. (1.46)).
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General solution of the homogeneous differential equation

The general solution of the homogeneous differential equation Eq. (1.36) is constructed
from the sum of the solutions corresponding to the eigenmodes:

u(t) =
N∑

j=1

uj (aj cos (ω0jt) + bj sin (ω0jt)) . (1.47)

To find the parametersaj andbj we need the vector of velocities:

u̇(t) =
N∑

j=1

ujω0j (−aj sin (ω0jt) + bj cos (ω0jt)) . (1.48)

Initial conditions of a multi-degree-of-freedom system are displacements and velocities of the
degrees of freedom at a given time instantt0:

u(t0) = u0, u̇(t0) = v0.

By substituting Eq. (1.47) and (1.48) into the above formula2N constraints are obtained which
can be used to find the parametersaj and bj in the general solution Eq. (1.47). Using the
orthogonal properties of the eigenvectors one can avoid thesolution of a system of2N linear
equations. If we multiply these2N equations from the left byuT

j M, then we get

aj cos (ω0jt0) + bj sin (ω0jt0) = uT
j Mu0,

ω0j (−aj sin (ω0jt0) + bj cos (ω0jt0)) = uT
j Mv0,

so, varyingj from 1 toN we have to solveN system of2 linear equations instead of a system
of 2N equations for the coefficientsaj andbj.

The resultant motion will be the sum of harmonic vibrations,which is not necessarily a
periodic motion!

1.3.3 Harmonic forcing of MDOF systems

The solution of forced vibration problems of multi-degree-of-freedom systems follows a
similar schema as we saw with SDOF systems. The complete solution is the sum of the general
solution of the complementary differential equation and a particular solution of the nonho-
mogeneous differential equation. So the solution of Eq. (1.35) is Eq. (1.47) plus a particular
solutionuf (t), which is the answer of the system to the forcing.

In this subsection we will give a solution for the problem, inthe case of the excitation force
is harmonic. Thenq(t) can be written in the form:

q(t) = q0 sin (ωt) . (1.49)

Hereω is the circular frequency of the forcing, and the vectorq0 stores the amplitudes of the
forcing. Thus each DOF is excited with the same frequencyω. Is it worth mentioning that a
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zero external force acting on a degree-of-freedom can be treated as a harmonic force with zero
amplitude and arbitrary circular frequency.

While solving the inhomogeneous equation we are only lookingfor the steady-state part of
the vibration. We show two possible solution methods:

• the direct solution,

• solution with the modal shape vectors and natural circular frequencies.

Direct solution

In the case of the direct solution we assume the particular solution of the form:

uf (t) = uf0 sin (ωt) , (1.50)

i.e. it is a harmonic response with the same harmonic term as the forcing, with constant ampli-
tudes given in the vectoruf0. The second derivative of Eq. (1.50) with respect to time is:

üf (t) = −ω2uf0 sin (ωt) . (1.51)

Substituting the load, the ansatz and its derivative (Eqs. (1.49), (1.50), and (1.51)) into
Eq. (1.35) we get:

− ω2Muf0 sin (ωt) +Kuf0 sin (ωt) = q0 sin (ωt) . (1.52)

The above equation fulfills either ifsin (ωt) = 0, or if Kuf0 − ω2Muf0 = q0. Because the
loading is a real, time dependent harmonic force, the termsin (ωt) cannot be zero for every
time instant. So, we can write the latter condition as:

(
K− ω2M

)
uf0 = q0. (1.53)

The solution of this non-homogeneous matrix differential equation for the amplitudeuf0 is
needed. The coefficient matrix in Eq. (1.53) is quadratic, so it has a solution if and only if there
exists its inverse matrix, i.e. the matrix is non-singular,or with other words, its determinant is
nonzero. In that case we get the solution by multiplying bothsides of Eq. (1.53) by the inverse
(K− ω2M)

−1:
uf0 =

(
K− ω2M

)−1
q0. (1.54)

The particular solution then can be written as:

uf (t) =
(
K− ω2M

)−1
q0 sin (ωt) . (1.55)

This is the steady-state part of the vibration. We can see that each degree of freedom vibrates
with the same frequency. Without computing the inverse matrix, we cannot read out directly
whether a degree of freedom is in an in-phase or in an out-of-phase vibration.

We note that the inverse of the matrix(K− ω2M) does not exist if its determinant equals
zero. But if det (K− ω2M) = 0, then the circular frequency of the forcing equals one of
the natural circular frequencies of the system, hence the system is in the state of resonance.
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It means that if the forcing frequency coincides with one of the natural frequencies of the
structure, then the direct method gives an infinite amplitude of the vibration. However, in real
structures it does not occur, because there is always some damping in the system.

Direct solution requires the calculation of the inverse of anN -by-N matrix. In general, the
required computational capacity increases proportional to the second- or third power ofN (the
order of the computational time isO (N2 ∼ N3)). Thus for large systems this method has a
very high computational costs.

Modal analysis

Instead of the direct solution one can make use of the solutions of the unforced system, i.e.
of the generalized eigenvalue problem Eq. (1.36). These solutions are of the natural circular
frequencies(ω01 , ω02, . . ., ω0N) and the corresponding modal shape vectors normalized to
the mass matrix(u1 , u2, . . ., uN). These eigenvectors are linearly independent and span an
N dimensional linear space. Let the displacements be writtenas a linear combination of the
normalized mode shape vectors:

uf (t) =
N∑

j=1

ujyj(t), (1.56)

where functionsyi(t) are the modal displacements. The modal shape vectors are invariant in
time, so the second derivative of the displacement is:

üf (t) =
N∑

j=1

uj ÿi(t). (1.57)

Substituting the load, the ansatz and its derivative (Eqs. (1.49), (1.56), and (1.57)) into
Eq. (1.35) we get:

M

N∑

j=1

uj ÿj(t) +K

N∑

j=1

ujyj(t) = q0 sin (ωt) . (1.58)

Let us multiply both sides of Eq. (1.58) from the left byuT
i . Using the orthogonality of the

eigenvectors (Eq. (1.45), and (1.46)) we only have nonzero values forj = i:

uT
i Muiÿi(t) + uT

i Kuiyi(t) = uT
i q0 sin (ωt) .

Moreover, the eigenvectors are normalized to the mass matrix, so:

uT
i Mui = 1, uT

i Kui = ω2
0i,

which leads to the modal differential equations of vibration:

ÿi(t) + ω2
0iyi(t) = fi sin (ωt) , i = 1, 2, . . . , N. (1.59)

Herefi = uT
i q0 is the modal amplitude of the harmonic excitation force.

26

by Németh & Kocsis



CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

For the particular solutionyif (t) of the non-homogeneous differential equation (1.59) we
assume the solution in the harmonic form:

yif = yif0 sin (ωt) .

Its second derivative is
ÿif = −ω2yif0 sin (ωt) .

Substitute these equalities into Eq. (1.59), and solve for arbitrary nonzerosin (ωt):

−ω2yif0 + ω2
0iyif0 = fi.

If ω = ω0i andfi 6= 0, then the frequencyω of the load and theith natural frequencyω0i

coincide, thus the system is in the state of resonance. It results in an infinitely largeith modal
displacement. Otherwise, the unique, finite solution is:

yif0 = fi
1

ω2
0i − ω2

= fi
1

ω2
0i

1

1− ω2

ω2
0i

.

The last term in the above product is aresponse factorof an undamped oscillatory system
of natural circular frequencyω0i, excited by a harmonic force of circular frequencyω. The
absolute value of this coefficient is denoted byµi.

Let us summarize the above results. In the absence of resonance the steady-state part of the
motion (the particular solution) can be written in the form:

uf (t) =
N∑

i=1

1

ω2
0i

1

1− ω2

ω2
0i

uiu
T
i q0 sin (ωt) . (1.60)

Checking the terms of the above equation from right to left we can conlude that the response
is harmonic (sin (ωt)). For each mode the amplitude of the modal load (uT

i q0) is calculated. It
is then multiplied by the response factorµi (but without evaluating the absolute value) which
depends on the ratio of the circular frequency of the forcingand the natural circular frequency
of the corresponding mode. Finally, the amplitude of each mode is divided by the square of
the natural circular frequencyω2

0i of the same mode. Due to this last term the effect of higher
modes is usually much smaller, except for the case when the excitation occurs close to one of
the natural frequencies of the system.

Apparently, the solution of the problem with modal analysisseems to need even more com-
putational effort, than that of the direct solution, because we first have to solve a generalized
eigenvalue problem corresponding to the free vibration. For large systems, with many degrees
of freedom, the solution of the eigenvalue problem has high computational needs. However,
higher modes typically play a less significant role in the solution. There are numerical algo-
rithms which do not compute all the eigenvalues and eigenvectors of the generalized eigenvalue
problem, but only the first few of them. Later in the semester we will show that a reduced set
of mode shape vectors calculated with these methods can be sufficient to approximate well the
motion of the MDOF system.
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Problem 1.3.1(Example on harmonic forcing of a three-storey frame structure). Figure1.13shows the dynam-
ical model of a three-storey building with rigid girders. Oneach level the stiffness of the columns is the same
and the levels have the same mass. On the top level a machine exerts a harmonic force on the structure. We are
looking for the amplitudes of each degree-of-freedom in thesteady-state motion.

Figure 1.13: Vibration of a three-storey frame structure with rigid interstorey girders and elastic columns. (a)
Dynamical model with system propertiesk1 = k2 = k3 = 25MN/m, andm1 = m2 = m3 = 150 t. (b)

Degrees of freedom in a displaced position and the excitation forceF0 = 150 kN, ω = 9 rad/s.

Solution. The matrix differential equation of the motion is:

Mü(t) +Ku(t) = q0 sin (ωt) ,

where
u(t) = [x1(t), x2(t), x3(t)]

T
,

q0 = [F0, 0, 0]
T
= [150, 0, 0]

T kN,

M =



m1 0 0
0 m2 0
0 0 m3


 =




150 0 0
0 150 0
0 0 150


 t

K =



k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3


 =




50000 −25000 0
−25000 50000 −25000

0 −25000 25000


 kN/m.

• Direct solution
The system of linear equations of the problem (Eq. (1.53)) with substitution ofK, M andq0 is:




37850 −25000 0
−25000 37850 −25000

0 −25000 12850


uf0 =




0
0
150


 (1.61)

The solution of the above equation requires the inverse of the matrix of coefficients:




37850 −25000 0
−25000 37850 −25000

0 −25000 12850



−1

=




0.01044 −0.02419 −0.04707
−0.02419 −0.03663 −0.07126
−0.04707 −0.07126 −0.06082


 · 10−3
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We have to multiply both sides of Eq. (1.61) from the left, resulting:

uf0 =




0.01044 −0.02419 −0.04707
−0.02419 −0.03663 −0.07126
−0.04707 −0.07126 −0.06082


 · 10−3 ·




0
0
150




uf0 =




−0.0070604
−0.010689
0.0091234


 m. (1.62)

• Modal analysis
This solution requires the solution of the generalized eigenvalue problem:

(
K− ω2

0M
)
u0 = 0. (1.63)

First we compute the eigenvalues of the problem. The condition we use is that the determinant of the
matrix

(
K− ω2

0M
)

must be zero:

0 =

∣∣∣∣∣∣

50000− 150ω2
0 −25000 0

−25000 50000− 150ω2
0 −25000

0 −25000 25000− 150ω2
0

∣∣∣∣∣∣
=

(
50000− 150ω2

0

) (
(50000− 150)

(
25000− 150ω2

0

)
− (−25000)(−25000)

)
−

(−25000)
(
(−25000)

(
25000− 150ω2

0

)
− 0
)
+ 0,

which results the following cubic equation forω2
0 :

−3375 · 103ω6
0 + 2812.5 · 106ω4

0 − 562.5 · 109ω2
0 + 15.625 · 1012 = 0.

There are three real valued solution of the above polynomialequation:

ω2
01 = 33.010, ω2

02 = 259.16, ω2
03 = 541.16,

resulting the natural circular frequencies in:

ω01 = 5.7455 rad/s, ω02 = 16.098 rad/s, ω03 = 23.263 rad/s.

(The corresponding natural periods are:T01 = 1.0936 s,T02 = 0.39030 s, andT03 = 0.27009 s.)

We show only the calculation of the first eigenvector (u1). It must fulfill the equation:
(
K− ω2

01M
)
u1 = 0,

which has the form after substitution of previous results:



50000− 150 · 33.01 −25000 0
−25000 50000− 150 · 33.01 −25000

0 −25000 25000− 150 · 33.01





u11
u12
u13


 = 0.

Here we assume a trial vector in the form̂u1 = [c1, 1, c3]
T . So, with the first and the last equation we

avoid multi-variable equations. (It is not always possible, in that case we should solve a system of linear
equations.) From the mentioned rows we have:

45048c1 − 25000 · 1 = 0 → c1 = 0.55496
−25000 · 1 + 20048c3 = 0 → c3 = 1.2470

(The second equation is linearly dependent, but it can be used to check our results both for the natural
circular frequency and the vector elements.)

29

by Németh & Kocsis



CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

Now the trial eigenvector̂u1 is normalized to the mass matrixM. To do this, first we calculate:

α1 = ûT
1 Mû1 =

[
0.55496 1 1.2470

]



150 0 0
0 150 0
0 0 150






0.55496
1

1.2470




[
= 83.244 150 187.05

]



0.55496
1

1.2470


 = 429.44,

then the normalized shape vector correspondiong to the firstnatural mode will be:

u1 =
1√
α1

û1 =
[
0.02678 0.04826 0.06017

]T
. (1.64)

The steps between Eq. (1.13) and (1.64) must be repeated forω02 and forω03 as well, to calculate the
corresponding normalized eigenvectors. The final results of that calculations are:

u2 =
[
0.06017 0.02678 −0.04826

]T

and
u3 =

[
−0.04826 0.06017 −0.02678

]T
.

Figure1.14shows the deformed shape of the structure corresponding to the three modal vector. Now
we can calculate the amplitude vector of the steady-state vibration using the formula of Eq. (1.60). The
terms are summarized in Table1.1.

Figure 1.14: Mode shapes of the three-storey structure of Figure1.13corresponding to the natural
circular frequencies (a)ω01 = 5.7455 rad/s, (b)ω02 = 16.098 rad/s, and (c)ω03 = 23.263 rad/s.

i 1 2 3

uT
i q 9.026 -7.238 -4.017

µi -0.6879 1.4556 1.176

1
ω2

0i

µi -0.02084 0.005613 0.002173

1
ω2

0i

µiu
T
i q -0.1881 -0.04053 -0.00873

Table 1.1: Harmonic forcing of a three-storey structure. Modal loads,coefficients of resonance, this
coefficient divided by the square of theith natural circular frequency, participation of the mode inthe

steady-state vibration.
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From Table1.1we can see, that this specific loading has a projection in the same order of magnitude in
each mode, and the coefficient of resonance does not change this proportion much. Contrary to this, the
whole participation of the first mode is 4.5 times higher thanthe participation of the second mode, and
20 times higher, than that of the third mode, due to the division byω2

0i.

The amplitude vector of the steady-state vibration will be:

uf0 = −0.1881u1 − 0.04053u2 − 0.00873u3 =




−0.0070604
−0.010689
0.0091234


 m. (1.65)

For both solution methods we can conclude, that in the steady-state vibration each level oscillates in a cm range,
the lower two levels are out-of-phase, the upper level is in-phase with the forcing.

1.3.4 Approximate solution of the generalized eigenvalue problem (Ritz-
Rayleigh’s method)

We have seen already, that a higher natural frequency of a multi-degrees-of-freedom system
plays an important role only if the forcing has a frequency close to that natural frequency. In
practical problems, the first few natural modes are sufficient to describe the vibration of the
structure. On the mode shape level, a mode vector of a higher natural frequency results more
changes in the sense of displacements of DOFs. So, thesimplermode shapes correspond to
lower natural frequencies, and an eigenvector (normalizedto the mass matrix) can be used as a
base for the calculation of the eigenvalue (see Eq. (1.41)).

The Rayleigh quotient

Approximate solutions can be obtained by guessing the mode shape vector of the structure,
and finding the corresponding natural frequency. This is theopposite of the classical solution
of the generalized eigenvalue problem, where we started with finding the eigenvalues from the
polynomial equation defined by the determinant of the matrixof coefficientsK − ω2

0M of the
homogeneous equation, and then the eigenvectors were calculated.

Let us assume, thatv is a vector ofN element. We define the Rayleigh quotient as:

R =
vTKv

vTMv
. (1.66)

Altough we do not know the eigenvectors,v can be written as a linear combination of them
with coefficientsαj:

v =
N∑

j=1

αjuj.

Let us expand the denominator and the numerator of Eq. (1.66). The denominator can be
written as:

vTMv =

(
N∑

j=1

αjuj

)T

M

(
N∑

i=1

αiui

)
=

N∑

j=1

N∑

i=1

αjαiu
T
j Mui.
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Orthogonality of the normalized eigenvectors (Eq. (1.45)) implies that the quadratic product
uT
j Mui = 1 if j = i and zero otherwise, thus

vTMv =
N∑

j=1

α2
j .

The numerator of Eq. (1.66) can be written as:

vTKv =

(
N∑

j=1

αjuj

)T

K

(
N∑

i=1

αiui

)
=

N∑

j=1

N∑

i=1

αjαiu
T
j Kui.

Orthogonality of the normalized eigenvectors (Eq. (1.46)) implies that the quadratic product
uT
j Kui = ω2

0j if j = i and zero otherwise. Therefore

vTKv =
N∑

j=1

α2
jω

2
0j.

The above formula can be expanded to:

vTKv =
N∑

j=1

(
α2
j

(
ω2
0j − ω2

01

)
+ α2

hω
2
01

)
=

N∑

j=1

α2
j

(
ω2
0j − ω2

01

)
+

N∑

j=1

α2
jω

2
01.

The first summation term is zero ifj = 1, so we got finally:

vTKv =
N∑

j=1

α2
jω

2
01 +

N∑

j=2

α2
j

(
ω2
0j − ω2

01

)
.

If we write the result into the definition of the Rayleigh quotient (1.66) we get:

R =

N∑
j=1

α2
jω

2
01 +

N∑
j=2

α2
j

(
ω2
0j − ω2

01

)

N∑
j=1

α2
jω

2
01

= ω2
01 +

N∑
j=2

α2
j

(
ω2
0j − ω2

01

)

N∑
j=1

α2
jω

2
01

. (1.67)

The sum on the right hand side of Eq. (1.67) contains only positive numbers (here we remind,
thatω01 is the smallest natural frequency), or zeros (if a specificαj is zero). So we can conclude,
that the Rayleigh quotient is always higher than, or equal to the square of the first natural
circular frequency. The accuracy of the result depends naturally on the initial guess on the
mode shape vector (v): the closer the guessed shape vectorv is to the exact oneu1, the more
preciseω01 is.

Seeding theω2
0N element instead ofω2

01 results in a proof for the Rayleigh quotient to be
smaller than, or equal to the square of the highest natural circular frequency.
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Problem 1.3.2(Example on finding an approximate solution for a two-storeyframe). Find an approximate
solution of the first natural circular frequency of the two-storey structure shown in Figure1.12. The masses
of the storeys arem1 = m2 = 2 t, and the stiffness of the columns is given by spring stiffnessesk1 = k2 =

50 kN/m. The first mode shape should be assumed as:v =
[
1 2

]T

Solution. The system has the following mass and stiffness matrices:

M =

[
2 0
0 2

]
,K =

[
100 −50
−50 50

]
.

The numerator and the denominator of the Rayleigh quotient are:

vTMv =
[
1 2

] [ 2 0
0 2

] [
1
2

]
=
[
2 4

] [ 1
2

]
= 10,

vTKv =
[
1 2

] [ 100 −50
−50 50

] [
1
2

]
=
[
0 50

] [ 1
2

]
= 100.

So, the Rayleigh quotient is:

R =
vTKv

vTMv
=

100

10
= 10,

resulting in the approximation:
ω2
01 ≤ 10, ω01 ≤ 3.162 rad/s.

Exercise1.3.1. Find first natural circular frequencyω01 of the above problem with the exact first mode shape
vector:

u1 =
[
1 1.618

]T
.

Problem 1.3.3(Example on finding an approximate solution for a multi-storey frame). Let us find the first
natural circular frequency of a 10-storey frame. (See Figure 1.15(a).) The inter-storey stiffnesses and the level
masses are the same on each level,m = 150 t andk = 25000 kN/m respectively.

Solution. The mass matrix of the structure is a10 × 10 diagonal matrix, where each element equalsm. The
stiffness matrix is

K =




k + k −k 0 . . . 0

−k k + k −k . ..
...

0 −k k + k
. .. 0

...
. . .

. . .
. .. −k

0 . . . 0 −k k




.

It is a crucial step of the method to find a good assumption of the trial vector. During the drift of the storeys,
the rigid girders are staying horizontal, and so the structure follows a pattern of displacements similar to a rod
with finite shear stiffness. The frame can be treated as a discrete model of the sheared (continuous) column
(Figure1.15(b)). A sheared rod has a modal shape of a sinusoidal functionwith a zero value at the bottom and
a zero tangent at the free end. Similar displacement vector can be used with:

vj = sin
jπ

2N + 1
, j = 1, . . . , N.

Displacements are shown in Fig.1.15 (c). The numerator and the denominator of the Rayleigh quotient
are:

vTMv =

N∑

j=1

vjmvj = m

N∑

j=1

sin2
jπ

2N + 1
= m

2N + 1

4
= 787.5,
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vTKv = v1kv1 +
N∑

j=2

(vj−1kvj−1 − 2vj−1kvj + vjkvj) = v1kv1 +
N∑

j=2

(vj − vj−1)
2
k = 2931.9.

The Rayleigh quotient is:

R =
vTKv

vTMv
=

2931.9

787.5
= 3.723.

This will be an upper bound for the square of the first natural circular frequency:

ω2
01 ≤ 3.723,→ ω01 ≤ 1.930 rad/s.

Note: in this specific case the supposed shape vector was the actual first mode vector, so in this problem the
accurate solution was obtained.

Figure 1.15: A 10-storey frame structure with rigid interstorey girdersand elastic columns. (a) Dynamical
model of the structure. (b) Equivalent continuous rod with finite shear stiffness. (c) First modal shape of the

continuous rod.

The Ritz-Rayleigh method

We have seen in the previous problems what effect the assumedshape on the accuracy of the
result has. If, instead of guessing one vector, we make our trial vector as a linear combination of
fixed base vectors, then the Rayleigh quotient will be a function of the coefficients of the base
vectors. The first natural frequency will be equal to, or smaller than any Rayleigh quotients, so
the minimum of the available values in the space of the base vectors will give an upper bound
for the first natural frequency. This is the theory behind theRitz-Rayleigh method.

We have to choose some linearly independent base vectorsΦi(i = 0, . . . , n) in theN -
dimensional space (whereN is the number of degree-of-freedom of the system), and make
the trial vector as a linear combination of these vectors. (Here we call the attention, that the
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inequalityn + 1 ≤ N , must hold, otherwise the vectorΦi can not make a base of theN -
space.) We want to make ourv unique among all vectors parallel with it. We have seen,
that normalizing the eigenvector to the mass matrix is a verypractical way, but now it gives a
nonlinear constraint to the system, and that makes difficultto use. Instead of that, we set the
coefficient of one base vector(Φi) equal to one, and write the trial vector as:

v(c1, . . . , cn) = Φ0 +
n∑

i=1

ciΦi.

Using this trial vector the Rayleigh quotient will depend on the variablesc1, . . ., cn:

R(c1, . . . , cn) =
vT (c1, . . . , cn)Kv(c1, . . . , cn)

vT (c1, . . . , cn)Mv(c1, . . . , cn)
.

We are looking for the possible smallest R in the space of the vectorsΦ1, . . ., Φn:

R(c1, . . . , cn) = min!

• If n = 1:
The quotient depends on one single variable. At the minimum the first derivative van-
ishes:

dR(c1)

dc1
= 0. (1.68)

The solution of the (nonlinear) equation (1.68) results in a possible best result for the trial
vector coefficientc1 in the space of the base vectors.

• If n > 1:
The quotient depends on multiple variables. At the minimum the gradient of the quotient
is zero:

∂R(c1, . . . , cn)

∂ci
= 0. i = 1, . . . , n, (1.69)

which is a nonlinear system of equations forn variables. This type of equations does
not necessarily have a unique solution, thus solution method must be chosen according
to this.

We mention here, that the Ritz-Rayleigh method is capable of finding the exact solution if
n + 1 = N , i.e., if the base vectorsΦi(i = 0, . . . , n) span the wholeN space. Otherwise,
for the trial vector the method minimizes the error to the theexact solution, i.e. it finds the
projection of the exact solution on the space spanned by the base vectorsΦi(i = 0, . . . , n), and
gives the corresponding Rayleigh quotient.

Problem 1.3.4(Exact solution of a two-storey frame). Find the exact solution for the first natural circular
frequency of the two-storey structure of Problem1.3.2.
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Solution. Let us assume the trial vector asv(c1) =
[
1 c1

]T
, i.e. we chose the base vectors:

Φ0 =

[
1
0

]
, Φ1 =

[
0
1

]

Heren = 1 andN = 2, so1 + 1 = 2, i.e. we will get the exact solutions.
The numerator and the denominator of the Rayleigh quotient are:

vT (c1)Mv(c1) =
[
1 c1

] [ 2 0
0 2

] [
1
c1

]
=
[
2 2c1

] [ 1
c1

]
= 2 + 2c21.

vT (c1)Kv(c1) =
[
1 c1

] [ 100 −50
−50 50

] [
1
c1

]
=
[
1 c1

] [ 100− 50c1
−50 + 50c1

]

= 100− 100c1 + 50c21.

The resulting Rayleigh quotient is:

R(c1) =
vT (c1)Kv(c1)

vT (c1)Kv(c1)
=

100− 100c1 + 50c21
2 + 2c21

.

The first derivative is:

dR(c1)

dc1
=

(−100 + 100c1)
(
2 + 2c21

)
−
(
100− 100c1 + 50c21

)
(4c1)

(2 + 2c21)
2

=
200

(
c21 − c1 − 1

)

4 (c41 + 2c21 + 1)
= 0

It is sufficient, if the nominator equals zero, so the coefficient c1 we are looking for is the solution of the
quadratic equation:

c21 − c1 − 1 = 0.

There are two solutions:
(
1 +

√
5
)
/2 and

(
1−

√
5
)
/2. If we substitute them back to the Rayleigh quotient,

the first one results the smaller number, so this will be the first mode

R(1.618) = 9.549 → ω01 = 3.090 rad/s,

while for the second solution we get

R(−0.618) = 65.45 → ω01 = 8.090 rad/s.

The resultant modal shape vectors are:

v1 =

[
1

1.618

]
, v2 =

[
0

−0.618

]
.

Problem 1.3.5(Exact solution for a three-storey structure). Find the exact solution for the first natural circular
frequency of the three-storey structure of Problem1.3.1.

Solution. First we repeat the matrices of the system from Problem1.3.1:

M =




150 0 0
0 150 0
0 0 150


 ,
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K =




50000 −25000 0
−25000 50000 −25000

0 −25000 25000


 .

Let us assume the trial vector asv(c1, c2) =
[
1 c1 c2

]T
, i.e. we chose the base vectors:

Φ0 =




1
0
0


 , Φ1 =




0
1
0


 , Φ2 =




0
0
1




Heren = 2 andN = 3, so2+1 = 3, i.e. the Ritz-Rayleigh method leads to the exact solutionsof the problem.
The numerator and the denominator of the Rayleigh quotient are:

vT (c1, c2)Mv(c1, c2) =
[
1 c1 c2

]



150 0 0
0 150 0
0 0 150






1
c1
c2




=
[
1 c1 c2

]



150
150c1
150c2


 = 150

(
1 + c21 + c22

)
,

vT (c1, c2)Kv(c1, c2) =
[
1 c1 c2

]



50000 −25000 0
−25000 50000 −25000

0 −25000 25000






1
c1
c2




=
[
1 c1 c2

]



50000− 25000c1
−25000 + 50000c1 − 25000c2

−25000c1 + 25000c2




= 25000
(
2− 2c1 + 2c21 − 2c1c2 + c22

)
.

The resulting Rayleigh quotient is

R(c1, c2) =
25000

(
2− 2c1 + 2c21 − 2c1c2 + c22

)

150 (1 + c21 + c22)
(1.70)

The first partial derivatives are:

∂R(c1, c2)

∂c1
= 0,

∂R(c1, c2)

∂c2
= 0.

The partial derivatives result a cumbersome system of two equations. However, the solution can be calculated
numerically, resulting in the following solution pairs:

• c1 = 1.802, c2 = 2.247,

• c1 = 0.445, c2 = −0.802,

• c1 = −1.247, c2 = 0.555.

These points are on the surface defined by the Rayleigh quotient over the(c1, c2)-plane (see Eq. (1.70)). The
shape of the surface is shown in Figure1.16.

To decide, which one of the above three solution pairs leads to the first natural frequency, we have two
options:

• We decide which one of the solution pairs correspond to the minimum point of the surface given by the
functionR (c1, c2).

• We calculate the Rayleigh quotient with the solution pointsand pick the smallest one.
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Either way, the smallest possible Rayleigh quotient of thisproblem , and so the square of the first natural
circular frequency is

R = 33.01,→ ω01 = 5.745 rad/s,

which is the same as the analytical result.

Figure 1.16: Rayleigh quotient of Problem1.3.1

Exercise1.3.2. Find an approximate solution of the above problem for the first natural circular frequencyω01

using the base vectors:

Φ0 =




1
1.5
0


 , Φ1 =




0
0
1


 .
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1.4 Summation theorems

Let us study the undamped free vibration of a MDOF, linear mechanical system described
by the matrix differential equation

Mü(t) +Ku(t) = 0.

It leads to the generalised eigenvalue problem
(
K− ω2

0M
)
u0 = 0, (1.71)

the smallest eigenvalue of which isω2
01, the square of the lowest natural circular frequency

of the system. Here bothM andK are constant, symmetric, real valued,N -by-N matrices,
calledlinear, symmetric operatorsin mathematics. We deal with simple models of engineering
structures which are not statically overdeterminate. Thenthe mass matrixM and the stiffness
matrixK arepositive definite. 1 Physically it means that the kinetic and elastic energies ofthe
structure must be positive due to any displacements.

These properties of the system allow us to make use of a few summation theorems. These
theorems are used to get approximate estimates of the lowestnatural circular frequencyω01 of
a structure by combining natural frequencies of different subproblems. Here we do not provide
the reader with the proofs of the theorems, they can be found in the literature (for instance in
[9]), but we show some simple examples for their applications.

1.4.1 Dunkerleytheorem

Let us decompose themass matrixas

M =
n∑

j=1

Mj,

whereMj (j = 1, 2, . . . , n). We write the generalised eigenvalue problem
(
K− ω2Mj

)
u = 0

and denote its smallest eigenvalue byω2
j for j = 1, 2, . . . , n.

Using these values theDunkerleyformula

1

ω2
01

≤
n∑

j=1

1

ω2
j

(1.72)

allows us to approximate the lowest natural circular frequency ω01 of the original problem.
From this the first natural period of vibration is

T 2
01 ≤

n∑

j=1

T 2
j .

1Matrix A is positive definite ifvTAv ≥ αvTv for someα > 0, which implies that all the eigenvalues ofA

are positive.
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This theorem states that the reciprocal of the square of the smallest natural circular fre-
quency of the structure is not greater than the sum of reciprocals of the squares of the smallest
natural circular frequencies of the same structure subjected to subsystems of the mass.

This approximation underestimates the natural circular frequency and overestimates the
natural period of vibration, thus it shows the structuresofterthan in reality. The usage of this
summation theorem is preferable if the structure is such that its mass can be split into parts
and the natural circular frequencies of the resulting substructures are easy to compute. The
application of this theorem is referred to as the “method of split the masses”. The closer the
eigenshapes of the substurctures are, the more precise thisapproximation is.

Problem 1.4.1(Estimation of the natural circular frequency usingDunkerleytheorem). There is a clamped rod
of length3h and bending stiffnessEI. The total mass of the rod is concentrated at three points of the rod: mass
m1 is at the free end, massm2 is ath from the free end, and massm3 is at2h from the free end, as it is shown
in Figure1.17(a). Estimate the first natural circular frequency of the structure!

Solution. We make use of the method of split the masses. First we takem2 andm3 to be equal to zero and
compute the natural circular frequencyω1 of a clamped, massless rod with one lumped massm1 at its top
(see Figure1.17(b)). The compliancef1 of this structure equals to the horizontal translation of the top due to
a unit force acting horizontally at the top. We compute the displacement using the theorem of virtual forces
(Castigliano’s method).

The spring stiffnessk1 is the inverse of the compliance, and the square of the natural frequency isω2
1 =

k1/m1. Then, we setm1 andm3 to zero and compute the natural circular frequencyω2 of the clamped rod with
only one massm2 ath from the top (see Figure1.17(c)) in a similar way. Finally,m1 andm2 are set to zero
andω3 is computed. A brief summary of the computation is as follows:

f1 =
1

2EI
{3h}2 2

3
3h = 9

h3

EI
→ k1 =

1

9

EI

h3
→ ω2

1 =
1

9

EI

h3m1
,

f2 =
1

2EI
{2h}2 2

3
2h =

8

3

h3

EI
→ k2 =

3

8

EI

h3
→ ω2

2 =
3

8

EI

h3m2
,

f3 =
1

2EI
{h}2 2

3
h =

1

3

h3

EI
→ k3 = 3

EI

h3
→ ω2

3 = 3
EI

h3m3
.

The estimation of the first natural circular frequency of theoriginal structure is based on (1.72):

1

ω2
01

≤ h3

EI

{
9m1 +

8

3
m2 +

1

3
m3

}
, thus

ω01 ≥
√

3EI

h3{27m1 + 8m2 +m3}
, and

T01 ≤ 2π

√
h3{27m1 + 8m2 +m3}

3EI
.
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m1

m2

m3

EI

h
h

h

(a)

m2
F=1

M

2h

m1

EI3
h

F=1

M

3h

(b)

F=1

M

h

(d)

EI

m3

h

(c)

EI

2
h

Figure 1.17: (a) A clamped rod of length3h and bending stiffnessEI with its mass concentrated at three
points of equal distancesh. (b) The case when massesm2 andm3 are zero with the corresponding

substructure and the bending moment diagram due to a horizontal unit forceF = 1 at the top. (c) The case
when massesm1 andm3 are zero with the corresponding model and the bending momentdiagram due to a
horizontal unit forceF = 1 acting ath from the top. (d) The case when massesm1 andm2 are zero and the

substructure with the bending moment diagram due to a unit forceF = 1 acting at2h from the top.
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1.4.2 Southwelltheorem

Let us write thestiffness matrixin the form

K =
n∑

j=1

Kj.

It is assumed thatKj (j = 1, 2, . . . , n) possesses the same properties asK (i.e. symmetric and
positive definite). The generalised eigenvalue problem

(
Kj − ω2M

)
u = 0, j = 1, 2, . . . , n (1.73)

hasN eigenvalues for eachj. The smallest of them is denoted byω2
j .

The lowest natural circular frequencyω01 of the original problem can be approximated
using theSouthwellformula

ω2
01 ≥

n∑

j=1

ω2
j . (1.74)

The first natural period of vibration is estimated as

T 2
01 ≤

(
n∑

j=1

1

T 2
j

)−1

.

Thus this formula states that if the stiffness of the structure is composed of parts, then the
square of the smallest natural circular frequency of the structure is not less than the sum of the
squares of the smallest natural circular frequencies corresponding to the partial stiffnesses.

The formula underestimates the natural circular frequencyof the structure, i.e. the result
shows the structuresofterthan in reality. We refer to this theorem as the “effect of stiffening”.
Let a structure haveS stiffness parameters. We can group these parameters inton sets. If the
structuredoes not become statically overdeterminatewhen all but one of the stiffness parameter
sets equalzero, then theSouthwelltheorem can be applied. Practically, wedecreaseall but the
jth sets of stiffness parameters tozeroand then compute the corresponding smallest natural
circular frequencyωj for j = 1, 2, . . . , n. Finally, we apply theSouthwellformula (1.74).

Problem 1.4.2(Estimation of the natural circular frequency usingSouthwelltheorem). There is a rigid roof of
massm supported by two clamped rods of lengthh and bending stiffnessesEI1, EI2. The rods are connected
to the roof through hinges and the mass of the rods is neglected. In addition, there is a linear spring of stiffness
k attached to the roof. The model is shown in Figure1.18(a). Estimate the first natural circular frequency of
the structure!

Solution. We applySouthwelltheorem, since the structure is such that if we set any 2 stiffness parameters out
of EI1, EI2, or k, to zero, then the structure remains stable. First we takeEI2 andk to be equal to zero and
compute the natural circular frequencyω1 of a clamped, massless rod of lengthh and bending stiffnessEI1
with one lumped massm at its top (see Figure1.18(b) and (e)). Then, we takeEI1 andk to be equal to zero
and compute the natural circular frequencyω2 of a clamped rod of lengthh and stiffnessEI2 with the mass
m at its the top (see Figure1.18(c) and (e)) in a very similar way. Finally,EI1 andEI2 are taken to be zero
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andω3 is computed simply: in this case the massm is supported by a spring of stiffnessk, soω2
3 = k/m. The

computation ofω2
1 andω2

2 briefly is

f1 =
1

2EI1

2

3
h3 =

h3

3EI1
→ k1 =

3EI1
h3

→ ω2
1 =

3EI1
h3m

,

f2 =
1

2EI2

2

3
h3 =

h3

3EI2
→ k1 =

3EI2
h3

→ ω2
2 =

3EI2
h3m,

���
���
���
���
���
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1 2

(c)

EI =0 EIh

m k=0

1 2

(a)

EI EIh

m k

1 2
EI EI =0h

m k=0

(b)

1 2

(d)

EI =0 EI =0h

m k

F=1

M

h

(e)
h

Figure 1.18: (a) Model of a rigid roof of massm supported by a linear spring of stiffnessk and by two
clamped, massless rods of equal lengthh and bending stiffnessesEI1 andEI2. (b) The case when the

stiffness parametersEI2 andk are set to zero. (c) The case whenEI1 andk are set to zero. (d) The case when
EI1 andEI2 are taken to be zero. (e) A clamped rod of lengthh and its bending moment diagram due to a

horizontal unit force at the top.

The estimation of the first natural circular frequency of theoriginal structure following (1.74) is

ω2
01 ≥ 3EI1

h3m
+

3EI2
h3m

+
k

m
, thus

ω01 ≥
√

1

m

{
3

h3
{EI1 + EI2}+ k

}
, and

T01 ≤ 2π
√
m

3

h3
{EI1 + EI2}+ k

.
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1.4.3 Föppl–Papkovichtheorem

Let the eigenvectoru0 of (1.71) be a sum of pairwiseK-orthogonal vectorsuj, j =
1, 2, . . . , n. (Vectorsuj andui areK-orthogonal ifuT

j Kui = 0.) Practically it means that
the deformation modes of the structure are independent, i.e. the strain energy of the structure
does not contain mixed terms of the deformation modes.

The smallest eigenvaluesω2
j of the generalised eigenvalue problems

(
K− ω2M

)
uj = 0, j = 1, 2, . . . , n (1.75)

are the basis of the approximation ofω01. The formula we can use is

1

ω2
01

≤
n∑

j=1

1

ω2
j

. (1.76)

From this the first natural period of vibration is

T 2
01 ≤

n∑

j=1

T 2
j .

This approach again shows the structuresofterthan it is.
We refer to this theorem as the “method of split rigidities”, or partial rigidizing. If a struc-

ture hasS stiffness parameters, then we can group them inton sets. If the structurebecomes
statically overdeterminatewhen all but one of the stiffness parameter sets equalzero, then the
Föppl–Papkovichtheorem can be applied. In practice, weincreaseall but thejth sets of stiff-
ness parameters toinfinity and compute the corresponding smallest natural circular frequency
ωj for j = 1, 2, . . . , n. Then we can utilise formula (1.76).

Problem 1.4.3(Estimation of the natural circular frequency usingFöppl–Papkovichtheorem). There is a mass-
less rod of lengthh and bending stiffnessEI. The top end of the bar is free and a massm is attached to it,
while the bottom end is connected to a fixed hinge and equippedwith a linear rotational spring of stiffnesss.
See the model in Figure1.19(a). Estimate the first natural circular frequency of the structure!

Solution. The structure becomes statically overdeterminate if either one of its stiffness parameters (EI or s)
is set to zero. Therefore, we apply theFöppl–Papkovichtheorem. First we stiffen the rotational spring, i.e. we
takes → ∞, which implies that the bar is rigidly clamped at the bottom.Now we compute the compliancef1
(the translation of the top of the bar caused by a horizontal unit force), then the stiffness isk1 = 1/f1, and the
natural circular frequency equals toω2

1 = k1/m. See Figure1.19(b). Next we stiffen the bar against bending
deformation, i.e.EI → ∞. Now the rod is a rigid body capable to rotate about the hinge at the bottom end,
which generates a moment in the rotational spring. The compliancef2 is the horizontal translation of the top
end caused by a horizontal unit force. The moment of equilibria of the structure isφs − Fh = 0 (assuming
small displacements), as it is indicated in Figure1.19 (c). From this, if we takeF = 1, the rotation of the
rigid body isφ = h/s, and the horizontal translation of its top isf2 = φh = h2/s. (Again, we consider small
displacements.) The stiffnessk2 is the inverse off2, andω2

2 = k2/m. This computation is summarised below.

f1 =
1

2EI

2

3
h3 =

h3

3EI
→ k1 =

3EI

h3
→ ω2

1 =
3EI

h3m
,

f2 =
h2

s
→ k2 =

s

h2
→ ω2

2 =
s

h2m
.
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(b)
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F=1

φ

F=1
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φ

EIh

s
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8

EIh

(a)

s

m

Figure 1.19: (a) A straight, massless rod of lengthh and bending stiffnessEI carrying a lumped massm at
the top, connected to a fixed hinge and a rotational spring of stiffnesss at the bottom. (b) The case when

s→ ∞ (rigidly clamped elastic rod) and the bending moment diagram due to a horizontal unit force acting at
the top. (c) The case whenEI → ∞ (elastically clamped rigid bar) and the free body diagram due to a

horizontal unit force.

The estimation of the first natural circular frequency of theoriginal structure using Eq. (1.76) is

1

ω2
01

≤ h3m

3EI
+
h2m

s
, thus

ω01 ≥ 1√
h3m

3EI
+
h2m

s

, and

T01 ≤ 2π

√
h3m

3EI
+
h2m

s
.
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Chapter 2

Dynamics of slender continua

Main load bearing members of engineering structures often have one significant dimension:
the extent of the member along this direction is larger with at least one order of magnitude than
in other (orthogonal) directions. The behaviour of theseslendermembers can be characterized
by fewer variables, than needed for a complete three-dimensional description. In this chapter
we derive the equation of motion of some specificslender continuum rods, give the solution for
the free vibrations and, in some cases, forced vibrations are also studied.

First we collect the assumptions used hereafter for the studied rods. Since in engineering
practice the most commonly used structural element is theprismatic rod, which is a slender,
straight rod of uniform cross-sections, we restrict our investigations on this type of rods. It is
assumed to be homogeneous, isotropic, and linearly elastic. We neglect the effect of damping.
The axis of the rod in the stress-free state is the straight line connecting the centroids of the
cross-sections. In the stress-free state, the axis of the rod coincides with axisx of a left handed
Cartesiancoordinate system (see Figure2.1 (a)). The rod obeys the principle of planar cross-
sections: during the deformation every cross-section remains plane and undistorted. The cross-
section of the rod is assumed to be reflection symmetric to axis y. The displacements are
considered to be small. Thelengthof the studied rod is denoted byℓ, its cross-sectional area
isA, thesecond moment of the cross-sectionwith respect toz is I, and thepolar inertia of the
cross-sectionwith respect to axisx is I0. The material of the rod is characterised by: themass
density̺ , theYoung’s modulusE, theshear modulusG, and thePoisson’s ratioν. 1 Themass
per unit lengthof the rod isµ = ̺A.

We analyse the following simple vibration modes:

• Longitudinal vibration of prismatic bars. The rod deforms along its axisx, while all the
cross-sections remain parallel, thus their motion can be characterised by the translation
u(x, t) of the rod axis. The only non-zero internal force in this caseis the normal force
N . A simple model is shown in Figure2.1(a), and free vibrations are solved using both
standing and travelling waves in Section2.1.

• Torsional vibration of prismatic shafts. The cross-sections of the rod rotate about axis
x and this rotation is denoted byϕx(x, t). The cross-sections remain parallel. The only

1AlthoughE,G, andν are not independent:E = 2(1 + ν)G.
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non-zero internal force is the torqueT . The free vibration of this structure is discussed
in Section2.2.

• Shear vibration of prismatic beams. The rod deforms along axisy. The non-zero internal
forces in this case are the shearV and the bending momentM , but the rod is assumed to
beunbendable. Thus all the cross-sections remain parallel, their motioncan be described
by the translationv(x, t) of the rod axis. A simple model is shown in Figure2.2(a), and
the solution of the free vibration is given in Section2.3.

• Transverse vibration of prismatic beams. The rod axis translates alongy and the cross-
sections rotate about axisz. The translation and the rotation are denoted byv(x, t) and
ϕ(x, t), respectively. The non-zero internal forces in this case are the shearV and the
bending momentM , but rod is assumed to beunshearable, thereforev(x, t) andϕ(x, t)
are not independent. A simple model is shown in Figure2.4(a), and a thorough vibration
analysis is given in Section2.4.

2.1 Longitudinal vibration of prismatic bars

In this section we analyse the longitudinal vibrations of the prismatic bar, and introduce the
general steps of any continuous modeling.

In the stress-free state, the axis of the bar coincides with axis x of a left handedCartesian
coordinate system. There is a longitudinal distributed load qn(x, t) acting in the axis of the bar
(see Figure2.1(a)). If we restrict buckling, then these conditions imply that the bar undergoes
a rectilinear vibration: the motion of each cross-section of the bar occurs parallel to axisx.

The only displacement is characterized by the translationu(x, t) of the centroid of the cross-
sections. The deformation of the bar is the normal strainεx(x, t): the relative displacement of
two ”neighbouring” cross-sections. Assuming small displacements, its value is:

εx(x, t) =
∂u(x, t)

∂x
.

Since the prismatic bar has planar and homogeneous cross-sections, the relationship between
the internal stress (normal stress,σx(x, t)) and internal force (normal force,N(x, t)) is:

N(x, t) = σx(x, t)A,

whereA is the cross-sectional area. The linear elastic material response provides the material
equation (Hooke’s law):

σx(x, t) = Eεx(x, t),

whereE is the elastic (Young’s) modulus of the material. Summarizing the above kinematical,
equilibrium and material equations yield:

N(x, t) = EA
∂u(x, t)

∂x
. (2.1)
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2.1.1 Differential equation of motion

We derive the equation of motion for an elementary segment ofthe bar. Figure2.1 (b)
shows this small segment of length∆x between the coordinatesx andx+∆x. We assume∆x
to be sufficiently small, hence the change ofqn(x) and the acceleration∂2u(x, t)/∂t2 along∆x
can be neglected.

x∆

N(x+  x,t)∆q (x,t)
n q (x,t)

nN(x,t)

(a) (b)

ly

u(x,t)
x

Figure 2.1: Sketch of (a) a prismatic bar subjected to a longitudinal distributed loadqn(x, t) and (b) a bar
element of length∆x subjected to the internal forces and the distributed load. (The deformation of the bar

element is neglected due to the small displacements.)

We writeNewton’s second law of motion for this segment:

µ∆x
∂2u(x, t)

∂t2
= qn(x, t)∆x−N(x, t) +N(x+∆x, t). (2.2)

We write aTaylor expansion ofN(x, t) aroundx

N(x+∆x, t) = N(x, t) +
∂N(x, t)

∂x
∆x+O(∆x2)

and substitute it into Eq. (2.2):

µ∆x
∂2u(x, t)

∂t2
= qn(x, t)∆x−N(x, t) +N(x, t) +

∂N(x, t)

∂x
∆x+O(∆x2).

The symbolO(∆x2) means, that those parts are in the order of magnitude of∆x2. We simplify
the above equation as

µ∆x
∂2u(x, t)

∂t2
= qn(x, t)∆x+

∂N(x, t)

∂x
∆x+O(∆x2),

and divide both sides by∆x. If we take the limit∆x → 0 of both sides, then the term
O(∆x2)/∆x vanishes, resulting in:

µ
∂2u(x, t)

∂t2
= qn(x, t) +

∂N(x, t)

∂x
.

We substitute Eq. (2.1) into the above equation

µ
∂2u(x, t)

∂t2
= qn(x, t) + EA

∂2u(x, t)

∂x2
, (2.3)
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rearrange it, and introduce the new quantityc2n = EA/µ:

∂2u(x, t)

∂t2
− c2n

∂2u(x, t)

∂x2
=
qn(x, t)

µ
. (2.4)

Equation (2.4) is the differential equation of the longitudinal vibration of the prismatic bar. The
quantity

cn =

√
E

̺
(2.5)

is thevelocity of the travelling longitudinal waves.

2.1.2 Free longitudinal vibration

The solution of the differential equation of motion of a continuous system consists of two
parts. The complementary equation of (2.4) has the same left hand side, but the right hand side
is zero: it is ahomogeneousdifferential equation. The solution of this equation givesthe free
longitudinal vibration. Then a particular solution of thenon-homogeneousequation (2.4) can
also be obtained. The sum of these solutions (i.e. the homogeneous and the non-homogeneous)
is thecomplete solution, which must fulfill the initial conditions through the free parameters of
the homogeneous solution.

For longitudinal vibrations, we show only the solution of the homogeneous differential
equation

∂2u(x, t)

∂t2
− c2n

∂2u(x, t)

∂x2
= 0 , (2.6)

thus we deal only with the free vibration of the bar. There exists two methods for finding the
nontrivial solution (i.e.u(x, t) 6= 0) of Eq. (2.6):

• solution with standing waves,

• solution with travelling waves.

We will show the solution for a bar of lengthℓ with fixed-fixed ends (i.e. with boundary
conditionsu(0, t) = u(ℓ, t) = 0) using the standing-wave method first. In this case we separate
the variables and seek the solution of the form:

u(x, t) = û(x) (a cos (ω0t) + b sin (ω0t)) . (2.7)

We substitute the aboveAnsatzinto Eq. (2.6):
{
−ω2

0û(x)− c2n
d2û(x)

dx

}
(a cos(ω0t) + b sin(ω0t)) = 0.

The harmonic part(a cos(ω0t) + b sin(ω0t)) is not zero for all time instantt (unlessa = b = 0,
which is the trivial solutionu(x, t) = 0), so we have to solve the equation:

ω2
0û(x) + c2n

d2û(x)

dx2
= 0. (2.8)
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Now we assume the solution of Eq. (2.8) has the harmonic form:

û(x) = A sin

(
ψ0

ℓ
x

)
+ B cos

(
ψ0

ℓ
x

)
.

If we substitute the above formula and its second derivate with respect tox back into Eq. (2.8),
then we get

ω2
0û(x)− c2n

(
ψ0

ℓ

)2

û(x) = 0,

which results in the relationship:

ω0 = cn
ψ0

ℓ
.

The value ofω0, ψ0, and the ratio ofA toB depends on the boundary conditions.
In our example the bar is fixed at its both ends, thusu(0, t) = 0 → û(0) = 0 andu(ℓ, t) =

0 → û(ℓ) = 0, according to (2.7). Thereforêu(0) = 0 implies

û(0) = A sin

(
ψ0

ℓ
0

)
+ B cos

(
ψ0

ℓ
0

)
= 0 → B = 0,

and using this result on the other end-conditionû(ℓ) = 0 yields

û(ℓ) = A sin

(
ψ0

ℓ
ℓ

)
= 0 → sin (ψ0) = 0.

This second constraint holds in the trivial case (ψ0 = 0) and in the caseψ0j = jπ for any
positive integerj. So the shape of the bar during the free vibration will be the sum of sinusoidal
wave-functions. Different shapes exhibit different natural circular frequencies:

ω0j =
jπcn
ℓ

.

The solution of the free vibration is:

u(x, t) =
∞∑

j=1

sin
jπx

ℓ

(
aj cos

jπcnt

ℓ
+ bj sin

jπcnt

ℓ

)
, (2.9)

with infinitely many parametersaj andbj, which must be determined from the initial condi-
tions.

We note that using the trigonometric identities

sinα sin β =
cos(α− β)− cos(α + β)

2
, cosα cos β =

cos(α− β) + cos(α + β)

2

sinα cos β =
sin(α− β) + sin(α + β)

2

(2.10)
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we can reformulate (2.9) as

u(x, t) =
∞∑

j=1

aj
2

[
sin

{
jπ

ℓ
(x− cnt)

}
+ sin

{
jπ

ℓ
(x+ cnt)

}]

+
bj
2

[
cos

{
jπ

ℓ
(x− cnt)

}
− cos

{
jπ

ℓ
(x+ cnt)

}]

=
∞∑

j=1

aj
2
sin

{
jπ

ℓ
(x+ cnt)

}
− bj

2
cos

{
jπ

ℓ
(x+ cnt)

}

+
aj
2
sin

{
jπ

ℓ
(x− cnt)

}
+
bj
2
cos

{
jπ

ℓ
(x− cnt)

}
,

or, using (A.11), as

u(x, t) =
∞∑

j=1

√
a2j + b2j

2

[
sin

{
jπ

ℓ
(x+ cnt)− arccot

aj
bj

}

+cos

{
jπ

ℓ
(x− cnt)− arccot

bj
aj

}]
.

The above forms coincide with the outcome of thetravelling-wave method, discussed in details
in AppendixA.1.

2.1.3 Forced longitudinal vibration: kinematic loading

Let us study a bar fixed at the far end and vibrated at the starting end harmonically in time
following f(ωt). There is not any force load on the bar, thusqn(x, t) = 0 and we have to solve
(2.6) with boundary conditions

u(0, t) = f(ωt), u(ℓ, t) = 0. (2.11)

Assuming that the response of the bar is also harmonic in timewe can separate the spatial and
temporal variables as

u(x, t) = û(x)f(ωt).

The harmonic function is f(ωt) = cos(ωt)

In the case off(ωt) = cos(ωt) Eq. (2.6) becomes
{
−ω2û(x)− c2n

d2û(x)

dx2

}
cos(ωt) = 0,

yielding the solution

û(x) = A cos

(
ω

cn
x

)
+ B sin

(
ω

cn
x

)
.
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The constantsA andB are computed from the boundary conditions (2.11):

û(0) = A = 1,

û(ℓ) = cos

(
ω

cn
ℓ

)
+ B sin

(
ω

cn
ℓ

)
= 0 → B = − cot

(
ω

cn
ℓ

)
.

Therefore, the solution of the forced vibration is:

u(x, t) =

{
cos

(
ω

cn
x

)
− cot

(
ω

cn
ℓ

)
sin

(
ω

cn
x

)}
cos(ωt). (2.12)

This is the solution in a standing-wave form. However, we canagain use trigonometric
identities (2.10) to write a travelling-wave form:

u(x, t) = û(x) cos(ωt) =

{
A cos

(
ω

cn
x

)
+ B sin

(
ω

cn
x

)}
cos(ωt)

=
A

2

[
cos

{
ω

cn
(x− cnt)

}
+ cos

{
ω

cn
(x+ cnt)

}]

+
B

2

[
sin

{
ω

cn
(x− cnt)

}
+ sin

{
ω

cn
(x+ cnt)

}]

=
1

2

[
A cos

{
ω

cn
(x+ cnt)

}
+ B sin

{
ω

cn
(x+ cnt)

}]

+
1

2

[
A cos

{
ω

cn
(x− cnt)

}
+ B sin

{
ω

cn
(x− cnt)

}]
,

which, using the calculated constantsA andB yields

u(x, t) =
1

2

[
cos

{
ω

cn
(x+ cnt)

}
− cot

(
ω

cn
ℓ

)
sin

{
ω

cn
(x+ cnt)

}]

+
1

2

[
cos

{
ω

cn
(x− cnt)

}
− cot

(
ω

cn
ℓ

)
sin

{
ω

cn
(x− cnt)

}]
.

The above form can be compacted using the trigonometric identity (A.11):

u(x, t) =

√
1 + cot2

(
ω
cn
ℓ
)

2

[
− sin

{
ω

cn
(x− ℓ+ cnt)

}
− sin

{
ω

cn
(x− ℓ− cnt)

}]
. (2.13)

The harmonic function is f(ωt) = sin(ωt)

Now Eq. (2.6) is {
−ω2û(x)− c2n

d2û(x)

dx2

}
sin(ωt) = 0,

yielding again

û(x) = A cos

(
ω

cn
x

)
+ B sin

(
ω

cn
x

)
.
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The constantsA andB are computed from the boundary conditions (2.11):

û(0) = A = 1,

û(ℓ) = cos

(
ω

cn
ℓ

)
+ B sin

(
ω

cn
ℓ

)
= 0 → B = − cot

(
ω

cn
ℓ

)
.

Therefore, the solution of the forced vibration is:

u(x, t) =

{
cos

(
ω

cn
x

)
− cot

(
ω

cn
ℓ

)
sin

(
ω

cn
x

)}
sin(ωt). (2.14)

This is the solution in a standing-wave form. We can again usetrigonometric identities
(2.10) to rewrite a (general) travelling-wave form:

u(x, t) = û(x) sin(ωt) =

{
A cos

(
ω

cn
x

)
+ B sin

(
ω

cn
x

)}
sin(ωt)

=
A

2

[
− sin

{
ω

cn
(x− cnt)

}
+ sin

{
ω

cn
(x+ cnt)

}]

+
B

2

[
cos

{
ω

cn
(x− cnt)

}
− cos

{
ω

cn
(x+ cnt)

}]

=
1

2

[
−B cos

{
ω

cn
(x+ cnt)

}
+ A sin

{
ω

cn
(x+ cnt)

}]

+
1

2

[
B cos

{
ω

cn
(x− cnt)

}
− A sin

{
ω

cn
(x− cnt)

}]
,

which, using the appropriateA andB yields

u(x, t) =
1

2

[
cot

(
ω

cn
ℓ

)
cos

{
ω

cn
(x+ cnt)

}
+ sin

{
ω

cn
(x+ cnt)

}]

− 1

2

[
cot

(
ω

cn
ℓ

)
cos

{
ω

cn
(x− cnt)

}
+ sin

{
ω

cn
(x− cnt)

}]
.

The above form can be compacted using the trigonometric identity (A.10):

u(x, t) =

√
1 + cot2

(
ω
cn
ℓ
)

2

[
cos

{
ω

cn
(x− ℓ+ cnt)

}
− cos

{
ω

cn
(x− ℓ− cnt)

}]
. (2.15)

2.2 Free torsional vibration of prismatic shafts

In this section we discuss the torsional vibration of a straight shaft with rigid circular cross-
sections of radiusR. The length of the shaft isℓ, its mass per unit length isµ = ̺R2π. The
only displacement the cross-sections undergo is the rotationϕx(x, t) about the shaft axisx. The
twist κx(x, t) is the first derivative of the rotation with respect tox:

κx(x, t) =
∂ϕx(x, t)

∂x
. (2.16)
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This twist induces shear strain in the shaft. We assume a linear elastic material, so the torque
T (x, t) can be written as:

T (x, t) = GI0κx(x, t). (2.17)

HereG is the shear modulus of the material andI0 = R4π/2 is the polar inertia of the cross-
section with respect to the axis of rotationx.

We take a short segment∆x of the shaft at coordinatex, with the torque at both ends
T (x, t) andT (x +∆x, t), respectively. The theorem of angular momentum can be written for
this segment as:

T (x+∆x, t)− T (x, t) = Î0
∂2ϕx(x, t)

∂t2
. (2.18)

Here Î0 = (µ∆x)R2/2 is the kinetic inertia of the segment, and∂2ϕx(x, t)/∂t
2 is its angular

acceleration.
T (x+∆x, t) can be approximated by its Taylor series with respect tox:

T (x+∆x, t) = T (x, t) +
∂T (x, t)

∂x
∆x+O(∆x2).

Substituting this approximation into the equation of motion (2.18) we get:

∂T (x, t)

∂x
∆x+O(∆x2) =

(̺R2π∆x)R2

2

∂2ϕ(x, t)

∂t2
.

Now we substitute the material equation (2.17) and the kinematical equation (2.16) into the
above equation, and divide both sides by∆x, then calculate the limit as∆x → 0. A few
simplification results in:

G
∂2ϕx(x, t)

∂x2
= ̺

∂2ϕx(x, t)

∂t2
.

Introducing thevelocity of shear waves

cs =

√
G

̺
(2.19)

we can write the differential equation of the free torsionalvibration of prismatic shafts:

∂2ϕx(x, t)

∂t2
− c2s

∂2ϕx(x, t)

∂x2
= 0 . (2.20)

This is a PDE with similar structure as the PDE (2.6) of the free longitudinal vibration, so the
solution methods are the same.

2.3 Shear vibration of prismatic beams

In this section we analyse the planar vibration of a beam which is inextensional, unbendable,
but shearable. Considering small displacements the only deformation of the cross-sections of
the beam is the translationv(x, t) parallel to axisy (see Figure2.2(a)).
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x∆

q (x,t)
t

q (x,t)
t

V(x+  x,t)∆

l

(a) (b)

x

y v(x,t)

V(x,t) x

Figure 2.2: (a) Sketch of an inextensional, unbendable prismatic beam subjected to a transverse distributed load
qt(x, t). (b) A beam element of length∆x subjected to the internal forces and the distributed load.(Internal

bending moment is not indicated.)

The material is linearly elastic and homogeneous. Hence, according toHooke’s law, the
connection between the shear strainγxy and the shear stressτxy is:

τxy = Gγxy.

HereG is theshear modulusof the material which can be computed from theYoung’s modulus
E andPoisson’s ratioν as

G =
E

2(1 + ν)
.

Since thePoisson’s ratioν must be between0 and0.5, the shear modulus is between one-third
and one-half of theYoung’s modulus:G = E/3 ∼ E/2.

According to earlier studies, the distribution of shear stressτxy is constant along the width,
but quadratic along the height of the cross-section [2]. Therefore, the shear strainγxy is also
quadratic iny. That would violate the principle of planar cross-sections, so based onTimo-
shenko’s method [10], we introduce the effective shear areaAeff of the cross-section. The ratio
ks of the effective shear areaAeff to the areaA

ks =
Aeff

A

is called theshear correction factor. For instance,ks = 5/6 for a rectangular cross-section,
while ks = 0.9 for a circular shaft. In this manner, the elastic energy accumulating in a beam
element computed with the quadratic stress and strain distributions equals to the elastic energy
computed with constant strainγxy and stress

τxy = Gγxy

distributions. For small displacements the shear strainγxy of a beam element is:

γxy(x, t) =
∂v(x, t)

∂x
.

On any cross-section of the beam the resultant of the shear stressτxy must be equal to the
(internal) shear forceV (x, t), thus

V (x, t) = τxy(x, t)ksA.
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If we combine the above relationships, then the following equality is obtained:

V (x, t) = ksGA
∂v(x, t)

∂x
. (2.21)

HereksGA is theshear stiffnessof the beam.

2.3.1 Differential equation of motion

We write Newton’s second law of motion along directiony on a small beam element of
length∆x (see Figure2.2(b)):

qt(x, t)∆x− V (x, t) + V (x+∆x, t) = µ∆x
∂2v(x, t)

∂t2
. (2.22)

TheTaylor expansion of the shear forceV (x, t) aroundx is

V (x+∆x, t) = V (x, t) +
∂V (x, t)

∂x
∆x+O(∆x2). (2.23)

After substituting this expansion into Eq. (2.22) and doing some simplification we can write

qt(x, t)∆x+
∂V (x, t)

∂x
∆x+O(∆x2) = µ∆x

∂2v(x, t)

∂t2
.

Dividing both sides by∆x and taking∆x→ 0 leads to

qt(x, t) +
∂V (x, t)

∂x
= µ

∂2v(x, t)

∂t2
. (2.24)

Finally we substitute Eq. (2.21) in the above equality to obtain

qt(x, t) + ksGA
∂2v(x, t)

∂x2
= µ

∂2v(x, t)

∂t2
,

which is the second order partial differential equation of shear vibration of the unbendable
beam. If we introduce the velocity of shear waves

cs =

√
GA

µ
=

√
G

̺
, (2.25)

then PDE (2.24) divided byµ yields the simple form

∂2v(x, t)

∂t2
− ksc

2
s

∂2v(x, t)

∂x2
=
qt(x, t)

µ
. (2.26)

Formally it is the same PDE as (2.4), except for the coefficient here isksc2s instead ofc2n,
and that the unknown function is the vertical translationv(x, t) instead of the longitudinal
translationu(x, t) of the axis. Therefore, the solution of (2.26) follows identical derivation as
of the solution of (2.4). When pure shear vibration is needed in structural design isthe case
of the vibration of fixed-free shearable beams. It is often used to approximate the dynamical
behaviour of high buildings with rigid slabs and elastic columns. Hence we shortly study the
free shear vibration of a fixed-free beam.
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2.3.2 Free vibration of a fixed-free beam

The complementary part of (2.26) is the homogeneous second order PDE

∂2v(x, t)

∂t2
− ksc

2
s

∂2v(x, t)

∂x2
= 0, (2.27)

which governs the free shear vibration of the beam. Using theconcept of standing waves, we
assume that the solution of (2.27) is of the separated form

v(x, t) = v̂(x) · {a cos(ω0t) + b sin(ω0t)} . (2.28)

Substituting the above expression into (2.27) yields
{
−ω2

0 v̂(x)− ksc
2
s

d2v̂(x)

dx2

}
· {a cos(ω0t) + b sin(ω0t)} ,

which is fulfilled for any time instantt if the second order ODE

ksc
2
s

d2v̂(x)

dx2
+ ω2

0 v̂(x) = 0 (2.29)

holds. From previous mathematical studies [1], the above ODE has the solution of

v̂(x) = A cos

(
ω0√
kscs

x

)
+ B sin

(
ω0√
kscs

x

)
. (2.30)

Here the coefficientsA andB can be computed from twoboundary conditionsof the beam.
For the studied fixed-free beam we can write the following boundary conditions:

v(0, t) = 0, V (ℓ, t) = ksGA
∂v(x, t)

∂x

∣∣
x=ℓ

= 0, (2.31)

i.e. the translation of the fixed end of the beam is restrictedand the shear force at the free end
of the beam is zero. It can be easily seen from Eq. (2.27) that

v̂(0) = 0 implies v(0, t) = 0 and

dv̂(x)

dx

∣∣
x=ℓ

= 0 implies
∂v(x, t)

∂x

∣∣
x=ℓ

= 0.

It follows from the above statements, Eq. (2.30), and Eq. (2.31) that

v̂(0) = A cos (0) + B sin (0) = 0

→ A = 0,

dv̂(x)

dx

∣∣
x=ℓ

=
ω0√
kscs

{
−A sin

(
ω0√
kscs

ℓ

)
+ B cos

(
ω0√
kscs

ℓ

)}
= 0

→ B cos

(
ω0√
kscs

ℓ

)
= 0.
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The last equality fulfills either ifB = 0 (which corresponds to a straight beam, no vibration)
or if the natural circular frequency equals any of the following values:

ω0r =

√
kscs
ℓ

{
rπ − π

2

}
r = 1, 2, . . . ,∞. (2.32)

Thus there are infinitely many natural circular frequencies, ω0r, of the shear vibration of un-
bendable beams. These frequencies form an arithmetic sequence with common difference
π
√
kscs/ℓ. There is a corresponding shape functions for each natural frequency:

v̂r(x) = Br sin

({r − 1/2}π
ℓ

x

)
. (2.33)

Finally, the shear vibration of a prismatic beam is the following combination of the natural
modes:

v(x, t) =
∞∑

r=1

Br sin

({r − 1/2}π
ℓ

x

)

·
{
ar cos

(√
kscs

{r − 1/2}π
ℓ

t

)
+ br sin

(√
kscs

{r − 1/2}π
ℓ

t

)}
.

(2.34)

Problem 2.3.1(Elastically clamped, shearable column). Estimate the first natural circular frequency of a in-
extensional, unbendable column of rectangular cross-section! The length of the column isℓ, its mass per unit
length isµ. The area of the cross-section isA, the shear modulus of the material isG. The structure is elastically
clamped at the bottom with a rotational spring of stiffnesss, and it is free at the top end, as shown in Figure2.3
(a).

GA
µ

GA
µ

φ
..

M =0 I0

8GA

8s

(a)

s

(c)

l

(b)

φ
µ

l
l

l

s 0M =s  φ

Figure 2.3: (a) Model of an inextensional and unbendable beam which is elastically clamped at one end and
free at the other end. (b) The case when the rotational springis rigid. (c) The case when the beam is totally

rigid.
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Solution. We have not derived the natural frequencies of a beam with theboundary conditions given in this
problem. Therefore we make use of one of the summation theorems introduced in Section1.4 in order to ap-
proximate the first frequency. Since the structure becomes statically overdeterminate if either the spring stiffness
s or the shear stiffnessGA is set to zero, we need to apply the Föppl-Papkovics’ theorem (see Subsec.1.4.3).
First we stiffen the rotational springs → ∞ as shown in Figure2.3 (b), and compute the natural frequencyω1

from Eq. (2.32) evaluated atr = 1:

ω1 =

√
kscs
ℓ

π

2
=

√
ks
GA

µ

π

2ℓ
.

Here the shear correction factorks = 5/6, since the cross-section of the beam is rectangular.
Next we stiffen the beam, i.e.GA → ∞, and compute the natural frequencyω2 of a rigid beam of length

ℓ and massm = µℓ, supported by a rotational spring at one end. That is shown inFigure2.3(c). We write the
theorem of angular momentum for the rigid beam:

µℓ3

3
φ̈(t) = −ρφ(t).

This second order linear ODE has a solution

φ(t) = A cos

(√
3ρ

µℓ3
t

)
+B sin

(√
3ρ

µℓ3
t

)
.

from which the natural frequency can be read out:

ω2 =

√
3ρ

µℓ3
.

According to Eq. (1.76), the first natural circular frequency of the original structure is

1

ω2
01

≤ 1

ω2
1

+
1

ω2
2

→ 1

ω2
01

≤ µ
4ℓ2

ksGAπ2
+ µ

ℓ3

3s
,

ω01 ≥ 1√
µ

{
4ℓ2

ksGAπ2
+
ℓ3

3s

} .

2.4 Transverse vibration of prismatic beams

The cross-sections of the studied beam are reflection symmetric to axisy. There is a trans-
verse distributed loadqt(x, t) acting in the plane of symmetryx − y of the beam, as shown in
Figure2.4 (a). If we restrict flexural-torsional buckling, then theseconditions imply that the
beam undergoes planar deformation: the motion of the beam axis occurs in the planex− y.

The beam is assumed to beinextensible and unshearable. The curvev(x, t) describes the
deflection of the beam axis alongy at some positionx and timet. Since the beam is un-
shearable, the rotationα(x, t) of the cross-sections about axisz equals the slope of the axis:
α(x, t) = ∂v(x, t)/∂x. The only deformation which is not constrained is the curvatureκ(x, t)
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of the axis of the beam:

κ(x, t) =
−∂

2v(x, t)

∂x2(
1 +

(
∂v(x, t)

∂x

)2
)3/2

.

TheBernoulli-Eulerconstitutive equation says that the (internal) bending momentM(x, t) is
linear in the change inκ(x, t), i.e.

M(x, t) = EIκ(x, t).

HereE is theYoung’smodulus of the isotropic material,I is the second moment of the cross-
section with respect toz, and their productEI is called the bending stiffness of the beam,
which is constant alongx. If the deflectionv(x, t) is small, and so is the slope∂v(x, t)/∂x,
then we can make the following approximation:

M(x, t) ≈ −EI ∂
2v(x, t)

∂x2
. (2.35)

Besides, in the case of small displacements, the transverse load causes only transverse transla-
tion v(x, t) of the axis, so no translation occurs along axisx.

2.4.1 The equation of transverse vibration

Let us cut the beam at two nearby cross-sectionsx = x0 andx = x0 + ∆x, so that we
obtain abeam elementof length∆x. We substitute the mechanical effect of the material by
an (internal) normal forceN , a shear forceV , and a bending momentM at x0, and by an
(internal) normal forceN +∆N , a shear forceV +∆V , and a bending momentM +∆M at
x0 +∆x. This beam element is shown in Figure2.4(b). The acceleration of the center of mass
of the beam element is approximated by∂2v(x, t)/∂t2 (evaluated atx = x0). The resultant of
the distributed loadqt(x, t) is approximatelyqt(x0, t)∆x. The smaller∆x is, the more precise
these approximations are.

q (x,t)
t

q (x,t)
t

l x∆

V(x+  x,t)∆

M(x+  x,t) ∆

x x

y v(x,t)

(b)

M(x,t)

V(x,t)

(a)

Figure 2.4: Sketch of (a) a prismatic beam subjected to a transverse, distributed loadqt(x, t) and (b) a beam
element of length∆x subjected to the internal forces and the distributed load. (The normal forces are not

indicated, and the deformation of the beam element is neglected due to small displacements.)
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Now we writeNewton’s second law of motionin the vertical direction:

V (x+∆x, t)− V (x, t) + qt(x, t)∆x = µ∆x
∂2v(x, t)

∂t2
, (2.36)

which is evaluated atx = x0. TheTaylor expansion ofV (x, t) with respect tox aroundx0 is:

V (x+∆x, t) = V (x, t) +
∂V (x, t)

∂x
∆x+

∂2V (x, t)

∂x2
∆x2 + . . .

= V (x, t) +
∂V (x, t)

∂x
∆x+O(∆x2)

(2.37)

If we substitute (2.37) into (2.36), divide it by ∆x and apply∆x → 0, then the following
formula is obtained:

∂V (x, t)

∂x
+ qt(x, t) = µ

∂2v(x, t)

∂t2
. (2.38)

Now we write thetheorem of angular momentum. We approximate the moment of inertia
of the beam element with

∫

(V )

y2dm =

∫

(A)

y2̺dA∆x = I̺∆x =
I

A
µ∆x = i20µ∆x,

and its rotation with∂v(x, t)/∂x. The quantityi0 =
√
I/A is called the radius of gyration.

The smaller∆x is, the more precise these approximations are, again. The theorem of angular
momentum states that the angular momentum of the beam element equals the moment exerted
by the (internal and external) forces and couples about the centre of mass, thus

−M(x+∆x, t) +M(x, t) + V (x, t)
∆x

2
+ V (x+∆x, t)

∆x

2
= i20µ∆x

∂3v(x, t)

∂x∂t2
. (2.39)

Now we substitute (2.37) and theTaylor expansion ofM(x+∆x, t) in (2.39), divide the result
by∆x and tend∆x to zero. The result is

− ∂M(x, t)

∂x
+ V (x, t) = i20µ

∂3v(x, t)

∂x∂t2
. (2.40)

Differentiating the above equation partially with respecttox and combining it with Eqs. (2.35),
(2.38) yields the fourth order, linear, inhomogeneous partial differential equation (PDE):

µ

(
∂2v(x, t)

∂t2
− i20

∂4v(x, t)

∂x2∂t2

)
+ EI

∂4v(x, t)

∂x4
= qt(x, t) . (2.41)

The above PDE describes the vibration of the beam axis causedby an arbitrary forcingqt(x, t).
It is often reasonable to neglect the effect of rotary inertia (for example wheni0 is small).

Then (2.41) simplifies to

µ
∂2v(x, t)

∂t2
+ EI

∂4v(x, t)

∂x4
= qt(x, t) . (2.42)
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We restrict our studies to (2.42). In order to solve it, we need to define boundary and initial
conditions. Let us start with the boundary conditions. We discuss only some well known type
of external constraints.

If the beam of lengthℓ is supported by a fixed hinge and a roller at its ends (calledpinned-
pinnedhereafter, shown in Figure2.5(a)), then the deflectionv(x, t) and the bending moment
M(x, t) = −EI ∂2v(x, t)/∂x2 are zero at both ends for any timet. SinceEI is not zero, these
conditions can be written as

v(x, t)
∣∣
x=0

= 0,
∂2v(x, t)

∂x2

∣∣∣
x=0

= 0, v(x, t)
∣∣
x=ℓ

= 0,
∂2v(x, t)

∂x2

∣∣∣
x=ℓ

= 0. (2.43)

If the beam is clamped at one end and free at the other one, thenit is calledfixed-free, as
shown in Figure2.5 (b). In this case the deflectionv(x, t) and the slopeα = ∂v(x, t)/∂x are
zero at the clamped end, while the bending momentM(x, t) and the shear forceV (x, t) =
−EI ∂3v(x, t)/∂x3 (which comes from (2.35), (2.40), neglecting the rotary inertia) are zero at
the free end. These conditions are essentially:

v(x, t)
∣∣
x=0

= 0,
∂v(x, t)

∂x

∣∣∣
x=0

= 0,
∂2v(x, t)

∂x2

∣∣∣
x=ℓ

= 0,
∂3v(x, t)

∂x3

∣∣∣
x=ℓ

= 0. (2.44)

The beam can be clamped at one end and supported by a roller at the other one, which is
calledfixed-pinned, as visualised in Figure2.5 (c). In this case the deflectionv(x, t) are zero
at both ends, the slopeα = ∂v(x, t)/∂x is zero at the clamped end, and the bending moment
M(x, t) is zero at the pinned end. These conditions yield

v(x, t)
∣∣
x=0

= 0,
∂v(x, t)

∂x

∣∣∣
x=0

= 0, v(x, t)
∣∣
x=ℓ

= 0,
∂2v(x, t)

∂x2

∣∣∣
x=ℓ

= 0. (2.45)

The beam can be clamped at both ends, calledfixed-fixed, shown in Figure2.5 (d). In this
case the deflectionv(x, t) and the slopeα = ∂v(x, t)/∂x are zero at both ends, thus

v(x, t)
∣∣
x=0

= 0,
∂v(x, t)

∂x

∣∣∣
x=0

= 0, v(x, t)
∣∣
x=ℓ

= 0,
∂v(x, t)

∂x

∣∣∣
x=ℓ

= 0. (2.46)

2.4.2 Free vibration of prismatic beams

The simplest form of Eq. (2.42) is whenqt(x, t) = 0, which is also the complementary
equation of (2.42) for anyqt(x, t) 6= 0 exciting force. It is physically the unforced case, thefree
vibration of the beam. Thus the homogeneous, linear partial differential equation of the free
vibration is

EI
∂4v(x, t)

∂x4
+ µ

∂2v(x, t)

∂t2
= 0 . (2.47)

We could divide the above equation byµ and write

i20c
2
n

∂4v(x, t)

∂x4
+
∂2v(x, t)

∂t2
= 0,
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α (0,t)=0

α (0,t)=0v(0,t)=0

M(0,t)=0

v(l,t)=0

M(l,t)=0

v(l,t)=0

M(l,t)=0

α (0,t)=0

v(l,t)=0

α (l,t)=0

y y

x

M(l,t)=0

x x

x

v(x,t)
v(x,t)

v(x,t)v(x,t)

v(0,t)=0

v(0,t)=0

V(l,t)=0

v(0,t)=0

y y
(a)

(b)

(c)

(d)

Figure 2.5: Common types of supporting modes: (a) pinned-pinned, (b) fixed-free, (c) fixed-pinned, and (d)
fixed-fixed beams. The corresponding boundary conditions are indicated at the end points.

wherei0 =
√
I/A is the radius of gyration andcn =

√
E/̺ is the velocity of the travelling

longitudinal waves, which was introduced already in Subsec. 2.1.1(see Eq. (2.5)).
We search for the solution of PDE (2.47) using the method ofseparation of variables. That

means that we attempt to find a solution of (2.47) as a sum of products of functions in which
the dependence ofv(x, t) onx andt is separated:

v(x, t) = v̂(x) · {a cos(ω0t) + b sin(ω0t)} . (2.48)

It implies that the deflection of all the points of the beam axis varies harmonically with timet.
Hereω0 is thenatural circular frequencyof the free vibration, while the coefficientsa andb
come from initial conditions. It is clear that with the aboveformalism

∂4v(x, t)

∂x4
=

d4v̂(x)

dx4
· {a cos(ω0t) + b sin(ω0t)} ,

∂2v(x, t)

∂t2
= v̂(x) ·

{
−aω2

0 sin(ω0t)− bω2
0 cos(ω0t)

}
.

Substituting (2.48) into (2.47) yields
{
EI

d4v̂(x)

dx4
− ω2

0µv̂(x)

}
· {a cos(ω0t) + b sin(ω0t)} = 0.

The above equation is fulfilled for any time instantt if the following ordinary differential equa-
tion (ODE) holds:

EI
d4v̂(x)

dx4
− ω2

0µv̂(x) = 0. (2.49)

The solution of the above linear, homogeneous ODE (2.49) is of the form

v̂(x) = A cos

(
λ0
ℓ
x

)
+ B sin

(
λ0
ℓ
x

)
+ C cosh

(
λ0
ℓ
x

)
+D sinh

(
λ0
ℓ
x

)
, (2.50)
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where we introduced the dimensionless natural frequency

λ0 = ℓ
4

√
ω2
0µ

EI
.

For the computations ofλ0, and of the coefficientsA,B,C,D, we need to take boundary con-
ditions into account. Here we discuss only the case of the pinned-pinned beam.

The case of the pinned-pinned beam

It is a consequence of (2.48) that

dnv̂(x)

dxn
= 0 → ∂nv(x, t)

∂xn
= 0, n = 0, 1, 2, . . .

The boundary conditions of the pinned-pinned beam are givenby (2.43). Thus we need to
express the second derivative (n = 2) of (2.50) with respect tox:

d2v̂(x)

dx2
= =

λ20
ℓ2

{
−A cos

(
λ0
ℓ
x

)
−B sin

(
λ0
ℓ
x

)
+ C cosh

(
λ0
ℓ
x

)
+D sinh

(
λ0
ℓ
x

)}
.

We substitute (2.50) and the above expression into (2.43) and write the appropriate boundary
conditions in the compact matrix form

F(λ0) · c =



1 0 1 0

−λ
2
0

ℓ2
0

λ20
ℓ2

0

cos(λ0r) sin(λ0) cosh(λ0) sinh(λ0)

−λ
2
0

ℓ2
cos(λ0) −λ

2
0

ℓ2
sin(λ0)

λ20
ℓ2

cosh(λ0)
λ20
ℓ2

sinh(λ0)



·




A
B
C
D


 = 0.

(2.51)

HereF(λ0) is called thefrequency matrixandc stores the coefficients of (2.50). The equation
F(λ0) · c = 0 is satisfied for nontrivialc 6= 0 if the determinant ofF(λ0)

det (F(λ0)) = −4
λ0
ℓ
sin(λ0) sinh(λ0)

is zero, thus either ifλ0 = 0, or if sin(λ0) = 0, or if sinh(λ0) = 0. The trivial solution,
λ0 = 0, impliesv(x, t) ≡ 0, the steady state solution, when there is no vibration. The nontrivial
solutions areλ0r = rπ, r = 1, 2, . . . ,∞. There is a countable infinity of such solutions, from
which therth natural circular frequency of the free transverse vibration of the pinned-pinned
beam can be obtained:

ω0r =
r2π2

ℓ2

√
EI

µ
r = 1, 2, . . . ,∞. (2.52)
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The coefficientsAr, Br, Cr, Dr are derived from back substitution ofλ0r = rπ into (2.51):

F(rπ) · cr =




1 0 1 0

−r
2π2

ℓ2
0

r2π2

ℓ2
0

{−1}r 0 cosh(rπ) sinh(rπ)
r2π2

ℓ2
{−1}r+1 0

r2π2

ℓ2
cosh(rπ)

r2π2

ℓ2
sinh(rπ)



·




Ar

Br

Cr

Dr


 = 0.

From the1st and the2nd equations we get

Ar + Cr = 0, −Ar + Cr = 0, → Ar = Cr = 0.

From the3rd equationDr = 0. Sincedet(F(rπ)) = 0, the4th equation is linearly dependent.
Therefore the coefficientBr can be chosen arbitrary. Finally, therth shape functionof the free
transverse vibration is

v̂r(x) = Br sin
(rπ
ℓ
x
)
. (2.53)

The shape functions areorthogonal, which means that

ℓ∫

0

v̂p(x)v̂r(x) dx =

ℓ∫

0

Bp sin
(pπ
ℓ
x
)
Br sin

(rπ
ℓ
x
)
dx

=





Bp Br

[
sin( {p−r}π

ℓ
x)

2
{p−r}π

ℓ

− sin( {p+r}π
ℓ

x)
2
{p+r}π

ℓ

]ℓ

0

= 0, if p 6= r

B2
r

[
x−sin( 2rπ

ℓ
x)/( 2rπ

ℓ )
2

]ℓ

0

= B2
r

ℓ

2
, if p = r.

(2.54)

It is often convenient to normalise the shape functions to the mass of the beam, i.e. to satisfy

µ

ℓ∫

0

v̂r(x)v̂r(x) dx = 1. (2.55)

This allows us to determine a specific value forBr using Eqs. (2.54), (2.55):

µ

ℓ∫

0

v̂r(x)v̂r(x) dx = µB2
r

ℓ

2
= 1 → Br =

√
2

µℓ
.

Thus therth normalised (modal) shape functionof the pinned-pinned beam is

v̂r(x) =

√
2

µℓ
sin
(rπ
ℓ
x
)
. (2.56)

The solution of (2.47) is expressed as a combination of the normalised shape functions:

v(x, t) =

√
2

µℓ

∞∑

r=1

sin
(rπ
ℓ
x
)
· {ar cos(ω0rt) + br sin(ω0rt)} . (2.57)
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The coefficientsar andbr can be determined frominitial conditions. Let us assume that the
deflection of the beam at timet = 0

v(x, 0) =

√
2

µℓ

∞∑

r=1

sin
(rπ
ℓ
x
)
· ar

and the velocity of each point at timet = 0

v̇(x, 0) =

√
2

µℓ

∞∑

r=1

sin
(rπ
ℓ
x
)
· brω0r

are given functions (fulfilling the boundary conditions). Thus these functionsv(x, 0) and
v̇(x, 0) can be written as purely sineFourier series. Now we multiply the above equations
by thepth normalised shape function̂vp(x), integrate the result from0 to ℓ with respect tox,
and apply the orthogonality (2.54):

ℓ∫

0

v(x, 0)v̂p(x) dx =

ℓ∫

0

v(x, 0)

√
2

µℓ
sin
(pπ
ℓ
x
)
dx =

2

µℓ
ap

ℓ∫

0

sin2
(pπ
ℓ
x
)
dx =

ap
µ
,

ℓ∫

0

v̇(x, 0)v̂p(x) dx =

ℓ∫

0

v̇(x, 0)

√
2

µℓ
sin
(pπ
ℓ
x
)
dx =

2

µℓ
bpω0p

ℓ∫

0

sin2
(pπ
ℓ
x
)
dx =

bpω0p

µ
.

From the above formula we can extract the coefficientsap andbp from theknowninitial deflec-
tion functionv(x, 0) and initial velocity functionv̇(x, 0) of the beam axis as

ap =

√
2µ

ℓ

ℓ∫

0

v(x, 0) sin
(pπ
ℓ
x
)
dx,

bp =
1

ω0r

√
2µ

ℓ

ℓ∫

0

v̇(x, 0) sin
(pπ
ℓ
x
)
dx.

(2.58)

It can be shown that the orthogonality of the shape functionsare a general property. Thus

µ

ℓ∫

0

v̂p(x)v̂r(x) = δpr (2.59)

holds for the normalised shape functions in case of other types of boundary conditions, too.
Here the symbolδpr is theKroneckerdelta, which equals to one ifp = r and zero otherwise.
Moreover, the following equality could be derived for arbitrary boundary conditions:

EI

ℓ∫

0

d4v̂p(x)

dx4
v̂r(x) dx = ω2

0rδpr, (2.60)
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where, again,̂vr(x) is therth normalised (modal) shape function. For the pinned-pinned beam
it is simple to prove the above formula:

EI

ℓ∫

0

d4v̂p(x)

dx4
v̂r(x) dx = EI

p4π4

ℓ4

ℓ∫

0

v̂p(x)v̂r(x) dx =

=





EI
p4π4

ℓ4
· 0 = 0 if p 6= r

EI
p4π4

ℓ4
· 1
µ

= ω2
0p if p = r.

The effect of axial compression on the natural frequencies

During the examination of the free vibration of the prismatic beam, we neglected the effect
of the normal force. However, if anaxial compressionP acts at the ends of the beam, and the
deflection of the originally straight axis is taken into account, an additional momentP∆v(x, t)
is exerted on the beam element, as indicated in Figure2.6 (a) and (b). Therefore, the left hand
side of (2.39) must be appended byP∆v(x, t) to deal with such an effect. Then, instead of
(2.47), the following equation can be derived for the free vibration of the axially compressed
beam:

EI
∂4v(x, t)

∂x4
+ P

∂2v(x, t)

∂x2
+ µ

∂2v(x, t)

∂t2
= 0 . (2.61)

(Here we neglected again the effect of rotary inertia.)
Separating the variables as in (2.48), the equation

∑

r

{
EI

d4v̂r(x)

dx4
+ P

d2v̂r(x)

dx2
− ω2

0rµ
d2v̂r(x)

dt2

}
· {ar cos(ω0rt) + br sin(ω0rt)} = 0

must be satisfied at any timet. Without going into details of the derivation (which follows
a very similar procedure as in the previous case), we give theformula of the natural circular
frequencies of the pinned-pinned prismatic beam subjectedto an axial compressionP :

ω̂0r = ω0r

√
1− P

P cr
r

r = 1, 2, . . . ,∞. (2.62)

Hereω0r is (2.52) and therth (Euler) critical loadP cr
r of the pinned-pinned beam is known

from earlier studies:

P cr
r =

EIr2π2

ℓ2
. (2.63)

The constant axial compression thusdecreasesthe natural circular frequencies. At the limit
whenP = P cr

1 ω01 becomes zero, thus the first mode of natural vibration about the original,
straight state vanishes, and the beambuckles. The effect of an axialtensionis the opposite, it
increasesthe natural circular frequencies. Just think of a guitar string: the more it is stretched,
the “faster” it vibrates if twanged slightly.
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The shape functions are not infected by the axial tension/compression, hence they are iden-
tical to (2.53).

Problem 2.4.1(On the natural frequencies). There is a beam of lengthℓ = 12m, total massm = 6 t, and
bending momentEI = 200000 kNm2 given. Determine the first three natural circular frequencies and the
corresponding normalised modal shape functions of the beam! How the first frequency is affected by a constant
normal forceP = 2 · 107 N?

Solution. First we exchange the given data into SI units and compute themass per unit lengthµ: EI =
2 · 109 Nm2, µ = m/ℓ = 500 kg/m. The natural circular frequencies can be computed from(2.52):

ω01 =
π2

ℓ2

√
EI

µ
=

π2

144

√
2 · 109
500

= 137.08 rad/s,

ω02 =
4π2

ℓ2

√
EI

µ
=

4π2

144

√
2 · 109
500

= 22ω01 = 548.31 rad/s,

ω03 =
9π2

ℓ2

√
EI

µ
=

9π2

144

√
2 · 109
500

= 32ω01 = 1233.70 rad/s.

The normalised shape functions are from (2.56):

v̂1(x) =

√
2

µℓ
sin
(π
ℓ
x
)
=

√
2

500 · 12 sin
( π
12
x
)
= 0.01826 sin (0.2618x) ,

v̂2(x) =

√
2

µℓ
sin

(
2π

ℓ
x

)
=

√
2

500 · 12 sin

(
3π

12
x

)
= 0.01826 sin (0.5236x) ,

v̂3(x) =

√
2

µℓ
sin

(
3π

ℓ
x

)
=

√
2

500 · 12 sin

(
2π

12
x

)
= 0.01826 sin (0.7854x) .

Note, that the argument of function sine is in radian!
For the computation of the effect of the axial compressionP = 2 ·107 N, on the natural circular frequencies

first we need to calculate the critical loads from (2.63):

P cr
1 =

EIπ2

ℓ2
= 0.06845EI = 13.71 · 107 N,

P cr
2 =

EI4π2

ℓ2
= 0.2742EI = 54.83 · 107 N,

P cr
3 =

EI9π2

ℓ2
= 0.6169EI = 123.37 · 107 N.

Since the given axial compressionP is smaller than the lowest critical loadP cr
1 , there exists a harmonic free

vibration around the straight equilibrium position of the beam. The first three natural circular frequencies of
this harmonic oscillation are computed using Eq. (2.62):

ω̂01 = ω01

√
1− P

P cr
1

= 137.08 · 0.9242 = 126.69 rad/s,

ω̂02 = ω02

√
1− P

P cr
2

= 548.31 · 0.9816 = 538.22 rad/s,

ω̂03 = ω03

√
1− P

P cr
3

= 1233.70 · 0.9919 = 1223.71 rad/s.

68

by Németh & Kocsis



CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

Notice, that the axial compression has a smaller effect on the higher natural frequencies. IfP equals to the1st
critical load, then̂ω01 vanishes, and ifP is further increased, then̂ω01 becomes a complex number: there is no
harmonic vibration about the stress-free straight state ofthe beam any more, a buckling occurs atP cr

1 and the
stability of the beam is lost.

Exercise2.4.1. Estimate the first natural circular frequency of the beam given in Problem2.4.1with and addi-
tional lumped massml = 2 t at the midspan!

Effect of elastic support on the natural frequencies

If the beam iscontinuously supportedby elastic springs of stiffnesss, then a transverse load
proportional to the deflection

qt(x, t) = −sv(x, t)
is exerted to the beam, as sketched in Figure2.6 (c) and (d). The dynamical equation of the
elastically supported prismatic beam can be obtained by substituting this load into (2.41):

EI
∂4v(x, t)

∂x4
+ sv(x, t) + µ

∂2v(x, t)

∂t2
= 0 . (2.64)

Without going into details of the derivation, we give the natural circular frequencies of the free
vibration of the beam laying on a continuous elastic support:

ω̌0r = ω0r

√
1 + s

ℓ4

EIr4π4
, (2.65)

whereω0r is (2.52). Thus the elastic foundationincreasesthe natural frequencies.
The shape functions are not infected by the continuous elastic supports either, so they are

the same as (2.53).

Rayleigh’s method for estimating natural frequencies

Since we neglected the damping due to internal friction of the elastic body, thetotal me-
chanical energyT (t) + U(t) is preservedduring the free vibration

T (t) + U(t) = constant. (2.66)

Thekinetic energyT (t) of the prismatic beam expressed with the modal shape functions is

T (t) =
1

2

ℓ∫

0

µ

{
∂v(x, t)

∂t

}2

dx =
µ

2

ℓ∫

0

{
∑

r

v̂r(x) · ω0rdr cos(ω0rt− φr)

}2

dx.

69

by Németh & Kocsis



CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

l l
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Figure 2.6: Sketch of (a) a prismatic beam subjected to an axial compressive forceP and (b) a beam element of
length∆x. (The deformed shape of the beam element is shown, but only the internal normal forceN = −P is
indicated, the shear force and bending moment are not, they are the same as in (d).) (c) A prismatic beam on an

elastic foundation of stiffnesss and (d) a beam element of length∆x of this case. Deformation of the beam
element is visualised in (b) but not in (d).

(Here we used (2.48), but rewrote the harmonic termar cos(ω0rt)+br cos(ω0rt) asdr sin(ω0rt−
φr).) Thepotential energyU(t) is

U(t) =
1

2

ℓ∫

0

EI

{
∂2v(x, t)

∂x2

}2

dx =
EI

2

ℓ∫

0

{
∑

r

d2v̂r(x)

dx2
· dr sin(ω0rt− φr)

}2

dx.

Since the modal shape functionsv̂r(x) are orthogonal, if we extract the square of the sum-
mation in the above equations, then the definite integrals ofthe mixed termŝvp(x) · v̂r(x) (and
also d2v̂p(x)/ dx

2 · d2v̂r(x)/ dx
2) vanish forp 6= r, therefore

T (t) =
∑

r

Tr(t) =
µ

2

∑

r

ω2
0rd

2
r cos

2(ω0rt− φr)

ℓ∫

0

v̂2r(x) dx

and

U(t) =
∑

r

Ur(t) =
EI

2

∑

r

d2r sin
2(ω0rt− φr)

ℓ∫

0

{
d2v̂r(x)

dx2

}2

dx.

Therefore, ifTr(t) + Ur(t) = constant fulfils for each independent moder, then it implies
that Eq. (2.66) holds. Let us use the first modal shape function

T1(t) + U1(t) =
µω2

01

2
d21 cos

2(ω01t− φ1)

ℓ∫

0

v̂21(x)
2 dx

+
EI

2
d21 sin

2(ω01t− φ1)

ℓ∫

0

{
d2v̂1(x)

dx2

}2

dx.
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Now, whencos(ω01t−φ1) = 1, thenT1 is maximal andU1 is zero, while whensin(ω01t−φ1) =
1, thenT1 is zero andU1 is maximal. (The former case belongs to the straight state ofthe beam,
when its curvature changes, and the velocity is maximal, while the latter case belongs to the
state when the beam has the largest deflection and stops: all the points of the axis has zero
velocity at that moment.) Therefore, the following equality holds for the first mode for these
two limit states:

Tmax
1 + 0 = 0 + Umax

1 →

µ

2
ω2
01d

2
1

ℓ∫

0

v̂21(x) dx =
EI

2
d21

ℓ∫

0

{
d2v̂1(x)

dx2

}2

dx,

which allows us to express the first natural circular frequency as

ω01 =

√
EI

µ

√√√√√√√√

ℓ∫
0

{
d2v̂1(x)

dx2

}2

dx

ℓ∫
0

v̂21(x) dx

. (2.67)

If the first modal shape function̂v1(x) is not known, but estimated, then the above formula
gives anupper bound solutionfor ω01. The assumption for̂v1(x) can be based on a polynomial
of degreen, if n boundary condition can be written for the beam. An example isshown in the
following problem.

Problem 2.4.2(Applying Rayleigh’s method for transverse vibrations). Estimate the first natural circular fre-
quency of a fixed-free beam of lengthℓ = 12m, total massm = 6 t, and bending stiffnessEI = 200000 kNm2.

Solution. Since we can write four boundary conditions for the fixed-pinned beam, as it is given by Eq. (2.44),
and also indicated in Figure2.5 (b), we use the following fourth order polynomial with four unknown coeffi-
cients for the estimation of the first shape function:

v̂1(x) ≈ p(x) = x4 + a3x
3 + a2x

2 + a1x
1 + a0.

We need the first, second, and third derivatives ofp(x) with respect tox:

dp(x)

dx
= 4x3 + 3a3x

2 + 2a2x+ a1,

d2p(x)

dx2
= 12x2 + 6a3x+ 2a2,

d3p(x)

dx3
= 24x+ 6a3.

Using the boundary conditions given by (2.44) the following equations must be solved for the coefficients
a0, a1, a2, a3:

v̂1(0) = 0 → 04 + a3 · 03 + a2 · 02 + a1 · 01 + a0 = 0 → a0 = 0,

dv̂1(x)

dx

∣∣∣
x=0

= 0 → 4 · 03 + 3a3 · 02 + 2a2 · 0 + a1 = 0 → a1 = 0,

d2v̂1(x)

dx2

∣∣∣
x=ℓ

= 0 → 12ℓ2 + 6a3ℓ+ 2a2 = 0,

d3v̂1(x)

dx3

∣∣∣
x=ℓ

= 0 → 24ℓ+ 6a3 = 0.
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The last two equations imply thata2 = 6ℓ2 anda3 = −4ℓ. Thus the approximated shape function is

v̂1,ap(x) = x4 − 4ℓx3 + 6ℓ2x2.

The approximated first natural circular frequency of the beam is then

ω01,ap =

√
EI

µ

√√√√√√√√

ℓ∫
0

{
d2v̂1,ap(x)

dx2

}2

dx

ℓ∫
0

v̂21,ap(x) dx

=

√
EI

µ

√√√√√√√√

ℓ∫
0

{12x2 − 24ℓx+ 12ℓ2}2 dx

ℓ∫
0

{x4 − 4ℓx3 + 6ℓ2x2}2 dx

=

√
EI

µ

√
144ℓ5/5

104ℓ9/45
= 3.530

√
EI

µℓ4
= 49.03 rad/s.

According to [11], the first natural frequency of a fixed-free beam is:

ω01 = 3.516

√
EI

µℓ4
= 48.83 rad/s. (2.68)

2.4.3 Forced vibration of prismatic beams

Now we get back to the partial differential equation (2.42) of forced prismatic beams with
the rotary inertia neglected. The homogeneous solution (qt(x, t) = 0) was derived in the previ-
ous subsection. The case whenqt(x, t) 6= 0 is called the forced vibration and there is a corre-
spondingparticular solutionof the PDE (2.42). The complete solution of the forced vibration
is the sum of the homogeneous and the particular solutions. For the derivation of the particular
solution, we make use of the homogeneous one, i.e. the solution of the free vibration of the
beam. We assume that the response of the structure to the exciting forces can be expressed as
a time dependent combination of the normalised shape functions v̂r(x) of the free vibration.
(Thus we again utilise the method of separation of variables.) This unknown combination of
the shape functions is written as

v(x, t) =
∞∑

r=1

v̂r(x)ηr(t) . (2.69)

We search for the unknown time dependent functionsηr(t). Notice that hereηr(t) is not sup-
posed to be a harmonic function of timet, as it was in the case of the free vibration in Eq. (2.48).
With the aid of (2.69) we reformulate (2.42) as

EI
∞∑

r=1

d4v̂r(x)

dx4
ηr(t) + µ

∞∑

r=1

v̂r(x)
d2ηr(t)

dt2
= qt(x, t). (2.70)

Now we multiply the above equation bŷvp(x) and integrate the result from0 to ℓ with respect
to x:

EI
∞∑

r=1

ηr(t)

ℓ∫

0

d4v̂r(x)

dx4
v̂p(x) dx+ µ

∞∑

r=1

d2ηr(t)

dt2

ℓ∫

0

v̂r(x)v̂p(x) dx =

ℓ∫

0

qt(x, t)v̂p(x) dx.

72

by Németh & Kocsis



CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

Concerning the orthogonal properties (2.59) and (2.60) of modal shape functions we can write
the following system of second orderordinary differential equations:

d2ηp(t)

dt2
+ ω2

0pηp(t) = Qp(t) , (2.71)

where

Qp(t) =

ℓ∫

0

qt(x, t)v̂p(x) dx (2.72)

is thepth modal force (p = 1, 2, . . . ,∞).
Thus, we have managed to transform the solution of thepartial differential equation(2.42)

into solutions ofinfinitely many, independent ODEs(2.71). Each of these ODEs can be re-
garded as a single-degree-of-freedom, undamped oscillation of a unit mass under an arbitrary
forcingQp(t). According to Eq. (1.7) (with c = 0) and Eq. (1.26), the solution of (2.71) is

ηp(t) = ap cos(ω0pt) + bp sin(ω0pt) +
1

ω0p

t∫

0

Qp(τ) sin (ω0p{t− τ}) dτ. (2.73)

The first two terms of the right hand side form the homogeneoussolution of (2.71), which
vanishes if there is a slight damping in the system–so slightthat we neglected it during our
analysis. The third term isDuhamel’s integral (1.26), the particular solution of (2.71). The
coefficientsap and bp can be determined from the initial conditions. Now we concentrate
only on the particular solution of (2.42), which is the following sum of products of separated
functions:

v(x, t) =
∞∑

p=1

v̂p(x)

ω0p

t∫

0

Qp(τ) sin (ω0p{t− τ}) dτ.

Some simple examples of forced vibrations and the corresponding particular solutions are given
below.

Prismatic beam under a harmonic force

This example studies a prismatic beam loaded by a transverseharmonic forceF sin(ωt) at
x = a. (See Figure2.7 (a) in the case of a pinned-pinned beam.) The forceqt(x, t) in (2.42)
can be written as

qt(x, t) = F sin(ωt)δ(x− a).
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Hereδ(ξ) is theDirac delta functionwhich has the properties

δ(ξ) =

{
+∞, if ξ = 0

0, if ξ 6= 0
,

+∞∫

−∞

δ(ξ) dξ = 1, and

+∞∫

−∞

f(ξ)δ(ξ) dξ = f(0).

(2.74)

With this specific load the modal force due to (2.72) is

Qp(t) =

ℓ∫

0

F sin(ωt)δ(x− a)v̂p(x) dx = F sin(ωt)v̂p(a)

andηp(t) from (2.73) is

ηp(t) =
F v̂p(a)

ω0p

t∫

0

sin(ωτ) sin (ω0p{t− τ}) dτ.

Here we can simplify the integral

t∫

0

sin(ωτ) sin (ω0p{t− τ}) dτ

=

t∫

0

1

2
{cos ({ω + ω0p}τ − ω0pt)− cos ({ω − ω0p}τ + ω0pt)} dτ

=
1

2

[
sin ({ω + ω0p}τ − ω0pt)

ω + ω0p

− sin ({ω − ω0p}τ + ω0pt)

ω − ω0p

]t

0

=
ω0p

ω2
0p − ω2

sin (ωt)− ω

ω2
0p − ω2

sin (ω0pt) .

(2.75)

The first term of the result is the definite integral evaluatedat τ = t, which is the steady-state
vibration of the forced beam. The second term is from the evaluation atτ = 0. This and the
first two terms of Eq. (2.73) form the transient solution of the vibration. The initial conditions
can be chosen such that the transient solution is zero. (Besides, this transient vibration vanishes
with time if even a small friction is present.) Therefore, weignore the second term in Eq. (2.75)
and take the particular solution of this forced vibration tobe

v(x, t) = F
∞∑

p=1

v̂p(a)

ω2
0p − ω2

v̂p(x) sin (ωt) = F
∞∑

p=1

1

ω2
0p

1

1− ω2

ω2
0p

v̂p(a)v̂p(x) sin (ωt) . (2.76)
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We call the attention of the reader to the similarity of this solution and the solution of the
harmonically excited MDOF system solved with modal analysis. Compare the above equation
with Eq. (1.60)! The influence of higher modes on the response is small, unless the system is
around the state of resonance, i.e. if the circular frequency of the exciting force is near to one
of the natural circular frequencies of the beam:ω ≈ ω0p.

ωtFsin(    )vt

l

l

vta

l

ωtFsin(    )

yy

yy lv(x,t) v(x,t)

x

x

(b)

x

F

(c) (d)

q
vt

x

(a)

v(x,t) v(x,t)

Figure 2.7: Prismatic beam subjected to (a) a harmonic exciting forceF sin(ωt) acting at a fix positionx = a,
(b) a constant forceF moving with a constant velocityv, (c) a harmonic forceF sin(ωt) moving with a constant

velocityv, and (d) a constant distributed loadq moving with a constant velocityv.

Problem 2.4.3(Machine excited beam). There is a machine installed on the first storey of an industrial building.
It is placed at one fourth of the total length12m of a pinned-pinned roof beam. The mass of the beam is
500 kg/m and its bending stiffness is2 · 109 Nm2. Due to the eccentric rotating parts of the machine, it exerts a
harmonic force of amplitude1500N and frequency80 rad/s on the beam. Determine the maximum deflection
of the beam at its mid point! Take only the first three modal shape functions into account!

Solution. The normalised (modal) shape functions and the corresponding natural circular frequencies are from
(2.56) and (2.52):

v̂p(x) =

√
2

µℓ
sin
(pπ
ℓ
x
)
, ω0p =

p2π2

ℓ2

√
EI

µ
.

We substitute the above shape functions and frequencies into (2.76) up top = 3

v(x, t) ≈ F

3∑

p=1

v̂p(a)

ω2
0p − ω2

v̂p(x) sin(ωt) =
2F

µℓ

3∑

p=1

sin
(
pπ
ℓ a
)

p4π4

ℓ4
EI
µ − ω2

sin
(pπ
ℓ
x
)
sin(ωt).

The bending moment is

M(x, t) = −EI ∂
2v(x, t)

∂x2
≈ 2F

µℓ

3∑

p=1

sin
(
pπ
ℓ a
)

p4π4

ℓ4
EI
µ − ω2

p2π2

ℓ2
sin
(pπ
ℓ
x
)
sin(ωt).

The given dataset isℓ = 12m,a = ℓ/4, F = 1500N, µ = 500 kg/m,EI = 2 · 109 Nm2, andω = 80 rad/s.
The above formula is evaluated atx = ℓ/2 andt = 2kπ/ω to get the maximum deflection of the mid point:

vmax

(
ℓ

2

)
≈ 2F

µℓ

3∑

p=1

sin
(
pπ
ℓ a
)

p4π4

ℓ4
EI
µ − ω2

sin
(pπ

2

)
= 0.02853 ·10−3+0−0.0002333 ·10−3 = 0.02830 · 10−3 m,
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and to obtain the maximal bending moment at the mid point:

Mmax

(
ℓ

2

)
≈ EI

2F

µℓ

3∑

p=1

sin
(
pπ
ℓ a
)

p4π4

ℓ4
EI
µ − ω2

p2π2

ℓ2
sin
(pπ

2

)
= 3911 + 0− 287.8 = 3624Nm.

Notice that the second mode is intact in this load case because v̂2(ℓ/2) = 0, and that the third term is smaller
than the first term by two order of magnitude in case of the displacement, and by one order of magnitude in case
of the bending moment. In general it is true that the higher modes have larger influence on the bending moment
than on the displacement.

Finally, we also compute the maximal deflection and bending moment at the point where the machine is
placed, i.e. atx = ℓ/4 (and at timet = 2kπ/ω again):

vmax

(
ℓ

4

)
≈ 2F

µℓ

3∑

p=1

sin
(
pπ
ℓ a
)

p4π4

ℓ4
EI
µ − ω2

sin
(pπ

2

)
= 0.02018 · 10−3 + 0.001699 · 10−3 + 0.0001649 · 10−3

= 0.02204 · 10−3 m.

Mmax

(
ℓ

4

)
≈ EI

2F

µℓ

3∑

p=1

sin
(
pπ
ℓ a
)

p4π4

ℓ4
EI
µ − ω2

p2π2

ℓ2
sin
(pπ

2

)
= 2766 + 931.7 + 203.5 = 3901Nm.

We can see here again that the higher modes have greater influence on the bending moment than on the dis-
placement.

Prismatic beam under a moving constant force

In a lot of examples in structural design, the forces acting on the load bearing structures are
moving: trains, truck, cars, cyclists, or pedestrians moving along bridges, cranes carrying loads
along steel beams, etc. These loads can all be modelled bymoving forces. Here we only deal
with the simplest example, when one single constant forceF moves along a prismatic beam
with a constant velocityv, as it is shown in Figure2.7(b) for a pinned-pinned beam. The force
qt(x, t) that the beam is subjected to is

qt(x, t) = Fδ(x− vt).

With the above load we can compute the modal force

Qp(t) =

ℓ∫

0

Fδ(x− vt)v̂p(x) dx = F v̂p(vt)

andηp(t)

ηp(t) =
F

ω0p

t∫

0

v̂p(vτ) sin (ω0p{t− τ}) dτ

from (2.73) and (2.72), respectively. Finally, the particular solution of this load case is

v(x, t) = F

∞∑

p=1

v̂p(x)

ω0p

t∫

0

v̂p(vτ) sin(ω0p{t− τ})dτ. (2.77)
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Problem 2.4.4(Vibration of a bridge under a moving vehicle). There is a vehicle going through the bridge with
constant speedv = 130 km/h. This vehicle is modelled with one constant forceF = 80 kN. The load bearing
structure is a reinforced concrete beam with a single-celled box girder cross section. The length of the beam is
ℓ = 30m, its mass isµ = 8 t/m, and the bending stiffness isEI = 4 · 107 kNm2. Compute the deflection of the
mid point of the beam when the force arrives to the middle of the bridge!

Solution. The normalised (modal) shape functions and the corresponding natural circular frequencies of a
pinned-pinned beam are:

v̂p(x) =

√
2

µℓ
sin
(pπ
ℓ
x
)
, ω0p =

p2π2

ℓ2

√
EI

µ
.

We substitute these results into (2.77):

v(x, t) = F
2

µℓ

∞∑

p=1

1

ω0p
sin
(pπ
ℓ
x
) t∫

0

sin
(pπ
ℓ
vτ
)
sin(ω0p{t− τ}) dτ.

Now, using (2.75), we can simplify the integral in the above equality and obtain

v(x, t) = F
2

µℓ

∞∑

p=1

sin
(
pπ
ℓ x
)

ω0p

{
ω0p

ω2
0p − p2π2

ℓ2 v2
sin
(pπ
ℓ
vt
)
−

pπ
ℓ v

ω2
0p − p2π2

ℓ2 v2
sin(ω0pt)

}

= F
2

µℓ

∞∑

p=1

sin
(pπ
ℓ
x
) 1

ω2
0p − p2π2

ℓ2 v2

{
sin
(pπ
ℓ
vt
)
−

pπ
ℓ v

ω0p
sin(ω0pt)

}

= F
2

µℓ

∞∑

p=1

ℓ2 sin
(
pπ
ℓ x
)

p2π2
{

p2π2

ℓ2
EI
µ − v2

}
{
sin
(pπ
ℓ
vt
)
− ℓv

pπ

√
µ

EI
sin

(
p2π2

ℓ2

√
EI

µ
t

)}
.

It is worth mentioning that the displacement becomes singular if the velocity of the moving force equals to one
of theresonant speeds

vcritp =
pπ

ℓ

√
EI

µ
= ω0p

ℓ

pπ
.

The deflection of the mid point (x = ℓ/2) of the beam at the time instant when the force arrives to the mid
point, i.e. vt = ℓ/2 → t = ℓ/2/v, can be obtained from back substitution in the above formula. Without
going into details, the result concerning the first three or the first five modes (p = 1, · · · , 3 andp = 1, · · · , 5,
respectively) is

v

(
ℓ

2
,
ℓ

2v

)

p=1,··· ,3

= 1.087 · 10−3 m,

v

(
ℓ

2
,
ℓ

2v

)

p=1,··· ,5

= 1.088 · 10−3 m.

The bending moment isM = −EI d2v(x, t)/dx2 which gives

M

(
ℓ

2
,
ℓ

2v

)

p=1,··· ,3

= 5.253 · 105 Nm,

M

(
ℓ

2
,
ℓ

2v

)

p=1,··· ,5

= 5.446 · 105 Nm.

Notice that higher modes have significant effects on the bending moment, but not on the displacement.
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According to earlier studies, the static deflection of the mid point of a simply supported beam if forceF
acts at the midspan is

vstatic
x=ℓ/2 =

Fℓ3

48EI
= 1.125mm.

Finally, the ratio of the static and dynamic deflections is

νdef
x=ℓ/2 =

1.088

1.025
= 1.0615 → 6.15%.

This can be much higher if the velocity of the force is close toone of the resonant speed of the structure.

Prismatic beam under a moving harmonic force

In this load case a forceF moves along the beam with a constant velocityv, while the
amplitude of the force pulsates harmonically in time with frequencyω (see Figure2.7 (c)).
Thus the forceqt(x, t) is given as

qt(x, t) = F sin(ωt)δ(x− vt).

The modal force is

Qp(t) =

ℓ∫

0

F sin(ωt)δ(x− vt)v̂p(x) dx = F sin(ωt)v̂p(vt)

andηp(t) is

ηp(t) =
F

ω0p

t∫

0

sin(ωτ)v̂p(vτ) sin (ω0p{t− τ}) dτ

due to (2.72) and (2.73). The particular solution of this forced vibration is

v(x, t) = F

∞∑

p=1

v̂p(x)

ω0p

t∫

0

sin(ωτ)v̂p(vτ) sin(ω0p{t− τ}) dτ.

Prismatic beam under a moving constant distributed load

Another, fairly simple way to model moving loads on structures is to assume that the loading
is equally distributed and moves with a constant speedv, as shown in Figure2.7 (d). It is
applicable, for example, to approximate the dynamics of a simple bridge under a magnetic
train, which exerts a fairly constant distributed load to the guideway. The forceqt(x, t) is now
a constant distributed loadq moving with a constant speedv:

qt(x, t) = qH(x){1−H(x− vt)}. (2.78)
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HereH(ξ) is theHeaviside functionwhich obeys

H(ξ) =





0, if ξ < 0
1/2, if ξ = 0
1, if ξ > 0

,

+∞∫

−∞

f(ξ)H(ξ) dξ =

+∞∫

0

f(ξ) dξ.

The consequence of the latter property is that

+∞∫

−∞

f(ξ){1−H(ξ)} dξ =
0∫

−∞

f(ξ) dξ, and therefore

+∞∫

−∞

f(ξ)H(ξ){1−H(ξ − a)} dξ =
a∫

0

f(ξ) dξ.

The modal force is computed from (2.72):

Qp(t) =

ℓ∫

0

qH(x){1−H(x− vt)}v̂p(x) dx = q

vt∫

0

v̂p(x) dx.

It means that the distributed loadq acts on the beam in betweenx = 0 andx = vt, which is the
load case when the train arrives on the bridge. The time dependentηp(t) comes from (2.73):

ηp(t) =
q

ω0p

t∫

0





vτ∫

0

v̂p(x) dx



 sin (ω0p{t− τ}) dτ.

Finally, the forced vibration finally is determined by the integral

v(x, t) = q

∞∑

p=1

v̂p(x)

ω0p

t∫

0





vτ∫

0

v̂p(x) dx



 sin (ω0p{t− τ}) dτ.

Further interesting problems concerning the dynamics of forced slender continua, vibra-
tions of beams with various boundary conditions, non-uniform beams, coupled beam-vehicle
systems, etc. can be found in the literature [5, 6, 11].
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Chapter 3

Dynamics of planar frame structures

In this chapter we study the dynamics of planar frame structures. Planar frames are widely
used in engineering practice. They can be modeled by slenderbeam members connected by
hinges, rigid or elastic connections.

The beam members are prismatic. The axes of the beams are in a common plane, the cross-
sections of the beams and the loads are symmetric to that common plane. We neglect stability
questions, thus the frame remains planar during the deformations. The beams are assumed to
be unshearable, but extensible and bendable. The material of the beams is linearly elastic with
Young’s modulusE. The cross-sectional area of a beam is denoted byA, while the second
moment of area with respect to the axis perpendicular to the plane of the frame isI. The beam
is of lengthℓ, and its mass per unit length is denoted byµ. In this chapter we neglect the effect
of damping, and we also neglect the effect of rotary inertia of the cross-sections.

First we overview the basics about static equilibria of planar frames. The calculation of the
static stiffness matrix of one beam member and of the whole structure are shown. We introduce
two possible models to handle different support conditions.

Then we go on with dynamical effects and demonstrate how to calculate the dynamic stiff-
ness matrix of the structure. We also show approximate methods to generate the dynamic
stiffness matrix. Based on the accurate or on the approximatestiffness matrices, a system of
differential equations of motion can be compiled. These equations can be solved for external
dynamical loadings either directly or by using modal analysis. A special loading very impor-
tant in structural design is the support vibration, which isalso discussed in details. Finally, we
present the reduced modal analysis technique and study its accuracy.

Although planar frames are not the most general structures one can meet in structural de-
sign, the concepts shown in this chapter can be generalized to other types of load bearing
structures. The reader can adopt the notations used here forthe applications of these methods
to FE modeling readily.
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3.1 Static matrix displacement method

We have already seen in our earlier studies, and also in Section 1.3, that the continuous
structures constructed of slenderrods can be approximated by multi-degree-of-freedom sys-
tems. In the simplest model, we divided the structure into individual (beam) members, and the
displacements of the end points of these members became the degrees of freedom. In the dy-
namical analysis, we concentrated the masses of each beam into its end points, which resulted
in a diagonalmass matrix. The rotational inertia of the beams was neglected, but sufficiently
short members implied sufficiently accurate results in terms of the vibration of the structure.
The accuracy was comparable to the results of the continuoussystem. The matrix differential
equation of motion is

Mü(t) +Ku(t) = q(t).

We have also seen, that there are two simple method for the construction of the stiffness matrix
K.

• Calculation of the stiffness matrix based on its physical meaning.
The productKu (stiffness matrix times the displacements of the DOFs) results in the
forcesfS needed to be applied on the DOF in order to induce the displacementsu. If we
multiply the stiffness matrix by theith unit vectorei, then theith column of the stiffness
matrix is obtained. The entries of this column are the forcesthat act on each degree-of-
freedom in such a way, that the displacements of all degrees-of-freedom are zero, except
for the ith, which is one. TheseN constrains make the calculation of the entries of the
ith column of the stiffness matrix possible.

• Calculation of the stiffness matrix based on the flexibility matrix.
In contrast to the stiffness matrix, theflexibility matrix F multiplied by the forcesfS
results in the displacements caused by the forces. If we substitute theith unit vectorei
into the vector of forces acting on the nodes, the productF · ei, i.e. theith column of
the flexibility matrix. This column contains the displacements of each degree-of-freedom
caused by a unit force acting on theith degree-of-freedom, while the others are unloaded.
These displacements can be calculated with various methodsof Strength of Materials, or
Structural Analysis. Finally, the stiffness matrix is the inverse of the flexibility matrix:
K = F−1.

For practical purposes the above methods are not recommended, because the degrees-of-
freedom are connected to each other, so calculations of the inverse of full matrices are needed.

A better approximation can be achieved by the matrix displacement method of frame struc-
tures, thoroughly discussed in the field of Structural Analysis Theory [8]. Here we are going
through its main steps only.

3.1.1 Nodal decomposition of planar frames

A planar frame is composed of beam members connected together by hinges, rigid or elas-
tic connections, and the whole frame is attached to the ground in a statically determinate (or
indeterminate) way. If we are to analyse the structure by means of the matrix displacement
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method, the first step we need to make is to decompose the frameinto nodesandframe mem-
bers. The nodes are at the connections of the beams and at the supporting points. The total
number of nodes of the frame is denoted byM . The frame members are the beam members
connecting these nodes. Thus each beam is connected to two nodes at its ends. A general beam
member between nodesi andj is called beamij. (We consistently takei < j everywhere in
this chapter.) As we will see, the deformation of beamij (and so its internal forces) can be
fully described by the displacements of its end nodesi andj. Since we study the planar defor-
mation of the plane, one node has three degrees of freedom: two translations and one rotation.
Therefore the total DOF of the frame isN = 3M . We can reduce both the external loadings
and the elastic forces of the beams to the nodes of the frame. Then we can compile a system of
equilibrium equations where the unknowns are the displacements of the nodes. In this manner,
the statical analysis of a continuum frame structure can be reduced to the analysis of a model
with finite number of degrees-of-freedom.

The easiest way to deal with the elastic forces that act from the end of the beams to the nodes
is the following. First, we release only one DOF of the frame and apply a unit displacement
there, while the other degrees-of-freedom are kept zero. Second, we collect the elastic forces
acting from the ends of the beams onto the nodes. There are used to compose one column
of the total stiffness matrix. Then we repeat these steps forall the other DOF independently.
As a result, we can compile the total static stiffness matrixK of the frame. This compilation
requires that the displacements of a node induce forces on a different node only if these nodes
are connected by a beam member. That is the reason why we have to constrain the rotation of
the nodes too, and not just their translations, as it is demonstrated in Figure3.1.

Figure 3.1: Comparing various discretization of a fixed-fixed beam. (a) Discrete model with three translational
degrees-of-freedom. (b) Discrete model with three translational and three rotational degrees-of-freedom. (c)

Deformed shape of the 3DOF model due to a displacement of the first DOF. (d) Deformed shape of the 6DOF
model caused by a displacement of the first DOF.

3.1.2 Global and local reference systems, transformations

We use two distinctCartesianreference systems. One is called theglobal reference system,
which is a left-handed coordinate systemXY Z fixed in the space. The frame structure is in
the planeXY , and the axisZ points outward from the plane. The other coordinate system,
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the local one is the left-handedxyz system. Figure3.2 shows a planar vectorw in both co-
ordinate systems. From the figure one can conclude, that the transformation between the local
coordinateswx, wy and the global coordinateswX , wY can be done as

wX = wx cosα− wy sinα, wY = wx sinα + wy cosα and

wx = wX cosα + wY sinα, wy = −wX sinα + wY cosα.
(3.1)

We define a local coordinate system for each each beam member.The local reference
system of beamij is oriented in such a way that axisx points from nodei to the nodej. (Note,
that i < j holds.) The local axisz is parallel with the global axisZ, and axisy is oriented
accordingly tox andz.

Figure 3.2: (a) Transformation of the components of a planar vectorw between the local and the global reference
systems. (b) The local reference systemxy of theijth beam member and the global reference systemXY .

The displacements (two components of the translation and one rotation) of nodei is col-
lected into the vectorui. In the global reference system these components are

u
glob
i =



uglobiX

uglobiY

ϕglob
iZ


 , (3.2)

while in the local reference system of the beamijth they are

uloc
i =



ulocix

ulociy

ϕloc
iz


 . (3.3)

Since axesz andZ coincide, the rotations are the same in both reference systems, i.e.ϕloc
iz =

ϕglob
iZ . Therefore we leave the superscripts “loc” and “glob” in thecase of the rotations. We

write the relation between the components of the displacement vector in the global and local
systems (Eq. (3.2), (3.3)) as:

u
glob
i = Tiju

loc
i , uloc

i = TT
iju

glob
i . (3.4)

In the above equations matrixTij is called thetransformation matrixof the local reference
system of beamij. Assuming, that the beamij is rotated byαij with respect to the global
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system (see in Figure3.2(b)), and using the transformation for the rotation (3.1), the entries of
the transformation matrix are:

Tij =




cosαij − sinαij 0
sinαij cosαij 0

0 0 1


 .

The transformation matrixTij is aproper orthogonal rotation, so its inverse is its transpose:

T−1
ij = TT

ij =




cosαij sinαij 0
− sinαij cosαij 0

0 0 1


 .

The displacements of the nodes of beamij given in the local reference system are

uloc
ij =

[
uloc
i

uloc
j

]
=




ulocix

ulociy

ϕiz

ulocjx

ulocjy

ϕjz



. (3.5)

An example on the above modeling steps are presented in Figure 3.3. The structure in
Figure3.3 (a) is divided into five members and five nodes. This decomposition is shown in
Figure 3.3 (b) alongside with the global and the local reference systems. The supports are
replaced by (support) nodes1 and5. They are treated equivalently with the internal nodes
during the compilation of the total stiffness matrix. The support conditions (whether they are
fixed, hinged, or elastic) are counted for in the total stiffness matrix.

Figure 3.3: (a) Mechanical model of a planar frame structure. (b) Nodes and members of the structure (a) with
the global and local reference systems.

Finally, we define two further rules that we follow during themodel building process.

• We set three degrees-of-freedom to every node, and there is at least one member rigidly
connected to every node (see node 3 of the frame in Fig.3.3(b)).

• Elastic supports are modeled by introducing additionalsupporting nodes.
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3.1.3 Elementary static stiffness matrix in the local reference system

The elementary (static) stiffness matrixKloc
ij transforms the nodal displacements Eq. (3.5)

into nodal forces (f loc
ix , f loc

iy , f loc
jx , f loc

jy ) and moments (wiz, wjz) acting on the end of the beam:

f locij =




f loc
ix

f loc
iy

wiz

f loc
jx

f loc
jy

wjz



= Kloc

ij u
loc
ij . (3.6)

These are called theend-of-beam internal forces. The opposite of these forces act on the nodes.
The elementary (static) stiffness matrixKloc

ij of beamij can be derived in several ways.
In matrix Kloc

ij , entry p,r (i.e., thepth element of therth column of the matrix) denotes the
end-of-beam internal force in thepth DOF due to a unit displacement applied at therth DOF.
The first DOF of beamij is the translation of the starting endi along the beam axisx. Due
to a unit displacement of this DOF, the deformed shape of the beam axis is denoted byuix(x).
The corresponding end-of-beam internal forces are assigned by Niix, Viix,Miix at endi and
Njix, Vjix,Mjix at endj. Thus the notation of these internal forces are such that thefirst sub-
script refers to the “place”, while the rest are for the “cause”. These end-of-beam internal forces
define the first column of the elementary stiffness matrix of beamij in the local reference sys-
tem. The second DOF of the beam is the translation of endi along axisy. The second column
of the elementary stiffness matrix thus contains the end-of-beam internal forces due to a unit
translation of its starting endi alongy. This is visualised in Figure3.4(a): the unit translation
of end i induces deformation and internal forces in the beam. The positive definition of the
internal forces are well known from Statics. The end-of-beam internal forces and a sketch of
the bending moment diagram are shown in Figure3.4(b). The positive definition of the entries
of the columns of the stiffness matrix corresponds to the right handed coordinate systemxyz,
as indicated in Figure3.4(c). The internal forces at the ends of the beam due to the unittrans-
lation of endialongy are denoted byNiiy, Viiy,Miiy, Njiy, Vjiy,Mjiy, while the corresponding
deformed shape of the axis of the beam is assigned byviy(x). The third DOF of beamij is the
rotation of endi. A unit rotation of endi induces the deformationviϕ(x) of the beam axis, and
the corresponding end-of-beam internal forces are:Niiϕ, Viiϕ,Miiϕ, Njiϕ, Vjiϕ,Mjiϕ. The same
notation is used for the other 3DOF of the beam. The fourth, and the fifth DOF of beamij are
the translations of endj alongx andy, respectively. Unit translations corresponded to these
DOF are used to construct the fourth and fifth column of the elementary stiffness matrix. At lat,
the sixth DOF is the rotation of endj. The deformed beam axis due to a unit rotation of endj
is denoted byvjϕ(x), and the corresponding end-of-beam internal forces areNijϕ, Vijϕ,Mijϕ at
endi andNjiϕ, Vjiϕ,Mjiϕ at endj. These are the entries of the sixth column of the elementary
stiffness matrix given in the local reference system of beamij.

We show two methods for the calculation of the entries ofKloc
ij .
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Figure 3.4: (a) Sketch of the deformed shape of a fixed-fixed beamij due to a unit translation of endi along axis
y. (b) The bending moment diagram and the positive definition of the internal forces at the ends of the beam. (c)
Physical meaning and positive definition of the entries of the second column of the elementary stiffness matrix.

Solving the differential equations of rods

The entries of the first and the fourth columns ofKloc
ij are computed from the differential

equation of the stretched bar (Eq. (2.3) atµ = 0 andq(x, t) = 0)

EAu′′(x) = 0, (3.7)

which is fulfilled by the first order polynomial

u(x) = B1x+ B0. (3.8)

Here the unknown coefficientsB0, B1 can be computed from two prescribed boundary condi-
tions. These are

uix(0) = 1, uix(ℓ) = 0 (3.9)

for the first column and
ujx(0) = 0, ujx(ℓ) = 1 (3.10)

for the fourth column. The solutionuix(x) is the deformed shape of the beam caused by a unit
translation of endi alongx. The corresponding end-of.beam internal forces are

Niix = EAu′ix(0), Viix = 0, Miix = 0,

Njix = EAu′ix(ℓ), Vjix = 0, Mjix = 0.
(3.11)

The entries of the first column of the stiffness matrix are

kloc
ij,1 = [−Niix, 0, 0, Njix, 0, 0]

T . (3.12)
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The positive definition of the entries of matrixKloc
ij is given by the local coordinate system

xyz, while a positive normal force denotes tension. That is the reason why the first entry is the
opposite of the normal force here. See the positive definition of the internal forces and of the
entries ofKloc

ij in Figure3.4(b) and (c).

Problem 3.1.1(Entries of the first column of the elementary stiffness matrix). The fixed-fixed beamij is of
lengthℓ, normal stiffnessEA, bending stiffnessEI, and mass per unit lengthµ. Determine the entries of the
first column of the elementary stiffness matrix of the beam!

Solution. Entries of the first column of the elementary stiffness matrix are the end-of-beam internal forces
caused by a unit translation of endi along the axisx of the member. First we compute the deformationuix(x)
of the bar due to the unit translation of endi, i.e. the solution of (3.7) with boundary conditions (3.9). The
solution of (3.7) is (3.8), where the unknown coefficientsB0, B1 are from boundary conditions (3.9). We write
these boundary conditions using (3.8):

uix(0) = B1 · 0 +B0 = 1 → B0 = 1,
uix(ℓ) = B1 · ℓ+ 1 = 0 → B1 = −1/ℓ

Thus the deformed shape is given by

uix(x) = B0 +B1x = 1− 1

ℓ
x. (3.13)

The first derivative of this function is

u′ix(x) = −1

ℓ
.

Now, according to (3.11) and (3.12), the entries of the first column ofKloc
ij are

K loc
ij,11 = −EAu′ix(0) =

EA

ℓ
,

K loc
ij,21 = 0,

K loc
ij,31 = 0,

K loc
ij,41 = EAu′ix(ℓ) = −EA

ℓ
,

K loc
ij,51 = 0,

K loc
ij,61 = 0.

We can compute an entry of the second, third, fifth, or sixth columns of the elementary
stiffness matrix by solving the differential equation of the bent beam (Eq. (2.47) with µ = 0)

EIv′′′′(x) = 0. (3.14)

Eq. (3.14) is fulfilled by a third order polynomial

v(x) = A3x
3 + A2x

2 + A1x+ A0. (3.15)

The unknown coefficientsA0, A1, A2, A3 can be computed from four prescribed boundary con-
ditions. For the second column, these conditions are

viy(0) = 1, v′iy(0) = 0, viy(ℓ) = 0, v′iy(ℓ) = 0, (3.16)
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i.e. there are a unit translation of endi alongy, zero rotations of the ends, zero translation at
endj. See the corresponding shape in Figure3.4(a). In case of the third column, the boundary
conditions are

viϕ(0) = 0, v′iϕ(0) = 1, viϕ(ℓ) = 0, v′iϕ(ℓ) = 0 (3.17)

(no translations at the ends, unit rotation at endi, zero rotation at the other endj). For the fifth
and the sixth columns, we have to use

vjy(0) = 0, v′jy(0) = 0, vjy(ℓ) = 1, v′jy(ℓ) = 0 and (3.18)

vjϕ(0) = 0, v′jϕ(0) = 0, vjϕ(ℓ) = 0, v′jϕ(ℓ) = 1,

respectively. The end-of-beam internal forces due to, for instance, a unit translation of endi
are:

Niiy = 0, Viiy = −EIv′′′iy(0), Miiy = −EIv′′iy(0),
Njiy = 0, Vjiy = −EIv′′′iy(ℓ), Mjiy = −EIv′′iy(ℓ).

(3.19)

The entries of the second column of the elementary stiffnessmatrix are then

kloc
ij,2 = [0,−Viiy,Miiy, 0, Vjiy,−Mjiy]

T .

The positive definition of the internal forces and the entries of the stiffness matrix is visualized
in Figure3.4(b) and (c).

The whole stiffness matrix has the following structure:

Kloc
ij =




−Niix 0 0 −Nijx 0 0
0 −Viiy −Viiϕ 0 −Vijy −Vijϕ
0 Miiy Miiϕ 0 Mijy Mijϕ

Njix 0 0 Njjx 0 0
0 Vjiy Vjiϕ 0 Vjjy Vjjϕ
0 −Mjiy −Mjiϕ 0 −Mjjy −Mjjϕ



. (3.20)

Problem 3.1.2(Entries of the third column of the elementary stiffness matrix). Beamij is of lengthℓ, normal
stiffnessEA, bending stiffnessEI, and mass per unit lengthµ. Determine the entries of the third column of its
elementary stiffness matrix!

Solution. Entries of the third column of the elementary stiffness matrix are the end-of-beam internal forces
caused by a unit rotation of endi. Figure3.5shows (a) the model, (b) the internal forces at the ends, and (c) the
positive definition of the corresponding entries of the stiffness matrix.

First we need to compute the shape functionviϕ(x), which is the deformation of the beam due to a unit
rotation of endi, i.e. the solution of (3.14) with boundary conditions (3.17). The solution of (3.14) is (3.15).
Here the unknown coefficientsA0, A1, A2, A3 are from boundary conditions (3.17). We write these boundary
conditions using (3.15):

viϕ(0) = A3 · 03 +A2 · 02 +A1 · 0 +A0 = 0 → A0 = 0,
v′iϕ(0) = 3A3 · 02 + 2A2 · 0 +A1 = 1 → A1 = 1,
viϕ(ℓ) = A3 · ℓ3 +A2 · ℓ2 + ℓ = 0 → A2 = −1/ℓ−A3ℓ,
v′iϕ(ℓ) = 3A3 · ℓ2 + 2(−1/ℓ−A3ℓ)ℓ+ 1 = 0 → A3 = 1/ℓ2.
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Thus the shape function is

viϕ(x) =
1

ℓ2
x3 − 2

ℓ
x2 + x = ℓ

({x
ℓ

}3

− 2
{x
ℓ

}2

+
x

ℓ

)
. (3.21)

The second and the third derivatives of this function are

v′′iϕ(x) =
6

ℓ2
x− 4

ℓ
,

v′′′iϕ(x) =
6

ℓ2
.
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Figure 3.5: (a) Sketch of the deformed shape of a fixed-fixed beamij due to a unit rotation of endi. (b) The
bending moment diagram and the positive definition of the internal forces at the ends of the beam. (c) Physical

meaning and positive definition of the entries of the third column of the elementary stiffness matrix.

Finally, according to (3.19) and (3.20), the entries of the third column of the stiffness matrix of the fixed-fixed
beamij are

K loc
ij,13 = 0,

K loc
ij,23 = EIv′′′iϕ(0) =

6EI

ℓ2
,

K loc
ij,33 = −EIv′′iϕ(0) =

4EI

ℓ
,

K loc
ij,43 = 0,

K loc
ij,53 = −EIv′′′iϕ(ℓ) = −6EI

ℓ2
,

K loc
ij,63 = EIv′′iϕ(ℓ) =

2EI

ℓ
.
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Applying the principle of virtual displacements

Alternatively, we can apply the principle of virtual displacements to determine the entries of
the stiffness matrix. This principle is within the scope of Strength of Materials. The principle
states that “The work of a statically admissible force system on any arbitrary virtual displace-
ment system must be zero” [ 7].

We show how to use this principle to compute, for example, entry 3,2 of matrixKloc
ij . This

entry is the bending moment at endi due to a unit translation of endi alongy. Therefore, we
have to computeMiiy, which is the bending moment at endi from the shape functionviy(x)
fulfilling ( 3.16). See Figure3.4 for further explanations. First we take the force system shown
in Figure3.4 (b) as statically admissible. Then we consider the displacement system caused
by a unit rotation of endi as virtual, and apply the principle to these force and displacement
systems. The displacement systemviϕ(x) caused by a unit rotation of endi is sketched in
Figure3.5(a). The corresponding end-of-beam internal forces are shown in Figure3.5(b).

The virtual work done by the force system on the virtual displacement system is:

δWss =Miiy · 1−
ℓ∫

0

Miy(x)κiϕ(x) dx =Miiy − EI

ℓ∫

0

v′′iy(x)v
′′
iϕ(x) dx = 0.

Thus

K loc
ij,32 =Miiy = EI

ℓ∫

0

v′′iy(x)v
′′
iϕ(x) dx .

We can also take the force system corresponds to a unit rotation of endi as statically ad-
missible, and consider the displacement system shown in Figure3.4(b) as virtual and apply the
principle of virtual displacements. We get

δWss = −Viiϕ · 1−
ℓ∫

0

Miϕ(x)κiy(x) dx = −Viiϕ − EI

ℓ∫

0

v′′iϕ(x)v
′′
iy(x) dx = 0,

thus

K loc
ij,23 = −Viiϕ = EI

ℓ∫

0

v′′iϕ(x)v
′′
iy(x) dx = K loc

ij,32. (3.22)

The stiffness matrix is symmetric.
In order to write the formula ofKloc

ij in a compact form, first we construct the matrix of
shape functions

N =

[
uix(x) 0 0 ujx(x) 0 0

0 viy(x) viϕ(x) 0 vjy(x) vjϕ(x)

]
. (3.23)

Hereuix(x) is the shape function of the beam due to a unit translation of end i alongx. This
is the solution of (3.7) with boundary conditions (3.9). Functionviy(x) is the shape function
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due to a unit translation of endi alongy, i.e. the solution of (3.14) with boundary conditions
(3.16). The shape functionviϕ(x) is corresponded to a unit rotation of endi. It is the solution
of (3.14) with boundary conditions (3.17). The same holds for subscriptj with the appropriate
boundary conditions.1 Second, we introduce the matrixL of differential operators

L =




d

dx
0

0 − d2

dx2


 (3.24)

and denote the product ofL andN byB: 2

B = LN. (3.25)

Now, we collect the normal and the bending stiffnesses of themember in matrixD:

D =

[
EA 0
0 EI

]
. (3.26)

Finally, with the aid of these matrices, the elementary stiffness matrixKloc
ij of the beam can be

written as

Kloc
ij =

ℓ∫

0

BTDB dx . (3.27)

From this formulation it can be easily seen, that the stiffness matrix issymmetric.

Problem 3.1.3(Entry3,5 of the elementary stiffness matrix). There is a fixed-fixed beamij of lengthℓ, normal
stiffnessEA, bending stiffnessEI, and mass per unit lengthµ. Determine the entry3,5 of its elementary
stiffness matrix!

Solution. Entry3,5 is the bending moment at endi due to a unit translation of endj. From Eq. (3.27) we need
only the3rd row and the5th column.

K loc
ij,35 =

ℓ∫

0

bT
3 Db5 dx =

ℓ∫

0

[
0 −v′′iϕ(x)

] [ EA 0
0 EI

] [
0

−v′′jy(x)

]
dx = EI

ℓ∫

0

v′′iϕ(x)v
′′

jy(x) dx.

Hereviϕ(x) is the deformation of beam due to a unit rotation of endi, i.e. it is the solution of (3.14) with
boundary conditions (3.17). The deformation of the beam due to a unit translation of endj is denoted by
vjy(x), which is the solution of (3.14) with boundary conditions (3.18). The former shape functionviϕ(x) was
already determined (see Eq. (3.21) in Problem3.1.2):

viϕ(x) =
1

ℓ2
x3 − 2

ℓ
x2 + x.

Its second derivative is

v′′iϕ(x)(x) =
6

ℓ2
x− 4

ℓ
.

1If we used FE approximations, these function would be the shape functions of the corresponding member.
2This is called the strain matrix in FE modelling.
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The shape functionvjy(x) is the solution of (3.14), i.e. it is (3.15). The unknown coefficientsA0, A1, A2, A3

are from the boundary conditions (3.18). We write these boundary conditions using (3.15):

vjy(0) = A3 · 03 +A2 · 02 +A1 · 0 +A0 = 0 → A0 = 0,
v′jy(0) = 3A3 · 02 + 2A2 · 0 +A1 = 0 → A1 = 0,
vjy(ℓ) = A3 · ℓ3 +A2 · ℓ2 = 1 → A2 = 1/ℓ2 −A3ℓ,
v′jy(ℓ) = 3A3 · ℓ2 + 2(1/ℓ2 −A3ℓ)ℓ = 0 → A3 = −2/ℓ3.

Thus the shape function is

vjy(x) = − 2

ℓ3
x3 +

3

ℓ2
x2.

The second derivative of this function is

v′′jy(x) = −12

ℓ3
x+

6

ℓ2
.

Finally, the entry3,5 is

K loc
35 = EI

ℓ∫

0

v′′iϕ(x)v
′′

jy(x) dx = EI

ℓ∫

0

{
6

ℓ2
x− 4

ℓ

}{
−12

ℓ3
x+

6

ℓ2

}
dx

= EI

ℓ∫

0

−72x2

ℓ5
+

84x

ℓ4
− 24

ℓ3
dx = EI

[−24x3

ℓ5
+

42x2

ℓ4
− 24x

ℓ3

]ℓ

0

= −6EI

ℓ2

Whether we apply one method or the other, it makes no difference in the final result. The
entries of the elementary static stiffness matrix of a fixed-fixed beam of lengthℓ, mass per unit
lengthµ, normal stiffnessEA, and bending stiffnessEI are

Kloc
ij =




EA

ℓ
0 0 −EA

ℓ
0 0

0
12EI

ℓ3
6EI

ℓ2
0 −12EI

ℓ3
6EI

ℓ2

0
6EI

ℓ2
4EI

ℓ
0 −6EI

ℓ2
2EI

ℓ

−EA
ℓ

0 0
EA

ℓ
0 0

0 −12EI

ℓ3
−6EI

ℓ2
0

12EI

ℓ3
−6EI

ℓ2

0
6EI

ℓ2
2EI

ℓ
0 −6EI

ℓ2
4EI

ℓ




. (3.28)

3.1.4 Equivalent nodal forces

We have computed already the end-of-beam forces due to the elastic deformations of beams.
Now we discuss the effects of static loading. There are two possible cases: either forces and
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moments act directly on the nodes of the structures, or the load is exerted on the beams. In the
latter case we have to reduce the loads on the nodes, obtaining equivalent nodal forces.

Let us study the beam shown in Figure3.6, which is loaded by a transverse distributed load
qt(x). The transverse deflection of the beam due to the load is denoted byvq(x), while the
end-of-beam forces areNiq, Viq,Miq,Njq, Vjq andMjq.

�������������������������������������������
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Figure 3.6: Beamij under a transverse, static, distributed loadqt(x)

First we determine the equivalent nodal moment at endi, namelyMiq. For this we write the
virtual work done by the force system on the virtual displacement system due to a unit rotation
of endi (see Figure3.5):

δWqs =Miq · 1 +
ℓ∫

0

qt(x)viϕ(x) dx−
ℓ∫

0

Mq(x)κiϕ(x) dx

=Miq +

ℓ∫

0

qt(x)viϕ(x) dx− EI

ℓ∫

0

v′′q (x)v
′′
iϕ(x) dx = 0.

Now the virtual work done by the force system due to a unit rotation of endi on the virtual
displacement system caused by loadingqt(x) is formulated:

δWsq = −
ℓ∫

0

Miϕ(x)κq(x) dx = −EI
ℓ∫

0

v′′iϕ(x)v
′′
q (x) dx = 0.

The above equations yield

Miq = −
ℓ∫

0

qt(x)viϕ(x) dx.

This is the end-of-beam moment at endi originated from the transverse loadqt(x). The
opposite of this moment acts on the node, thus the third entryof the equivalent nodal force is:

q3 =

ℓ∫

0

qt(x)viϕ(x) dx.
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If the distributed load has both longitudinal and transverse components, denoted byqn(x)
andqt(x), respectively, then the can be collected in the vectorf(x) = [qn(x), qt(x)]

T and all
the entries of the nodal forces are computed shortly as

qloc
eq,ij =

ℓ∫

0

NT f dx. (3.29)

If the is also a distributed momentm(x) on the beam, then matrixN needs to be appended
by an extra row carrying the tangent of those shape functionsthat correspond to the transverse
translation. This extended matrix is

Next =



uix(x) 0 0 ujx(x) 0 0

0 viy(x) viϕ(x) 0 vjy(x) vjϕ(x)
0 v′iy(x) v′iϕ(x) 0 v′jy(x) v′jϕ(x)


 , (3.30)

while the distributed loads are collected in the vectorfext(x) = [qn(x), qt(x), m(x)]T . With
the above notations the formula for computing the equivalent nodal forces is

qloc
eq,ij =

ℓ∫

0

NT
extfext dx. (3.31)

If a concentrated force, denoted by two componentsF = [Fx, Fy]
T , acts on the beam at

x = a, then the equivalent nodal force is

qloc
eq,ij = NT |x=aF. (3.32)

If there is also a momentM , i.e.Fext = [Fx, Fy,M ]T , then

qloc
eq,ij = NT

ext|x=aFext. (3.33)

Problem 3.1.4(Static nodal forces of a fixed-fixed beam under a constant transverse distributed load). There is
fixed-fixed a beam of lengthℓ, loaded by a constant transverse distributed loadqt(x) = q0. Determine the static
nodal force vectorq!

Solution. We apply formula (3.29) with load vectorQ = [0, q0]
T . The entries ofN are give in AppendixA.2.

q =

∫ ℓ

0

NTQ dx = q0

ℓ∫

0

[
0 0 0 0 0 0
0 viy(x) viϕ(x) 0 vjy(x) vjϕ(x)

]T
dx

= q0

∫ ℓ

0

[
0 0 0 0 0 0

0 2x3

ℓ3 − 3x2

ℓ2 + 1 x3

ℓ2 − 2x2

ℓ + x 0 −2x3

ℓ3 + 3x2

ℓ2
x3

ℓ2 − x2

ℓ

]T
dx

= q0

[[
0 0 0 0 0 0

0 1
2
x4

ℓ3 − x3

ℓ2 + x 1
4
x4

ℓ2 − 2
3
x3

ℓ + 1
2x

2 0 − 1
2
x4

ℓ3 + x3

ℓ2
1
4
x4

ℓ2 − 1
3
x3

ℓ

]T]ℓ

0

= q0




0
ℓ/2
ℓ2/12
0
ℓ/2

−ℓ2/12



.
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3.1.5 Different end conditions of beam members

We have shown so far the elementary static stiffness matrix of the fixed-fixed beam. Al-
though we could derive this matrix for other end conditions from the corresponding shape
functions, there is another option, which is based on thedyadic decompositionof a matrix.

Let us consider the beam shown in Fig.3.7: its ends0 andℓ are elastically connected to the
coinciding nodesi andj through linearly elastic springs. The compliances of the springs are
collected in a diagonal matrix

R =




r1 0 0 0 0 0
0 r2 0 0 0 0
0 0 r3 0 0 0
0 0 0 r4 0 0
0 0 0 0 r5 0
0 0 0 0 0 r6




ji

0 l

qi

qi

i j qj

ji

qi qj

qj

−q −q

0 l

Figure 3.7: A beam with its ends0 andℓ are elastically connected to the coinciding nodesi andj through
linearly elastic springs

First we use fictitious nodes0 andℓ at the ends of the beam, connected rigidly to the beam.
The equilibrium equation of these nodes are:

K0u0 = q0 + qi. (3.34)

HereK0 is the static stiffness matrix of the fixed-fixed beam,u0 contains the displacements
of ends0 andℓ, q0 collect the force components reduced to nodes0 andℓ from the load of
the beam, andqi contains the spring forces acting on nodes0 andℓ. The spring forces should
satisfy

ui − u0 = Rqi, (3.35)

whereui contains the displacements of nodesi and j. Let us expressu0 from (3.35) and
substitute it in (3.34):

K0ui = q0 + (I+K0R)qi.
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(HereI is the 6-by-6 identity matrix.) Now the above equation is multiplied by (I +K0R)−1

from the left:
(I+K0R)−1K0ui = (I+K0R)−1q0 + qi.

On the right hand side the loadqi indicates that the above equation corresponds to nodesi and
j. Therefore

K = (I+K0R)−1K0 (3.36)

is the stiffness matrix of the elastically connected beam and

q = (I+K0R)−1q0 (3.37)

is the nodal force, the beam loads reduced to nodesi andj. In this way we have managed to
eliminate the fictitious nodes0 andℓ.

Let us study now the case when only one degree of freedom of theends of the beam is
connected elastically, the others are rigidly connected. This degree of freedom is denoted byp
(1 ≤ p ≤ 6). Matrix R has only one non-zero in its diagonal, thepth one. The matrix can be
therefore easily formulated as

R = rpepe
T
p . (3.38)

Here the entries of vectorep are all zero except for itspth entry, it is 1. The productepe
T
p gives

a 6-by-6 matrix, called a dyad, which in this special case hasonly one non-zero entry: its entry
p,p is one. Using (3.38) K0R yields

K0R = rpkpe
T
p ,

wherekp is thepth column of matrixK0.
If a dyadvwT is added to a matrixA, then the inverse of the resulting matrix can be

computed as
(
A+ vwT

)−1
= A−1 − A−1vwTA−1

1 +wTA−1v
.

Applying this rule to the matrix inverse in (3.36), using (3.1.5), with the substitutionA → I,
vwT → rpkpe

T
p , yields

(
I− rpkpe

T
p

)−1
= I− rp

kpe
T
p

1 + rpeTp kp

= I− rp
1 + rpkpp

kpe
T
p = I− 1

kpp +
1
rp

kpe
T
p . (3.39)

With the above formula we can simplify the stiffness matrix (3.36) for a beam which has its
pthe degree of freedom elastically connected to the adjacentnode as:

K = K0 −
1

kpp +
1

rp

kpk
T
p . (3.40)

Similarly, the nodal force is

q = q0 −
qp

kpp +
1

rp

kp. (3.41)
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Problem 3.1.5(Elementary static stiffness matrix of a fixed-pinned beam). There is a beam of lengthℓ, normal
stiffnessEA, bending stiffnessEI, and mass per unit lengthµ. The beam is fixed at endi and pinned at endj.
(It is fixed-pinned.) Determine its elementary static stiffness matrixKloc,fp

ij !

Solution. We start with the stiffness matrixKloc
ij of the fixed-fixed beam member detailed by (3.28). Because

of the rotation of endj (the sixth degree-of-freedom of the member) is relaxed,p = 6 andrp → ∞. Thus the
entry6,6 and the6th column ofKloc

ij are needed. We apply formula (3.40) with these input data:

K
loc,fp
ij = Kloc

ij − 1

k66
k6k

T
6

=




EA
ℓ 0 0 −EA

ℓ 0 0

0 12EI
ℓ3

6EI
ℓ2 0 − 12EI

ℓ3
6EI
ℓ2

0 6EI
ℓ2

4EI
ℓ 0 − 6EI

ℓ2
2EI
ℓ

−EA
ℓ 0 0 EA

ℓ 0 0

0 − 12EI
ℓ3 − 6EI

ℓ2 0 12EI
ℓ3 − 6EI

ℓ2

0 6EI
ℓ2

2EI
ℓ 0 − 6EI

ℓ2
4EI
ℓ




− 1
4EI
ℓ




0

6EI
ℓ2

2EI
ℓ

0

− 6EI
ℓ2

4EI
ℓ




[
0 6EI

ℓ2
2EI
ℓ 0 − 6EI

ℓ2
4EI
ℓ

]

K
loc,fp
ij =




EA
ℓ 0 0 −EA

ℓ 0 0

0 3EI
ℓ3

3EI
ℓ2 0 − 3EI

ℓ3 0

0 3EI
ℓ2

3EI
ℓ 0 − 3EI

ℓ2 0

−EA
ℓ 0 0 EA

ℓ 0 0

0 − 3EI
ℓ3 − 3EI

ℓ2 0 3EI
ℓ3 0

0 0 0 0 0 0




.

Problem 3.1.6(Elementary static stiffness matrix of a pinned-pinned beam). There is a beam of lengthℓ,
normal stiffnessEA, bending stiffnessEI, and mass per unit lengthµ. The beam is pinned at both endsi and
j. (It is pinned-pinned.) Determine the elementary static stiffness matrixKloc,pp

ij !

Solution. We start with the stiffness matrixKloc,fp
ij of thefixed-pinnedbeam detailed by Problem3.1.5. Be-

cause of the rotation of endi (the third degree-of-freedom of the member) is relaxed,p = 3 andrp → ∞.
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ThereforeKloc,fp
ij , its entry3,3, and its3rd column are needed in formula (3.40):

K
loc,pp
ij = K

loc,fp
ij − 1

k33
k3k

T
3

=




EA
ℓ 0 0 −EA

ℓ 0 0

0 3EI
ℓ3

3EI
ℓ2 0 − 3EI

ℓ3 0

0 3EI
ℓ2

3EI
ℓ 0 − 3EI

ℓ2 0

−EA
ℓ 0 0 EA

ℓ 0 0

0 − 3EI
ℓ3 − 3EI

ℓ2 0 3EI
ℓ3 0

0 0 0 0 0 0




− 1
3EI
ℓ




0

3EI
ℓ2

3EI
ℓ

0

− 3EI
ℓ2

0




[
0 3EI

ℓ2
3EI
ℓ 0 − 3EI

ℓ2 0
]

=




EA
ℓ 0 0 −EA

ℓ 0 0

0 3EI
ℓ3 0 0 − 3EI

ℓ3
3EI
ℓ2

0 0 0 0 0 0

−EA
ℓ 0 0 EA

ℓ 0 0

0 − 3EI
ℓ3 0 0 3EI

ℓ3 − 3EI
ℓ2

0 3EI
ℓ2 0 0 − 3EI

ℓ2
3EI
ℓ




.

Problem 3.1.7(Nodal forces from a fixed-pinned beam under constant distributed loadqt). There is a beam of
lengthℓ, normal stiffnessEA, bending stiffnessEI, and mass per unit lengthµ. The beam is fixed at endi,
pinned at endj, and loaded by a constant transverse loadqt(x) = q0. Determine the nodal force vectorqloc,fp!

Solution. We start with the nodal force vectorqloc,ff = q0[0, ℓ/2, ℓ
2/12, 0, ℓ/2, −ℓ2/12]T of thefixed-fixed

beam. (See Problem3.1.4.) Because of the rotation of endi (the third degree-of-freedom of the member) is
relaxed,p = 3 andrp → ∞. Therefore the vectorqloc,ff and its third entry are needed in formula (3.41)
alongside with the entry3,3 and the3rd column ofKloc,ff

ij :

qloc,fp = qloc,ff − qloc,ff3

kloc,ff33

k
loc,ff
3 =




0
q0ℓ

2
q0ℓ

2

12
0
q0ℓ

2

−q0ℓ
2

12




−
q0ℓ

2

12
4EI

ℓ




0
6EI

ℓ2
2EI

ℓ
0

−6EI

ℓ2
4EI

ℓ




=




0
5q0ℓ

8
q0ℓ

2

8
0

3q0ℓ

8
0



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3.1.6 Transformation of the elementary stiffness matrix

The elementary stiffness matrix can be written in the block form:

Kloc
ij =

[
K

loc,ii
ij K

loc,ij
ij

K
loc,ji
ij K

loc,jj
ij

]
.

The nodal forcesf locij can be calculated from the nodal displacementsuloc
ij with Eq. (3.6).

If the nodal displacements are given in the global referencesystemXY Z, first we have to
transform them into the local reference system:

uloc
ij = T

T

iju
glob
ij ,

with the hypermatrix:

T
T

ij =

[
TT

ij 0

0 TT
ij

]
.

We transform the resulting nodal forces

f locij = Kloc
ij u

loc
ij = Kloc

ij T
T

iju
glob
ij (3.42)

into the global reference system with the hyper matrix

Tij =

[
Tij 0

0 Tij

]
.

We multiply both sides of Eq. (3.42) from the left byTij:

Tijf
loc
ij = f

glob
ij = TijK

loc
ij T

T

iju
glob
ij .

In the above formula the matrix productTijK
loc
ij T

T

ij transforms the nodal displacementsu
glob
ij

into the nodal forcesfglobij . Therefore, the elementary stiffness matrix in the global reference
system (the global stiffness matrix, for short) is

K
glob
ij = TijK

loc
ij T

T

ij , (3.43)

and the nodal forces can be calculated as

f
glob
ij = K

glob
ij u

glob
ij .

The matrix product (3.43) can be written in a simpler form using the hypermatrix structure:

K
glob
ij =

[
TijK

loc,ii
ij TT

ij TijK
loc,ij
ij TT

ij

TijK
loc,ji
ij TT

ij TijK
loc,jj
ij TT

ij

]
=

[
K

glob,ii
ij K

glob,ij
ij

K
glob,ji
ij K

glob,jj
ij

]
.

We cannot stress enough the physical meaning of the stiffness matrix. Entryp, r of matrix
K

glob
ij (i.e. the entry ofKglob

ij,pr in the intersection of thepth row andrth column) is multiplied
by the displacement (rotation, ifr = 3 or 6, and translation otherwise) of therth degree-of-
freedom the beamij. The result is the force or the moment (moment, ifp = 3 or 6, and force
component otherwise) acting on thepth degree of freedom of beamij arising from the elastic
deformation of the beam memberij.
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3.1.7 Compilation of the total stiffness matrix

In various displacement methods the equation of motion is written for every degree-of-
freedom of the system, so the forces acting on each degree-of-freedom must be calculated.
In the stiffness matrix we collect the (stiffness) coefficients of the displacements needed to
calculate the forces arising from the elastic deformation of the structure. We use a linear theory,
so the forces acting on the same degree-of-freedom from different members must be summed.
This summation of the elastic forces (more accurately the coefficients of displacements) is
called thecompilationof the total stiffness matrix of the structure.

The first step of the compilation is to find out which local nodeof beamij corresponds to
which global node. We used the global indexesi andj for the local nodes as well, so they are the
same. The effect of the memberij on the whole structure is particular, only the displacements
of nodesi andj affect the forces and moments on theith andjth nodes. The global stiffness
matrix of memberij can be expanded on the structure level into a matrixKij. The matrixKij

is of size3M by 3M corresponding to the DOF of the structure. It has one block row and one
block column for each node (each block is of size3 by 3):

Kij =

i j


. ..
...

...
· · · K

glob,ii
ij K

glob,ij
ij

...
. . .

...
· · · K

glob,ji
ij K

glob,jj
ij

...
...

.. .




i

j

(3.44)

The matrixKij represents the effect of beamij to all nodes. The total stiffness matrix of the
structure can be constructed as the sum of the expanded stiffness matrices of all the beams of
the structure:

K =
∑

Kij .

Technically, it is more practical to carry out the compilation by adding the blocks of the ele-
mentary stiffness matrixKglob

ij to the corresponding blocks of the total stiffness matrixK with
the scheme shown in Eq. (3.44).

3.1.8 Boundary conditions

Boundary conditions of frame structures are defined by the support conditions. The dis-
placement of some degrees of freedom is constrained to a prescribed value (rigid support) or it
is proportional to the reaction (elasticsupport). These constrains must be incorporated into the
equilibrium equation:

Ku = q,

whereq is the external load vector of the system. There are two ways to handle the boundary
conditions.

• The fixed support modelis based on the solution of the equilibrium equations of the
prescribed degrees of freedom, and the application of its results.
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• The spring modeluses springs in the directions of the prescribed, elastically supported
degrees-of-freedom. The rigid supports are approximated by springs of very high stiff-
ness (bigger than any other entry of the stiffness matrix by some orders of magnitude).

It is more accurate to handle the support displacements withthe fixed support model. Later
on, in dynamical analysis of structures, an important load case is the support motion.

Rigid supports in the fixed support model

We analyse the case when theqth degree-of-freedom of a structure is rigidly supported, so
its displacement is prescribed bŷuq. (The prescribed displacement can be a translation or a
rotation depending onq, and the prescribed value can be zero as well.) Then, in the equilibrium
equation theqth row differs from the other rows, because the displacementûq is known, but the
reaction forcerq represents an additional unknown in theqth entry of the force vector.

Let us exchange the order of the displacements such a way thatthe prescribed displacement
becomes the last. This implies an exchange of columns ofK. In order to resolve the symmetry
of K, we need to change the order of the equations as well. That implies an exchange in the
entries of the load vector. If we denote the blocks of the stiffness matrixK before theqth
degree-of-freedom by the superscriptP , and the blocks of the stiffness matrixK after theqth
degree-of-freedom by the superscriptR, then above procedure leads to the following structure
of the stiffness matrix, the displacement and the load vectors:




KPP KPq KPR

KqP kqq KqR

KRP KRq KRR






uP

ûq
uR


 =




qP

qq + rq
qR




→




KPP KPR KPq

KRP KRR KRq

KqP KqR kqq






uP

uR

ûq


 =




qP

qR

qq + rq


 .

(3.45)

Once we find the unknown displacementsuP anduR, the last row of the matrix equation can
be used to calculate the unknown reaction forcerq. The firstP+R equations can be partitioned
into a known and an unknown part:

[
KPP KPR

KRP KRR

] [
uP

uR

]
=

[
qP

qR

]
−
[
KPq

KRq

]
ûq. (3.46)

The matrix on the left hand side of Eq. (3.46) can be regarded as the stiffness matrix of the
reduced system, the vector on the left hand side is the vectorof the unknown displacements,
while the vector sum on the right hand side is the reduced loadvector, which also contains the
kinematical load caused by the support displacementûq. The resulting equations can be written
in the classic formKu = q, butK andu are of reduced size, andq contains the kinematical
loads as well.

Further supports can be treated in a similar way, only the above steps need to be repeated
on the already reduced equationKu = q.
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Elastic supports in the fixed support model

Now imagine, that nodei is supported elastically against the horizontal and vertical trans-
lations and the rotation. The equivalent spring stiffnesses of the horizontal and vertical elastic
support areρX andρY , respectively, and the rotational spring is of stiffnessρϕ (see Figure3.8
(a)).

In thefixed support modelwe introduce an additionalsupporting nodeg in the same geo-
metric location as nodei. Then the degrees-of-freedom of nodesi andg are connected to each
other by the massless springsρX , ρY andρϕ (see Figure3.8(b)). The global stiffness matrix of
the member connecting nodesi andg is

K
glob
ig =




ρX 0 0 −ρX 0 0
0 ρY 0 0 −ρY 0
0 0 ρϕ 0 0 −ρϕ

−ρX 0 0 ρX 0 0
0 −ρY 0 0 ρY 0
0 0 −ρϕ 0 0 ρϕ



.

The displacements of the supporting nodeg are prescribed (here zero), so we can use the
method described in the previous subsubsection to eliminate it from the system of equations.

We note, that in thespring modelwe need to add the spring stiffnesses directly to the
corresponding main diagonal entries of the total stiffnessmatrix. (In the case of rigid supports,
springs of numerically large stiffnesses need to be used.) Support displacements are taken into
account by external forces applied on the node, resulting inexactly the prescribed displacement.

Figure 3.8: (a)Spring model: theith supported node of a frame structure constrained against translations and
rotation by the equivalent springsρX , ρY , andρϕ. (b) Fixed support modelwith an elastically supported nodei.
Kinematical loads arising from the support displacements are applied on the supporting nodeg. (The supporting

nodeg is drawn in a distance from the supported nodei in order to make the connecting springs visible.)
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3.2 Dynamic stiffness matrix of frame structures

Let us have an undamped MDOF dynamical system governed by thesystem of ordinary
differential equations

Mü(t) +Ku(t) = q(t). (3.47)

Here dot denotes differentiation with respect to time. The mass matrixM and the (static)
stiffness matrixK are of sizeN byN , whereN is the total degrees-of-freedom of the system.
Vectoru(t) is of sizeN and it contains the unknown displacements of the nodes. Force vector
q(t) is a given vector of sizeN : it contains the forces reduced to the nodes. Thepth entry of
forceq(t) is work-compatible with thepth entry ofu(t).

If the force is harmonic, for instanceq(t) = q0 sin(ωt), then the steady-state response of
the undamped system is also harmonic. We have seen that in this case the particular solution of
the forced vibration isuf (t) = uf0 sin(ωt) and the equation to solve foruf0 is:

(
K− ω2M

)
uf0 = q0.

We can alternatively introduce the dynamic stiffness matrix K̂ = K−ω2M and write the above
equation as

K̂uf0 = q0. (3.48)

The question here is that how we can formulate the mass matrixM, or, equivalently, how
we can compose the dynamic stiffness matrixK̂? We can follow three different approaches.
The first, easier way is to apportion the mass of the members ofthe frame into the nodes,
which results in a totaldiagonally lumped mass matrix. This is a rough approximation. The
second way is to derive the elementary dynamic stiffness matrix of a beam with continuous
mass distribution, and then to compile the total dynamic stiffness matrix of the frame in the
same manner as for the static analysis. This approach leads to the exactfrequency-dependent
mass matrixof the frame. The main difficulty of this method is that it requires the dynamic
shape functions of the beam. In practice, dynamic shape functions are often substituted by the
static shape functions. In that case, the shape function system used for the computation of the
static stiffness matrix is consistent with the shape functions applied to approximate the mass
matrix. This third approach leads to the construction of a simplerconsistent mass matrix, which
is an estimation of the accurate dynamic mass matrix.

We review these methods in the following subsections. We always deal with an unshearable
beam of lengthℓ, mass per unit lengthµ, bending stiffnessEI. The ends of the studied beam
member are denoted byi andj, and the member itself is referred to as beamij.

3.2.1 Diagonally lumped mass matrix

In this case first we divide the beam into two equal parts: halfi is the part which is closer
to the endi, and halfj is the other part. Then the mass of halfi is concentrated to nodei, and
the mass of halfj is reduced to nodej.

Several members can be attached to one node of the frame. In order to compile the total,
diagonally lumped mass matrixM of the structure, we need to make the following steps. If
the pth degree-of-freedom of the frame is a translation, then thepth diagonal entry of mass
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matrixM is the total mass of the halves of the beams attached to the corresponding node. If
therth degree-of-freedom is a rotation, then therth diagonal entry of matrixM is the moment
of inertia of the (closer) halves of the rods attached to the corresponding node. If the center
of mass of the halves of the beams connected to one node coincides with the node itself, then
the mass matrixM is diagonal. Otherwise, the translation of the node induces both a linear
momentum and an angular momentum with respect to the node, and the rotation of the node
induces not only an angular momentum, but also a linear momentum. Thus the mass matrix
is not diagonal in this general case. Although, the off-diagonal terms are usually neglected in
practice.

3.2.2 Dynamic stiffness matrix

Apportioning the masses to the nodes in the manner shown in the previous subsection is
the easiest way to approximate the mass matrix of the frame structure. However, the precise
approach is to directly derive thedynamic elementary stiffness matrixof a beam, and then
compile the total (dynamic) stiffness matrix of the whole structure in the same way as for the
static case.

Let us examine a beam that is excited such that one DOF of one ofits ends vibrates har-
monically with frequencyω. According to our earlier studies, the steady state vibration has the
same frequencyω. Thus we assume that the translationsu(x, t), v(x, t) of the beam axis along
x andy, respectively, the rotation of the cross-sectionsv′(x, t), and also the internal forces
N(x, t), V (x, t), M(x, t) are harmonic functions of time with frequencyω. We write these
functions in the separated forms

v(x, t) = v̂(x) sin(ωt), u(x, t) = û(x) sin(ωt), v′(x, t) = v̂′(x) sin(ωt),

N(x, t) = N̂(x) sin(ωt), V (x, t) = V̂ (x) sin(ωt), M(x, t) = M̂(x) sin(ωt).
(3.49)

We show two methods suitable to calculate the end-of-beam internal forces, which are used to
construct the dynamic stiffness matrix of the beam.

Solving the differential equations of motion

The entries of the first and the fourth columns of the elementary dynamic stiffness matrix
K̂loc

ij are computed from the differential equation of the stretched bar (see Eq. (2.6))

µü(x, t)− EAu′′(x, t) = 0 (3.50)

subjected to boundary conditions

u(0, t) = 1 · sin(ωt), u(ℓ, t) = 0, or (3.51)

u(0, t) = 0, u(ℓ, t) = 1 · sin(ωt). (3.52)

Boundary conditions (3.51) express that endi of the bar vibrates harmonically alongx with a
unit amplitude, while endj is fixed. The other two boundary conditions (3.52) mean that endj
vibrates while endi is kept fixed.
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We split the variablest andx of the unknown function

u(x, t) = û(x) sin(ωt),

substitute it into Eq. (3.50), and divide both side bysin(ωt) 6= 0:

ω2µû(x) + EAû′′(x) = 0. (3.53)

The solution of the above differential equation is

û(x) = D1 cos

(
ψ

ℓ
x

)
+D2 sin

(
ψ

ℓ
x

)
, (3.54)

where

ψ = ℓ

√
ω2µ

EA
.

The unknown coefficientsD1, D2 can be computed from two prescribed boundary conditions.
According to (3.51) and (3.52) these are

ûix(0) = 1, ûix(ℓ) = 0, and (3.55)

ûjx(0) = 0, ûjx(ℓ) = 1 (3.56)

for the first and the fourth columns, respectively. The amplitudes of the internal forces at the
ends of the bar are

N̂iix = EAû′ix(0), V̂iix = 0, M̂iix = 0,

N̂jix = EAû′ix(ℓ), V̂jix = 0, M̂jix = 0.

The entries of the first column of the dynamic stiffness matrix are

k̂loc
ij,1 = [−N̂iix, 0, 0, N̂jix, 0, 0]

T ,

while the fourth column is composed of

k̂loc
ij,4 = [−N̂ijx, 0, 0, N̂jjx, 0, 0]

T .

Problem 3.2.1(The fourth column of the elementary dynamic stiffness matrix). There is a fixed-fixed beam
ij, which is of lengthℓ, normal stiffnessEA, bending stiffnessEI, and mass per unit lengthµ. Determine the
entries of the fourth column of its elementary dynamic stiffness matrix!

Solution. Entries of column4 are the end-of-beam internal forces due to a harmonic translation of unit ampli-
tude of endj along the axis of the beam. Since the translation along the beam axis induces only normal forces,
the entries2,4 (shear at endi), 3,4 (bending moment at endi), 5,4 (shear at endj), and6,4 (moment at endj)
are all zero:

K̂ loc
ij,24 = 0, K̂ loc

ij,34 = 0, K̂ loc
ij,54 = 0, K̂ loc

ij,64 = 0.

Entry1,4 is the normal force at endi

K̂ loc
ij,14 = −N̂ijx = −EAû′jx(0),
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while entry4,4 is the normal force at endj

K̂ loc
ij,44 = N̂jjx = EAû′jx(ℓ).

Hereûjx(x) is the solution of (3.53) with boundary conditions (3.56), i.e. it is the dynamic shape function of
the bar due to a harmonic translation of unit amplitude of endj. The solution of (3.53) is (3.54). Here the
unknown coefficientsD1 andD2 are from the boundary conditions (3.56). We write these boundary conditions
using (3.54):

ûjx(0) = D1 cos(0) +D2 sin(0) = 0, → D1 = 0,

ûjx(x) = D1 cos

(
ψ

ℓ
ℓ

)
+D2 sin

(
ψ

ℓ
ℓ

)
= 1, → D2 = 1/ sin (ψ) .

(Here we suppose thatsin (ψ) 6= 0, i.e. the system is not in the state of resonance.) The dynamic displacement
function is:

ûjx(x) =
1

sin (ψ)
sin

(
ψ

ℓ
x

)
. (3.57)

It is differentiated with respect tox, multiplied byEA, and evaluated at endi (x = 0) andj (x = ℓ). Positive
value of the result is a tension. However, a compression at end i, and a tension at endj coincide with the
positive direction ofx. Thus

K̂ loc
ij,14 = −EAû′jx(0) = −EAψ

ℓ

1

sin(ψ)
cos

(
ψ

ℓ
0

)
= −EA

ℓ

ψ

sin(ψ)
,

K̂ loc
ij,44 = EAû′jx(ℓ) = EA

ψ

ℓ

1

sin(ψ)
cos

(
ψ

ℓ
ℓ

)
=
EA

ℓ
ψ cot(ψ).

Exercise3.2.1. DrawK̂ loc
ij,14 andK̂ loc

ij,44 as a function of the forcing frequencyω in the domainω = 0 . . . 10ω01!

An entry of the second, third, fifth, or sixth columns of the elementary dynamic stiffness
matrix K̂loc

ij can be obtained from the differential equation of the transverse vibration of the
beam (2.47), which is repeated here:

µv̈(x, t) + EIv′′′′(x, t) = 0. (3.58)

Here dot and prime denote partial differentiation with respect tot andx, respectively. There
are again harmonic boundary conditions defined for (3.58):

viy(0, t) = sin(ωt), v′iy(0, t) = 0, viy(ℓ, t) = 0, v′iy(ℓ, t) = 0, or
viϕ(0, t) = 0, v′iϕ(0, t) = sin(ωt), viϕ(ℓ, t) = 0, v′iϕ(ℓ, t) = 0, or
vjy(0, t) = 0, v′jy(0, t) = 0, vjy(ℓ, t) = sin(ωt), v′jy(ℓ, t) = 0, or
vjϕ(0, t) = 0, v′jϕ(0, t) = 0, vjϕ(ℓ, t) = 0, v′jϕ(ℓ, t) = sin(ωt).

(3.59)
The first four conditions express that there is a harmonic transverse translation of unit amplitude
at endi, while the rotations of the ends, and the translation of endj are zero. The next four
conditions are for a harmonic rotation of unit amplitude of end i, then the next four correspond
to the harmonic transverse translation of unit amplitude ofendj, while the last four are devoted
for the harmonic rotation of unit amplitude of endj.
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We split the variablest andx as

v(x, t) = v̂(x) sin(ωt).

Substituting the above formula into Eq. (3.58) the ODE

ω2µv̂(x)− EIv̂′′′′(x) = 0 (3.60)

is obtained. The solution of the above differential equation is

v̂(x) = C1 cos

(
λ

ℓ
x

)
+ C2 sin

(
λ

ℓ
x

)
+ C3 cosh

(
λ

ℓ
x

)
+ C4 sinh

(
λ

ℓ
x

)
, (3.61)

where

λ = ℓ
4

√
ω2µ

EI
,

similarly to Eq. (2.50). The unknown coefficientsC1, C2, C3, C4 can be computed from four
prescribed boundary conditions. According to (3.59), these conditions for the computation of
the second column ofKloc

ij are

v̂iy(0) = 1, v̂′iy(0) = 0, v̂iy(ℓ) = 0, v̂′iy(ℓ) = 0. (3.62)

Similarly, the boundary conditions are

v̂iϕ(0) = 0, v̂′iϕ(0) = 1, v̂iϕ(ℓ) = 0, v̂′iϕ(ℓ) = 0, (3.63)

v̂jy(0) = 0, v̂′jy(0) = 0, v̂jy(ℓ) = 1, v̂′jy(ℓ) = 0, and (3.64)

v̂jϕ(0) = 0, v̂′jϕ(0) = 0, v̂jϕ(ℓ) = 0, v̂′jϕ(ℓ) = 1 (3.65)

for the third, fifth and sixth columns, respectively. Then the amplitudes of the internal forces at
the ends are evaluated as

N̂iiy = 0, V̂iiy = −EIv̂′′′iy(0), M̂iiy = −EIv̂′′iy(0),
N̂jiy = 0, V̂jiy = −EIv̂′′′iy(ℓ), M̂jiy = −EIv̂′′iy(ℓ).

in the case of boundary conditions (3.62), i.e. for the second column of the dynamic stiffness
matrix. The entries of the second column of the stiffness matrix are

k̂loc
ij,2 = [0,−V̂iiy, M̂iiy, 0, V̂jiy,−M̂jiy]

T .

The positive definition of the end-of-beam internal forces and the entries of the dynamic stiff-
ness matrix are the same as in the case of the static stiffnessmatrix, which is shown in Figure3.4
(c). Therefore, the dynamic stiffness matrix has the same structure as the static one (3.20):

K̂loc
ij =




−N̂iix 0 0 −N̂ijx 0 0

0 −V̂iiy −V̂iiϕ 0 −V̂ijy −V̂ijϕ
0 M̂iiy M̂iiϕ 0 M̂ijy M̂ijϕ

N̂jix 0 0 N̂jjx 0 0

0 V̂jiy V̂jiϕ 0 V̂jjy V̂jjϕ
0 −M̂jiy −M̂jiϕ 0 −M̂jjy −M̂jjϕ




. (3.66)
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Application of the principle of virtual displacements

Let a beam be vibrating such that the translation of its endi is viy(0, t) = 1 · sin(ωt), while
all other displacements of its ends are zero (see Figure3.9 top). The end-of-beam internal
forces are the harmonic functions

Niy(0, t) = N̂iiy sin(ωt), Viy(0, t) = V̂iiy sin(ωt), Miy(0, t) = M̂iiy sin(ωt),

Niy(ℓ, t) = N̂jiy sin(ωt), Viy(ℓ, t) = V̂jiy sin(ωt), Miy(ℓ, t) = M̂jiy sin(ωt).
(3.67)

These internal forces and the bending moment diagram at a certain time instant are sketched at
the bottom of Figure3.9.

�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������

�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������

������������������������������������������
������������������������������������������
������������������������������������������
������������������������������������������

������������������������������������������
������������������������������������������
������������������������������������������
������������������������������������������

i j

ωsin(   t)

l

ωsin(   t)
x

M Vjiy

^
y

v (l,t)=0      

N

Miiy  V

iiy

iiy N

jiy

jiy
Miy

^ ^

^
^ ^

^

.

v (0,t)=0      
v (0,t)=1      iy

iy

iy v (l,t)=0iy

iy

iyv (x,t)=v (x)

µ
t

q (x,t)=−  a  (x,t)iy

Figure 3.9: (top) Sketch of the deformed shape of beamij due to a harmonic translation of unit amplitude of end
i along axisy. (bottom) The corresponding bending moment diagram and thepositive definition of the internal

forces at the ends of the beam.

Our aim is to determine the amplitudes of the end-of-beam internal forcesN̂iiy, V̂iiy, M̂iiy,
N̂jiy, V̂jiy, M̂jiy due to a harmonic translation of unit amplitude of endi. From these values
the entries of the second column of the6-by-6 elementary dynamic stiffness matrix̂Kloc

ij can
be obtained following (3.66).

The computation of the end-of-beam internal forces of the beam is based on the prin-
ciple of virtual displacements. At any time instantt, we apply the fictitious inertial force
qt(x, t) = −µaiy(x, t) as shown in Figure3.9. Thus we have a statically admissible force sys-
tem: the internal forces and the fictitious inertial force are in equilibrium. We take the (static)
displacement systemviϕ(x), which is caused by a unit translation of endi (shown in Figure3.5)
as the virtual displacement system. We compute the virtual work that the force system shown
in Figure3.9does on this virtual displacement system at time instantt:

δWds =Miy(0, t) · 1 +
ℓ∫

0

{−µaiy(x, t)}viϕ(x) dx−
ℓ∫

0

Miy(x, t)
Miϕ(x)

EI
dx = 0.

Here the first term is the work done by the momentMiy(0, t) on the unit rotation of endi.
The last term is the internal work done by the bending momentMiy(x, t) on the curvature
κiϕ(x) =Miϕ(x)/EI. The second term is the work done by the (distributed) inertia force

−µaiy(x, t) = −µv̈iy(x, t) = µω2v̂iy(x) sin(ωt)
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on the translationviϕ(x) along the whole length of the beam. This, Eq. (3.49), and Eq (3.67)
implies that the above work is

δWds =



M̂iiy + µω2

ℓ∫

0

v̂iy(x)viϕ(x) dx−
ℓ∫

0

M̂iy(x)
Miϕ(x)

EI
dx



 sin(ωt) = 0. (3.68)

Next, we express the virtual work that the static force system (shown in Figure3.5) does on
the dynamic displacement system (sketched in Figure3.9) at certain time instantt:

δWsd = Viiϕ · {−1 · sin(ωt)} −
ℓ∫

0

Miϕ(x)
M iy(x, t)

EI
dx = 0.

Using Eqs. (3.49) and (3.67) the above work is reformulated as

δWsd =



−Viiϕ −

ℓ∫

0

Miϕ(x)
M̂iy(x)

EI
dx



 sin(ωt) = 0. (3.69)

Both Eqs. (3.68) and (3.69) have zero on the right hand side. Therefore their left hand sides are
equal, which implies that the terms in the curl brackets are equal, yielding

M̂iiy + µω2

ℓ∫

0

v̂iy(x)viy(x) dx = −Viiϕ.

In the above expression−Viiϕ equals the entry2, 3 of the static stiffness matrix of the beam by
definition. In addition, and due to the symmetry (3.22) of the static stiffness matrix,−Viiϕ =
K loc

ij,23 = K loc
ij,32.

Finally, we can express the amplitude of the dynamic bendingmoment at endi caused by a
harmonic translation of the same end, i.e. the entry3,2 of the dynamic stiffness matrix̂Kloc

ij :

K̂ loc
ij,32 = M̂iiy = K loc

ij,32 − µω2

ℓ∫

0

v̂iy(x)viϕ(x) dx .

We can derive all the end-of-beam internal forces due to longitudinal and transverse (harmonic)
translations and (harmonic) rotations of unit amplitudes of the ends in a similar way. We can
construct a matrix similar to (3.23):

N̂ =

[
ûix(x) 0 0 ûjx(x) 0 0

0 v̂iy(x) v̂iϕ(x) 0 v̂jy(x) v̂jϕ(x)

]
. (3.70)

Here ûix(x) is the dynamic shape function of the beam due to a harmonic translation of unit
amplitude of endi alongx. This is the solution of (3.53) with boundary conditions (3.55). The
shape function̂viy(x) is due to a harmonic translation of unit amplitude of endi alongy, i.e.
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the solution of (3.60) with boundary conditions (3.62). The shape function̂viϕ(x) describes the
deformed shape of the beam caused by a harmonic rotation of unit amplitude of endi. It is the
solution of (3.60) with boundary conditions (3.63). The same holds for superscriptj with the
appropriate boundary conditions. It is important to note that these shape functions are functions
of x, but they depend on the parametersµ, EI, EA, ℓ (which are given for the studied beam),
and also onω (which is the frequency of the vibration). Therefore,N̂ is frequency dependent.

Now we can write the elementary dynamic stiffness matrix of beamij in the short form

K̂loc
ij (ω) = Kloc

ij − ω2M̂loc
ij (ω) . (3.71)

HereKloc
ij is its elementary static stiffness matrix of beamij, andM̂loc

ij (ω) is the elementary
mass matrix:

M̂loc
ij (ω) = µ

ℓ∫

0

N̂TN dx, (3.72)

which depends on the circular frequencyω of the external forcing. As a conclusion, we can
say that the elementary dynamic stiffness matrix equals to the elementary static stiffness matrix
minus the mass matrix (3.72) times the square of the forcing frequency. This dynamic stiffness
matrix isfrequency dependent. From Eq. (3.72) it can be verified that the mass matrix̂Mloc

ij (ω)

is symmetric, and so is the dynamic stiffness matrixK̂loc
ij (ω), which is evident from Eq. (3.71).

Problem 3.2.2(Entry 1,4 of the elementary dynamic stiffness matrix). The fixed-fixed beamij is of lengthℓ,
normal stiffnessEA, bending stiffnessEI, and mass per unit lengthµ. Determine the entry1,4 of its elementary
dynamic stiffness matrix!

Solution. Entry1,4 is the normal force at endi due to a harmonic translation of unit amplitude of endj along
the axis of the beam:

K̂ loc
ij,14 = K loc

ij,14 − ω2µ

ℓ∫

0

ûjx(x)uix(x) dx.

Hereûjx(x) is the dynamic shape function due to the harmonic (axial) vibration of endj, while uix(x) is the
(static) deformation of the bar caused by an axial unit translation of endi. The former function̂ujx(x) was
already determined in Problem3.2.1, its is given by Eq. (3.57), which is repeated here:

ûjx(x) =
1

sin (ψ)
sin

(
ψ

ℓ
x

)
.

The functionuix(x) was derived in Problem3.1.1, its is given by Eq. (3.13) as:

uix(x) = B0 +B1x = 1− 1

ℓ
x.

Entry4,1 of the static stiffness matrix was also computed in Problem3.1.1. Due to the symmetry of the stiffness
matrix, entries4,1 and1,4 are equal:

K loc
ij,14 = K loc

ij,41 = −EA
ℓ
.
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Now, we can compute the entry of the dynamic stiffness matrixaccording to (3.71):

K̂ loc
ij,14 = K loc

ij,14 − ω2µ

ℓ∫

0

ûjx(x)uix(x) dx = −EA
ℓ

− ω2µ

ℓ∫

0

1

sin (ψ)
sin

(
ψ

ℓ
x

){
1− 1

ℓ
x

}
dx

= −EA
ℓ

− ω2µ

{
ℓ

ψ sinψ
− ℓ

ψ2

}
= −EA

ℓ
− EAℓ

EAℓ

ω2µℓ

ψ sinψ
+
ω2µℓ

ψ2
= −EA

ℓ
− EA

ℓ

ψ

sinψ
+
EA

ℓ

= −EA
ℓ

ψ

sinψ
.

The entries of the elementary dynamic stiffness matrix of beamij of lengthℓ, mass per unit
lengthµ, normal stiffnessEA, and bending stiffnessEI are

K̂loc
ij =




EA

ℓ
ψ cotψ 0 0 −EA

ℓ

ψ

sinψ
0 0

0
EI

ℓ3
F6(λ) −EI

ℓ2
F4(λ) 0

EI

ℓ3
F5(λ)

EI

ℓ2
F3(λ)

0 −EI
ℓ2
F4(λ)

EI

ℓ
F2(λ) 0 −EI

ℓ2
F3(λ)

EI

ℓ
F1(λ)

−EA
ℓ

ψ

sinψ
0 0

EA

ℓ
ψ cotψ 0 0

0
EI

ℓ3
F5(λ) −EI

ℓ2
F3(λ) 0

EI

ℓ3
F6(λ)

EI

ℓ2
F4(λ)

0
EI

ℓ2
F3(λ)

EI

ℓ
F1(λ) 0

EI

ℓ2
F4(λ)

EI

ℓ
F2(λ)




, (3.73)

F1(λ) = λ
sinλ− sinhλ

cosλ coshλ− 1
, F2(λ) = −λcoshλ sinλ− sinhλ cosλ

cosλ coshλ− 1

F3(λ) = −λ2 coshλ− cosλ

cosλ coshλ− 1
, F4(λ) = λ2

sinhλ sinλ

cosλ coshλ− 1
,

F5(λ) = λ3
sinhλ+ sinλ

cosλ coshλ− 1
, F6(λ) = −λ3 coshλ sinλ+ sinhλ cosλ

cosλ coshλ− 1
,

ψ = ℓ

√
ω2µ

EA
, λ = ℓ

4

√
ω2µ

EI
.

We have to note here that if the forcing frequencyω coincides with one of the natural
circular frequenciesω0j of the longitudinal vibration of the clamped-clamped bar, thenψ = jπ,
thereforeψ cotψ andψ/ sinψ become singular. Besides, ifω coincides with one of the natural
circular frequenciesω0i of the transverse vibration of the clamped-clamped beam, then all the
functionsF1(λ), F2(λ), . . . , F6(λ) become singular. Thus matrix̂Kloc

ij cannot be inverted in
these special cases. This phenomenon is theresonance.

An alternative way to construct the elementary stiffness matrix purely from dynamic shape
functions is given in AppendixA.4.
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3.3 Consistent mass matrix

Construction of the elementary dynamic stiffness matrix of amember of the planar frame
was discussed in the previous subsection, and an explicit formula (3.71) was derived.

The drawback of that approach is that the mass matrix (3.72) is frequency-dependent.
Therefore, if someone needs to analyse a structure subjected to different loading (frequen-
cies), they need to compile the mass matrix foreach load frequency for the same structure.
Another weak point is that the calculation of the mass matrixassumed that each nodal force
has the same frequencyω. If it is not the case, for instance when the nodal forces havedifferent
frequencies, or they are not harmonic functions of time, then there does not exists a frequency
ω which can be used for the calculation of the entries of the mass matrix. In fact, the whole
procedure, assuming that the response of the structure follows the same frequencyω, fails in
those cases.

Hence, in practice, the elementary mass matrix is approximated by using purely static shape
functions (which are frequency independent) instead of thedynamic ones. That estimation
leads to the construction of the so-calledconsistent mass matrix

Mloc
cons,ij = µ

ℓ∫

0

NTN dx . (3.74)

Since here we use the same static shape functions as for the computation of the static stiffness
matrix (3.27), this composition of the mass matrix is consistent with thestatic stiffness matrix,
therefore it is often called the stiffness consistent mass matrix.

Problem 3.3.1(Entry1,1 of the consistent mass matrix). The fixed-fixed beamij is of lengthℓ, normal stiffness
EA, bending stiffnessEI, and mass per unit lengthµ. Determine entry1,1 of its elementary consistent mass
matrix!

Solution. Entry1,1 is of the consistent mass matrix according to (3.74) and (3.23) is

M loc
cons,ij,11 = µ

ℓ∫

0

uix(x)uix(x) dx.

Hereuix(x) is the deformation of the bar caused by an axial unit translation of endi. This functionuix(x) was
already derived in Problem3.1.1, its is given by Eq. (3.13) as:

uix(x) = 1− x

ℓ
.

Now we compute the entry of the consistent mass matrix

M loc
cons,ij,11 = µ

ℓ∫

0

uix(x)uix(x) dx = µ

ℓ∫

0

(
1− x

ℓ

)2
dx = µ

ℓ∫

0

1− 2
x

ℓ
+
x2

ℓ2
dx

=

[
x− x2

ℓ
+
x3

3ℓ2

]ℓ

0

= µ
ℓ

3
.

112

by Németh & Kocsis



CHAPTER 3. DYNAMICS OF PLANAR FRAME STRUCTURES

The entries of the consistent mass matrix areindependent of the loading frequency, which is
a huge advantage in the further analysis. The approximated dynamic stiffness matrix expressed
with the consistent mass matrix is

K̂loc
ij (ω) ≈ Kloc

ij − ω2Mloc
cons,ij .

Hereafter we leave the subscript “cons” and denote the consistent mass matrix byMcons = M.
The entries of the consistent mass matrix of a beam of lengthℓ and mass per unit lengthµ are

Mloc
cons,ij = Mloc

ij = µℓ




1

3
0 0

1

6
0 0

0
13

35

11

210
ℓ 0

9

70
− 13

420
ℓ

0
11

210
ℓ

1

105
ℓ2 0

13

420
ℓ − 1

140
ℓ2

1

6
0 0

1

3
0 0

0
9

70

13

420
ℓ 0

13

35
− 11

210
ℓ

0 − 13

420
ℓ − 1

140
ℓ2 0 − 11

210
ℓ

1

105
ℓ2




. (3.75)

In further analysis we use the consistent mass matrixM, even if the structure is subjected to
a general loading (forces that are arbitrary functions of time, or harmonic forces with different
frequencies).

3.3.1 Different end conditions of beam members

Similarly to the case of the elementary static stiffness matrix, the elementary consistent
mass matrix can also be modified using dyadic decompositions.

The computation of the displacements of any point of the beamaxis can be achieved using
the end-of-beam displacementsui and the static shape functionsN of the beam:

u(x) = N0(x)u0.

For an unloaded beam (qi = 0) (3.34) yields

K0u0 = qi.

Multiplying it from the left byR and substituting (3.35) in the right hand side we get:

RK0u0 = ui − u0 → u0 = (I+RK0)
−1ui,

thus
u(x) = N0(x)(I+RK0)

−1ui,
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which implies
N (x) = N0(x)(I+RK0)

−1.

By definition the consistent mass matrix is

M = µ

ℓ∫

0

NTN dx = µ

ℓ∫

0

(I+RK0)
−TNT

0 N0(I+RK0)
−1 dx

= (I+RK0)
−T



µ

ℓ∫

0

NT
0 N0 dx



 (I+RK0)

−1 = (I+RK0)
−TM0(I+RK0)

−1.

(Note thatI, R, andK0 are independent ofx.) HereM0 is the consistent mass matrix of the
fixed-fixed beam.

If only one degree of freedom (thepth) of the beam ends is connected elastically to the
adjacent node, then matrixR can be written in the dyadic form (3.38), and

RK0 = rpepk
T
p ,

According to (3.39)
(
I− rpepk

T
p

)−1
= I− 1

kpp +
1
rp

epk
T
p .

Hence

M = (I+RK0)
−TM0(I+RK0)

−1 =

(
I− 1

kpp +
1
rp

epk
T
p

)T

M0

(
I− 1

kpp +
1
rp

epk
T
p

)

= M0 −
1

kpp +
1
rp

{
kpe

T
pM0 +M0epk

T
p

}
+

1
(
kpp +

1
rp

)2kpe
T
pM0epk

T
p ,

which yields

M = M0 −
1

kpp +
1

rp

(
kpm

T
p +mpk

T
p

)
+

mpp(
kpp +

1

rp

)2kpk
T
p . (3.76)

Problem 3.3.2(Elementary consistent mass matrix of a fixed-pinned beam). The beamij of lengthℓ, normal
stiffnessEA, bending stiffnessEI, and mass per unit lengthµ is fixed at endi and pinned at endj. (It is
fixed-pinned.) Determine its elementary consistent mass matrix M

loc,fp
ij !

Solution. We use Eq. (3.76) for the construction of the mass matrix. We start with the static stiffness matrix
Kloc

ij and the consistent mass matrixMloc
ij of the fixed-fixed beam, given by (3.28) and (3.75), respectively.

Because of the rotation of endj (the sixth degree of freedom of the beam) is relaxed,p = 6 andr6 → ∞. Thus
the entries6,6 and the6th column ofKloc

ij andMloc
ij are needed:

k66 =
4EI

ℓ
, m66 =

µℓ3

105

kT
6 =

[
0 6EI

ℓ2
2EI
ℓ 0 − 6EI

ℓ2
4EI
ℓ

]

mT
6 =

[
0 − 13µℓ2

420 −µℓ3

140 0 − 11µℓ2

210
µℓ3

105

]
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Now we apply formula (3.76) with the above input data:

M
loc,fp
ij = Mloc

ij − 1

k66

(
m6k

T
6 + k6m

T
6

)
+
m66

k266
k6k

T
6

= Mloc
ij − 1

4EI
ℓ




0

− 13µℓ2

420

−µℓ3

140

0

− 11µℓ2

210
µℓ3

105




[
0 6EI

ℓ2
2EI
ℓ 0 − 6EI

ℓ2
4EI
ℓ

]

− 1
4EI
ℓ




0
6EI
ℓ2

2EI
ℓ

0
− 6EI

ℓ2
4EI
ℓ




[
0 − 13µℓ2

420 −µℓ3

140 0 − 11µℓ2

210
µℓ3

105

]

+
µℓ3

105(
4EI
ℓ

)2




0
6EI
ℓ2

2EI
ℓ

0
− 6EI

ℓ2
4EI
ℓ




[
0 6EI

ℓ2
2EI
ℓ 0 − 6EI

ℓ2
4EI
ℓ

]

= µℓ




1

3
0 0

1

6
0 0

0
17

35

3

35
ℓ 0

39

280
0

0
3

35
ℓ

2

105
ℓ2 0

11

280
ℓ 0

1

6
0 0

1

3
0 0

0
39

280

11

280
ℓ 0

33

140
0

0 0 0 0 0 0




.

3.3.2 Accuracy with the consistent mass matrix

In order to get some information about the accuracy of the stiffness matrix obtained using
the consistent mass matrix, we compare the entries of the consistent matrix with the same
entries of the accurate dynamic stiffness matrix.

Let us compare entries3,6 of the accurate dynamic stiffness matrixK̂loc
ij and of the approx-

imated stiffness matrixKloc
ij − ω2Mloc

ij . (HereMloc
ij is the elementary consistent mass matrix.)
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Entry3,6 of K̂loc
ij is

K̂ loc
ij,36 =

EI

ℓ
F1(λ) =

EI

ℓ
λ

sinλ− sinhλ

cosλ coshλ− 1
.

TheTaylor expansion of the above function with respect toλ is

K̂ loc
ij,36 =

EI

ℓ

(
2 + 0.7143 · 10−2λ4 + 0.1570 · 10−4λ8 + 0.3182 · 10−7λ12 +O(λ16)

)
.

Entry3,6 of Kloc
ij − ω2Mloc

ij is

K̂ loc
ij,36 ≈ K loc

ij,36 − ω2M loc
ij,36 =

2EI

ℓ
− ω2µℓ

(
− 1

140
ℓ2
)

=
2EI

ℓ
+
EI

ℓ
0.7143 · 10−2λ4.

Here we used the identity

λ = ℓ
4

√
ω2µ

EI
→ ω2µ = EI

λ4

ℓ4
.

The difference between the accurate and the estimate valuesis

K̂ loc
ij,36 −

(
K loc

ij,36 − ω2M loc
ij,36

)
=
EI

ℓ

(
0.1570 · 10−4λ8 + 0.3182 · 10−7λ12 +O(λ16)

)
.

As we can see,λ governs the magnitude of the error: it appears on the power ofhigher than
seven in the error. Hence, decreasing the value ofλ makes the approximation of the dynamic
stiffness matrix more accurate. Usually we cannot decreasethe mass or increase the bending
stiffness, because those are given parameters of the structure. What we can do in order to
obtain a better accuracy is reducing the lengthℓ of the members, i.e. applying more nodes. It
is important to note that higher forcing frequencyω increasesλ, thus it also increases the error,
i.e. decreases the accuracy of the approximate stiffness matrix. Thus, the higher the forcing
frequency is, the shorter members (i.e. more nodes) we have to use for the same accuracy.
A good rule of thumb is that the approximate model built with the consistent mass matrix is
usually accurate enough if the smallest natural circular frequency of the applied beam members
is larger than the largest natural circular frequency of thewhole model.

ωmembers
0,min > ωstructure

0,max , Tmembers
0,max < T structure

0,min

3.3.3 Additional masses

Additional masses are often needed to be considered in structural design (furnitures, plaster-
work, devices, etc.). These are modeled as continuously distributed mass, or as a concentrated
(lumped) mass on a beam.

Continuously distributed additional mass along a beam

Let a mass per unit lengthµadd be distributed along the whole length of the beam. In this
case one only needs to determine anequivalent massper unit length

µekv = µ+ µadd

and use it (instead ofµ) in the computation of the consistent mass matrix (3.75) of the beam.
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Concentrate additional mass on one node

If a massm is placed right on a nodep of the mechanical model, then the additional diagonal
mass matrix

M
glob
add =



m 0 0
0 m 0
0 0 I0




is to be added to the corresponding block of the total mass matrix of the structure. HereI0 is
the moment of inertia of the mass with respect to the node.

Concentrate additional mass on a beam

Let a massm be on the beam atx = a. An additional (consistent) mass matrix can be
computed as

Mloc
add = mNT |x=aN|x=a.

Then this 6-by-6 matrixMloc
add is simply added to the original elementary mass matrix of the

corresponding beam member.

3.4 Equivalent dynamic nodal loads

If there is a dynamic, distributed loadf(x, t) = [fx(x, t), fy(x, t)]
T (whose components

are given by an axial loadfx(x, t) and a transverse loadfy(x, t)) acting on beamij between
x = a andx = b, then anequivalent nodal loadqeq,ij(t) must be determined for the matrix
displacement method. Without going into details of the derivations, this equivalent nodal load
can be approximated as

qloc
eq,ij(t) =

∫ b

a

NT f(x, t) dx. (3.77)

Here vectorqeq,ij(t) = [qeq,i(t),qeq,j(t)]
T contains the equivalent loads on the endsi andj of

the beam member. The static shape functions are collected inN (see (3.23)).
In the case of a concentrated forceF(t) = [Fx(t), Fy(t)]

T acting atx = a, the equivalent
load is estimated as

qloc
eq,ij(t) = NT |x=aF(t). (3.78)
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Problem 3.4.1(Dynamic analysis of a simple planar frame). Let us examine the planar frame shown in Fig-
ure3.10(a). It consists of three beams of equal lengthℓ = 8m, bending stiffnessEI = 100000Nm2, normal
stiffnessEA = 5000000N, and mass per unit lengthµ = 200 kg/m. The frame is loaded by a dynamic exciting
forceP sin(ωt) = 100000 sin(40t)N at the right top node, leaning45◦ from the horizontal, as it is shown in
Figure3.10(a). Determine the steady-state response of the frame due tothis exciting force!

3

4

ωsin(   t)q
2

x
y

x
y

x

y

X
Y

12

1
3

1 2

24

l

l 4
/5

 l
3/5 l

l

(a) (b)

ωsin(   t)P

Figure 3.10: (a) Sketch of a simple planar frame. (b) Mechanical model forthe matrix displacement method.

Solution. We use the total dynamic stiffness matrixK̂(ω) of the frame and solve (3.48):

K̂(ω)uf0 = q0 → uf0 = K̂−1(ω)q0.

Hereuf0 is the amplitude of the vibration of the nodes of the structure. The steady-state vibration is then
governed by

uf (t) = uf0 sin(ωt).

We also compute two approximate solutions by using the consistent mass matrixM and the diagonally lumped
mass matrixMlum. With the aid of these matrices the dynamic stiffness matrixcan be estimated as

K̂(ω) ≈ K− ω2M, and K̂(ω) ≈ K− ω2Mlum.

For these approximations we need to compile the total staticstiffness matrixK of the frame, too.
First we start with the nodal decomposition of the frame, then we define the local and global reference

systems, and the coordinate transformations. We apply fournodes, as shown in Figure3.10(b). Nodes1 and2
areinternal nodes, while nodes3 and4 aresupported nodes. Since there is not any support motion, we exclude
these external nodes from the compilation of the total (stiffness, mass, and dynamic stiffness) matrices. The
global reference system is the left handed oneXY Z shown in Figure3.10(b). There are local reference systems
xyz attached to each beam member, as indicated in Figure3.10(b). The vector of the unknown displacements
of the internal nodes1 and2 in the global reference system is

u(t) =




u1X(t)
u1Y (t)
ϕ1(t)
u2X(t)
u2Y (t)
ϕ2(t)



.

The force vector acting on the internal nodes1 and2 in the global reference system is

q(t) =




F1X(t)
F1Y (t)
M1(t)
F2X(t)
F2Y (t)
M2(t)



=




0
0
0

−P/
√
2

P/
√
2

0



sin(ωt) → q0 =




0
0
0

−P/
√
2

P/
√
2

0



.
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The transformations from the local reference systems of beams12, 13, 24 into the global reference system are
given by

T12 =




1 0 0
0 1 0
0 0 1


 , T13 =




0 −1 0
1 0 0
0 0 1


 , T24 =




3/5 −4/5 0
4/5 3/5 0
0 0 1


 .

All the three beams are fixed-fixed, and they have the same geometric and material properties, which
implies that they have the sameelementarystiffness and mass matrices in the local systems.

The elementary static stiffness matrix of the beams in the local system is

Kloc
12 = Kloc

13 = Kloc
24 =




EA

ℓ
0 0 −EA

ℓ
0 0

0
12EI

ℓ3
6EI

ℓ2
0 −12EI

ℓ3
6EI

ℓ2

0
6EI

ℓ2
4EI

ℓ
0 −6EI

ℓ2
2EI

ℓ

−EA
ℓ

0 0
EA

ℓ
0 0

0 −12EI

ℓ3
−6EI

ℓ2
0

12EI

ℓ3
−6EI

ℓ2

0
6EI

ℓ2
2EI

ℓ
0 −6EI

ℓ2
4EI

ℓ




=




625000 0 0 −625000 0 0
0 2344 9375 0 −2344 9375
0 9375 50000 0 −9375 25000

−625000 0 0 625000 0 0
0 −2344 −9375 0 2344 −9375
0 9375 25000 0 −9375 50000



.

The (exact) elementary dynamic stiffness matrix of the beams in the local system comes from (3.73). The
general formula of this matrix is fairly long and complicated. That is one of the drawbacks of using the (exact)
dynamic stiffness matrix. Therefore we only provide the reader with the entries of the matrixevaluatedat the
given forcing frequencyω = 40 rad/s:

K̂loc
12 (ω = 40) = K̂loc

13 (ω = 40) = K̂loc
24 (ω = 40)

=




−615805 0 0 −1406846 0 0
0 −1024410 −587067 0 −820788 613717
0 −587067 −305208 0 −613717 458874

−1406846 0 0 −615805 0 0
0 −820788 −613717 0 −1024410 587067
0 613717 458874 0 587067 −305208



.
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The elementary consistent mass matrix of the all beams is constructed following (3.75):

Mloc
12 = Mloc

13 = Mloc
24 = µℓ




1

3
0 0

1

6
0 0

0
13

35

11

210
ℓ 0

9

70
− 13

420
ℓ

0
11

210
ℓ

1

105
ℓ2 0

13

420
ℓ − 1

140
ℓ2

1

6
0 0

1

3
0 0

0
9

70

13

420
ℓ 0

13

35
− 11

210
ℓ

0 − 13

420
ℓ − 1

140
ℓ2 0 − 11

210
ℓ

1

105
ℓ2




=




533.3 0 0 266.7 0 0
0 594.3 670.5 0 205.7 −396.2
0 670.5 975.2 0 396.2 −731.4

266.7 0 0 533.3 0 0
0 205.7 396.2 0 594.3 −670.5
0 −396.2 −731.4 0 −670.5 975.2



.

We also compose the diagonally lumped mass matrixMlum. We directly construct thetotal mass matrix
in the global system. Entries1,1 and2,2 correspond to the horizontal and vertical translations of node1. The
values of these entries thus the sum of masses of the halves of(the connecting) beams12 and13. Entry 3,3
corresponds to the rotation of node1, thus it is the rotary inertia of the halves of (the connecting) beams12 and
13. Similarly, entries4,4 and5,5 correspond to the translations of node2, thus they are the sum of masses of
the halves of beams12 and24. Entry6,6 is the rotary inertia of the halves of beams12 and24. Therefore the
total diagonally lumped mass matrix of the structure is

Mlum =




2 · µℓ/2 0 0 0 0 0
0 2 · µℓ/2 0 0 0 0
0 0 2 · µ(ℓ/2)3/3 0 0 0
0 0 0 2 · µℓ/2 0 0
0 0 0 0 2 · µℓ/2 0
0 0 0 0 0 2 · µ(ℓ/2)3/3




=




1600 0 0 0 0 0
0 1600 0 0 0 0
0 0 8533 0 0 0
0 0 0 1600 0 0
0 0 0 0 1600 0
0 0 0 0 0 8533



.

Now we compile the total dynamic stiffness matrix, the totalstatic stiffness matrix, and the total consistent
mass matrices of the structure. The block structure of the total static stiffness matrix of the frame is

K =

[
K

glob,11
12 +K

glob,11
13 K

glob,12
12

K
glob,21
12 K

glob,22
12 +K

glob,22
24

]

Here the blocks are transformed from the local to the global system as

K
glob,11
13 = T13K

loc,11
13 TT

13, K
glob,22
24 = T24K

loc,22
24 TT

24.
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Blocks

K
glob,11
12 = K

loc,11
12 , K

glob,22
12 = K

loc,22
12 , K

glob,12
12 = K

glob,12
12 , K

glob,21
12 = K

glob,21
12 ,

sinceT12 is the identity matrix. The transformation follows the sameprocedure in the cases of the consistent
mass matrix, and of the dynamic stiffness matrix. We just need to substitute the corresponding blocks of
the elementary static stiffness matrix with the elementaryconsistent or with the elementary dynamic stiffness
matrices.

The total stiffness matrix of the structure is

K =




627344 0 −9375 −625000 0 0
0 627344 9375 0 −2344 9375

−9375 9375 100000 0 −9375 25000
−625000 0 0 851500 298875 −7500

0 −2344 −9375 298875 403188 −3750
0 9375 25000 −7500 −3750 100000



,

while the total consistent mass matrix is

M =




1128 0 −670.5 266.7 0 0
0 1128 670.5 0 205.7 −396.2

−670.5 670.5 1950 0 396.2 −731.4
266.7 0 0 1106 −29.26 −536.4
0 205.7 396.2 −29.26 1150 −268.2
0 −396.2 −731.4 −536.4 −268.2 1950



.

The total dynamic stiffness matrix of the structure evaluated at the forcing frequencyω = 40 rad/s is

K̂(ω = 40) =




−1640214 0 587067 −1406845 0 0
0 −1640214 −587067 0. −820787 613716

587067 −587067 −610415 0 −613716 458873
−1406845 0 0 −1493116 196130 469653

0 −820787 −613716 196130 −1787312 234826
0 613716 458873 469653 234826 −610415



.

Approximation of this dynamic stiffness matrix can be obtained by

K̂(ω) ≈ K− ω2M =




−1176847 0 1063387 −1051667 0 0
0 −1176847 −1063387 0 −331487 643280

1063387 −1063387 −3020762 0 −643280 1195286
−1051667 0 0 −917582 345686 850710

0 −331487 −643280 345686 −1436112 425355
0 643280 1195286 850710 425355 −3020762



.

Another, less accurate approximation of this dynamic stiffness matrix uses the diagonally lumped mass matrix:

K̂(ω) ≈ K−ω2Mlum =




−1932656 0 −9375 −625000 0 0
0 −1932656 9375 0 −2344 9375

−9375 9375 −13553333 0 −9375 25000
−625000 0 0 −1708500 298875 −7500

0 −2344 −9375 298875 −2156813 −3750
0 9375 25000 −7500 −3750 −13553333



.

(Both approximations are evaluated at the given frequencyω = 40 rad/s.)
The first natural circular frequency of the structure, according to the exact dynamic stiffness matrix, is

ω01 = 4.499 rad/s. In fact, there are infinitely many natural circular frequencies of the structure if we use the
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exact dynamic stiffness matrix. (Remember, it contains thedynamic shape functions, which are combinations of
trigonometric and hyperbolic functions.) If an approximate approach is used (i.e. we apply the consistent mass
matrix, or the diagonally lumped one), then the number of natural circular frequencies of the frame structure
equals to the number of total DOF of the model, which is6 in our example. These natural circular frequencies,
and the first few frequencies of the exact model are summarized in the following table.

ω0,1 ω0,2 ω0,3 ω0,4 ω0,5 ω0,6 ω0,7 . . .
exact 1.429 4.452 7.138 7.816 7.882 15.14 18.54 . . .

consistent 1.437 5.320 11.25 19.88 27.16 47.47 − −
lumped 1.310 2.964 3.825 16.81 19.80 29.87 − −

Table 3.1: The first few natural circular frequencies (in rad/s) of the frame and all the six natural circular
frequencies of the approximate models (with the consistentthe diagonally lumped mass matrices).

In practice, the approximate model is usually accurate enough if the smallest natural frequency of the applied
beam members is larger than the largest circular frequency of the model. The first natural frequency of the
fixed-fixed beam members of the studied frame is [11]

ωffbeam
01 = 22.4

√
EI

µℓ4
= 7.826 rad/s.

This is far not larger than the largest natural frequency of the approximate models (see Table3.1). Therefore,
we should introduce additional internal nodes, i.e. we should divide the structure into more beam members. We
do not do so, just go on with the inaccurate approximation andshow what differences appear between the final
results of the exact and the approximate models.

The final result, the amplitudes of the translations and rotations of nodes1 and2, are computed as

uf0 = K̂−1q0, uf0 ≈ (K− ω2M)−1q0, uf0 ≈ (K− ω2Mlum)
−1q0

Using the exact dynamic stiffness matrix̂K, the amplitudes of the displacements of the nodes are

uf0 =




0.01224
0.1352
0.5459
0.2135
−0.1815
0.6408



.

The application of the consistent mass matrix leads to the result

uf0 ≈




0.06310
−0.02154
0.04293
−0.02720
−0.07163
−0.005344



,

while it follows from the usage of the diagonally lumped matrix that

uf0 ≈




−0.01345
0.00003283
0.00002799
0.04158
−0.02702

−0.00001546



.
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3.5 Support vibration of MDOF systems

In this section we deal with the support vibration of planar frame structures. Several kine-
matical forcing of structures comes from the motion of the underlying ground (e.g. earthquakes,
ground vibration from underground and road trafic etc.). We follow a similar approach to the
one presented in the statical analysis. In the upcoming subsections we analyse the effect of rigid
supports on the applied model, the calculation of elastically supported structures, the harmonic
support vibration, and the support vibration equal at each supported node.

3.5.1 Prescribed motion of DOFs

As a first step, we have to compile the static stiffness matrixK the consistent mass matrix
M, and the vector of external loadq(t) reduced to the degrees-of-freedom. Here we have to
take into account allM nodes of3 degrees-of-freedom each. The unconstrained equation of
motion is

Mü(t) +Ku(t) = q(t). (3.79)

The above equation is subjected to the constrains on the prescribed displacements of the sup-
ported nodes (prescribed values can be zeros for a rigid support or a time-dependent function
for a vibrating support). Please note, that prescribing thedisplacement of a degree-of-freedom
implies that we also prescribe its first and second derivatives with respect to time, i.e. its veloc-
ity and acceleration.

With row- and column exchanges in Eq. (3.79) we can construct a special form of it, where
the equation of motion of the DOFs with prescribed values arein the last rows, and the dis-
placements of the DOFs with prescribed values are the last entries in vectoru(t). The schema
of the exchange of one row and column is the same as the one in Eq. (3.45). The same must be
done for the mass matrix as well.

Partitioning the matrices and vectors in this reordered form is of the following blocks:
[

MII MIg

MgI Mgg

][
üI(t)

üg(t)

]
+

[
KII KIg

KgI Kgg

][
uI(t)

ug(t)

]
=

[
qI(t)

qg(t) + rg(t)

]
. (3.80)

Here the vectorug(t) contains the prescribed displacements (typically they arethe displace-
ments of the supports, or ground, that is why the subscriptg is for), and the vectoruI(t)
contains the displacements of the non-supported, internalnodes. The vectorqI(t) contains the
forces reduced to the internal nodes, and the vectorqg(t) contains the forces reduced to the
supported nodes. The vectorrg(t) contains the reactions in the supports. The second block of
equations of (3.80) can be used to calculate the reactions once the unknown displacements of
ui(t) and the accelerations ofüi(t) are known.

The first block of equations of (3.80) can be written in the form

Miiüi(t) +Kiiui(t) = qi(t), (3.81)

which is the matrix-differential equation of the forced, undamped vibration of a MDOF system
(see Eq. (3.47)) with the forcing vector:

qi(t) = qi(t)−Migüg(t)−Kigug(t). (3.82)
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The solution of the matrix differential equation (3.81) can be obttained by any of the known
solution methods.

Fixed supports as prescribed motion

Some of the supports have prescribed zero valued displacements. The accelerations of
those supports are zero as well. These are called fixed supports. The corresponding elements
of vectorsug(t) andüg(t) are zero in Eq. (3.82), thus the corresponding columns of matrices
Mig andKig are cancelled. Non-moving supports creates no vibration ofthe structure, so it is
easier to exclude them from the calculations.

We can follow the strategy, that we make the reduction into the form of Eq. (3.81) in two
steps. In the first step, we eliminate only the fixed supports which cause no vibration of the
structure. In this step the second and third terms on the right hand side of Eq. (3.82) become
zero. In the second step, we eliminate the vibrating supported nodes from the previously re-
duced system. Here the load vector is modified by the support vibration according to Eq. (3.82).

A rigorous analysis of the above steps makes it possible to create the final matrix equation
of motion in one single step. This is illustrated in Figure3.11, where two degrees-of-freedom
have the prescribed nonzero displacementsug1(t) andug2(t) while one degree-of-freedom is
fixed toug0 = 0. The matrix block structure are shown before and after the elimination process
in Figure3.11(a) and (b), respectively.

Elastically supported nodes

In Subsubsection3.1.8we have seen, that in the fixed support model a massless supporting
node is used in order to model the elastic support. The prescribed motion of a support can be
applied on the supporting node. Then we can eliminate the supporting node, while its motion
results in an excess load given by the last two terms of Eq. (3.82).

3.5.2 Harmonic support vibration

Let us analyse the situation when every supported node vibrates harmonically with the same
circular frequencyω. In this case the kinematical load vectorug(t) in Eq. (3.82) can be written
as

ug(t) = u
g
0 sin (ωt) ,

and its second derivative with respect to time is

üg(t) = u
g
0(−ω2) sin (ωt) .

If the vector of nodal loadsq(t) can be neglected, then Eq. (3.81) leads to

Miiüi(t) +Kiiui(t) = −
(
Kig − ω2Mig

)
u
g
0 sin (ωt) . (3.83)
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(a) The block structure of the matrix equation of motion withfixed supportug0 = 0

and vibrating supportsug1(t) andug2(t)



MAA mAg1 MAB mAg0 MAC mAg2 MAD

mg1A mg1g1 mg1B mg1g0 mg1C mg1g2 mg1D

MBA mBg1 MBB mBg0 MBC mBg2 MBD

mg0A mg0g1 mg0B mg0g0 mg0C mg0g2 mg0D

MCA mCg1 MCB mCg0 MCC mCg2 MCD

mg2A mg2g1 mg2B mg2g0 mg2C mg2g2 mg2D

MDA mDg1 MDB mDg0 MDC mDg2 MDD







üA(t)

üg1(t)

üB(t)

üg0

üC(t)

üg2(t)

üD(t)




+




KAA kAg1 KAB kAg0 KAC kAg2 KAD

kg1A kg1g1 kg1B kg1g0 kg1C kg1g2 kg1D

KBA kBg1 KBB kBg0 KBC kBg2 KBD

kg0A kg0g1 kg0B kg0g0 kg0C kg0g2 kg0D

KCA kCg1 KCB kCg0 KCC kCg2 KCD

kg2A kg2g1 kg2B kg2g0 kg2C kg2g2 kg2D

KDA kDg1 KDB kDg0 KDC kDg2 KDD







uA(t)

ug1(t)

uB(t)

ug0

uC(t)

ug2(t)

uD(t)




=




qA(t)

qg1(t) + rg1(t)

qB(t)

qg0(t) + rg0(t)

qC(t)

qg2(t) + rg2(t)

qD(t)




(b) The block structure of the reduced matrix equation

after the eliminating prescribed displacementsug0, ug1 , andug2



MAA MAB MAC MAD

MBA MBB MBC MBD

MCA MCB MCC MCD

MDA MDB MDC MDD







üA(t)

üB(t)

üC(t)

üD(t)



+




KAA KAB KAC KAD

KBA KBB KBC KBD

KCA KCB KCC KCD

KDA KDB KDC KDD







uA(t)

uB(t)

uC(t)

uD(t)




=




qA(t)

qB(t)

qC(t)

qD(t)



−




mAg1 mAg2

mBg1 mBg2

mCg1 mCg2

mDg1 mDg2




[
üg1(t)

üg2(t)

]
−




kAg1 kAg2

kBg1 kBg2

kCg1 kCg2

kDg1 kDg2




[
ug1(t)

ug2(t)

]

Figure 3.11: The change of the block structure of the matrix equation of motion during the elimination of the
prescribed motion of supports.
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3.5.3 Support motion due to earthquake

Earthquakes induce sudden changes in the shape of the earth crust. An earthquake causes
discontinuity in the displacements. This discontinuity travels in the continuum with the velocity
of the travelling waves. In contrast to the travelling wavesshown in Subsection2.1.1, the waves
in the solid continuum have a decreasing amplitude due to their propagation along an inflating
sphere. Hence the amplitude of the ground motion is affectedby the distance from the location
of the earthquake, too. The discontinuities travel as pressure and as shear waves. Pressure
waves travel faster in the solid materials than shear waves.

In a typical engineering structure on a typical solid ground, distances between the supported
nodes are small enough. Therefore the differences between the amplitudes of the support mo-
tions, and the phase differences are often neglected. So, the vector of prescribed displacements
can be written as

ug(t) = ug(t)rg,

whererg is an index vector selecting the vibrating supported nodes.Here we assume that each
support vibrates in the same direction. The acceleration ofthe supported nodes is

üg(t) = üg(t)rg.

The matrix equation of motion is now

Miiüi(t) +Kiiui(t) = −Migüg(t)rg −Kigug(t)rg. (3.84)

We remind the reader, that the unknowns in Eq. (3.84) are displacements. These displace-
ments are the components of vectorui(t) in the global reference system. The displacements
can be written as the sum of the displacements of the supportsin the direction of the support
vibration(ug(t)) and the excess elastic deformation(uel(t)):

ui(t) = uel(t) + ug(t)ri. (3.85)

The influence vectorri in the above equation describes the displacements of the internal
degrees-of-freedom if we apply a unit displacement in the direction of the support vibration.
With these definitions vectorsri andrg represent a rigid body translation of the whole struc-
ture. We refer to this rigid body translation of the whole, unconstrained structure with thetotal
influence vectorr, for short:

r =

[
ri

rg

]
.

We substitute the displacements (3.85) and their derivatives into Eq. (3.84) and rearrange it
into

Miiüel(t) +Kiiuel(t) = −Migüg(t)rg −Miiüg(t)ri −Kigug(t)rg −Kiiug(t)ri,

which is written in a block form

Miiüel(t) +Kiiuel(t) = −üg(t)
[
Mii Mig

]
[

ri

rg

]
− ug(t)

[
Kii Kig

]
[

ri

rg

]
. (3.86)
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We already observed, that vectorsri and rg represent a rigid body translation of the whole
structure. A rigid body motion causes no internal forces in the structure, so the last term in
Eq.(3.86) is zero independently of the support vibrationug(t):

[
Kii Kig

]
[

ri

rg

]
= 0.

Let us define the vector of forced massesmg as

mg =
[
Mii Mig

]
[

ri

rg

]
= Mir. (3.87)

The final matrix equation of motion in the case of earthquake is then:

Miiüel(t) +Kiiuel(t) = −üg(t)mg. (3.88)

3.6 Real modal analysis, internal forces

In the previous section we presented how to compile the system of differential equations
of an undamped planar frame structure. The elastic properties of the beams were incorporated
into the stiffness matrixK, while the loads were reduced to the nodal load vectorq(t). The
masses of the structural elements were collected into the consistent mass matrixM. With these
components we can write the differential equations of motion in the matrix form:

Mü(t) +Ku(t) = q(t). (3.89)

In this section we show how to solve the above equation in the case of an arbitrary load
functionq(t), and how the internal forces of the structure can be calculated.

3.6.1 Solution of the MDOF system with real modal analysis

We have seen in Subsection1.3.3that a system of differential equations like Eq. (3.89) can
be solved with modal analysis in case of a harmonic load vector q(t) = q0 sin (ωt). There, the
forced vibration of the MDOF system was reduced to vibrationof independent SDOF oscilla-
tors, using the eigenvectorsui normalized to the mass matrix. A similar approach can be used
for the case of general forcing, but then the answer of each SDOF oscillator is calculated using
the Duhamel’s integral (1.26).

The first step is the calculation of the natural circular frequenciesω0j and the corresponding
modal shape vectorsuj normalized to the mass matrix. These are the unique solutions of the
generalized eigenvalue problem (

K− ω2
0M
)
u = 0,

which is derived from the complementary equation of Eq. (3.89). (See Subsection1.3.2 for
details.)
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The second step is to write the particular solution of the inhmogeneous matrix differential
equation (3.89) as a linear combination of the normalized eigenvectors:

uf (t) =
N∑

j=1

ujyj(t). (3.90)

We collect the eigenvectors into themodal matrixU and the modal displacements into the
vectory(t):

U = [u1 u2 . . . uN ] , yT (t) = [y1(t) y2(t) . . . yN(t)] , (3.91)

so Eq. (3.90) can be written in the form:

uf (t) = Uy(t). (3.92)

We substitute the particular solution (3.92) into Eq. (3.89) and multiply both sides from the left
by the transpose of the modal matrix(UT ):

UTMUÿ(t) +UTKUy(t) = UTq(t). (3.93)

(Here we used the fact, that the eigenvectors, and so the modal matrix U are independent of
time, hence the derivative ofu(t) depends only on the derivative ofy(t): ü(t) = Uÿ(t).)

The orthogonality of the eigenvectors on the mass and the stiffness matrices (see
Eqns. (1.45), (1.46)) implies thatUTMU andUTKU are diagonal matrices. Moreover, the
matrix UTMU is a unit matrix, while the matrixUTKU contains the squares of the natural
circular frequencies of the structure in its main diagonal (see Eq. (1.41)):

UTMU = I, and UTKU =
〈
ω2
01 ω2

02 . . . ω2
0N

〉
= Ω2. (3.94)

The matrixΩ is called thespectral matrix. Now we can write Eq. (3.93) as:

ÿ(t) +Ω2y(t) = f(t), (3.95)

wheref(t) is the vector of modal forcing. Itsjth entry is

fj(t) = uT
j q(t). (3.96)

Due to the diagonal structure of the spectral matrixΩ2, the system of differential equations
(3.89) falls apart intoN = 3M independent differential equations of SDOF oscillators in
Eq. (3.95). The differential equation of thejth mode is:

ÿj(t) + ω2
0jyj(t) = fj(t). (3.97)

The above ODE is an undamped version of Eq. (1.22) with m = 1, c = 0, andk = ω2
0j, so we

can write its solution with a Duhamel’s integral:

yj(t) =

t∫

0

fj(τ)

ω0

sin (ω0(t− τ)) dτ. (3.98)
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This equality can be used in Eq. (3.90) with the nodal load (3.96):

uf (t) =
N∑

j=1

uj

∫ t

0

uT
j q(τ)

ω0j

sin (ω0j(t− τ)) dτ . (3.99)

One can see in the formula (3.99), that the vibration of each mode is divided by the correspond-
ing natural circular frequency. It results in a decrease of the effect of the higher modal shapes in
the final sum, just like we had in the case of the harmonic excitation of MDOF systems (1.60).

Problem 3.6.1(Undamped planar frame with an impulse load). Let us analyse the structure already shown in
Problem3.4.1. The forcing is an impulse load acting on the first node in the horizontal direction att = 0. We
solve the problem with modal analysis.

Solution. We do not repeat the calculation of the system matrices, the details are in Problem3.4.1. The total
stiffness matrix is

K =




627343.75 0 −9375 −625000 0 0
0 627343.75 9375 0 −2343.75 9375

−9375 9375 100000 0 −9375 25000
−625000 0 0 851500 298875 −7500

0 −2343.75 −9375 298875 403187.5 −3750
0 9375 25000 −7500 −3750 100000



,

and the total consistent mass matrix is

M =




1128 0 −670.5 266.7 0 0
0 1128 670.5 0 205.7 −396.2

−670.5 670.5 1950 0 396.2 −731.4
266.7 0 0 1106 −29.26 −536.4
0 205.7 396.2 −29.26 1150 −268.2
0 −396.2 −731.4 −536.4 −268.2 1950



.

The force vector is an impulse on the first node in the horizontal direction at time instantt = 0

q(t) =




1000
0
0
0
0
0



δ(t) = q0δ(t),

whereδ(t) is the Dirac delta function (2.74).
Solution of the generalized eigenvalue problem

(
K− ω2

0M
)
u = 0 results in the following natural circular

frequencies and corresponding (mass-normalized) modal shape vectors:

ω01 = 1.4365 rad/s, u1 = [0.01706,−0.00006692,−0.0001327, 0.01704,−0.01271, 0.0007558]T

ω02 = 5.3204 rad/s, u2 = [−0.003077,−0.0006746,−0.01308,−0.003095, 0.001616, 0.01405]T

ω03 = 11.253 rad/s, u3 = [0.008010, 0.0006601, 0.02370, 0.008609,−0.007061, 0.02132]T

ω04 = 19.882 rad/s, u4 = [−0.01428,−0.005737,−0.0001224,−0.003592,−0.02463,−0.006325]T

ω05 = 27.163 rad/s, u5 = [0.003505,−0.03264, 0.01145, 0.005892, 0.007928, 0.0003340]T

ω06 = 47.469 rad/s, u6 = [0.02727,−0.01069, 0.01284,−0.02683,−0.009150,−0.006025]T

129

by Németh & Kocsis



CHAPTER 3. DYNAMICS OF PLANAR FRAME STRUCTURES

We can calculate the time-dependent part of integral Eq. (3.99) for every mode:

t∫

0

δ(τ) sin (ω0j(t− τ)) dτ = sin (ω0jt) .

We have to calculate the modal participation factorpj = uT
j q0/ω0j for each node. The results are summa-

rized in Table3.2. It can be seen that the first mode has the biggest participation in the motion.

j 1 2 3 4 5 6
ω0j 1.4365 5.3204 11.253 19.882 27.163 47.469

uT
j q0 17.056 −3.0770 8.0102 −14.277 3.5051 27.266

pj = uT
j q0/ω0j 11.873 −0.5783 0.7119 −0.7181 0.1290 0.5744

Table 3.2: The first six natural circular frequencies of the frame, the projections of the load vector to the
modal shape vectors, and the modal participation factors

Finally, the steady-state vibration of the structure caused by the impulse att = 0 is

uf (t) =
N∑

j=1

ujpj sin (ω0jt) .

3.6.2 Calculation of internal forces

In the matrix displacement method the unknowns of our dynamical equations are the dis-
placements (translations and rotations) of the nodes as thefunction of time. However, in struc-
tural engineering the magnitudes of internal forces are in interest usually. We have seen that the
displacements can be calculated by the serial application of modal analysis and the Duhamel’s
integral.

From the global displacement vectoruf (t) we can collect the displacements of the end
nodes of any beam member. If we denote theith andjth blocks of the displacement vector
uf (t) by uglob

f,i (t) anduglob
f,j (t), respectively, then the displacement vector of beamij is

u
glob
f,ij (t) =

[
u
glob
f,i (t)

u
glob
f,j (t)

]
.

The above displacement vector consists of the displacements of the DOFs of beamij. In order
to calculate the internal forces in a beam, it is recommendedto transform the displacements
from the global reference systemXY Z to the local reference systemxyz using the transfor-
mation matricesTT

ij andT
T

ij introduced in3.1:

uloc
f,ij(t) = T

T

iju
glob
f,ij (t) =

[
TT

iju
glob
f,i (t)

TT
iju

glob
f,j (t)

]
.

In a static analysis one has to multiply the displacement vector by the stiffness matrix to
obtain the nodal forces. These nodal forces are directly related to the end-of-beam internal
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forces:

Kloc
ij u

loc
ij =




EA
ℓ

0 0 −EA
ℓ

0 0
0 12EI

ℓ3
6EI
ℓ2

0 −12EI
ℓ3

6EI
ℓ2

0 6EI
ℓ2

4EI
ℓ

0 −6EI
ℓ2

2EI
ℓ

−EA
ℓ

0 0 EA
ℓ

0 0
0 −12EI

ℓ3
−6EI
ℓ2

0 12EI
ℓ3

−6EI
ℓ2

0 6EI
ℓ2

2EI
ℓ

0 −6EI
ℓ2

4EI
ℓ







ulocix

ulociy

ϕiz

ulocjx

ulocjy

ϕjz



=




−Ni

−Vi
+Mi

+Nj

+Vj
−Mj



. (3.100)

The internal forces along the rod are calculated from their end values and the distributed load
along the beam. For further details see [8].

In a dynamical analysis of harmonically excited MDOF systems we have seen that the
elementary mass matrix depends on the circular frequency ofthe harmonic excitation. That
results in a frequency-dependent dynamic stiffness matrixK̂(ω) = K − ω2M̂(ω). If the load
vectorq(t) is not harmonic, i.e. there is no fixed value ofω, then we cannot use a dynamic
stiffness matrix of the above form. If we want to use the advantages of the finite DOF model,
then we have to make some approximations.

There is no acceptable reason why to use any specific circularfrequencyω, so, even if we
calculate the displacements with the consistent mass matrix of the structure, the approximate
dynamic stiffness matrix̂K(ω) ≈ K− ω2M cannot be used for the calculation of the internal
forces. The only thing we can do is to use the approximationK̂ ≈ K, i.e. we apply a quasi-
static analysis for the calculation of the internal forces.3

To decrease the error arising from the above approximation,we have to use shorter beam
members (more nodes, or a finer mesh in a finite element model).The effect of shorter beams
is twofold.

• The stiffness matrix of a shorter member contains larger entries, generally speaking.
From the formula (3.28) one can see that the entries of the matrix are inversely propor-
tional to the first-to-third power of the length of the beam member.

• The mass matrix of a shorter member contains smaller entries, in general. Either using
the frequency-dependent mass matrix (3.72), or the consistent mass matrix (3.74), each
entry of these matrices is proportional to the first-to-third power of the length of the
member.

The above statements imply that the difference between the dynamic stiffness matrix̂K and the
applied static stiffness matrixK decreases with the decrease of the member size.

We have to call the attention of the reader to the fact that thesmaller the beams are, the
more nodal points there are, resulting in more total DOF of the system. Thus, the solution of
the generalized eigenvalue problem demands more computational capacityin exchangefor the
higher accuracy.

3If we follow a finite element approach, and calculate the internal forces from the strains of the cross-sections,
which are obtained from the displacement functions approximated by the static shape functionsN(x), then we
still have the same problem, because without a circular frequency we cannot use the dynamic shape functions
N̂(x) only the static shape functionsN(x).
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Internal forces with the modal analysis

In the structural analysis we do not really need the internalforces at all time instant, usually
we are interested in their extreme values. Using the formula(3.99) we can calculate thejth
modal component of the structural response

yf,j(t) =

∫ t

0

uT
j q(τ)

ω0j

sin (ω0j(t− τ)) dτ,

and its maximum in a given time interval, which we will denoteby yj,max.
The end-of-beam internal forces can be calculated from the displacements of the end nodes

of any given beam. One have to transform the end-of-beam displacements into the local refer-
ence system, and then use the local displacements in Eq. (3.100). The mode shape vectoruj

contains the displacements of each node in the vibration with thejth natural circular frequency.
We have to calculate the end-of-beam internal forces from the displacement vectoruj with the
above method. We denote the internal force in question byCj, wherej represents thejth mode,
andC can be any ofNi, Vi, Mi, Nj, Vj, Mj in Eq. (3.100), or any internal force in any other
cross-section.

During the forced vibration tha maximal modal internal force in thejth mode will be the
product ofCj from the modal shape andyj,max from the modal load

Cj,max = Cjyj,max.

The question arises, how should we sum up the maximal modal internal forces.
We can take thesum of absolute values(ABSSUM):

Cmax =
N∑

j=1

|Cj,max|. (3.101)

This is on the safe side, it is very unlikely, that each maximum occurs at the same time.
If the natural circular frequencies are separated, we can take thesquare root of the sum of

squares(SRSS)

Cmax =

√√√√
N∑

j=1

C2
j,max. (3.102)

or we can make an emphasis on the first mode, because it is always the most important:

Cmax = C1,max +

√√√√
N∑

j=2

C2
j,max.

The root square of the sum of squares can be written in matrix form:

Cmax =
√
CT

maxICmax. (3.103)

with the vector of maximal modal internal forces

CT
max =

[
C1,max C2,max . . . CN,max

]
.
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If there is aξ damping in the structure, the modes are coupled. In that caseone can use the
complete quadratic combination rule(CQC)

Cmax =
√
CT

maxρCmax, (3.104)

where the correlation matrixρ represents the coupling between the modes. Its entries are cal-
culated by minimizing the error between the calculated responses of the structure to a random
forcing with broad spectrum (white noise) obtained by numerical integration and by modal
analysis. The entries in the correlation matrix are

ρij =
8ξ2
(
1 + ω0i

ω0j

)(
ω0i

ω0j

)3/2

(
1−

(
ω0i

ω0j

)2)2

+ 4ξ2
(
1 + ω0i

ω0j

)2 .

The natural circular frequencies are well separated, when the smallest relative difference be-
tween any two frequencies is more than 10%. In an undamped systemρ = I.

3.7 Partial solution of the generalized eigenvalue problem

We have seen in many examples about the forced vibration of MDOF systems that higher
modes play a less significant role in the dynamics of the structure. This statement holds only if
the natural circular frequencies of higher modes are sufficiently far from the circular frequency
of the forcing. Otherwise, we have to take care of the state ofresonance.

It is enough to have a look at Eqs. (1.60), (2.73), (2.76), (3.99) to realize that the natural cir-
cular frequency appears in the denominator in each formula even on higher powers, depending
on the type of forcing.

Discretization of continuous structures into a finer mesh (more nodes) leads to more DOFs
and, consequently, more natural circular frequencies. Themore nodes we introduce, the better
approximations we get for the lower modes. But the accuracy ofthe higher frequencies is poor.
The application of the higher, inaccurate frequencies is therefore unnecessary, and pointless.

Reduced system of modal shape vectors

If we do not want to use the higher modes in our approximate calculations, then there is no
use to calculate them at all while solving the generalized eigenvalue problem. In this case we
speak about a partial solution of the generalized eigenvalue problem. For large system we do
not follow the classical way of calculating the natural frequencies, i.e. we do not expand the
determinant of the matrixK − ω2

0M, because it would be numerically too expensive. Fortu-
nately, there are existing numerical methods capable to calculate the lowest eigenvalues of of
the problem and the corresponding eigenvectors. We can implement one of these procedures to
obtain the firstn natural circular frequencies(ω0j, j = 1, . . . , n) and the firstn modal shape
vector normalized to the mass matrix(uj, j = 1, . . . , n). Similarly to Eq. (3.91), we introduce
thereduced modal matrix̃U as

Ũ = [u1 u2 . . . un] , (3.105)
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and approximate the displacement with the firstn modal displacementsyj(t):

ũ(t) = Ũy(t).

A crucial question of every iterative method is its accuracy. In this case we have to find out,
what numbern is sufficient to perform an accurate calculation. To analysethis, we recall the
orthogonality of the mass-matrix-normalized eigenvectors to the mass matrix. Eq. (1.45) with
the modal matrixU is

UTMU = IN , (3.106)

whereIN is theN -by-N identity matrix.UT is a quadratic matrix of linearly independent rows.
It has the inverse with the property

UT
(
UT
)−1

= IN ,

so, we can conclude from Eq. (3.106), that

(
UT
)−1

= MU,

and using this inverse matrix in the computation of the product MUUT we obtain the identity

MUUT =
(
UT
)−1

UT = IN , (3.107)

If we use the partial solution of the eigenvalue problem, theeigenvectors are still orthogonal
and normalized, so

ŨTMŨ = In,

whereIn is a the smaller,n-by-n identity matrix. Now, neither̃UT norMŨ is quadratic, i.e.
they cannot be inverted, but we still can calculate their product

MŨŨT (3.108)

as a pseudo-unit matrix. The better the approximation is with only n modes is, the closer the
above matrix is to the unit matrix.4 The accuracy is analysed in accordance with the load vector
and the structure.

Accuracy of the reduced modal analysis in the case of a given load vector

In the reduced modal analysis the load vectorq(t) is multiplied by the transpose of the
reduced modal matrix̃U:

f̃(t) = ŨTq(t).

The effective part of the load vector is defined as:

q̃(t) = MŨf̃(t) = MŨŨTq(t). (3.109)

4Here, close refers here to the result of the transformation that the matrix does. A unit-matrix transforms any
vector into itself. A pseudo-unit matrix transforms a subspace of theN -space into itself.
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(Note, that if all the eigenvectors are used, theMUUT = I, andq(t) = MUUTq(t) holds
evidently.) The neglected part of the load vector is the difference between the effective and the
real load vector:

∆q(t) = q(t)− q̃(t) = q(t)−MŨŨTq(t).

The magnitude of∆q(t) compared toq(t) gives an estimation of the error of the calculation
with n natural mode on behalf of the load vector.

Problem 3.7.1(Excited vibration of a fixed-fixed beam). Let us analyse the structure shown in Figure3.12
(a). It is a fixed-fixed beam of lengthℓ = 6m, bending stiffnessEI = 18000Nm2, mass per unit length
µ = 420 kg/m. The beam is taken to be inextensible, so no longitudinal displacements occur. This allows us to
take only two degrees-of-freedom per nodes (the vertical translation and the rotation) into account. The beam
is excited by the concentrated forceq(t) in its mid-span.

Figure 3.12: (a) Sketch of a fixed-fixed beam. (b) Mechanical model for the matrix displacement method
(fixed support model).

Divide the structure into four equal members, and analyse the accuracy of the reduced modal analysis using
various numbern of eigenvectors!

Solution. Figure3.12(a) shows the beam members, and the used internal nodes. Eachbeam is the same and
the local and global reference systems coincide. So, there is no need for the transformation between the local
and global systems. We do not have displacements and forces in the horizontal directions, so the first and fourth
rows and columns can be omitted from Eq. (3.28) and (3.75). Thus the elementary stiffness and consistent mass
matrices are

Kloc
ij = K

glob
ij =




12EI
ℓ3

6EI
ℓ2 − 12EI

ℓ3
6EI
ℓ2

6EI
ℓ2

4EI
ℓ − 6EI

ℓ2
2EI
ℓ

− 12EI
ℓ3 − 6EI

ℓ2
12EI
ℓ3 − 6EI

ℓ2
6EI
ℓ2

2EI
ℓ − 6EI

ℓ2
4EI
ℓ


 =




64 48 −64 48
48 48 −48 24
−64 −48 64 −48
48 24 −48 48


 · 1000,

Mloc
ij = µℓ




13
35

11
210ℓ

9
70 − 13

420ℓ
11
210ℓ

1
105ℓ

2 13
420ℓ − 1

140ℓ
2

9
70

13
420ℓ

13
35 − 11

210ℓ
− 13

420ℓ − 1
140ℓ

2 − 11
210ℓ

1
105ℓ

2


 =




234 49.5 81 −29.25
49.5 13.5 29.25 −10.125

81 29.25 234 −49.5
−29.25 −10.125 −49.5 13.5


 .

From the above matrices we can compile the total stiffness and mass matrices of the structure. In a fixed
support model we must take into account the supported nodes0 and4 as well. While taking the fix supports
into account, we should erase the block rows and block columns from the unconstrained matrices in this case.
The erase process is done on the matrices:

K =




K00 K0i K04

Ki0 Kii Ki4

K40 K4i K44



, M =




M00 M0i M04

Mi0 Mii Mi4

M40 M4i M44




(3.110)
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by canceling the first and third block rows and columns. Thus,what remains is the6-by-6 matricesKii and
Mii, which are referred to asK andM hereafter:

K =




128000 0 −64000 48000 0 0
0 96000 −48000 24000 0 0

−64000 −48000 128000 0 −64000 48000
48000 24000 0 96000 −48000 24000

0 0 −64000 −48000 128000 0
0 0 48000 24000 0 96000




,

M =




468 0 81 −29.25 0 0
0 27 29.25 −10.125 0 0

81 29.25 468 0 81 −29.25
−29.25 −10.125 0 27 29.25 −10.125

0 0 81 29.25 468 0
0 0 −29.25 −10.125 0 27




.

The natural circular frequencies and the corresponding mass-matrix-normalized eigenvectors are:

ω01 = 4.0739 rad/s, uT
1 = [.01724, .01610, .03172, 0, .01724,−.01610]

ω02 = 11.319 rad/s, uT
2 = [.02933, .01054, 0,−.03856,−.02933, .01054]

ω03 = 22.456 rad/s, uT
3 = [−.02855, .02240, .02941, 0,−.02855,−.02240]

ω04 = 42.484 rad/s, uT
4 = [−.01350, .08587, 0,−.09601, .01350, .08587]

ω05 = 70.262 rad/s, uT
5 = [−.005953,−.1445, .02800, 0,−.005953, .1445]

ω06 = 113.21 rad/s, uT
6 = [.01655, .1413, 0, .2298,−.01655, .1413]

(3.111)

We can observe, that there are reflection symmetric and antisymmetric modal shapes. The load is reflection
symmetric:

q(t) =
[
0 0 1 0 0 0

]T · q(t),
so the antisymmetric modes will not participate in the motion. The results of a calculation with the reduced
mode numbern = 2 is equivalent with the results ofn = 1. The result of the calculation carried out with
n = 4 eigenvector is equivalent with the results ofn = 3 eigenvectors. The results usingn = 6 eigenvectors is
equivalent withn = 5 eigenvectors. The effective load vectorq̃n(t) for odd numbers are:

q̃1(t) =




0.3374
0.04322
0.5894

0
0.3374

−0.04322



q(t), q̃3(t) =




0.01449
0.08631
0.8967

0
0.01449
−0.08631



q(t), q̃5(t) =




0
0

1.0000
0
0
0



q(t).

Accuracy of the reduced modal analysis in the case of supportvibration

We have seen in Subsection3.5.3 that the support vibration can be treated as a forcing,
where the excitation force is calculated from the acceleration of the supports̈ug(t), the mass
matrixM, and an influence vectorr. This influence vector denotes all degrees-of-freedom that
are able to move in the direction of the support vibration.
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Standards prescribe the use of as many natural modes, as manyneeded to get back 90%
of the total mass in the analysed direction. To calculate theeffective mass with the reduced
number of eigenvectors, we can follow a similar approach to the one we used for the loads.

In the case of the full modal analysis we can conclude from Eq.(3.107) that the following
identity holds:

MUUTM = M.

In the reduced modal analysis the product

M̃ = MŨŨTM (3.112)

i.e. thereduced mass matrix̃M is different from the total mass matrixM of the structure.
The accuracy of the calculation with the reduced modal analysis depends in general on what
fraction of the total mass matrix appears in the reduced massmatrix.

In the vibration analysis of the MDOF system the total mass ofthe structure appears in
every admissible direction. At once we are only interested in one of these directions. Let
us define the influence vectorr that gives the displacement of each degree-of-freedom due to
the unit displacement of the supported nodes in one chosen (global) direction. So, this vector
represents a rigid-body translation of the structure in that specific direction. In the case of a
planar frame, the influence vectorrX associated with the horizontal displacement is

rTX = [1, 0, 0, 1, 0, 0, . . . , 1, 0, 0] ,

and the influence vectorrY associated with the vertical displacement is

rTY = [0, 1, 0, 0, 1, 0, . . . , 0, 1, 0] .

Thedirectional mass vectors

mX = MrX and mY = MrY (3.113)

represent the total masses vibrating in the degrees-of-freedom along the directionsX andY ,
respectively. The quasi-static, rigid body translation ofthe structure requires the displacement
of the supported nodes as well, so the influence vectors must refer to the supported degrees-
of-freedom of the structure, too. Therefore, the directional mass vector must be calculated in
accordance with Eq. (3.87). The further calculations are the same for both directionsX andY ,
so we show the upcoming steps of the calculation without those indexes.

Themodal participationof thejth mode is the projection of the directional mass vector on
the modal shape vectoruj. We can collect all the productsuT

j Mr in themodal participation
vector:

Γ = UTMr = UTm. (3.114)

Thejth entry ofΓ is related to the motion of the center of gravity of the structure in the case of
the vibration of thejth mode. The square of thejth entry ofΓ is the effective mass appearing
in thejth mode. This effective mass is denoted bymeff,j:

meff,j = Γ2
j , j = 1, 2, . . . , N.
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The sum of all effective masses corresponding to a given influence vectorr gives the total mass
of the structure:

m =
N∑

j=1

meff,j = ΓTΓ.

If we use a partial solution of the generalized eigenvalue problem, we can calculate a reduced
modal participation vector:

Γ̃ = ŨTMr = ŨTm.

The partial solution of the generalized eigenvalue problemevidently provides the same modal
shape vectors for the firstn natural modes, therefore the elements ofΓ̃ are the same as the first
n elements ofΓ. The effective masses are calculated in the same way as in thecase of the total
solution of the eigenvalue problem, but for smaller number of modes:

m̃eff,j = meff,j = Γ̃2
j , j = 1, 2, . . . , n.

The reduced effective mass of the structure using the reduced set of eigenvectors is

m̃eff =
n∑

j=1

meff,j = Γ̃T Γ̃.

We can substitute the modal participation vector into the above formula:

m̃eff =
(
ŨTMr

)T (
ŨTMr

)
= rTMŨŨTMr.

We can conclude, that the total effective mass of the structure can be calculated using the
reduced mass matrix Eq. (3.112) and the influence vector with the quadratic formula:

m̃eff = rTM̃r.

The ratio ofm̃eff to the total massm gives the estimation on the ratio of the used mass. As
we mentioned earlier, this ratio must exceed 90% in the case of earthquake analysis.

Problem 3.7.2(Support vibration of a fixed-fixed beam). Let us analyse the reduced modal analysis for support
vibration of the structure shown in Figure3.13(a). It is the same fixed-fixed beam of lengthℓ = 6m, bending
stiffnessEI = 18000Nm2, mass per unit lengthµ = 420 kg/m as we had in Problem3.7.1. The beam is
inextensible, so no longitudinal displacements occur. This allows us to take only two degrees-of-freedom per
nodes (the vertical translation and the rotation) into account. The beam is excited by support vibrationvg(t) at
its both supports. Calculate the effective mass of the normal modes!
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Figure 3.13: (a) Sketch of a fixed-fixed beam. (b) Mechanical model for the matrix displacement method
(spring model).

Solution (Using the fixed support model). The structure has the same stiffness and mass matrices as in Problem
3.7.1, so the natural circular frequencies are the same as we have seen in Eq. (3.111).

In the influence vectorrY we must take the supported nodes0 and4 into account as well (see Fig.3.12(b)
for these excess nodes). Since we do not use the horizontal translations, the applied influence vector is

rTY = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0] .

We must use the mass matrix of the unconstrained structure inEq. (3.113). In our case it is the middle block row
in Eq. (3.110):

[
Mi0 Mii Mi4

]
. The blocks are compiled from the elementary consistent mass matrices

Mloc
ij of Problem3.7.1:

[
Mi0 Mii Mi4

]
=




81 29.5 468 0 81 −29.25 0 0 0 0
−29.25 −10.125 0 27 29.25 −10.125 0 0 0 0

0 0 81 29.25 468 0 81 −29.25 0 0
0 0 −29.25 −10.125 0 27 29.25 −10.125 0 0

0 0 0 0 81 29.25 468 0 81 −29.25
0 0 0 0 −29.25 −10.125 0 27 29.25 −10.125




The directional mass vector is finally:

mY =
[
Mi0 Mii Mi4

]
rY =




630
0

630
0

630
0




.

The modal participation vector is from Eq. (3.114):

Γ = UTmY =
[
41.71 0 −17.44 0 10.14 0

]T
.

It is easy to spot that the antisymmetric (odd) modal shapes contribute no mass to this support vibration. The
effective modal masses are:

meff,1 = 1739 kg, meff,3 = 304.3 kg, meff,5 = 102.8 kg, meff,2 = meff,4 = meff,6 = 0 kg.

The total mass of the structure ism = µℓ = 2520 kg. The effective mass appearing in the modal analysis is:

meff = meff,1 +meff,3 +meff,5 = 2146.1 kg.

It is still less than the 90% of the total mass of the structure, so there is not either a reduced or a full set of mode
shapes, which would be sufficient to calculate the support vibration with modal analysis. This is caused by the
large fraction of total mass reduced to the supported nodes.Dividing the beam into five members would reduce
this effect. In that case the first three active modes (due to the symmetries, these are the first, the third and the
fifth modes) would produce an effective mass more than 90% of the total mass.

Solution (Solution of the same problem with the spring support model). We show the solution steps of the
same problem with the spring support model too. In that case we have to use a five-node model and connect the
supported nodes with stiff springs to the support (see Fig.3.13(b)). The elementary stiffness and mass matrices
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are the same as in Problem3.7.1, but we must compile the10-by-10 matrices, and add large spring stiffnesses
ρY andρϕ to the corresponding entries in the main diagonal of the stiffness matrix. The resulting stiffness
matrix is

K =











































64000 + ρY 48000 −64000 48000 0 0 0 0 0 0

48000 48000 + ρϕ −48000 24000 0 0 0 0 0 0

−64000 −48000 128000 0 −64000 48000 0 0 0 0

48000 24000 0 96000 −48000 24000 0 0 0 0

0 0 −64000 −48000 128000 0 −64000 48000 0 0

0 0 48000 24000 0 96000 −48000 24000 0 0

0 0 0 0 −64000 −48000 128000 0 −64000 48000

0 0 0 0 48000 24000 0 96000 −48000 24000

0 0 0 0 0 0 −64000 −48000 64000 + ρY −48000

0 0 0 0 0 0 48000 24000 −48000 48000 + ρϕ











































,

while the mass matrix is

M =











































234 49.5 81 −29.25 0 0 0 0 0 0

49.5 13.5 29.25 −10.125 0 0 0 0 0 0

81 29.25 468 0 81 −29.25 0 0 0 0

−29.25 −10.125 0 27 29.25 −10.125 0 0 0 0

0 0 81 29.25 468 0 81 −29.25 0 0

0 0 −29.25 −10.125 0 27 29.25 −10.125 0 0

0 0 0 0 81 29.25 468 0 81 −29.25

0 0 0 0 −29.25 −10.125 0 27 29.25 −10.125

0 0 0 0 0 0 81 29.25 234 −49.5

0 0 0 0 0 0 −29.25 −10.125 −49.5 13.5











































.

The results of the solution of the generalized eigenvalue problem is summarized in Table3.3. It worth
realizing, that if the spring stiffnesses are below107, then the first six natural frequencies are affected. If the
spring stiffnesses are equal to or larger than107, then there is a significant effect only on the last four natural
frequencies. So, if we want to model the system with spring support, we have to take this value into account
when choosing asufficientlylarge spring stiffness.

The analysis of the efficient modal masses can be done on the actual mass matrix with the same influence
vector as we used in the previous solution.

ρY = ρϕ ω01 ω02 ω03 ω04 ω05 ω06 ω07 ω08 ω09 ω010

104 1.9480 4.2419 7.5605 14.132 24.586 43.230 67.054 102.95 178.53 193.41

105 3.4599 8.6133 14.748 22.307 31.827 50.547 77.019 115.07 282.09 292.01

106 3.9976 10.955 21.328 38.351 56.479 75.025 94.437 123.79 755.84 771.06

107 4.0661 11.281 22.343 42.109 69.183 111.12 232.66 236.59 2344.3 2387.7

108 4.0732 11.315 22.444 42.447 70.160 113.04 722.18 728.36 7398.7 7534.6

109 4.0739 11.318 22.455 42.480 70.252 113.19 2279.7 2297.9 23392. 23821.

1010 4.0739 11.319 22.456 42.484 70.261 113.21 7207.7 7264.8 73971. 75329.

Table 3.3: The natural circular frequencies of the beam with elastic supports for various spring stiffnesses.

In this solution we presented the application of the spring support model for the dynamical calculation of a
beam with elastic end supports.

In the fixed support model we should add two supporting nodes to the system, but the mass matrix would
be zero in their block rows and block columns (the supportingsprings are supposed to be massless). Therefore,
we can leave out the excess nodes from the calculations. Finally, we can conclude that the stiffness and mass
matrices are the same in the elastic supported case for both support models.
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3.8 Second order effects

In this section we analyse the effects of the rotational inertia and the normal force to the
dynamical stiffness matrix of the beam.

3.8.1 Rotational inertia

We derive the dynamical stiffness matrix of a beam member similarly to Subsection3.2.2,
using the principle of virtual displacements. The only extension we make here is that the rotary
inertia of the cross-section is taken into account. As in Subsection3.2.2, we let the beam
be vibrating such that the translation of itsith end isviy(0, t) = 1 · sin(ωt), while all other
displacements of its ends are zero (see Figure3.14top). The internal forces at the ends of the
beam are the harmonic functions

Niy(0, t) = N̂iiy sin(ωt), Viy(0, t) = V̂iiy sin(ωt), Miy(0, t) = M̂iiy sin(ωt),

Niy(ℓ, t) = N̂jiy sin(ωt), Viy(ℓ, t) = V̂jiy sin(ωt), Miy(ℓ, t) = M̂jiy sin(ωt).
(3.115)

These internal forces and the bending moment diagram at a certain time instant are sketched at
the bottom of Figure3.14.

�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������

�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������

������������������������������������������
������������������������������������������
������������������������������������������
������������������������������������������

������������������������������������������
������������������������������������������
������������������������������������������
������������������������������������������

i j

ωsin(   t)

l

ωsin(   t)
ϕ iym (x,t)=−  I    (x,t)ρi

x

M Vjiy

^
y

v (l,t)=0      

N

Miiy  V

iiy

iiy N

jiy

jiy
Miy

^ ^

^
^ ^

^

.

v (0,t)=0      
v (0,t)=1      iy

iy

iy v (l,t)=0iy

iy

iyv (x,t)=v (x)

µ
t

q (x,t)=−  a  (x,t)iy

Figure 3.14: (top) Sketch of the deformed shape of beamij due to a harmonic translation of unit amplitude of
endi along axisy. (bottom) The corresponding bending moment diagram and thepositive definition of the

end-of-beam internal forces.

We need to determine the amplitudes of the internal forces (N̂iiy, V̂iiy, M̂iiy, N̂jiy, V̂jiy, M̂jiy)
due to a harmonic vertical translation of unit amplitude of end i with the rotational inertia of
the cross-section taken into account.

The computation of the end-of-beam internal forces is basedon the principle of virtual
displacements. At time instantt, we apply the fictitious force system to the beam as shown
in Figure3.14. The inertia forceqt(x, t) = −µaiy(x, t) is due to the linear momentum of the
beam elements, and the fictitious inertia momentmi(x, t) = −̺Iϕ̈iy(x, t) = −µi20ϕ̈iy(x, t)
arises from the angular momentum of the beam elements. Herei20 = I/A.

Thus we have a statically admissible force system: the internal forces and the fictitious
inertia force and moment are in equilibrium. We take the (statical) displacement systemviy(x)
due to a unit translation of endi (which is shown in Figure3.4) as the virtual displacement
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system. We compute the virtual work that the force system shown in Figure3.14does on this
virtual displacement system at time instantt:

δWds =Viy(0, t) · (−1) +

ℓ∫

0

{−µaiy(x, t)}viy(x) dx+
ℓ∫

0

{−µi20ϕ̈iy(x, t)}v
′

iy(x) dx

−
ℓ∫

0

Miy(x, t)κiy(x) dx = 0.

Here the first term is the work done by the shear forceViy(0, t) on the translation of endi.
The last term is the internal work done by the bending momentMiy(x, t) on the curvature
κiy(x) =Miy(x)/EI. The second term is the work done by the (distributed) inertia force

−µaiy(x, t) = −µv̈iy(x, t) = µω2v̂iy sin(ωt)

on the translationviy(x) along the whole length of the beam. The third term is the work done
by the (distributed) inertia moment

−µi20ϕ̈iy(x, t) = −µi20v̈
′

iy(x, t) = µi20ω
2v̂

′

iy sin(ωt)

on the rotationv
′

iy(x) along the whole length of the beam. This, Eq. (3.49), and Eq (3.67)
implies that the above work is

δWds =



−V̂iiy + µω2

ℓ∫

0

v̂iy(x)viy(x) dx+ µi20ω
2

ℓ∫

0

v̂
′

iy(x)v
′

iy(x) dx

−
ℓ∫

0

M̂iy(x)
Miy(x)

EI
dx



 sin(ωt) = 0.

(3.116)

Next, we express the virtual work that the statical force system (shown in Figure3.4) does
on the dynamical displacement system (sketched in Figure3.14) at certain time instantt:

δWsd = Viiy(0) · {−1 · sin(ωt)} −
ℓ∫

0

Miy(x)
M iy(x, t)

EI
dx = 0.

Using Eqs. (3.115) the above work is reformulated as

δWsd =



−Viiy −

ℓ∫

0

Miy(x)
M̂iy(x)

EI
dx



 sin(ωt) = 0. (3.117)
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Both Eqs. (3.116) and (3.117) have zero on the right hand side. Therefore, their left handsides
divided bysin(ωt) 6= 0, are equal:

− V̂iiy + µω2

ℓ∫

0

v̂iy(x)viy(x) dx+ µi20ω
2

ℓ∫

0

v̂
′

iy(x)v
′

iy(x) dx

−
ℓ∫

0

M̂iy(x)
Miy(x)

EI
dx = −Viiy −

ℓ∫

0

Miy(x)
M̂iy(x)

EI
dx.

Here the virtual internal works are the same:

ℓ∫

0

M̂iy(x)
Miy(x)

EI
dx =

ℓ∫

0

Miy(x)
M̂iy(x)

EI
dx.

Finally, we can express the amplitude of the dynamical bending moment at endi caused by a
harmonic translation of the same end. This is the entry2,2 of the dynamical stiffness matrix
K̂loc

ij :

K̂ loc
ij,22 = −V̂iiy = −Viiy − µω2

ℓ∫

0

v̂iy(x)viy(x) dx− µi20ω
2

ℓ∫

0

v̂
′

iy(x)v
′

iy(x) dx

= K loc
ij,22 − µω2

ℓ∫

0

v̂iy(x)viy(x) dx− µi20ω
2

ℓ∫

0

v̂
′

iy(x)v
′

iy(x) dx.

We can derive all the internal forces at the ends of the beam due to longitudinal and trans-
verse (harmonic) translations and (harmonic) rotations ofunit amplitudes of the ends in a sim-
ilar way. mass related matrix. We can construct a matrix similar to (3.23):

N̂
′

ϕ =
[
0 v̂

′

iy(x) v̂
′

iϕ(x) 0 v̂
′

jy(x) v̂
′

jϕ(x)
]
. (3.118)

Here prime denotes derivation with respect tox. The shape function̂viy(x) is due to a harmonic
translation of unit amplitude of endi alongy, i.e. the solution of the homogeneous part of
(2.41):

µ

(
∂2v(x, t)

∂t2
− i20

∂4v(x, t)

∂x2∂t2

)
+ EI

∂4v(x, t)

∂x4
= 0. (3.119)

with v(x, t) = v̂ sin(ωt) and boundary conditions (3.62). The shape functionviϕ(x) describes
the deformed shape of the beam caused by a harmonic rotation of unit amplitude of endi. It
is the solution of (3.119) with boundary conditions (3.63). The same holds for superscriptj
with the appropriate boundary conditions. It is important to note, that these shape functions are
a functions ofx, but they also depend on the following parametersµ, EI, EA, ℓ (which are
given parameters of the beam), andω, which is the frequency of the forcing. ThereforeN̂

′

ϕ is
frequency-dependent!
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Now we can write the elementary dynamical stiffness matrix of beamij in the short form

K̂loc
ij (ω) = Kloc

ij − ω2
(
M̂loc

ij (ω) + M̂
locϕ
ij (ω)

)
. (3.120)

HereKloc
ij is the elementary statical stiffness matrix of beamij, M̂loc

ij (ω) is the elementary mass
matrix

M̂loc
ij (ω) = µ

ℓ∫

0

N̂TN dx, (3.121)

andM̂locϕ
ij (ω) is the elementary rotational mass matrix:

M̂
locϕ
ij (ω) = µi20

ℓ∫

0

N̂
′T
ϕ N

′

ϕ dx. (3.122)

These mass matrices depend on the circular frequencyω of the external forcing. Concluding
the results, we can say, that the dynamical elementary stiffness matrix equals to the statical
elementary stiffness matrix minus the sum of the mass matrices (3.121), (3.122) times the
square of the forcing frequency. This dynamical stiffness matrix is frequency-dependent! From
Eq. (3.120) it can be verified, that the mass matricesM̂loc

ij (ω) andM̂locϕ
ij (ω) aresymmetric, and

so is the dynamical stiffness matrix̂Kloc
ij (ω).

Similar to the translational mass matrix, the rotational mass matrix can be approximated by
a consistent rotational mass matrix, if necessary. In that case the matrix̂N

′

ϕ is estimated by

N
′

ϕ =
[
0 v

′

iy(x) v
′

iϕ(x) 0 v
′

jy(x) v
′

jϕ(x)
]
.

and the consistent rotational mass matrix becomes

M
locϕ
cons,ij = µi20

ℓ∫

0

N
′T
ϕ N

′

ϕ dx.

In this case the dynamical stiffness matrix is approximately

K̂loc
ij (ω) ≈ Kloc

ij − ω2
(
Mloc

cons,ij +M
locϕ
cons,ij

)

3.8.2 Static normal force

In this subsection we will incorporate the effect of constant statical normal forces on the
motion of the rod using similar approach as in Subsection3.2.2.

If the beam vibrates so that the translation of itsith end isviy(0, t) = 1 · sin(ωt), while all
other displacements of its ends are zero (see Figure3.14 top), then the end-of-beam internal
forces are the harmonic functions

Niy(0, t) = N̂iiy sin(ωt), Viy(0, t) = V̂iiy sin(ωt), Miy(0, t) = M̂iiy sin(ωt),

Niy(ℓ, t) = N̂jiy sin(ωt), Viy(ℓ, t) = V̂jiy sin(ωt), Miy(ℓ, t) = M̂jiy sin(ωt).
(3.123)
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The amplitudes of the internal forces (N̂iiy, V̂iiy, M̂iiy, N̂jiy, V̂jiy, M̂jiy) due to a harmonic
translation of unit amplitude of endi of the beam can be determined using the principle of
virtual displacements.

This time we take the moment that the normal forceS exerts on the (rotated) elemen-
tary beam segment into account, which is shown in Figure3.15. The rotation of the segment
causes an eccentricity of the normal force, which indicatesa distributed momentmS(x, t) =
−Sv′

iy(x, t).

Figure 3.15: Demonstration of the moment caused by the normal forceS on a rotated elementary segment of the
beam.

At time instantt, we apply the fictitious inertia forceqt(x, t) = −µaiy(x, t), the ficti-
tious inertia momentmi(x, t) = −̺Iϕ̈iy(x, t) = −µi20ϕ̈iy(x, t) and the distributed moment
mS(x, t) = −Sv′

iy(x, t) to the beam. The internal forces, the fictitious inertia force, the ficti-
tious inertia moment and the distributed moment caused by the forceS are in equilibrium. We
take the (statical) displacement systemviy(x) due to a unit translation of endi (which is shown
in Figure3.4) as the virtual displacement system. The virtual work that the (dynamical) force
system shown in Figure3.14does on this (virtual) displacement system at time instantt is:

δWds =Viy(0, t) · (−1) +

ℓ∫

0

{−µaiy(x, t)}viy(x) dx+
ℓ∫

0

{−µi20ϕ̈iy(x, t)}v
′

iy(x) dx

+

ℓ∫

0

{−Sv′

iy(x, t)}v
′

iy(x) dx−
ℓ∫

0

Miy(x, t)κiy(x) dx = 0.

Here the first term is the work done by the shear forceViy(0, t) on the translation of endi.
The last term is the internal work done by the bending momentMiy(x, t) on the curvature
κiy(x) =Miy(x)/EI. The second term is the work done by the (distributed) inertia force

−µaiy(x, t) = −µv̇iy(x, t) = µω2v̂iy sin(ωt)

on the translationviy(x). The third term is the work done by the (distributed) inertiamoment

−µi20ϕ̈iy(x, t) = −µi20v̈
′

iy(x, t) = µi20ω
2v̂

′

iy sin(ωt)
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on the rotationv
′

iy(x) along the whole length of the beam just as before. The new, fourth term
is the work done by the distributed moment from the normal force

−Sv′

iy(x, t) = −Sv̂′

iy sin(ωt)

on the rotationv
′

iy(x).
This, Eq. (3.49), and Eq (3.67) implies that the above work is

δWds =



−V̂iiy + µω2

ℓ∫

0

v̂iy(x)viy(x) dx+
(
µi20ω

2 − S
)

ℓ∫

0

v̂
′

iy(x)v
′

iy(x) dx

−
ℓ∫

0

M̂iy(x)
Miy(x)

EI
dx



 sin(ωt) = 0.

(3.124)

Here, similarly to Subsection3.2.2and3.8.1,

Viiy = −
ℓ∫

0

M̂iy(x)
Miy(x)

EI
dx.

Therefore, the amplitude of the dynamical shear force at endi caused by a harmonic translation
of the same end, i.e. the entry2,2 of the dynamical stiffness matrix̂Kloc

ij is

K̂ loc
ij,22 = −V̂iiy = −Viiy − µω2

ℓ∫

0

v̂iy(x)viy(x) dx−
(
µi20ω

2 − S
)

ℓ∫

0

v̂
′

iy(x)v
′

iy(x) dx

= K loc
ij,22 + S

ℓ∫

0

v̂iy(x)viy(x) dx− µω2

ℓ∫

0

v̂iy(x)viy(x) dx− µi20ω
2

ℓ∫

0

v̂
′

iy(x)v
′

iy(x) dx.

We can derive all the internal forces at the ends of the beam due to longitudinal and trans-
verse (harmonic) translations and (harmonic) rotations ofunit amplitudes of the ends in a sim-
ilar way.

The elementary dynamical stiffness matrix of beamij is

K̂loc
ij (ω) = Kloc

ij + K̂locG
ij (ω)− ω2

(
M̂loc

ij (ω) + M̂
locϕ
ij (ω)

)
. (3.125)

HereKloc
ij is the elementary statical stiffness matrix of beamij, K̂locG

ij (ω) is the elementary
geometrical stiffness matrix and

K̂locG
ij (ω) = S

ℓ∫

0

N̂
′T
ϕ N

′

ϕ dx, (3.126)
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with the matrix of shape functions Eq. (3.118). This matrix related to the change of the geom-
etry with respect to the straight unloaded case, and modifiesthe stiffness of the beam element.
M̂loc

ij (ω) is the elementary mass matrix

M̂loc
ij (ω) = µ

ℓ∫

0

N̂TN dx, (3.127)

andM̂locϕ
ij (ω) is the elementary rotational mass matrix

M̂
locϕ
ij (ω) = µi20

ℓ∫

0

N̂
′T
ϕ N

′

ϕ dx. (3.128)

Finally we can say, that the dynamical elementary stiffnessmatrix equals to the statical
elementary stiffness matrix plus the geometrical elementary stiffness matrix (3.126) minus the
sum of the mass matrices (3.121), (3.122) times the square of the forcing frequency. This
dynamical stiffness matrix isfrequency-dependent! From Eq. (3.125) it can be verified, that the
mass matriceŝKlocG

ij (ω), M̂loc
ij (ω) andM̂locϕ

ij (ω) aresymmetricand frequency dependent, and

so is the dynamical stiffness matrix̂Kloc
ij (ω).

The calculation of the geometric stiffness matrix can be approximated with the static dis-
placement functions. In this case we have to use the same matrix

N
′

ϕ =
[
0 v

′

iy(x) v
′

iϕ(x) 0 v
′

jy(x) v
′

jϕ(x)
]
,

what we used for the calculation of the consistent rotational mass matrix: This way, the ap-
proximate geometric stiffness matrix is

KlocG
cons,ij = S

ℓ∫

0

N
′T
ϕ N

′

ϕ dx, (3.129)

and the dynamical stiffness matrix can be approximated by

K̂loc
ij (ω) ≈

(
Kloc

ij +KlocG
cons,ij

)
− ω2

(
Mloc

cons,ij +M
locϕ
cons,ij

)
.

Here we have to call the attention of the reader, that in the absence of harmonic forcing (i.e.
ω = 0) the above stiffness matrix simplifies to

K̂loc
ij (ω) =

(
Kloc

ij +KlocG
cons,ij

)
,

which can be used for (statical) stability analysis of the structure. Eq. (3.129) provides the
exact geometric stiffness matrix (however it requires the normal forceS for its calculation
which leads to an iterative solution in some cases). This sumof statical and geometric stiffness
matrices allows stability analysis of a structure.
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Chapter 4

Damping in structural dynamics

In real structures the energy of the vibrating system dissipates through various mechanisms,
such as thermal effects of cyclic loading, internal friction of the body, friction at connections,
opening and closing of microcracks, etc. [3]. It is very difficult to model all of these effects.
Instead, in practice, a so-calledequivalent viscous dampingis often used, which stands for all
the important energy dissipating components while remainsstill fairly easy to handle (see [3]
for further details). In the case of viscous dampings, the energy dissipation is proportional to
the loading frequency. However, laboratory cyclic loadingexperiments on structural metals,
and vibration tests of real structures within the usual range of loading frequency show that the
energy dissipation is essentially independent of the loading frequency. This observation has led
to the development ofrate-independent (linear) dampingin structural design. (This damping
is also called as structural damping, solid damping, or hysteretic damping.) Rate-independent
damping is mainly associated with static hysteresis, whichcan arise from plastic strain, local-
ized plastic deformations within the global elastic limit of the structure, for example [3]. Apart
from the internal energy dissipation properties of the material, the friction of connections, etc.,
there can be real dashpots built in or attached to the structure. Even the surrounding soil has
damping effects, which are often worth considering [6].

In this chapter we introduce some important concepts regarding the effects of damping
on the vibrations of structures. We show how the steady-state vibration of a harmonically
excited, damped MDOF system can be obtained by direct solution techniques. The idea of
mass- and stiffness-proportional damping is introduced, which makes real modal analysis of
the structure possible. Rate-independent damping is originated directly from the results of the
real modal analysis of proportionally damped systems. Later on the damping effects of soil and
the phenomenon of radiation damping is revealed. Finally, awidely used numerical procedure,
theNewmarkmethod is discussed.
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4.1 Steady-state vibration of viscously damped systems

The system of differential equations of a (linearly) damped, forced MDOF system is given
in the matrix form

Mü(t) +Cu̇(t) +Ku(t) = q(t) . (4.1)

HereM,C, andK are the mass, (linear, viscous) damping, and stiffness matrices of the system,
respectively, whileu(t) contains the unknown displacements of the degrees of freedom. In the
next subsection the direct solution of the above equation isgiven for harmonic loadings.

4.1.1 Harmonic excitation of damped MDOF systems

If the forcing varies harmonically with time, then the load in Eq. (4.1) is eitherq(t) =
q0 sin(ωt), or q(t) = q0 cos(ωt), or a combination of sine and cosine functions with different
amplitudes.

Sinusoidal excitation

First let us determine the particular solution of the sinusoidally forced mechanical model
described by the second order matrix differential equation

Mü(t) +Cu̇(t) +Ku(t) = q0 sin(ωt). (4.2)

The solution is searched for in the separated form

uf (t) = uf1 sin(ωt) + uf2 cos(ωt), (4.3)

i.e. as a linear combination of sine and cosine functions with the same frequencyω as the
forcing. If we substitute the trial function (4.3) into Eq. (4.2), then we get

− ω2M (uf1 sin(ωt) + uf2 cos(ωt)) + ωC (uf1 cos(ωt)− uf2 sin(ωt))

+K (uf1 sin(ωt) + uf2 cos(ωt)) = q0 sin(ωt).
(4.4)

Collecting the coefficients of sine and cosine in both sides wecan obtain the following two
equations:

(
−ω2Muf1 − ωCuf2 +Kuf1

)
sin(ωt) = q0 sin(ωt)(

−ω2Muf2 + ωCuf1 +Kuf2

)
cos(ωt) = 0.

The latter equation can be solved foruf2, and it is substituted back into the former one:

uf2 = −ω
(
K− ω2M

)−1
C uf1,(

K− ω2M+ ω2C
(
K− ω2M

)−1
C
)
uf1 = q0

→ uf1 =
(
K− ω2M+ ω2C

(
K− ω2M

)−1
C
)−1

q0.
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Therefore, the particular solution of this forced vibration is:

uf (t) =
(
K− ω2M+ ω2C

(
K− ω2M

)−1
C
)−1

q0 sin(ωt)

− ω
(
K− ω2M

)−1
C
(
K− ω2M+ ω2C

(
K− ω2M

)−1
C
)−1

q0 cos(ωt).
(4.5)

Cosinusoidal excitation

The determination of the particular solution of the cosinusoidally forced mechanical model
described by the second order matrix differential equation

Mü(t) +Cu̇(t) +Ku(t) = q0 cos(ωt) (4.6)

goes in a very similar way. The solution is searched for in theseparated form

uf (t) = uf1 sin(ωt) + uf2 cos(ωt) (4.7)

again. We substitute the trial function (4.7) into Eq. (4.6):

− ω2M (uf1 sin(ωt) + uf2 cos(ωt)) + ωC (uf1 cos(ωt)− uf2 sin(ωt))

+K (uf1 sin(ωt) + uf2 cos(ωt)) = q0 cos(ωt).
(4.8)

Collecting the coefficients of sine and cosine in both sides wecan write the equations:
(
−ω2Muf1 − ωCuf2 +Kuf1

)
sin(ωt) = 0(

−ω2Muf2 + ωCuf1 +Kuf2

)
cos(ωt) = q0 cos(ωt).

The former equation can be solved foruf1, and it is substituted back into the latter one. Thus

uf1 = ω
(
K− ω2M

)−1
C uf2,(

K− ω2M+ ω2C
(
K− ω2M

)−1
C
)
uf2 = q0

→ uf2 =
(
K− ω2M+ ω2C

(
K− ω2M

)−1
C
)−1

q0.

Therefore, the particular solution of this forced vibration is:

uf (t) = ω
(
K− ω2M

)−1
C
(
K− ω2M+ ω2C

(
K− ω2M

)−1
C
)−1

q0 sin(ωt)

+
(
K− ω2M+ ω2C

(
K− ω2M

)−1
C
)−1

q0 cos(ωt).
(4.9)

Sine and cosine forcing handled together

In order to handle both the sinusoidal and the cosinusoidal forcing together, we cannot
avoid using complex functions. We write the force in the formof:

q(t) = q0 {cos(ωt) + i sin(ωt)} = q0 e
iωt.
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Here i is the imaginary unit, satisfyingi2 = −1. The matrix differential equation of motion in
this case is

M¨̃u(t) +C ˙̃u(t) +Kũ(t) = q0 e
iωt. (4.10)

Notice, that now the vector of unknown displacementsũ(t) can be complex, that is the reason
why it is distinguished by a tilde from the previous, real vectors.

The particular solution is searched for in the separated form

ũf (t) = ũf0 e
iωt. (4.11)

We substitute the trial function (4.11) into Eq. (4.10):

(
−ω2M+ iωC+K

)
ũf0 e

iωt = q0 e
iωt. (4.12)

Now the coefficient of the trial function (4.11) can be obtained by inversion:

ũf0 =
(
−ω2M+ iωC+K

)−1
q0. (4.13)

The final result is
ũf (t) = K̃−1q0 e

iωt, (4.14)

where
K̃ = K− ω2M+ iωC

is the complex dynamic stiffness matrix of the damped system. Thereal andimaginary partsof
solution (4.14) correspond to thecosineandsine forcing, respectively. This abstract approach
leads to a simple formalism, therefore we prefer using it hereafter. However, we have to note
that a complex matrix must be inverted in Eq. (4.13), thus the computation is not easier than in
the previous cases when sine and cosine forcing were separately studied. If the reader is further
interested in how to invert a complex matrix and whether these results really coincide with the
previous ones, then they may read AppendixA.8.

As a conclusion, we can state that using complex functions leads to simpler formalism, but
requires us to be familiar with complex algebra. In these cases, the complex algebra appeared
because of the damping: the first derivative of the trial function (4.11) introduced the imagi-
nary unit i into (4.10). We hardly need to say now that damping makes structural dynamics
calculations much more difficult in general.

However, if the damping matrix is special, then both the homogeneous and the particular
solutions of the forced system can be obtained using the mass-matrix-normalized modal shape
vectors of the same system without damping. A special damping matrix means that it is pro-
portional to the mass and/or stiffness matrices. In the following subsection we demonstrate the
physical origin of this proportionality.
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4.2 Mass- and stiffness-proportional damping

4.2.1 TheKelvin-Voigt material

If the material is such that it can be described by theKelvin-Voigtmodel, then the stressσ,
the strainε, and its derivative with respect to timet are related by

σ = Eε+ αEε̇.

Hereα is a material parameter, andαE is the (internal) viscous damping of the material. This
equation can also be applied to shear stresses. However, ourbeams are unshearable, so we only
deal with the normal stresses.

Normal stresses are associated with normal force and bending moment in planar frame
members. Thus the above constitutive law implies that the (internal) normal force and bending
moment are

N(x, t) = EAε(x, t) + αEAε̇(x, t), M(x, t) = EIκ(x, t) + αEIκ̇(x, t) . (4.15)

4.2.2 Stiffness of a damped beam made ofKelvin-Voigt material

Let us examine a beam that is made ofKelvin-Voigtmaterial, and that is further damped
by a continuously distributed (external) viscous damping,which is constant along the length of
the beam. This damping is denoted byζ. We derive the dynamic stiffness matrix of the beam
member using the principle of virtual displacements. We usethe same steps as in Section3.2,
but with the damping considered. We show how to obtain one entry, namely entry2,2 of the
dynamic stiffness matrix. Here the first index is the “place”, thus we need the shear force at end
i, while the second index is the “cause”, which is the translation of endi alongy. Therefore
we need to compute the shear force of endi of a beam that vibrates so that the translation of its
endi is viy(0, t) = 1 · e iωt, while all other displacements of its ends are zero1 (see Figure4.1
top).

We assume that the vibration of the beam can be written as a function of separated variables
x andt:

viy(x, t) = ṽiy(x) e
iωt.

The dynamic shape functioñviy(x) can be complex in the presence of damping. It is distin-
guished with an overtilde from the real-valued dynamic shape function of the undamped case
(for which a hat was used instead). The end-of-beam internalforces can also be written in
separated forms:

Niy(0, t) = Ñiiy e
iωt, Viy(0, t) = Ṽiiy e

iωt, Miy(0, t) = M̃iiy e
iωt,

Niy(ℓ, t) = Ñjiy e
iωt, Viy(ℓ, t) = Ṽjiy e

iωt, Miy(ℓ, t) = M̃jiy e
iωt.

(4.16)

These end-of-beam forces and the bending moment diagram at acertain time instantt are
sketched at the bottom of Figure4.1.

1Note that uprighti denotes theimaginary unit, while italic subscripti refers to endi of the beam.
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Figure 4.1: (top) Sketch of the deformed shape of a beam due to a dynamic vibration of endi along axisy. The
beam is continuously damped with a viscous damping of coefficient ζ. (bottom) The corresponding bending

moment diagram and the positive definition of the internal forces at the ends of the beam.

The computation of the end-of-beam shear forceṼiiy is based on the principle of virtual
displacements. At time instantt, we apply the fictitious force

qt(x, t) = −µv̈iy(x, t)− ζv̇iy(x, t)

originated from the inertial mass and the damping, as shown in Figure4.1. Thus we have a
statically admissible force system: the internal forces and the fictitious force are in equilibrium.
We take the (static) displacement systemviy(x) caused by a unit translation of endi (shown
in Figure3.4) as the virtual displacement system. We compute the virtualwork that the force
system shown in Figure4.1does on this (virtual) displacement system at time instantt:

δWds = Viy(0, t) · (−1) +

ℓ∫

0

{−µv̈iy(x, t)− ζv̇iy(x, t)}viy(x) dx−
ℓ∫

0

Miy(x, t)κiy(x) dx = 0.

Here the first term is the work done by the shear forceViy(0, t) on the virtual translation of end
i. The last term is the internal work done by the bending momentMiy(x, t) = EIκiy(x, t) +
αEIκ̇iy(x, t) = −EI{1 + iωα}ṽ′′iy(x) e iωt on the virtual curvatureκiy(x) = −v′′iy(x). The
second term is the work done by the (distributed) fictitious force

qt(x, t) = −µv̈iy(x, t)− ζv̇iy(x, t) = µω2ṽiy(x) e
iωt − iωζṽiy(x) e

iωt

on the virtual translationviy(x) along the whole length of the beam. Thus, the above work can
be written as

δWds =



−Ṽiiy + µω2

ℓ∫

0

ṽiy(x)viy(x) dx− iζω

ℓ∫

0

ṽiy(x)viy(x) dx

−EI
ℓ∫

0

ṽ′′iy(x)v
′′
iy(x) dx− iαωEI

ℓ∫

0

ṽ′′iy(x)v
′′
iy(x) dx



 e iωt = 0.

(4.17)
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Finally, we can express the amplitude of the dynamic shear force at endi caused by the vibration
e iωt of endi. Due to the positive definition of the end-of-beam internal forces, and of the entries
of the elementary stiffness matrix (see (3.66)), this shear force is the opposite of entry2,2 of
the dynamic stiffness matrix:

K̃ loc
ij,22 = −Ṽiiy =EI

ℓ∫

0

ṽ′′iy(x)v
′′
iy(x) dx− µω2

ℓ∫

0

ṽiy(x)viy(x) dx

+ iαωEI

ℓ∫

0

ṽ′′iy(x)v
′′
iy(x) dx+ iζω

ℓ∫

0

ṽiy(x)viy(x) dx.

As we can see, the dynamic stiffness is complex, which originates from the damping effects.
That is the reason why we distinguish the elementary dynamicstiffness matrix by an overtilde
for the damped case.

Similarly to (3.70), we can collect the (damped) dynamic shape functions into the matrix

Ñ =

[
ũix(x) 0 0 ũjx(x) 0 0

0 ṽiy(x) ṽiϕ(x) 0 ṽjy(x) ṽjϕ(x)

]
. (4.18)

Following the earlier used definitions (3.23)–(3.27) and the notatioñB = LÑ, the whole
elementary dynamic stiffness matrix of beamij is

K̃loc
ij (ω) = (1 + iαω)

ℓ∫

0

B̃TDB dx− (ω2 − iβω)µ

ℓ∫

0

ÑTN dx, (4.19)

where
β = ζ/µ.

We can substitute the (damped) dynamic shape functions withthe static ones in order to
approximate the stiffness matrix as

K̃loc
ij (ω) ≈ (1 + iαω)Kloc

ij − (ω2 − iβω)Mloc
cons,ij . (4.20)

HereKloc
ij andMloc

cons,ij are the static stiffness and the consistent mass matrices ofthe beam,
respectively. The complex part of the approximate stiffness matrix is the (approximate) ele-
mentary damping matrix

Cloc
ij = αKloc

ij + βMloc
cons,ij . (4.21)

Since this (approximate) damping matrix is proportional both to the static stiffness matrix
(3.27) and to the consistent mass matrix (3.74), it is often called themass- and stiffness-
proportional damping matrix. If this approximate version of the dynamic stiffness matrix is
applied, then we have to use beam members short enough to estimate the dynamic behaviour
of the structure accurately. If the structure is not subjected to harmonic excitation, but to an
arbitrary forcing, we can still use the approximate, (stiffness) consistent mass matrix, the static
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stiffness matrix, and the proportional damping matrix (4.21) with sufficiently short beam mem-
bers.

Finally, it is worth noting that the stiffness-proportional damping is originated from the
material behaviour, while the mass-proportional damping is due to external viscous damping.
The mass-proportional damping appears for example when thestructure is in viscous fluid (in
water, for instance).

If all the frame members are of the same (Kelvin-Voigt) material (thusα is the same for
each beam), and the external damping is also the same for eachmember (thereforeβ is also
the same for all of the members), then the total damping matrix of the structure is proportional
to both the total stiffness and mass matrices of the structure. In this special case, the system of
equations of motion (4.1) is simplified to the form

Mü(t) + (αK+ βM) u̇(t) +Ku(t) = q(t) . (4.22)

The advantage of this formulation is that it can be solved with (real) modal analysis, as shortly
reviewed in the next subsection.

4.2.3 Real modal analysis of proportionally damped systems

Free vibration

Let us consider the homogeneous part of Eq. (4.22):

Müh(t) + (αK+ βM) u̇h(t) +Kuh(t) = 0. (4.23)

We recall the results of Subsection3.6.1. There is a new variableyh(t) =
[yh1(t) yh2(t) . . . yhN(t)]

T introduced as

uh(t) = Uyh(t).

HereU is the modal matrix, that contains the mass-matrix-normalized eigenvectors of the same,
but undamped system. See Eq. (3.91). Using this new variable in the homogeneous equation
(4.23), and multiplying it by the transpose ofU from the left we get:

UTMUÿh(t) +
(
αUTKU+ βUTMU

)
ẏh(t) +UTKUyh(t) = UT0.

According to the orthogonality ofU to MU andKU (see Eq. (3.94)), the above system of
equations splits intoN independent homogeneous equations of motion:

ÿhj(t) +
(
αω2

0j + β
)
ẏhj(t) + ω2

0jyhj(t) = 0, j = 1, 2, · · · , N.

These SDOF, damped, free vibrations can be solved foryhj(t). If the damping is small for every
j, then the previously derived solution of each damped SDOF system (repeated from Eq. (1.7))

yh(t) = e−ξω0t {A cos (ω∗
0t) + B sin (ω∗

0t)}

155

by Németh & Kocsis



CHAPTER 4. DAMPING IN STRUCTURAL DYNAMICS

can be used with the substitutions

m = 1, c = αω2
0j + β, k = ω2

0j,

ξ =
cj

2
√
kjmj

=
αω2

0j + β

2ω0j

, ω∗
0 = ω0j

√
1− ξ2j = ω0j

√

1−
(
αω2

0j + β

2ω0j

)2

.
(4.24)

Thus the free vibrations in the modal space (if all the modal oscillators are underdamped, i.e.
ξj < 1) is:

yhj(t) = e
−αω2

0j−β

2
t



Aj cos


ω0j

√

1−
(
αω2

0j + β

2ω0j

)2

t




+Bj sin


ω0j

√

1−
(
αω2

0j + β

2ω0j

)2

t





 .

(4.25)

We note here that thejth logarithmic decrement (1.1.2) is

ϑj = ln
yhj(t)

yhj(t+ T ∗
0j)

= 2π
ξj√
1− ξ2j

= π
αω2

0j + β

ω0j

√

1−
(
αω2

0j + β

2ω0j

)2
. (4.26)

Finally, the solution foruh(t) is obtained by transforming backyh(t) from the modal space:

uh(t) = Uyh(t).

The free parametersAj andBj (j = 1, 2, . . . , N ) can be determined from the initial values of
uh(0) andu̇h(0).

We have to emphasize that the final results given here (and also the logarithmic decrement)
is for the case ofsmall modal damping. If there are some large modal damping coefficients,
then we have to modify (4.25) for somej.

Forced vibration

The particular solution of the forced vibration (4.22) can also be derived using the modal
matrix U of the same, but undamped system. Substitutingu(t) = Uyf (t) into (4.22) and
multiplying it byUT from the left yields

UTMUÿf (t) +
(
αUTKU+ βUTMU

)
ẏf (t) +UTKUyf (t) = UTq(t).

The mass-matrix-normalized eigenvectors of the undamped systemU = [u1 u2 . . . uN ] are
orthogonal toMU andKU (see Eq. (3.94)). Therefore, the above system of equations splits
into independent equations of motion:

ÿfj(t) +
(
αω2

0j + β
)
ẏfj(t) + ω2

0jyfj(t) = uT
j q(t) = fj(t), j = 1, 2, · · · , N. (4.27)

156

by Németh & Kocsis



CHAPTER 4. DAMPING IN STRUCTURAL DYNAMICS

Arbitrary forcing If the loadq(t) is an arbitrary function of time, then each of the equations
(4.27) can be solved separately by using theDuhamel’s integral (1.26)

yfj(t) =
1

mjω∗
0j

t∫

0

fj(τ) e
−ξjω0j{t−τ} sin

(
ω∗
0j{t− τ}

)
dτ

with the substitutions (4.24) andfj(t) = uT
j q(t). Thus

yfj(t) =
1

ω0j

√

1−
(
αω2

0j + β

2ω0j

)2

×
t∫

0

uT
j q(τ) e

−αω2
0j−β

2
{t−τ} sin


ω0j

√

1−
(
αω2

0j + β

2ω0j

)2

{t− τ}


 dτ.

(4.28)

Harmonic forcing If the loadingq(t) in Eq. (4.27) is harmonic, for instance if

q(t) = q0 sin(ωt),

then Eq. (4.27) becomes

ÿfj(t) +
(
αω2

0j + β
)
ẏfj(t) + ω2

0jyfj(t) = uT
j q0 sin(ωt), j = 1, 2, · · · , N.

According to (1.13) and (4.24), the solution foryfj(t) in the case of this harmonic forcing is

yfj(t) =
uT
j q0

kj

1√(
1− ω2

ω2
0j

)2

+

(
2ξj

ω

ω0j

)2
sin


ωt− arccot

1− ω2

ω2
0j

2ξj
ω

ω0j




=
uT
j q0

ω2
0j

1√(
1− ω2

ω2
0j

)2

+

(
αω + β

ω

ω2
0j

)2
sin


ωt− arccot

1− ω2

ω2
0j

αω + β
ω

ω2
0j




(4.29)

If we have solved Eq. (4.27) for a given load, then the particular solution of the original
system of equations (4.22) is obtained simply by transforming the results back from the modal
space:

uf (t) = Uyf (t).

If one needs to take initial conditions into account, then the sum of the homogeneous and
particular solutions are needed, and the initial conditions should be used to determine the free
parameters of the homogeneous solution. (Modal analysis isthe recommended tool for this.)
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4.3 Rate-independent damping

Damping of structural materials are considered to be small and frequency independent ac-
cording to experiments. Laboratory tests and on-site measurements recorded that the logarith-
mic decrement (the rate of the vibration amplitude decaying) is frequency independent. For
example, the same logarithmic decrement,ϑ ≈ 0.01, is measured in case of steel beams of
different natural circular frequencies (i.e. different lengths and cross-sections). For standard
structural materials it is aroundϑ = 0.01 . . . 0.1.

Previously we assumed that the damping is proportional to the mass and stiffness matrices.
This led tofrequency-dependentlogarithmic decrement (4.26) for each vibration component in
the modal space. If we want to take our result closer to the reality, first we setβ = 0, since the
mass-proportional damping was originated from external dampers, and now we are interested
in the damping properties of the building material. Ifβ = 0, then the logarithmic decrement
(4.26) simplifies to

ϑj =
αω0j√

1−
(αω0j

2

)2π.

Second, weformally set

α :=
2ξ̄

ω0j

. (4.30)

(This is a rude step, it should be thought of as if the frequency dependency of the logarith-
mic decrement were “penalized”.) With these assumptions the logarithmic decrement really
becomesfrequency independent:

ϑj =
2ξ̄π√
1− ξ̄2

.

Here ξ̄ is called thestructural damping coefficient. It depends only on the material type. It
hassmall values for building materials (it is around0.01 for reinforced concrete, for exam-
ple). Therefore, we can approximate

√
1− ξ̄2 ≈ 1, and we can estimatēξ from the measured

logarithmic decrement as

ξ̄ ≈ ϑj

2π
.

(Note that in BSc Dynamics we usedγ := ϑj/π ≈ 2ξ̄ as structural damping coefficient.)

4.3.1 Real modal analysis in case of rate-independent damping

Rate-independent damping is a special proportional dampingwith β = 0 andα = 2ξ/ω0j.
Therefore the results of proportionally damped systems canbe directly applied, we only need
to substituteβ = 0 andα = 2ξ̄/ω0j into the final results of Subsection4.2.3.

The free vibration of a rate-independently damped MDOF system is given by the homoge-
neous solution (4.25) of (4.23) with β = 0 andα = 2ξ̄/ω0j:

yhj(t) = e−ξ̄ω0jt
{
Aj cos

(
ω∗
0jt
)
+ Bj sin

(
ω∗
0jt
)}
,
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where

ω∗
0j = ω0j

√
1− ξ̄2.

The particular solution of the arbitrary forced system withrate-independent damping is
(4.28) with β = 0 andα = 2ξ̄/ω0j

yfj(t) =
1

ω∗
0j

t∫

0

uT
j q(τ) e

−ξ̄ω0j(t−τ) sin
(
ω∗
0j{t− τ}

)
dτ,

while the particular solution of the rate-independently damped, sinusoidally excited system
((4.22) with q(t) = q0 sin(ωt)) is from (4.29)

yfj(t) =
uT
j q0

ω2
0j

1√(
1− ω2

ω2
0j

)2

+

(
2ξ̄

ω

ω0j

)2
sin


ωt− arccot

1− ω2

ω2
0j

2ξ̄
ω

ω0j


 .

4.3.2 Direct solution of rate-independently damped systems

We search for the particular solution of the stiffness-proportionally damped, harmonically
excited system

M¨̃u(t) + αK ˙̃u(t) +Kũ(t) = q0 (cos(ωt) + i sin(ωt)) = q0 e
iωt (4.31)

in the complex form
ũf (t) = ũf0 e

iωt. (4.32)

Substituting the above trial function into (4.31) yields

(
−ω2M+ iαωK+K

)
ũf0 e

iωt = q0 e
iωt.

We can turn the damping associated termiαωK into frequency independent by setting

α :=
2ξ̄

ω
,

whereξ̄ is the previously introduced structural damping coefficient.
With that choice the complex, linear system of equation to solve for the unknown coefficient

ũf0 of the trial function (4.32) is

(
K̃st − ω2M

)
ũf0 = q0,

where
K̃st = (1 + i 2ξ̄)K (4.33)
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is thecomplex (static) stiffness matrix. Finally, the particular solution of (4.31) is

ũf (t) =
(
K̃st − ω2M

)−1

q0 e
iωt,

the real part of which corresponds to the cosine excitationq0 cos(ωt), while the imaginary part
is due to the sine excitationq0 sin(ωt). As we can see, a complex, frequency-dependent matrix
has to be inverted in order to obtain the solution. The complex part of this matrix is originated
from damping, while the frequency-dependence is purely from the inertial effects.

The damping now is not a linear, viscous one, but a special, proportional one: the rate-
independent (or structural) damping. In this special case,the damping and stiffness matrices
can be combined into the complex stiffness matrix (4.33). With the aid of this complex matrix,
the equations of motion of the forced system can be written ina short form:

M¨̃u(t) + K̃stũ(t) = q̃(t). (4.34)

Notice that there is not any velocity vector and damping matrix in the above equation formally.
But damping is present, it is built in the complex, frequency-independent static stiffness matrix
K̃st.

4.4 Equivalent rate-independent damping

In the case of mass- and stiffness-proportional damping, the matrix differential equation of
the structure can be written as (4.22) only if all the structural elements have the same damping
properties. If that is not the case, then the elementary damping matrix of a frame member is
still proportional to its elementary stiffness and mass matrices, but the compiled, total damping
matrix of the structure is not proportional to the total massand stiffness matrices.

The direct solution given is Subsection4.1.1still works for this case, but inverting a large
matrix requires very high computational capacities, and for a large number of DOF it is not al-
ways technically feasible. The problem with structures nothaving uniform elementary damping
mechanisms is that the matrix differential equation they lead to cannot be solved by real modal
analysis. In these cases the much more difficult complex modal analysis should be used, but the
discussion of this method is beyond the scope of this textbook. For large systems the reduced
(complex) modal analysis, numerical time integration techniques, or FastFourier Transforma-
tions can be applied.

However, we show anapproximate method, which is often used for cases when the damping
is proportional to the (elementary) stiffness matrices. This technique is based on the determi-
nation of equivalent structural damping coefficients, which can be later used in real modal
analysis. The equivalent damping coefficient for therth mode can be computed as [6]

ξ̄eq,r =

∑
ij

ξ̄iju
T
r,ijKijur,ij

∑
ij

uT
r,ijKijur,ij

. (4.35)

HereKij is the elementary stiffness matrix of beamij, ξ̄ij is the structural damping coefficient
of beamij. The vectorur is therth eigenvector of the structure without damping, andur,ij

contains its entries corresponding to the end nodes of beamij.
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4.4.1 Quasi-modal analysis for equivalent rate-independent damping

The results of Subsection4.3.1can be directly applied for structures which are not made
of the same building material, but for each material rate-independent damping holds. We only
need to replacēξ with the equivalent structural damping coefficient (4.35) of the corresponding
mode. We have to emphasize that this gives anestimate result, which can be quite inaccurate. It
is also important that the applicable value of equivalent rate-independent damping is maximized
by building codes for structural design.

4.5 Dynamics of soil, the equivalent soil bar

In this chapter we introduce an estimate method to model the vibration of soils. Instead
of investigating the stress and strain distribution in an elastic half-space, we assume that the
normal stress distribution is constant in a given depth and it propagates within an exponential
envelope in the vertical direction, as it was suggested by Wolf [ 13]. This simplified, planar soil
bar model is shown in Figure4.2.

f

A0

(y)σ (y,t)σ

e
y/f

F(t)

y

0

(a) (b)

A(y)

y∆

A(y+  y)∆
(y    y,t)σ   +∆

µ( )yy/f2A(y)=A e

0A e2

Figure 4.2: (a) Assumed stress propagation in the equivalent soil bar and (b) the free-body diagram of a slice of
the bar

On the ground level there is rigid disk of areaA0 = R2π, whereR is the radius. If there
is a constant vertical forceF0 on the top of this plate, then the normal stress on the top level is
σ0 = F0/A0. It is supposed that at depthy the normal stress is constant within the envelope,
i.e. it is constant on the circular area

A(y) = (R ey/f )2π = A0 e
2y/f , (4.36)

and zero outside of it. Heref denotes the characteristic depth of the soil bar. It is computed
from the condition that the static stiffness of the model is the same as the static stiffness obtained
from the solution of the classical problem of elasticity: a disk lying on an elastic half-space.
The model is called theequivalent soil bar.

First we derive the differential equation of motion of the equivalent soil bar. Then we cali-
brate our model by fitting its static stiffness to theBoussinesqsolution through the characteristic
depthf . Finally, the normal force on the top due to a harmonic vibration of unit amplitude of
the top is computed from the equation of motion, leading to the dynamic stiffness of the soil
bar by definition.
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4.5.1 Differential equation of the equivalent soil bar

Free vibration of the soil model

We cut the soil model with two horizontal plane being∆y apart from each other.Newton’s
second law of motion is written for this piece of the soil bar:

−σ(y, t)A(y) + σ(y +∆y, t)A(y +∆y) = ̺A(y)∆y
∂2v(y, t)

∂t2
. (4.37)

Hereµ(y) = ̺A(y) is the mass distribution of the model. The mass of the cut was approxi-
mated byµ(y)∆y in the previous equation (which is accurate if∆y → 0). TheTaylor expan-
sions ofσ(y, t) andA(y) with respect toy are:

σ(y +∆y, t) = σ(y, t) +
∂σ(y, t)

∂y
∆y +O(∆y2),

A(y +∆y) = A(y) +
dA(y)

dy
∆y +O(∆y2).

Substituting these equalities in Eq. (4.37), dividing it by∆y and tending∆y → 0 yields

σ(y, t)
dA(y)

dy
+
∂σ(y, t)

∂y
A(y) = ̺A(y)

∂2v(y, t)

∂t2
. (4.38)

The constitutive law is

σ(y, t) = Ec
∂v(y, t)

∂y
,

whereEc is theconstrained modulus

Ec =
1− ν

(1 + ν)(1− 2ν)
E (4.39)

corresponding to the general spatial stress state. HereE is theYoung’s modulus, andν is the
Poisson’s ratio of the soil.2 This equation is substituted in Eq. (4.38):

Ec
∂v(y, t)

∂y

dA(y)

dy
+ Ec

∂2v(y, t)

∂y2
A(y) = ̺A(y)

∂2v(y, t)

∂t2
.

Now we divide the above expression byEcA(y) and introducecn =
√
Ec/̺ :

∂2v(y, t)

∂y2
+
∂v(y, t)

∂y

dA(y)

dy

1

A(y)
=

1

c2n

∂2v(y, t)

∂t2
.

2Note that the shear modulusG, theYoung’s modulusE, and thePoisson’s ratio ν are not independent:G =
1/2/(1 + ν)E.
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The termdA(y)/ dy can be determined from the derivative of Eq. (4.36):

dA(y)

dy
=

d

dy

(
A0 e

2y/f
)
=

2

f
A0 e

2y/f =
2

f
A(y).

With this equality the partial differential equation of motion of the unloaded soil bar is

∂2v(y, t)

∂y2
+

2

f

∂v(y, t)

∂y
− 1

c2n

∂2v(y, t)

∂t2
= 0 . (4.40)

4.5.2 Static stiffness of the soil model

In the static case there is no vibration, i.e.∂2v(y,t)
∂t2

= 0 and (4.40) yields

d2v(y)

dy2
+

2

f

dv(y)

dy
= 0 . (4.41)

The solution is searched for as
v(y) = A eλy,

leading to the characteristic polynomial

λ2 +
2

λ
= λ(λ+

2

f
) = 0 → λ1 = 0, λ2 = − 2

f
.

From these roots the solutions forv(y) is the linear combination

v(y) = A1 + A2 e
− 2

f
y.

Here the coefficientsA1 andA2 are computed from two boundary conditions.
If we are interested in the static stiffness of the soil bar, then we need to compute the normal

force on the top due to a unit translation of the top. Thus the first boundary condition is

v(y)
∣∣∣
y=0

= 1.

The second boundary condition should correspond to the other end of the bar. Since analytical
solutions for the stiffness of the elastic half space are available, we study asemi-infinite soil
bar. We assume that the other end is in the infinity and its displacement is zero:

v(y)
∣∣∣
y→∞

= 0.

Using the above two boundary conditions we obtainA1 = 0 andA2 = 1, thus the static shape
function of the semi-infinite soil bar due to the unit translation of its top is:

v(y) = e−
2

f
y.
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The normal force on the top of the bar due to its unit translation is the opposite of the static
stiffness:

kstaticsoil = −N(0) = −EcA0
dv(y)

dy

∣∣∣
y=0

→ kstaticsoil =
2EcA0

f
= 2EcR

Rπ

f
. (4.42)

From the classical (Boussinesq) solution for the static problem of a disc lying on an elastichalf
space the static stiffness is [14]:

kexactsoil = 4GR
1

1− ν
= 2EcR

1− 2ν

(1− ν)2

Finally, we can equate the above two stiffness values and express the characteristic depthf as:

f = Rπ
(1− ν)2

1− 2ν
. (4.43)

4.5.3 Dynamic stiffness of the soil model

Now we investigate the case when the disc vibrates harmonically in time with a unit ampli-
tude, described by the complex, harmonic displacement function

v(0, t) = 1 · e iωt. (4.44)

We separate the variablesy andt in v(y, t), assuming that the vibration of the soil model at any
depthy is also harmonic in time:

v(y, t) = ṽ(y) e iωt. (4.45)

This separated form ofv(y, t) is substituted in (4.40) yielding:
{

d2ṽ(y)

dy2
+

2

f

dṽ(y)

dy
+
ω2

c2n
ṽ(y)

}
e iωt = 0.

The above identity holds for any time instantt if

d2ṽ(y)

dy2
+

2

f

dṽ(y)

dy
+
ω2

c2n
ṽ(y) = 0 . (4.46)

We search for the solution of Eq. (4.46) in the exponential form:

ṽ(y) = B eλy. (4.47)

(Here bothB andλ can be complex.) Substituting (4.47) in (4.46) we get
(
λ2 +

2

f
λ+

ω2

c2n

)
eλy = 0.
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The roots of the above quadratic polynomial are

λ1,2 = − 1

f
±

√(
1

f

)2

−
(
ω

cn

)2

,

thus the solution of Eq. (4.46) is the linear combination

ṽ(y) = B1 e

{

− 1

f
+

√

( 1

f )
2
−( ω

cn
)
2

}

y

+ B2 e

{

− 1

f
−

√

( 1

f )
2
−( ω

cn
)
2

}

y

. (4.48)

CoefficientsB1 andB2 are computed from two prescribed boundary conditions.
Note that if

ω <
cn
f
, (4.49)

then the solutioñv(y) is real, but if

ω >
cn
f
, (4.50)

then ṽ(y) is complex. These two different cases imply different soil stiffness characteristics.
We start with the discussion of the complex case.

The case of higher forcing frequencies

If ω > cn
f

, then the term in the square roots of (4.48) is negative, and̃v(y) is complex. First
we write √(

1

f

)2

−
(
ω

cn

)2

= i ω

√(
1

cn

)2

−
(

1

fω

)2

.

Then by introducing

1

csd
=

√(
1

cn

)2

−
(

1

fω

)2

, (4.51)

(4.48) becomes

ṽ(y) = B1 e

{

− 1

f
+ i ω

csd

}

y
+ B2 e

{

− 1

f
− i ω

csd

}

y
,

and (4.45) finally yields

v(y, t) = B1 e
− y

f e
i ω
csd

(y+csdt) +B2 e
− y

f e
− i ω

csd
(y−csdt)

= B1 e
− y

f

[
cos

(
ω

csd
{y + csdt}

)
+ i sin

(
ω

csd
{y + csdt}

)]

+ B2 e
− y

f

[
cos

(
ω

csd
{y − csdt}

)
− i sin

(
ω

csd
{y − csdt}

)]
.

(4.52)
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From this form it can be recognized that there aretravelling wavesin the soil model due to the
harmonic vibration of the top. If timet is changed by∆t (t = t+∆t), while y is increasedby
csd∆t (y = y + csd∆t), then the argumenty − csdt does not change. Thus the terms multiplied
by B2 represent mechanical waves travellingdownwardsat a constant speedcsd. Similarly, if
time is changed by∆t, whiley is decreasedby csd∆t, theny+csdt does not change. Hence the
terms multiplied byB1 are the mechanical waves travellingupwardsat a constant speedcsd.

However, if asemi-infinitesoil bar is excited at the top, and the soil is assumed to be
homogeneous, then only the waves that travel downwards exist. The reason of this is that the
excitation of the top induces waves travelling downwards, and these waves do not reflected
from any material discontinuity, which would be one source of waves travelling upwards. The
bottom of the bar can also reflect downward-travelling waves, as the other source of the upward-
travelling waves, but the bottom is in the infinity now, so this source does not exist either.
Therefore, for the specific case of thehomogeneous, semi-infinite soil barwe keep only

ṽ(y) = B2 e

{

− 1

f
− i ω

csd

}

y
. (4.53)

The boundary condition at the top implies that

ṽ(y)
∣∣∣
y=0

= B2 e

{

− 1

f
− i ω

csd

}

0
= 1 → B2 = 1.

The normal force on the top due to the harmonic vibration of the top is:

N(0) = −EcA0
dṽ(y)

dy

∣∣∣
y=0

= −EcA0

(
1

f
+ iω

1

csd

)
,

which is the opposite of the dynamic stiffness of the homogeneous, semi-infinite soil bar:

k̃soil =
EcA0

f
+ iω

EcA0

csd
. (4.54)

As we can see, the stiffness of the soil bar is complex, which means that besides an elastic spring
of stiffnessEcA0/f , there is also a viscous damper of coefficientEcA0/csd in our system, even
though no internal (material) damping is considered in the constitutive law. The origin of
this energy dissipation mechanism of the soil is that the downward-travelling waves are not
reflected back and so radiate energy from the system. This damping phenomenon is called
radiation damping.

The case of lower forcing frequencies

If ω < cn
f

, then the term in the square roots of (4.48) is positive, and̃v(y) is real. Instead of
deriving the stiffness of the soil starting from Eq. (4.48), we simply make use of the previously
derived complex dynamic stiffness (4.54). We have to take into account that now (4.51) is
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complex and we have to reformulate (4.54) as

EcA0

f
+ iω

EcA0

csd
= EcA0





1

f
+ iω

√(
1

cn

)2

−
(

1

fω

)2





= EcA0

{
1

f
+

√
(−1)

(
ω2

c2n
− 1

f 2

)}
.

Thus the dynamic stiffness of the soil in the case of low forcing frequency is:

k̂soil = EcA0

{
1

f
+

√
1

f 2
− ω2

c2n

}
. (4.55)

And the real dynamic shape function is:

v̂(y) = e

{

− 1

f
−

√

1

f2
−ω2

c2n

}

y
.

We can verify this result by comparing it to the static stiffness (4.42), which is the limit case
ω → 0:

k̂soil

∣∣∣
ω→0

=
2EcA0

f
= kstaticsoil

√

The other limit case isω → cn/f , when

k̂soil

∣∣∣
ω→cn/f

=
EcA0

f
=

1

2
kstaticsoil ,

which equals the real part of the complex dynamic stiffness (4.54).

As a conclusion we can state that the soil can be modeled by an elastic spring and a dashpot
if the forcing frequency is high enough, and by a single elastic spring if the forcing frequency
is sufficiently low. Table4.1summarizes the results obtained for the equivalent spring constant
keqsoil and damping coefficientceqsoil depending on the forcing frequencyω and soil parameters.

Finally, we mention that internal damping of the soil material itself can also be taken into
account by replacingE with the complex elastic modulus

Ẽ = (1 + i 2ξ̄soil)E

in the previous derivations. (Herēξsoil is the structural damping coefficient of the soil.) In this
case there can be two types of damping in the model. One originates from the internal damping,
which is rate-independent, thus appears at any loading frequency. The other one is due to the
radiation damping, and it only appears at higher forcing frequencies. We note that the stiffness
of the soil due to horizontal translation and to rotation of the rigid disk can be computed in a
similar way.
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Forcing frequency ω <
cn
f

ω >
cn
f

Spring stiffness
1

2
kstaticsoil < keqsoil < kstaticsoil keqsoil =

1

2
kstaticsoil

Damping coefficient ceqsoil = 0 ceqsoil =
EcA0

csd

Table 4.1: Equivalent spring stiffnesskeqsoil and damping coefficientceqsoil of the soil, assuming a homogeneous
elastic half space, corresponding to “low” and “high” forcing frequencyω. HereEc is the constrained modulus

of the soil,A0 is the area of the rigid plate on the soil surface,cn =
√
Ec/̺ with ̺ being the mass density of the

soil, while the characteristic depthf is given by (4.43) for a disk. The velocity of the travelling wavecsd is
computed according to (4.51)

Problem 4.5.1(Modelling the soil under a machine foundation). There is a machine that exerts a periodic
force q(t) = q0 sin(ωt) on its foundation which can be regarded as a rigid disk of diameterD = 2m. The
circular frequency of the force isω = 50 1

s . The underlying soil is sand withYoung’s modulusE = 30MPa=
30 · 106 N/m2, Poisson’s ratioν = 0.4, and mass density̺= 2 t/m3 = 2 · 103 kg/m3. Determine the equivalent
soil parameters for the dynamical calculation!

Solution. First we compute the constrained modulusEc and the characteristic depthf , from Eqs. (4.39) and
(4.43):

Ec =
1− ν

(1 + ν)(1− 2ν)
E =

0.6

(1.4)(0.2)
30 · 106 = 64.28 · 106 N/m2

,

f = Rπ
(1− ν)2

1− 2ν
= π

(0.6)2

0.2
= 1.8πm.

We also needcn =
√
Ec/̺:

cn =

√
64.28 · 106
2 · 103 = 179.28

m

s
.

Now we can compare the circular frequencyω of the forcing tocn/f :

ω = 50
1

s
,

cn
f

=
179.28

1.8π
= 31.70

1

s
, → ω >

cn
f
,

thus the forcing frequency is high enough to induce travelling waves which radiates in the soil. Hence we
need an elastic spring and a viscous damper, too, to model thesoil. The velocitycsd of the travelling waves is
computed from (4.51)

1

csd
=

√(
1

cn

)2

−
(

1

fω

)2

=

√(
1

179.28

)2

−
(

1

1.8π · 50

)2

= 4.313 · 10−3 s

m
, → csd = 231.84

m

s
.

Finally, the equivalent stiffness and damping parameterskeqsoil andceqsoil of the soil are calculated from (4.54):

keqsoil =
EcA0

f
=

64.28 · 106 · π
1.8π

= 35.71 · 106 N

m
,

ceqsoil =
EcA0

csd
=

64.28 · 106 · π
231.84

= 87.10 · 104 Ns

m
.
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Problem 4.5.2(Vibration of a prismatic soil bar). Study the vibration of a prismatic soil bar!

Solution. We can simply take1f = 0 in the previous analysis to obtain the differential equation of the longitu-
dinal vibration of a prismatic (cylindrical) bar. The differential equation of motion is from (4.40):

∂2v(y, t)

∂y2
− 1

c2n

∂2v(y, t)

∂t2
= 0.

(Compare it to (2.6)!) If the top is vibrating by a unit amplitude, then the particular solution is written in the
separated form (4.45) leading to the ordinary differential equation for the shape function

d2ṽ(y)

dy2
+
ω2

c2n
ṽ(y) = 0.

Using the Ansatz

ṽ(y) = B eλy

the roots forλ are

λ1,2 = ±

√

−
(
ω

cn

)2

= ± i
ω

cn
.

Thus

ṽ(y) = B1 e
i ω
cn

y +B2 e
− i ω

cn
y.

We can observe travelling waves in this solution, too, but the amplitude of the vibration does not decrease with
depth. The constantsB1 andB2 can be determined from boundary conditions.

If we study an semi-infinite bar with a harmonically vibrating top, usingB1 + B2 = 1 andB1 = 0 as
before, then the vibration of the prismatic soil bar is givenby

v(y, t) = B2 e
− i ω

cn
(y−cnt) = B2

[
cos

(
ω

cn
{y − cnt}

)
− i sin

(
ω

cn
{y − cnt}

)]
,

yielding the stiffness

k̃prismsoil = −N(0) = −EcA0
dv(y)

dy

∣∣∣
y=0

= iω
EcA0

cn
.

Damping(the complex part of the stiffness) is present due to the lackof the upward-travelling waves, but the
static stiffness (the elastic resistance, the real part of the stiffness) iszerodue to the infinite depth of the bar. It
seems strange, but based on our previous studies of strengthof materials we can check what the stiffness of a
stretched semi-infinite bar of normal stiffnessEA and lengthℓ→ ∞ is:

kℓ∞bar =
EA

ℓ

∣∣∣
ℓ→∞

= 0.
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Problem 4.5.3(Complex dynamic shape function of a prismatic bar). Using the complex differential equation
of motion of a prismatic soil bar determine its dynamic shapefunction corresponding to the end conditions
v(0, t) = 1 · e iωt andv(ℓ, t) = 0.

Solution. The bar is free from force load. As in the previous problem we set 1
f = 0 in (4.40) to obtain the

differential equation of motion of a prismatic bar:

∂2v(y, t)

∂y2
− 1

c2n

∂2v(y, t)

∂t2
= 0.

The spatial and temporal variables are separated as

v(y, t) = ṽ(y) e iωt.

Similarly to the previous problem, the shape functionṽ(y) satisfies the ordinary differential equation

d2ṽ(y)

dy2
+
ω2

c2n
ṽ(y) = 0,

leading to

ṽ(y) = B1 e
i ω
cn

y +B2 e
− i ω

cn
y.

The boundary conditions that must be fulfilled byṽ(y) are

ṽ(y)
∣∣∣
y=0

= 1, ṽ(y)
∣∣∣
y=ℓ

= 0,

yielding

B1 +B2 = 1,

B1 e
i ω
cn

ℓ +B2 e
− i ω

cn
ℓ = 0

Solving the above equations we get

B1 =
− e− i ω

cn
ℓ

e i ω
cn

ℓ − e− i ω
cn

ℓ
=

−1

2 i sin
(

ω
cn
ℓ
) e− i ω

cn
ℓ =

i

2 sin
(

ω
cn
ℓ
) e− i ω

cn
ℓ,

B2 =
e i ω

cn
ℓ

e i ω
cn

ℓ − e− i ω
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ω
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ℓ
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Thus the complex dynamic shape function is:

ṽ(y) =
i

2 sin
(

ω
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ℓ
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cn
ℓ e i ω
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− i

2 sin
(

ω
cn
ℓ
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(

ω
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ℓ
) e i ω
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− i
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ω
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ℓ
) e− i ω

cn
(y−ℓ),

In order to compute the stiffness of the bar we need to differentiate the shape function with respect toy:

dṽ(y)

dy
=

i · i ωcn
2 sin

(
ω
cn
ℓ
) e i ω

cn
(y−ℓ) +

− i · (− i) ω
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2 sin
(

ω
cn
ℓ
) e− i ω
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(y−ℓ)

= − ω
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1
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(

ω
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ℓ
) e i ω
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(y−ℓ) − ω

cn

1

2 sin
(

ω
cn
ℓ
) e− i ω

cn
(y−ℓ).
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For the bar stiffnesses̃K11 andK̃41 we calculate the above derivative at the ends of the bar, multiply it by the
normal stiffnessEA of the bar, and apply the appropriate sign rule, similarly toEq. (3.11) and (3.12):

K̃11 = −EA dṽ(y)

dy

∣∣∣
y=0

= EA
ω

cn

1

2 sin
(

ω
cn
ℓ
)
[
e− i ω

cn
ℓ + e i ω

cn
ℓ
]

= EA
ω

cn

1

2 sin
(

ω
cn
ℓ
)
[
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(
ω

cn
ℓ

)
− i sin

(
ω

cn
ℓ

)
+ cos

(
ω

cn
ℓ

)
+ i sin

(
ω

cn
ℓ

)]

= EA
ω

cn
cot

(
ω

cn
ℓ

)
,

K̃41 = EA
dṽ(y)

dy

∣∣∣
y=ℓ

= −EA ω

cn

1

2 sin
(

ω
cn
ℓ
)
[
e i ω

cn
0 + e− i ω

cn
0
]
= −EA ω

cn

1

sin
(

ω
cn
ℓ
)

The bar hasreal-valued stiffnesses, since there is no internal (structural, or material) damping and all the
travelling waves can be reflected back and forth from the endsof the bar. Note that the above values identical
to the corresponding entries of (3.73).

Finally, let us compile the particular solution of the partial differential equation:

v(y, t) = ṽ(y) e iωt =
i

2 sin
(

ω
cn
ℓ
) e i ω

cn
(y−ℓ+cnt) +

− i

2 sin
(

ω
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ℓ
) e− i ω

cn
(y−ℓ−cnt)

=
i

2 sin
(

ω
cn
ℓ
)
[
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{
ω

cn
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}
+ i sin

{
ω

cn
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}]

− i

2 sin
(

ω
cn
ℓ
)
[
cos

{
ω

cn
(y − ℓ− cnt)

}
− i sin

{
ω

cn
(y − ℓ− cnt)

}]
.

Now we use the trigonometric identity

1

sin2
(

ω
cn
ℓ
) = 1 + cot2

(
ω

cn
ℓ

)
→ 1

2 sin
(

ω
cn
ℓ
) =

√
1 + cot2

(
ω
cn
ℓ
)

2

and expand thereal part of (4.5.3):

Re(v(y, t)) =

√
1 + cot2

(
ω
cn
ℓ
)

2

[
− sin

{
ω

cn
(y − ℓ+ cnt)

}
− sin

{
ω

cn
(y − ℓ− cnt)

}]
.

It is important to understand that the above result is the solution corresponding to the vibrationcos(ωt) of the
starting end of the bar, and so identical with (2.13).

Similarly, the complex part of (4.5.3) is

Im(v(y, t)) =

√
1 + cot2

(
ω
cn
ℓ
)

2

[
cos

{
ω

cn
(y − ℓ+ cnt)

}
− cos

{
ω

cn
(y − ℓ− cnt)

}]
,

which is the solution corresponding to the vibrationsin(ωt) of the starting end, and so the same as (2.15).
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4.6 Numerical solution of the matrix differential equation of
damped MDOF systems

In this section we will analyse possible solution methods ofthe matrix differential equa-
tion (4.1). These methods are required when the damping is non-proportional, and the modal
analysis cannot be used, but we restrict our analysis to realdamping matrixC.

As we have seen earlier for SDOF systems in Section1.2, the numerical integration of the
equation of motion provides the displacement of the system at discrete time steps. From the
displacements one can recover the motion of the system, and computethe internal forces as
well.

Explicit methods calculate the next points of the solution by satisfying the differential equa-
tion in the starting point. Implicit methods calculate the next points of the solution such that
they satisfy the differential equation in that point. For further details see [12].

4.6.1 Newmark method

At a given timeti the vectors of displacement, velocity and acceleration areknown:

ui = u(ti), u̇i = u̇(ti), üi = ü(ti).

We want to derive a formula for the calculation of these vectors at the timeti+1 = ti +∆t:

ui+1 = u(ti +∆t), u̇i+1 = u̇(ti +∆t), üi+1 = ü(ti +∆t).

Let us assume, that the continuous change of the acceleration between time stepsti andti+1

can be described by the scalar valued functionf(τ):

ü(ti + τ∆t) = üi + f(τ) (üi+1 − üi) . (4.56)

Hereτ is a nondimensional time. One can conclude from the above formula, thatf(0) = 0
andf(1) = 1. Integrating the acceleration with respect to time provides the velocity function3

(similar to the formulav(t) = v(0) +
∫ t

0
a(τ) dτ ):

u̇(ti + τ∆t) = u̇(ti) + ∆t




τ∫

0

üi + f(T ) (üi+1 − üi) dT


 .

We expand the argument of the above integral

u̇(ti + τ∆t) = u̇i + üiτ∆t+ (üi+1 − üi)∆t

τ∫

0

f(T ) dT. (4.57)

3In the integral formula
∫ ti+∆tτ

ti
ü dt we must substitute the absolute timet as the product of the time step and

the nondimensional time:∆tτ . The elementary time will be thendt = ∆t dτ . Using this exchange of variables
the integral becomes

∫ τ

0
ü∆t dT .
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Let us introduce the parameterα =
1∫
0

f(T ) dT , and write the velocity at the (i + 1)th time

instant (i.e. atτ = 1):
u̇i+1 = u̇i + üi∆t+ (üi+1 − üi)∆tα,

or in a more elegant form:

u̇i+1 = u̇i + [(1− α) üi + αüi+1] ∆t. (4.58)

Next, we introduce the functiong(τ) =
τ∫
0

f(T ) dT into Eq. (4.57) and integrate it in order

to get the displacement vector:

u(ti + τ∆t) = u(ti) + ∆t




τ∫

0

u̇i + üiT∆t+ (üi+1 − üi)∆tg(T ) dT




We expand the argument of the integral:

u(ti + τ∆t) = ui + τ∆tu̇i +
∆t2τ 2

2
üi +∆t2 (üi+1 − üi)

τ∫

0

g(T ) dT. (4.59)

We define the parameterβ =
1∫
0

g(T ) dT , and write the above displacement at the (i+1)th time

instant (i.e. whenτ = 1):

ui+1 = ui +∆tu̇i +
∆t2

2
üi +∆t2 (üi+1 − üi) β,

or, in a more elegant form:

ui+1 = ui + u̇i∆t+

[(
1

2
− β

)
üi + βüi+1

]
∆t2. (4.60)

We solve Eq. (4.60) for the acceleration

üi+1 =
1

β∆t2
(ui+1 − ui − u̇i∆t)−

(
1

2β
− 1

)
üi, (4.61)

substitute the acceleration into Eq. (4.58), and solve it for the velocity:

u̇i+1 = u̇i + (1− α) üi∆t+
α

β∆t
(ui+1 − ui − u̇i∆t)− α

(
1

2β
− 1

)
üi∆t

=
α

β∆t
(ui+1 − ui) +

(
1− α

β

)
u̇i +

(
1− α

2β

)
∆tüi.
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We substitute the acceleration and the velocity into the matrix differential equation (4.1)

M

[
1

β∆t2
(ui+1 − ui − u̇i∆t)−

(
1

2β
− 1

)
üi

]
+

C

[
α

β∆t
(ui+1 − ui) +

(
1− α

β

)
u̇i +

(
1− α

2β

)
∆tüi

]
+Kui+1 = qi+1.

(4.62)

Let us define the effective stiffness matrixKeff as

Keff = K+
α

β∆t
C+

1

β∆t2
M,

and the effective load vectorqeff
i+1 as:

qeff
i+1 = qi+1 +M

[
1

β∆t2
ui +

1

β∆t
u̇i +

(
1

2β
− 1

)
üi

]

+C

[
α

β∆t
ui +

(
α

β
− 1

)
u̇i +

(
α

2β
− 1

)
∆tüi

]
.

Then, the iteration formula for the calculation of the displacements in the time instantti+1 can
be written in the short form:

Keffui+1 = qeff
i+1 . (4.63)

In a linear system the effective stiffness matrix is constant during the computation, so it is
sufficient to calculate its inverse only once. The effectiveload vector depends on the load at
the next step, and the current state of the system, thus it is recalculated at every time step.

Special cases of the functionf(τ)

The parametersα andβ depend on the shape of the assumed change of the acceleration
during the analysed time step∆t.

In a simple case we can assume, that the acceleration is the average ofüi andüi+1. This
corresponds tof(τ) = 0.5, g(τ) = 0.5τ , which leads toα = 0.5 andβ = 0.25.

The next case assumes a linearly varying acceleration withf(τ) = τ andg(τ) = τ 2/2. The
numerical parameters are thenα = 0.5 andβ = 1/6.

174

by Németh & Kocsis



CHAPTER 5. EARTHQUAKE ANALYSIS

Chapter 5

Earthquake analysis

The most significant horizontal load of structures was the wind load for many years of
standardized design. Change in applyed materials emerged the importance of earthquake as a
load case. In this chapter we go through the basic mechanics of earthquake engineering, as
a preparation for the specific subject devoted to it. We introduce the mechanical aspects of
earthquakes, and their propagation as waves. Then the elements of elastic analysis of single-
and multi-DOF structures, and some notes about the advancedmethods are presented. We do
not focus here on the standards but on the mechanical concepts and theories which are reflected
in the prescriptions of building codes, for example in Eurocode 8 [4].

5.1 Introduction to earthquakes

The structure of Earth in a very simplified description consists of acore (divided usually
into an inner and an outer core), surrounded by themantleand covered by thecrust. The core
is mostly composed of iron and nickel. The inner core is solidwith a radius of1220 km, while
the outer core is liquid with a thickness of2270 km. The mantle consists of a highly viscous
solid material with a thickness of2850 km. The solid crust has a varying thickness between
5 km (oceanic crust) and70 km (continental crust).

The crust consists oftectonic platesfloating on the surface of the mantle. Convection in
the mantle results in a continuous motion of the plates. Neighbouring plates are in contact, and
due to the friction between the plates there are stresses accumulating in those region. When the
stress exceeds its ultimate value somewhere, a sudden motion occurs between the plates and
a huge amount of energy is released. This rupture is the causeof mostearthquakes. (Further
causes are volcanic activities, mine blasts, landslides, etc.) The location, where the rupture hap-
pens is called thehypocenteror focus. The point on the ground level right above the hypocenter
is theepicenter.

The dislocation travels through the solid soil as a wave. Twotypes of travelling waves are
distinguished.
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• In P-wavesthe particles are moving parallel to the travel direction ofthe wave. They are
called pressure waves, or primary waves. The velocity of P-waves is

cp =

√
M

̺
,

whereM is theelastic P-wave modulus:

M =
(1− ν)E

(1 + ν)(1− 2ν)
.

HereE, ν and̺ are the elastic modulus, the Poisson ratio and the density ofthe solid
material, respectively. The typical velocity of P-waves insoil is in the range5−13 km/h.

• In S-wavesthe particles are moving transverse to the travel directionof the wave. They
are called shear waves, or secondary waves. The velocity of S-waves is

cs =

√
G

̺
,

whereG is theelastic shear modulusof the solid. The typical velocity of S-waves is
smaller than that of the P-waves in the same material, it is inthe range4 − 5 km/h. In
liquid material (like the outer core) the S-waves do not propagate.

The difference between the velocities of P- and S-waves makes it possible to calculate the
distances of the hypocenter from seismic measurement sites, and to determine the location of
the hypocenter.

On interfaces between various materials both P- and S- wavescan exhibit four types of
behaviour. They can reflected (back, into the same side of theinterface zone) or refracted (by
entering the other side of the interface zone) into a P- or an S-wave. This property helped to
analyse the inner structure of Earth.

On the ground level both P- and S-waves causes displacements. Their superposition re-
sults insurface waves. Pressure waves and the vertical shear waves (also called asSV-waves)
results in elliptic motion of the particles. These waves arethe Rayleigh waves or R-waves.
The horizontal shear waves (also called as SH-waves) are reflected from the surface and from
interfaces between various materials near the surface. This results in an other type of surface
waves, which are called the Love waves, or Q-waves. The abovementioned solid and surface
waves are drawn in Figure5.1.

Far from the epicenter typically the horizontal displacements are dominant, and they may
result in large excessive internal forces. Therefore earthquake analysis of engineering structures
typically focus on the lateral motions.

Historical earthquakes were qualified by the caused damage or the human feelings. These
qualifications incorporate many architectrual and sociological factors as well, but unaware of
the distance of the place of perception from the epicenter. Scientifically exact classification
requires the energy released during the earthquake, and thelocation of the epicenter. The most
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Figure 5.1: (a) Motion of a soil particle from vertical shear (SH), pressure (P) and Rayleigh (R) waves. (b)
Deformed shape of a soil block, caused by the Rayleigh waves.(c) Motion of a soil particle from horizontal shear
(SH) wave and the reflection of SH-waves on the material interfaces. (d) Deformed shape of a solid block, caused

by the Love (Q) waves of the surface.

frequently used scale is the Richter magnitude scale. The Richter scale is a logarithmic scale,
two units higher magnitude on the scale represents 1000 times more released energy.

It is also worth to mention, that formation of earthquakes caused by the continuous motion
of the tectonic plates. As long there is no earthquake occursin a exposed region, more and
more energy accumulates thus the next earthquake has usually higher magnitude. This theory
is justified by statistical analysis too.

In a specific location the earthquake is represented by the ground motionug(t). This geo-
metric load can be used as a load, allowing the solution of thedifferential equation of motion.
Technically it is much easier to record the acceleration of the ground instead of the displace-
ment. The tool is called anaccelerometer. In an analog accelerometer a supported mass moves
a pencil on a moving paper. We call the recorded functionüg(t) as a time history function, it
can be used later for modelling the ground motion.

5.2 Response spectrum of SDOF systems

5.2.1 Response functions

Let us analyse a single degree-of-freedom system of massm, viscous dampingc, spring
stiffnessk, and general forcingq(t). The ODE of the system is:

mü(t) + cu̇(t) + ku(t) = q(t). (5.1)

Hereu(t) is the elongation of the spring (or the deformation of the elastic structure) There-
sponseof a SDOF system depends only on the natural circular frequency and the damping
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ratio. The displacement can be calculated from the solutionof the Eq. (5.1) (see the Duhamel’s
integral in Subsection1.2.1for one possible solution).

Once the displacement functionu(t) is obtained we can calculate the spring force

fS(t) = ku(t),

or we can apply this force to the structure to calculate otherinternal forces. We can express the
spring stiffnessk in terms of the mass and the undamped natural circular frequencyω0:

fS(t) = mω2
0u(t).

Hereω2
0u(t) is an acceleration-like quantity, which can be used to describe the current state of

the motion of the analysed SDOF structure. Because it is not a real acceleration, it is called
pseudo-acceleration responseof the structure and denoted byaP (t):

aP (t) = ω2
0u(t). (5.2)

Then, the spring force can be calculated as:

fS(t) = maP (t).

Please notice the difference between the actual acceleration ü(t) and the pseudo-acceleration
aP (t) = ω2

0u(t).
Similarly to the above concept, we define thepseudo-velocity responseof the structure as

vP (t) = ω0u(t),

which differs from the actual velocitẏu(t).
In an undamped system the elastic displacement can be written as

u(t) =
1

mω0

t∫

0

q(τ) sin (ω0(t− τ)) dτ.

Thus the pseudo-acceleration response of the undamped system is

aP (t) = ω2
0u(t) =

ω0

m

t∫

0

q(τ) sin (ω0(t− τ)) dτ.

Problem 5.2.1(Calculation of response functions). A damped, single DOF system is characterized by the mass
m = 1 kg, viscous dampingc = 0.5Ns/m and spring stiffnessk = 10N/m. The system is forced by an impulse
load shown in Figure5.2(a). Calculate the displacement, velocity, and acceleration response functions and the
pseudo-velocity and pseudo-acceleration diagrams!
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Figure 5.2: (a) The load function. (b) Displacement response function.(c) Velocity response function. (d)
Acceleration response function. (e) Pseudo-velocity response diagram. (f) Pseudo-acceleration response

diagram.

Solution. The calculation was carried out with the Cauchy-Euler method. The results are shown in Figure5.2
(b-f).

Response functions due to support vibration

We have seen in Subsection1.1.4 that support vibrationug(t) can be treated as a forced
vibration with loadq(t) = −müg(t). In this model the unknown displacementu(t) represents
the elastic deformation of the structure.

One can substitute the above load vector into the Duhamel’s integral (1.26):

u(t) =

t∫

0

−üg(τ)
ω∗
0

e−ξω0(t−τ) sin (ω∗
0(t− τ)) dτ.

The pseudo-acceleration response of a damped SDOF system due to support vibration is then:

aP (t) = ω2
0

t∫

0

−üg(τ)
ω∗
0

e−ξω0(t−τ) sin (ω∗
0(t− τ)) dτ, (5.3)

and the equivalent spring force can be calculated as above,fS(t) = maP (t).
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As we have seen, the computation of the response functions isof the same steps technically
both for an external loading and for support vibration. In the latter case the mass times ground
acceleration is used as an equivalent external forcing. (The equivalent load is directly, the
response is inversely proportional to the mass, so these twoeffects cancel each other.) In the
further analysis we focus on earthquake analysis, so we dealonly with support-vibration-type
excitations.

5.2.2 Response spectrum

A central concept in elastic earthquake engineering is the concept ofresponse spectrum.
For a given structure the most important quantity is the maximal displacement and the maximal
spring force. The response spectrum is the collection of these maximal values for a given
load. We must calculate the peak values of the response functions for structures with different
natural circular frequencies but with the same damping ratio ξ. Then we plot the natural circular
frequencies versus the maximums of the response function for various structures in a common
coordinate system. This diagram is called the response spectrum. It is constructed for several
damping ratios. It depends on the load, the damping ratio, and the natural circular frequency.
Once we have the diagram of the response spectrum based on thecalculation of sufficiently
large number of structures with different natural frequencies, we can find the value for any
natural frequency from interpolation between two neighbouring known points. Depending on
what kind of peak values are drawn, we can talk about various response spectra. For example,
displacement response spectrum(denoted bysu(ξ, ω0)) collects the maximums of displacement
responses, whileacceleration response spectrum(denoted bysa(ξ, ω0)) collects the maximums
of acceleration responses.

We note here that thepseudo-acceleration response spectrum(denoted bysPa(ξ, ω0)) can
be easily calculated from the displacement response spectrum based on the definition of the
pseudo-acceleration response (5.2):

sPa(ξ, ω0) = ω2
0su(ξ, ω0).

In engineering practice the response spectrum is often given as the function of the natu-
ral periodT0 = 2π/ω0 of the structure. We note here, that every above response spectrum
corresponds to one given load (here one ground-motionüg(t)), and one structural damping
coefficientξ.

Problem 5.2.2(Calculation of response spectrum). An undamped, single DOF system is characterized by the
massm = 1 kg, and spring stiffnessk = 10N/m. The system is forced by an impulse already shown in Figure
5.2(a) Calculate the displacement- and pseudo-acceleration response spectra!

Solution. The calculation were carried out with Cauchy-Euler method.Three examples of the response func-
tions are shown in5.3 (a) with the peak values highlighted. The resulting spectraare shown in Figure5.3
(b-c).
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Figure 5.3: (a) Example diagrams of the displacement response functionof structures with various loading.
(b) Displacement response spectrum vs. the natural circular frequency. (c) Displacement response spectrum

vs. the natural period.

Spectral characteristics of structures

For structures with large natural circular frequencies (i.e. small natural period) the mass is
connected to the ground with a very stiff spring. Therefore the deformations are small, and the
(peak) value of the pseudo acceleration approaches the (peak) acceleration of the ground. This
type of structures are calledacceleration sensitivestructures.

For structures with small natural circular frequencies (i.e. large natural period) the mass
is connected to the ground with a very soft spring. Thereforethe displacements of the mass
are small, and the (peak) value of the deformation approaches the (peak) displacements of the
ground. This type of structures are calleddisplacement sensitivestructures.

In the region between the above two types, structures are called velocity sensitive, because
the structural response appears to be related to the velocity mainly.

5.2.3 Design spectrum

The peak structural response to a given load can be calculated from the response spectrum
of that given load.

For design purposes the application of the response spectrum calculated from the support
motion is still not a good choice. First, there may be steep jumps in the spectrum, where the
analysed structure would exhibit a small peak response, butthe real structure would exhibit a
much larger response. Second, different earthquakes have different time history and different
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response spectra. It is because of the difference in the location of the hypocenter, and in the
strength of the earthquakes.

Because of the above reasons we want to create adesign spectrum, which represents the
typical earthquakes based on the response spectra of past measurements, and avoids sharp
jumps. So, the design spectrum is defined as a smoothened hullabove a lot of recorded response
spectra.

Design spectrum is given in standards [4] for various damping coefficientsξ. In most cases
they are given as the pseudo-acceleration versus the natural period:Se(T0). To separate various
effects,Se(T0) is given as:

Se(T0) = γIagRSβ(T0),

whereγI is an importance factor representing the damage caused by the collapse of the struc-
ture,agR is the reference value of the ground acceleration on solid rock, S is a soil coefficient
representing that soft soils increase the effect of earthquakes, andβ(T0) describes qualitatively
the pseudo-acceleration. A typical shape of the diagramβ(T0) is shown in Figure5.4.

Figure 5.4: The functionβ(T0) of the pseudo-acceleration response versus the natural period.

The functionβ(T0) depends on the structural dampingξ via a correction factorη =
max(0.55,

√
10/(5 + ξ)). The functionβ(T0) consists of a linear segment in the zoneT0 < TB

β(T0) =

(
1 +

T0
TB

(2.5η − 1)

)

and a constant coefficient in the zoneTB < T0 < TC

β(T0) = 2.5η − 1.
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In these zones there are the acceleration-sensitive structures. Velocity-sensitive structures have
constant pseudo velocity, therefore the curveβ(T0) is inversely proportional to the natural
period in the zoneTC < T0 < TD

β(T0) = 2.5η

(
TC
T0

)
.

Displacement-sensitive structures are in the regionTD < T0 with a decayingβ-function.

β(T0) = 2.5η

(
TCTD
T 2
0

)
.

The periodsTB, TC , andTD depend on the type of the soil.

5.3 Response spectrum of MDOF systems

Earthquake analysis of MDOF systems can be carried out via integration of the matrix
differential equation of motion with proper support vibrations as forcing. We have seen in the
case of SDOF systems, that time history of earthquakes varies, so this type of analysis would
require proper (real or artificial) earthquake records.

5.3.1 Modal analysis

Another way of the computation is based on the modal analysis. We have seen in Section
4.2, that it requires proportional damping. We can calculate the design modal displacement
from the design response spectrum, and calculate the modal response for each natural mode of
the structure.

We repeat the important, applied equations here. The differential equation of motion

Mü(t) + Cu̇(t) + Ku(t) = q(t) (5.4)

is reduced to the modal equations of motion

ÿ(t) + 2ξω0j ẏ(t) + ω2
0ju(t) = uT

j q(t) = fj(t), j = 1, . . . , N. (5.5)

In the case of earthquake the load vector is

q(t) = −üg(t)mg = −üg(t)M ir . (5.6)

(HereM i is the rows corresponding to the internal nodes in the unconstrained mass matrix of
the structure,r is the total influence vector. See Subsection3.5.3.) The modal response can be
calculated with the Duhamel’s integral

yj(t) =

t∫

0

fj(τ)

1 · ω∗
0j

e−ξω0j(t−τ) sin
(
ω∗
0j(t− τ)

)
dτ. (5.7)

183

by Németh & Kocsis



CHAPTER 5. EARTHQUAKE ANALYSIS

We can substitute the modal load given by Eqs. (5.5) and (5.6) into (5.7)

yj(t) =

t∫

0

uT
j (−üg(τ))mg

ω∗
0j

e−ξω0j(t−τ) sin
(
ω∗
0j(t− τ)

)
dτ

= uT
j mg

t∫

0

−üg(τ)
1 · ω∗

0j

e−ξω0j(t−τ) sin
(
ω∗
0j(t− τ)

)
dτ.

The integral in the above formula is thejth modal displacement response to the support vibra-
tion üg(t). During the design process we do not have support vibration functions (since we do
not know the time histories of upcoming earthquakes), but a design response spectrum. There-
fore, instead of the calculation of the integral, we should read the response spectrum value at
ω∗
0j for the structural damping ratioξ. However, usually we do not have the displacement re-

sponse spectrum either, but the pseudo acceleration designspectrum. In this case we have to
divide this pseudo-accelerationSe(ξ, ω0j) by ω2

0j. The maximal modal displacement is then

ymax
j = uT

j mg
Se(ξ, ω

∗
0j)

ω2
0j

.

The design values of displacements of the structure due to this modal displacement of thejth
mode is:

uj,max = ujuT
j mg

Se(ξ, ω
∗
0j)

ω2
0j

. (5.8)

We can use this displacement vector to calculate the internal forces of the members belonging
to thejth mode.

Note: The quasi-static nodal force system that results in the above displacement system can
be calculated with the stiffness matrix as

fSj,max = Kuj,max.

One can apply the above fictitious force on the nodes to calculate the equivalent static response
of thejth mode.1 If we write the nodal forces with Eq. (5.8)

fSj,max = KujuT
j mg

Se(ξ, ω
∗
0j)

ω2
0j

one can realize, thatKuj = ω2
0jMuj results in the simplified formula

fSj,max = MujΓjSe(ξ, ω
∗
0j)

with the modal participationΓj = uT
j m

g introduced in Eq. (3.114).

1Apparently, that analysis would start with the solution of the classical static equationKu = q with q =
fSj,max. It should not be a surprise, that the solution will beuj,max.
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Summation of modal responses

With the previously presented method we can calculate a designed peak value for every
mode, from which a peak value of the modal internal force can be obtained. Let us denote the
designed peak of the internal forceC in thejth mode byCj,max.

The question arises, how we should sum up the maximal modal internal forces?

• We can take thesum of absolute values(ABSSUM):

Cmax =
N∑

j=1

|Cj,max|. (5.9)

This is on the safe side, it is very unlikely, that each maximum occurs at the same time.

• If the natural circular frequencies are well separated2, we can take thesquare root of the
sum of squares(SRSS)

Cmax =

√√√√
N∑

j=1

C2
j,max. (5.10)

This method emphasizes the modes with larger responses. Theroot square of the sum of
squares can be written in matrix form too:

Cmax =
√

CT
maxICmax. (5.11)

with the vector of maximal modal internal forces

CT
max =

[
C1,max C2,max . . . CN,max

]
.

• The first natural mode is often the most important. We can consider this in the SRSS
method emphasizing the first mode:

Cmax = C1,max+

√√√√
N∑

j=2

C2
j,max.

• If there is a dampingξ in the structure, the modes are coupled. In that case one can use
thecomplete quadratic combination rule(CQC)

Cmax =
√

CT
maxρCmax, (5.12)

where the correlation matrixρ represents the coupling between the modes. Its entries
are computed from minimizing the error between the responses of the structure to a

2 The natural circular frequencies are well separated, when the smallest relative difference between any two
frequencies is more than 10%.
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random forcing with broad spectrum (white noise) obtained by numerical integration and
by modal analysis. The entries in the correlation matrix are

ρij =
8ξ2
(
1 + ω0i

ω0j

)(
ω0i

ω0j

)3/2

(
1−

(
ω0i

ω0j

)2)2

+ 4ξ2
(
1 + ω0i

ω0j

)2 .

In an undamped systemρ = I.

5.4 Various questions about earthquake analysis

5.4.1 Inelastic response of structure

Large earthquakes usually belong to the ultimate load cases. Structures are expected not to
collapse under the ultimate loads, however, some plastic deformation is allowed. If we want to
take the plastic deformation into account during our analysis, we have to implement it in the
constitutive law.

For example, a simple bilinear model, the linear elastic-plastic material can be used. The
spring behaves linearly up to a yield forceFy. When the spring force reaches this yield force,
the displacements grow further without any change in the force. If the spring is unloaded when
it is already in the plastic state, then it behaves elastic again, but a residual strain remains, which
equals to the plastic deformation. (See Figure5.5(a).)

Numerical results of the response spectrum of linear elastic-plastic structures shows, that
for large natural periods (small natural frequencies, soft, heavy structures) the response spec-
trum is not far from the results of the linear elastic analysis: the structure avoids the large
displacements through its plastic deformations. However,the elastic-plastic materials require a
certainductility µd, i.e. it must bear the plastic deformations beyond the yielding point, which
is represented by the ratio of the maximal deformationumax, and the deformation at yielding
uy:

µd =
umax

uy
.

The numerical simulations suggest that the necessary ductility equals approximately to the ratio
of the spring force from the elastic calculation and the yielding force.

Inelastic response spectrum

We can take the ductility of a structure into account in the design phase, by using design re-
sponse spectrum. We introduce an equivalent elastic structure that has the same initial stiffness
as the elastic-plastic structure in the elastic regime (seeFigure5.5 (b)). Then we calculate the
loads from the earthquake with the design response spectrumon the equivalent elastic struc-
ture. We decrease the load because of the ductility and do theanalysis with the decreased load
on the elastic-plastic structure. In standards the above process is implemented such that the
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design response spectrumis defined to be the elastic design response spectrum dividedby the
behavioral coefficientq:

Sd(T0) =
Se(T0)

q
.

Figure 5.5: (a) Force-deformation diagram of the linear elastic-plastic material model: loading, reaching the
yield pointY , further loading (plastic deformation) , unloading at point P . Notice, that there is a residual plastic
deformationup − uy in the unloaded state. (b) Force-deformation diagram of thelinear elastic-plastic and the

equivalent elastic structures.

5.4.2 Time history analysis

Numerical solution of the differential equation of motion was presented in Section4.6. It
can be used to calculate the structural response for any given support motion. Using real time
histories of previous earthquakes makes it possible to compute the response of a structure. In
this case, the stiffnesses and masses of the structure must be determined correctly to achieve
a given accuracy. For safety reason, these analysis must be performed for various earthquake
records.

Another advantage of the time history analysis is that the material and geometrical nonlinear
behaviour of the structure can be considered in the calculation, only the stiffness matrix must
reflect the nonlinearity in Eq. (4.63).

Artificial time-history functions

Existing earthquake records are not suitable to be used in design process. That is because
there are only a few of these records, with various intensity, and they do not cover a wide range
of the design spectrum. Because of that we want a procedure, that uses either th elastic, or
the design response spectra in time history analysis. We must generate artificial earthquake
records, which have a response spectrum close to the design response spectrum. The assumed
form of the artificial earthquake record is

ug(t) = I(t)
M∑

i=1

Ai cos (ωit+ ϕi) ,
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whereωi is a chosen circular frequency,ϕi is the corresponding phase angle chosen randomly,
andAi, (i = 1, . . . ,M) are the unknown amplitudes of each harmonic component. The func-
tion I(t) is an envelope function representing the typical behavior of earthquakes. That enve-
lope function usualyy starts with an initial part where the intensity increases, followed by the
strong quake, and finished by a decaying intensity. Typical envelope functions are presented in
Figure5.6.

Figure 5.6: Typical envelope functions of artificial earthquake records. (a) boxcar: constant value as long the
earthquake lasts. (b) trapesoid: linear increasing and decaying part, with a constant strong quake. (c) exponential:

the sum of two exponential function. (d) compound: quadratic increasing part, constant strong quake, and
exponentially decaying part.

The amplitudesAi are iterated so that the elastic response spectrum ofug(t) calculated
from Eq. (5.3) be the closest to the elastic design spectrum. Technically, in M points, e.g.
in the pointsωi we can fit the response spectrum and the design spectrum. Thisis done in an
iterative process, hence the change of an amplitudeAi changes all computed response spectrum
values. When the amplitudesAi do not change significantly anymore, we stop the iteration, and
analyse the response of the structure to the support motionug(t).

This procedure must be repeated for various phase angle sets. During the calculation, the
actual deformations and internal forces can be determined.
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Appendix A

Additional derivations and notes

A.1 Travelling-wave solution for the free vibration of a
prismatic bar

Instead of assuming a solutionu(x, t) of Eq. (2.6) as a standing wave (Eq. (2.7)) we can
search the solution as the sum of two travelling waves:

u(x, t) = u1(x1) + u2(x2). (A.1)

In the above equationx1 = x−cnt andx2 = x+cnt are thephasesof a forward and a backward
travelling wave, respectively. The functionsu1(x1) andu2(x2) are the current shapes of those
waves travelling with the velocitycn forward and backward, respectively. Att = 0 both phases
are zero (x1 = x2 = x), so theu1(x) andu2(x) functions describe the shapes of the waves at a
frozen time instant.

The wave functionsu1(x1) andu2(x2) are single variable functions. In the assumed form
Eq. (A.1) the arguments of the wave functions are internal functionsof x and t, so for the
derivatives we have to use the chain rule. In the following formulasu′1(x1) denote the derivative
of the wave functionu1(x1) with respect tox1, andu′2(x2) denote the derivative of the wave
functionu2(x2) with respect tox2. For the partial derivatives with respect to the coordinatex
we will have:

∂u1(x1)

∂x
= u′1(x1)

∂(x− cnt)

∂x
= u′1(x1),

∂2u1(x1)

∂x2
= u′′1(x1).

For the partial derivatives with respect to time we have:

∂u1(x1)

∂t
= u′1(x1)

∂(x− cnt)

∂t
= −cnu′1(x1),

∂2u1(x1)

∂t2
= −cnu′′1(x1)

∂(x− cnt)

∂t
= c2nu

′′
1(x1).

The same can be used for the wave functionu2 of the backward travelling wave:

∂u2(x2)

∂x
= u′2(x2)

∂(x+ cnt)

∂x
= u′2(x2),

∂2u2(x2)

∂x2
= u′′2(x2).
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For the partial derivatives with respect to time we have:

∂u2(x2)

∂t
= u′2(x2)

∂(x+ cnt)

∂t
= cnu

′
2(x2),

∂2u2(x2)

∂t2
= cnu

′′
2(x2)

∂(x+ cnt)

∂t
= c2nu

′′
2(x2).

If we substitute the sum of the above second derivatives intoEq. (2.6) we get:

(
c2nu

′′
1(x− cnt) + c2nu

′′
2(x+ cnt)

)
− c2n (u

′′
1(x− cnt) + u′′2(x+ cnt)) = 0,

which is an identity, so the assumption Eq. (A.1) is correct, andcn is indeed the velocity of
travelling waves.

To find the wave functionsu1(x1) andu2(x2) we have to use the initial conditions. Let us
assume, that the displacement and the velocity att = 0 are given functions:

u(x, 0) = u0(x), u̇(x, 0) = v0(x). (A.2)

We substitute the sum of the travelling wavesu1(x − cn0) andu2(x + cn0), and the sum
of their derivatives with respect to time−cnu′1(x − cn0) and cnu′2(x + cn0) into the initial
conditions (A.2):

u1(x− cn0) + u2(x+ cn0) = u0(x), (A.3)

−cnu′1(x− cn0) + cnu
′
2(x+ cn0) = v0(x). (A.4)

We differentiate Eq. (A.3) with respect tox, and divide both sides of Eq. (A.4) by cn, and leave
behind thecn0 terms:

u′1(x) + u′2(x) = u′0(x),

− u′1(x) + u′2(x) =
v0(x)

cn
.

(A.5)

The system of differential equations (A.5) can be simplified, if we take the half of the
difference of the equations and the half of the sum of the equations:

u′1(x) =
1

2

(
u′0(x)−

v0(x)

cn

)
,

u′2(x) =
1

2

(
u′0(x) +

v0(x)

cn

)
.

(A.6)

The ordinary differential equations of Eq. (A.6) can be solved by integration with respect tox:

u1(x) =
1

2

∫ x

0

(
u′0(ξ)−

v0(ξ)

cn

)
dξ + C1,

u2(x) =
1

2

∫ x

0

(
u′0(ξ) +

v0(ξ)

cn

)
dξ + C2.
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Since the whole solution is constructed from the sum of the above two functions translated,
their constant terms will be added at any given time, in any given point, so, instead of them we
have to take only one as a parameter, which must be determinedfrom the boundary conditions.
So, a simpler form of the shape functions will be:

u1(x) =
u0(x)

2
−
∫ x

0
v0(ξ) dξ

2cn
+ C,

u2(x) =
u0(x)

2
+

∫ x

0
v0(ξ) dξ

2cn
.

(A.7)

And the final solution with varying time will be:

u0(x, t) =
u0(x− cnt) + u0(x+ cnt)

2
−

x−cnt∫
0

v0(ξ) dξ

2cn
+

x+cnt∫
0

v0(ξ) dξ

2cn
+ C.

FigureA.1 (a) shows a simple application of the above result, where a bar with fixed-free
ends is released from rest att = 0, but the pointB has an initial displacement, while points
A andC are held in their original position. So, the functionu0(x) can be constructed from
linear segments. Using Eq. (A.7) and the initial zero velocities the shape functionsu1 andu2
will be half of the initial displacementu0 travelling forward and backward, respectively (see
Fig. A.1 (b)). However, we need special care with the shape functionsu1 andu2 because of the
boundary conditions.

Figure A.1: (a) Rod with fixed-free ends with an initial displacement. (b) The forward and the backward
travelling waves. (c) Bouncing back of the travelling wave from the fixed end. (d) Bouncing back of the

travelling wave from the free end.

FigureA.1 (c) shows the fixed end, as the backward travelling waveu2 goes through it.
But the boundary conditionu(0, t) = 0 requiresu1 to enter the bar at the same time with
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the opposite sign. (This part of theu1(x) function was out of the bar in the beginning of the
motion!) One can see, that the wave reaching a fixed end bounces back with the opposite sign
and the opposite shape. FigureA.1 (d) shows the free end, as the forward travelling wave
u1 goes through it. Here the boundary conditionu′(0, t) = 0 requiresu2 to enter the bar at
the same time with the same sign. (This part of the functionu2(x) was out of the bar in the
beginning of the motion!) On can see, that the wave reaching afree end bounces back with the
same sign and the opposite shape. Of course, the new parts ofu1 andu2 entering one end of
the bar, will reach the other end, ”bouncing back” again, bringing new and new segments ofu2
andu1 into the observable part of the bar.

A.2 Static shape functions

The static shape functions of a beam member are collected in the matrix

N =

[
ui(x) 0 0 uj(x) 0 0

0 viy(x) viϕ(x) 0 vjy(x) vjϕ(x)

]
.

The strain matrix of a beam member is collected in

B = LN =

[
u′i(x) 0 0 u′j(x) 0 0

0 −v′′iy(x) −v′′iϕ(x) 0 −v′′jy(x) −v′′jϕ(x)

]
.

In the case of a fixed-fixed beam, the entries of matrixN are:

Nff =




1− x

ℓ
0 0

x

ℓ
0 0

0 2
x3

ℓ3
− 3

x2

ℓ2
+ 1

x3

ℓ2
− 2

x2

ℓ
+ x 0 −2

x3

ℓ3
+ 3

x2

ℓ2
x3

ℓ2
− x2

ℓ


 ,

or, usingξ = x/ℓ:

Nff =

[
1− ξ 0 0 ξ 0 0

0 2ξ3 − 3ξ2 + 1 ℓ(ξ3 − 2ξ2 + ξ) 0 −2ξ3 + 3ξ2 ℓ(ξ3 − ξ2)

]
.

The entries of the strain matrix are:

Bff =




1

ℓ
0 0 −1

ℓ
0 0

0 −12
x

ℓ3
+ 6

1

ℓ2
−6

x

ℓ2
+ 4

1

ℓ
0 12

x

ℓ3
− 6

1

ℓ2
−6

x

ℓ2
+ 2

1

ℓ


 ,

or, usingξ = x/ℓ:

Bff =




1

ℓ
0 0 −1

ℓ
0 0

0 −12

ℓ2
ξ +

6

ℓ2
−6

ℓ
ξ +

4

ℓ
0

12

ℓ2
ξ − 6

ℓ2
−6

ℓ
ξ +

2

ℓ


 .
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In the case of a fixed-pinned beam, the entries of matrixN are:

Nfp =




1− x

ℓ
0 0

x

ℓ
0 0

0 1 +
1

2

x3

ℓ3
− 3

2

x2

ℓ2
1

2

x3

ℓ2
− 3

2

x2

ℓ
+ x 0 −1

2

x3

ℓ3
+

3

2

x2

ℓ2
0


 .

For a pinned-fixed beam the entries of matrixN are:

Npf =




1− x

ℓ
0 0

x

ℓ
0 0

0 1 +
1

2

x3

ℓ3
− 3

2

x

ℓ
0 0 −1

2

x3

ℓ3
+

3

2

x

ℓ

1

2

x3

ℓ2
− 1

2
x


 .

For a pinned-pinned beam the entries of matrixN are:

Npf =




1− x

ℓ
0 0

x

ℓ
0 0

0 1− x

ℓ
0 0

x

ℓ
0


 .

A.3 Stiffness matrices of beam members

Elementary stiffness matrix of the fixed-fixed beam:

K
loc,ff
ij =




EA

ℓ
0 0 −EA

ℓ
0 0

0
12EI

ℓ3
6EI

ℓ2
0 −12EI

ℓ3
6EI

ℓ2

0
6EI

ℓ2
4EI

ℓ
0 −6EI

ℓ2
2EI

ℓ

−EA
ℓ

0 0
EA

ℓ
0 0

0 −12EI

ℓ3
−6EI

ℓ2
0

12EI

ℓ3
−6EI

ℓ2

0
6EI

ℓ2
2EI

ℓ
0 −6EI

ℓ2
4EI

ℓ




.

194

by Németh & Kocsis



APPENDIX A. ADDITIONAL DERIVATIONS AND NOTES

Elementary stiffness matrix of the fixed-pinned beam:

K
loc,fp
ij =




EA

ℓ
0 0 −EA

ℓ
0 0

0
3EI

ℓ3
3EI

ℓ2
0 −3EI

ℓ3
0

0
3EI

ℓ2
3EI

ℓ
0 −3EI

ℓ2
0

−EA
ℓ

0 0
EA

ℓ
0 0

0 −3EI

ℓ3
−3EI

ℓ2
0

3EI

ℓ3
0

0 0 0 0 0 0




.

Elementary stiffness matrix of the pinned-fixed beam:

K
loc,pf
ij =




EA

ℓ
0 0 −EA

ℓ
0 0

0
3EI

ℓ3
0 0 −3EI

ℓ3
3EI

ℓ2

0 0 0 0 0 0

−EA
ℓ

0 0
EA

ℓ
0 0

0 −3EI

ℓ3
0 0

3EI

ℓ3
−3EI

ℓ2

0
3EI

ℓ2
0 0 −3EI

ℓ2
3EI

ℓ




.
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A.4 Elementary dynamical stiffness matrix using purely
dynamical shape functions

As an alternative method to that of shown in Section3.2.2, we can formulate the elementary
dynamical stiffness matrix using only dynamical shape functions. For that we write the virtual
work of the force system shown in Figure3.9on thesamedisplacement system:

δWdd =



V̂iiy + µω2

ℓ∫

0

v̂iy(x)v̂iy(x) dx−
ℓ∫

0

M̂iy(x)κ̂iy(x) dx



 sin2(ωt)

=



V̂iiy + µω2

ℓ∫

0

v̂iy(x)v̂iy(x) dx− EI

ℓ∫

0

{v̂′′iy(x)}2 dx



 sin2(ωt) = 0.

ExpressinĝViiy, the entry2,2 of the dynamical stiffness matrix̂Kloc
ij , we get:

K̂ loc
ij,22 = V̂iiy = EI

ℓ∫

0

{v̂′′iy(x)}2 dx− µω2

ℓ∫

0

{v̂iy(x)}2 dx .

If we denote the product of matricesL (3.24) andN̂ (3.70) as

B̂ = LN̂,

then with matriceŝB, and with matricesD (3.26) andN̂ (3.70) we can shortly write

K̂loc
ij =

ℓ∫

0

B̂TDB̂ dx− ω2µ

ℓ∫

0

N̂T N̂ dx . (A.8)

It makes no difference whether we use (3.71) or (A.8), the final result̂Kloc
ij will be the same.
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A.5 Consistent mass matrices of beam members

Elementary consistent mass matrix of the fixed-fixed beam:

M
loc,ff
ij = µℓ




1

3
0 0

1

6
0 0

0
13

35

11

210
ℓ 0

9

70
− 13

420
ℓ

0
11

210
ℓ

1

105
ℓ2 0

13

420
ℓ − 1

140
ℓ2

1

6
0 0

1

3
0 0

0
9

70

13

420
ℓ 0

13

35
− 11

210
ℓ

0 − 13

420
ℓ − 1

140
ℓ2 0 − 11

210
ℓ

1

105
ℓ2




.

Elementary consistent mass matrix of the fixed-pinned beam:

M
loc,fp
ij = µℓ




1

3
0 0

1

6
0 0

0
17

35

3

35
ℓ 0

39

280
0

0
3

35
ℓ

2

105
ℓ2 0

11

280
ℓ 0

1

6
0 0

1

3
0 0

0
39

280

11

280
ℓ 0

33

140
0

0 0 0 0 0 0




.
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Elementary consistent mass matrix of the pinned-fixed beam:

M
loc,pf
ij = µℓ




1

3
0 0

1

6
0 0

0
33

140
0 0

39

280
− 11

280
ℓ

0 0 0 0 0 0

1

6
0 0

1

3
0 0

0
39

280
0 0

17

35
− 3

35
ℓ

0 − 11

280
ℓ 0 0 − 3

35
ℓ

2

105
ℓ2




.

Elementary consistent mass matrix of the pinned-pinned beam:

M
loc,pp
ij = µℓ




1

3
0 0

1

6
0 0

0
1

3
0 0

1

6
0

0 0 0 0 0 0

1

6
0 0

1

3
0 0

0
1

6
0 0

1

3
0

0 0 0 0 0 0




.

198

by Németh & Kocsis



APPENDIX A. ADDITIONAL DERIVATIONS AND NOTES

A.6 Few trigonometric identities

Here we derive two identities which are used in the particular solutions of damped, har-
monically excited systems.

Let us start with the trigonometric identity

R cos(ωt− ϕ) = R cos(ωt) cos(ϕ) +R sin(ωt) sin(ϕ).

This is reformulated as

R cos(ωt− ϕ) = (R cos(ϕ)) cos(ωt) + (R sin(ϕ)) sin(ωt)

= a cos(ωt) + b sin(ωt), where

a = R cos(ϕ),

b = R sin(ϕ)

Herea, b, andϕ are computed from

a2 + b2 = R2(sin2(ϕ) + cos2(ϕ)) = R2 → R =
√
a2 + b2,

a

b
= cot(ϕ) → ϕ = arccot

(a
b

)
.

(A.9)

Therefore

a cos(ωt) + b sin(ωt) =
√
a2 + b2 cos

(
ωt− arccot

(a
b

))
. (A.10)

Similarly, from the trigonometric identity

R sin(ωt− ϕ) = R sin(ωt) cos(ϕ)−R cos(ωt) sin(ϕ)

we can formally write

R sin(ωt− ϕ) = (R cos(ϕ)) sin(ωt)− (R sin(ϕ)) cos(ωt)

= a sin(ωt)− b cos(ωt), with

a = R cos(ϕ),

b = R sin(ϕ)

Herea, b, andϕ are computed again as (A.9). Thus

a sin(ωt)− b cos(ωt) =
√
a2 + b2 sin

(
ωt− arccot

(a
b

))
. (A.11)
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A.7 Damped SDOF system solved with a different approach

We have shown the solution of the equation of motion of a damped, harmonically excited
SDOF system. Here we recall these results. First we give the solution if the exciting force
is a sine function. Then we go on with a cosine excitation. Next we show an approach that
can handle both sine and cosine excitation in one hand, but asa drawback, this analysis re-
quires complex functions. Finally we study cases when the load is a combination of harmonic
functions, or it is aFourier series.

A.7.1 Sine

We have seen that the damped, harmonically excited SDOF

mü(t) + cu̇(t) + ku(t) = F0 sin(ωt)

has a homogeneous and a particular solutions. The latter onewas assumed to beuf (t) =
uf0 sin(ωt− ϕ) intuitively.

The usual mathematical way is to search for the solutions as

uf (t) = C1 sin(ωt) + C2 cos(ωt).

If this form is substituted back into the equation of motion,then

−mω2 {C1 sin(ωt) + C2 cos(ωt)}+ cω {C1 cos(ωt)− C2 sin(ωt)}
+ k {C1 sin(ωt) + C2 cos(ωt)} = F0 sin(ωt).

Collecting the terms multiplied bycos(ωt) andsin(ωt), respectively, we can write two equa-
tions for the coefficientsC1 andC2

−mω2C2 + cωC1 + kC2 = 0 → C2 = −C1
cω

k −mω2
,

−mω2C1 − cωC2 + kC1 = F0.

ThusC1 andC2 are

C1 = F0
k −mω2

(k −mω2)2 + c2ω2
,

C2 = −F0
cω

(k −mω2)2 + c2ω2
,

and the solution of the equation of motion is

uf (t) = F0
k −mω2

(k −mω2)2 + c2ω2
sin(ωt)− F0

cω

(k −mω2)2 + c2ω2
cos(ωt).
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This form of the solution, however, can be reformulated according to (A.11) as

uf (t) = F0

√
(k −mω2)2 + c2ω2

{(k −mω2)2 + c2ω2}2
sin

(
ωt− arccot

(
k −mω2

cω

))

=
F0

k

1√(
1− ω2

ω2
0

)2

+ ω2 c
2

k2

sin


ωt− arccot



1− ω2

ω2
0

ω
c

k





 .

A.7.2 Cosine

If the load is described by a harmonic cosine function, then the equation of motion is

mü(t) + cu̇(t) + ku(t) = F0 cos(ωt) .

The particular solution is again searched for as

uf (t) = C1 sin(ωt) + C2 cos(ωt).

This form is substituted back into the equation of motion:

−mω2 {C1 sin(ωt) + C2 cos(ωt)}+ cω {C1 cos(ωt)− C2 sin(ωt)}
+ k {C1 sin(ωt) + C2 cos(ωt)} = F0 cos(ωt).

Collecting the terms multiplied bycos(ωt) andsin(ωt), respectively, we can write two equa-
tions for the coefficientsC1 andC2

−mω2C2 + cωC1 + kC2 = F0,

−mω2C1 − cωC2 + kC1 = 0 → C1 = C2
cω

k −mω2
.

ThusC1 andC2 are

C1 = F0
cω

(k −mω2)2 + c2ω2
,

C2 = F0
k −mω2

(k −mω2)2 + c2ω2
,

and the solution of the equation of motion is

uf (t) = F0
cω

(k −mω2)2 + c2ω2
sin(ωt) + F0

k −mω2

(k −mω2)2 + c2ω2
cos(ωt).
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This form of the solution can be reformulated according to (A.10) as

uf (t) = F0

√
(k −mω2)2 + c2ω2

{(k −mω2)2 + c2ω2}2
cos

(
ωt− arccot

(
k −mω2

cω

))

=
F0

k

1√(
1− ω2

ω2
0

)2

+ ω2 c
2

k2

cos


ωt− arccot



1− ω2

ω2
0

ω
c

k





 .

A.7.3 Sine and cosine

The approach introduced here can handle both sine and cosineloadings. In the equation of
motion the loading is given as a special complex (harmonic) function:

m¨̃u(t) + c ˙̃u(t) + kũ(t) = F0 {cos(ωt) + i sin(ωt)} = F0 e
iωt .

Here tilde distinguishes the complex unknown functionũ(t) from the previous real ones. Now
the particular solution is searched for in the form

ũf (t) = ũf0 e
iωt.

Substituting the above form back into the equation of motionwe get:

(−mω2 + iωc+ k)ũf0 e
iωt = F0 e

iωt.

The complex coefficient̃uf0 is expressed as

ũf0 = F0
1

−mω2 + iωc+ k
=
F0

k

1(
1− ω2

ω2
0

)
+ i

ωc

k

.

Now both the nominator and the denominator are multiplied with the conjugate of the denomi-
nator

ũf0 =
F0

k

1(
1− ω2

ω2
0

)
+ i

ωc

k

·

(
1− ω2

ω2
0

)
− i

ωc

k(
1− ω2

ω2
0

)
− i

ωc

k

=
F0

k

(
1− ω2

ω2
0

)
− i

ωc

k
(
1− ω2

ω2
0

)2

+
ω2c2

k2
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The whole particular solution is then

ũf (t) = ũf0 e
iωt =

F0

k

(
1− ω2

ω2
0

)
− i

ωc

k
(
1− ω2

ω2
0

)2

+
ω2c2

k2

{cos(ωt) + i sin(ωt)}

=
F0

k





(
1− ω2

ω2
0

)

(
1− ω2

ω2
0

)2

+
ω2c2

k2

cos(ωt) +

ωc

k(
1− ω2

ω2
0

)2

+
ω2c2

k2

sin(ωt)





+ i
F0

k





(
1− ω2

ω2
0

)

(
1− ω2

ω2
0

)2

+
ω2c2

k2

sin(ωt)−
ωc

k(
1− ω2

ω2
0

)2

+
ω2c2

k2

cos(ωt)




.

This long formula can be shortened using Eqs. (A.10), (A.11):

ũf (t) =
F0

k

1√(
1− ω2

ω2
0

)2

+ ω2 c
2

k2

cos


ωt− arccot



1− ω2

ω2
0

ω
c

k







+ i
F0

k

1√(
1− ω2

ω2
0

)2

+ ω2 c
2

k2

sin


ωt− arccot



1− ω2

ω2
0

ω
c

k







The real part of the above solution (i.e. the first term) is corresponded to the cosine excitation
function, while the imaginary part (the second term) is usedwhen the loading is given by a
sine function. The main advantage of this abstract approachis that it handles both harmonic
excitation modes in one formula, and that it prepares the reader for the even more abstract
Fourier transform.

A.7.4 Quasi-periodic loading

It is rarely the case that the load is a harmonic function. In MDOF systems, it is even less
likely, that all the loadings are governed by the same harmonic function. It is more general, that
a loading is given as a combination of harmonic functions. This is also the case if the loading
is turned into aFourier series.

The particular solution of such a problem is simply just the sum of the particular solutions
of the same system with one of the harmonic loadings. For instance, if we have a SDOF system

mü(t) + cu̇(t) + ku(t) = F1 sin(ω1t) + F2 cos(ω2t) + F3 sin(ω3t),
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then theparticular solution is

uf (t) =
F1

k

1√(
1− ω2

1

ω2
0

)2

+ ω2
1

c2

k2

sin


ω1t− arccot



1− ω2

1

ω2
0

ω1
c

k







+
F2

k

1√(
1− ω2

2

ω2
0

)2

+ ω2
2

c2

k2

cos


ω2t− arccot



1− ω2

2

ω2
0

ω2
c

k







+
F3

k

1√(
1− ω2

3

ω2
0

)2

+ ω2
3

c2

k2

sin


ω3t− arccot



1− ω2

3

ω2
0

ω3
c

k





 .
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A.8 Damped MDOF systems solved using complex algebra

A.8.1 Inverse of a complex square matrix

Let us have a complex matrix̃A of sizeN byN . The inverse of this matrix is denoted by
B̃ = Ã−1. This matrix is searched for.

MatricesÃ andB̃ are decomposed into real and imaginary parts:

Ã = AR + iAI ,

Ã−1 = B̃ = BR + iBI .

We compile the2N -by-2N real matrix

A2N =

[
AR AI

−AI AR

]
. (A.12)

A mathematical statement says that the inverse of the above real matrix equals to

A−1
2N =

[
AR AI

−AI AR

]−1

=

[
BR BI

−BI BR

]
. (A.13)

Thus the real partBR of the inverse of the complex matrix̃A is the upper leftN -byN block
matrix of the inverse of the real matrixA2N . The imaginary partBI of complex matrixÃ is the
upper rightN -byN block matrix of the inverse of real matrixA2N . Consequently, the inversion
of a squared complex matrix can be traced back for the inversion of a double-sized real matrix.

The definition of the inverse matrix implies thatA−1
2NA2N = A2NA

−1
2N = I2N , whereI2N

is the2N -by-2N identity matrix. With the above notations this identity is expressed:

A2NA
−1
2N =

[
AR AI

−AI AR

]
·
[

BR BI

−BI BR

]
=

[
IN 0N

0N IN

]
.

HereIN is theN -by-N identity matrix, and0N is theN -by-N zero (valued) matrix. If we
execute this matrix multiplication for the blocks we get

ARBR −AIBI = IN ,

ARBI +AIBR = 0N ,

−AIBR −ARBI = 0N ,

−AIBI +ARBR = IN .

Only the first two of these equations are linearly independent. We extractBI from the second
equation,BI = −AR

−1AIBR, and substitute it back into the first equation:

BR =
(
AR +AIAR

−1AI

)−1
. (A.14)

That is thereal part of the inverse of the complex matrix̃A. Finally, from back substitution of
this into the expression ofBI we get theimaginary partof the inverse of the complex matrix
Ã:

BI = −AR
−1AI

(
AR +AIAR

−1AI

)−1
. (A.15)
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A.8.2 Application forced MDOF systems

We copy here the solution (4.14) of the harmonically excited, damped MDOF system:

ũf (t) =
(
−ω2M+ iωC+K

)−1
q0 e

iωt.

We have to invert a complex matrix, then multiply it with a complex function, and separate
the real and the imaginary parts of the solution. The real part becomes the particular solution,
the steady-state vibration of the system due to a cosinusoidal forcing with frequencyω and
amplitudesq0. The imaginary part is governs the steady-state vibration of the system due to a
sinusoidal forcing with the same frequency and amplitudes.Using the definitions introduced in
the previous subsection, the matrix to invert is

K̃ = K− ω2M+ iωC,

i.e. the (complex) dynamical stiffness matrix. Its real andimaginary parts are

Re
(
K̃
)
= K− ω2M, Im

(
K̃
)
= ωC.

Using these parts, and following the definition (A.12), the block structure of the2N -by2N real
matrix is

K2N =

[
K− ω2M ωC
−ωC K− ω2M

]
.

According to the derived formula (A.15) and (A.14), the real part of the inverse of̃Kis

Re
(
K̃−1

)
=
(
K− ω2M+ ω2C

(
K− ω2M

)−1
C
)−1

, (A.16)

while the imaginary part of the inverse of̃K = K− ω2M+ iωC is

Im
(
K̃−1

)
= −ω

(
K− ω2M

)−1
C
(
K− ω2M+ ω2C

(
K− ω2M

)−1
C
)−1

. (A.17)

The final solution (4.14) is then

ũf (t) =
{
Re
(
K̃−1

)
+ i · Im

(
K̃−1

)}
q0 e

iωt

=
{
Re
(
K̃−1

)
+ i · Im

(
K̃−1

)}
q0{cos(ωt) + i sin(ωt)}

=
{
Re
(
K̃−1

)
q0 cos(ωt)− Im

(
K̃−1

)
q0 sin(ωt)

}

+ i
{
Re
(
K̃−1

)
q0 sin(ωt) + Im

(
K̃−1

)
q0 cos(ωt)

}
.

It can be checked, that the real part of the above expression is the same as (4.9), i.e. the
steady-state vibration due to a cosinusoidal excitation with frequencyω and amplitudesq0.
Besides, the imaginary part of the above expression is identical to (4.5), which is the steady-
state vibration of the model subjected to a sinusoidal forcing.
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