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PREFACE

Preface

This lecture notes of the MSc course Structural Dynamicgwted for the civil engineer-
ing students of the Budapest University of Technology andnBoucs. The objective of the
course is to introduce the basic concepts of the dynamiadysis of engineering structures.
The topics that are covered in this course are equations témof single- and multi-degree-
of-freedom systems, free and steady-state vibrationdyt&sa and numerical solution tech-
nigues, and earthquake loads on structures. Both continmdndiacrete mechanical systems
are considered.

In civil engineering practice structures are aimed to beqguilérium. However, due to
continuous disturbances (effects of wind, heat, trafficy@emeent of the foundations, etc.), the
structures undergo vibrations. Some of these motions ave sllowing us to treat them as
a quasi-statickinematic load, and to neglect the inertial effect of the snakthe structure.
But some of them happen fast enough to exert a significant dgaaimpact on the structure.
Many of these cases are still handled as a quasi-static lgddanproper dynamical factor,
but other cases really require the engineers to accompfisandical analysis. The goal of the
semester is to prepare our students for these tasks.

Dynamics play an important role in many fields of structurajieeering. Earthquakes, fast
moving trains on bridges, urban traffic generated or macimdaced vibrations, etc. Mod-
ern materials enable the fabrication of lighter, more flexigtructures, where the effects of
vibrations can be significantly high. Additionally, investnt companies desire cost effective
structures, which also tends the engineers towards motgateccomputations, which implies
dynamical analysis, too.

Not only theory is given in this notes, but there are also n@nplems solved. The authors
hope that these examples help our students to comprehehé altroduced concepts. In these
problems the calculations are done following tlage your unitsaapproach. It means that we use
aconsistent system of unitshich does not require us to carry the units during the djmeTa.
Every number is substituted in the formulae in a common gysteunits, in Sl (International
System of Units), hence the results are also obtained in Sl.

We offer these notes to our readers under a Creative Commonsbuitin-
NonCommercial-NoDerivs 3.0 Unported License, in the hopwilit help them understand
the basics of structural dynamics. Please feel free to sfmanethoughts about it with us.

Budapest, 29 August, 2013
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

Chapter 1

Dynamics of single- and
multi-degree-of-freedom systems

In this chapter first we repeat the basics of vibration oftelagructures. The motion of
continuous structures is often approximated by the digphents of some of its points. In
these models the mass of the structure is concentrated isdrete points. The concentrated
masses are assumed to be rigid bodies, and the elasticith@ndcoelasticity of the structure
is modeled by massless springs and damping elements, tesheclhese models are called
mass-spring-dampesystems.

We introduce thelegree-of-freedofDOF) as the number of independent variables required
to define the displaced positions of all the masses. If treeoaly one mass, with one direction
of displacement, then we talk abousimgle-degree-of-freedof®DOF) system. If there are
more than one masses, or one mass with more than one diedfiaisplacement, then we
have amulti-degree-of-freedorfMDOF) system. If we try to describe the deformed shape of
a continuous structure with the displacements of all offitdly many of) its points, then we
use a continuum approach, where there are infinitely mansedsegf freedom.

In Sectionl1.1 we start with the free vibration of SDOF systems, then haimé&orced
vibration of SDOF systems, and support vibration of SDOResyis are discussed. Then SDOF
systems excited by a general force are studied in Settrsectionl.3is devoted for the free
vibration of MDOF systems. We also present an approximatthodecapable to solve the
generalized eigenvalue problem occurring in the analyiid@OF systems. At the end of the
chapter, in Sectiod.4 we present a few summation theorems useful to approximatérst
natural frequency of a structure.

1.1 Vibration of single-degree-of-freedom systems

Civil engineering structures are intended in general to kegunlibrium. Despite the com-
mon requirements, many of the loading situations resultation of the structures. The most
simple motion occurs when we can describe it by one singleespariable.

Examples for these type of dynamical systems are horizgirtdérs with a significant mass
(e.g. a machine, where the mass of the girder can be negledtedespect to the mass of the

1 @loEle)
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

machine) (Figurel.1 (a-b)), frame structures with significant mass on the rgofteigurel.1
(), chimneys and water towers (Figurdl (d)), etc..

[ )
- /A o t A
i o Z
7 J /7 |'
d
(/ % —_T_‘—_——“j ) 5 [f- ) —
- | ann T
F 1 '1!_{ vV iJ,— ]
Vo —77 // s —

Figure 1.1: Common examples of single-degree-of-freedom structijgggixed girder, (b) hinged-hinged
girder, (c) single frame with mass on rooftop, (d) chimneyater-tower, and (€) common mechanical model.

The common in the above examples is that any displacememt thhe equilibrium state
results a force pulling the DOF back to the initial state. $implest mechanical model of this

behaviour is the material particle (lumped mass) conneloyed linear spring to a rigid wall
(Figurel.1(e)).

1.1.1 Derivation of the equation of motion

If we analyse the motion of a structure caused by a smallittiahce, then we can see that in
the absence of external forcing the amplitude of the vibrediround the original state decreases
with the time. This is caused by internal friction in the niatkeand at the connections. Effect
of external dampers can be considered as well. The matheathateasiest way to deal with
damping is the viscous damping. (In this case the dampirgfierproportional to the velocity.)
The mechanical model of the viscous damping dashpot Figurel.2 (a) shows a damped,
elastically supported system with a dashpot of dampingficosit ¢, a linear elastic spring

of stiffnessk, and a time dependent exciting forégt¢). Our goal is in general one of the
followings:

¢ to find the displacement function as a function of time
¢ to find the elongation of the spring as a function of time
¢ to find the force in the spring or in the dashpot as a functiotmoé

¢ to find the possible maxima of the above functions

2 @loEle)
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

Figure 1.2: (a) A mass-spring-damper model: a lumped mass connected to a support through a massless
linear springk and a massless viscous dampethe mass excited by the time dependent fdr¢e) undergoing
a single-degree-of-freedom vibration. (b) Free body diagof the mass-spring-damper model.

The free body diagram (FBD) of the masscan be seen in Figute2(b). Newton’s second
law of motion can be written for the body:

F(t) = fs(t) = fa(t) = ma(t), (1.1)

where F'(t) is the external forcef,(t) is the elastic force from the massless sprifigf) is
the damping force from the massless dashpots the mass and(¢) is the acceleration. As-
suming a linear sprind,(t) = ku(t), wherek is the spring stiffness, and(t) is the elon-
gation of the spring. Assuming a viscous dampify¢) = cu(t), wherec is the damping
coefficient, andi(t) is the derivative of the elongation(t) with respect to time (i.e. it is the
elongation-velocity). (The dot over a variable denotetedéntiation with respect to time.) The
accelerationu(t) is the second derivative of the displacement of the body weigipect to time:
a(t) = Z(t). So the equation of motion is:

F(t) — ku(t) — cu(t) = mi(t). (1.2)

(Note: in many textbook authors write a so called kinetic equilibrium equatiomguk& principle
of d’Alembertwith an inertial forcef; = —ma(t). Then, Eq. {.1) would have the form#'(t) — f,(t) —
fa(t) + fr(t) = 0. In formal calculation it leads to the same result, but during calculations bg ha
the correct interpretation of the minus sign in the definitiorf pfequires a deep understanding of the
concept, at which level writing the classic formula makes no problem. Bedafuhat we will avoid
writing kinetic equilibrium equations. )

In most cases we are interested in the internal deformatindghe corresponding internal
forces of the structures. These are represented in thislrbgdle elongation of the spring,
so we have to write the displacement of the body as a funcfieoagation. If the support is
fixed, then these two values are equalt{ = u(¢)) and the same applies to their derivatives
(@(t) = u(t)). Substituting these into Eql ) we get:

mii(t) + cu(t) + ku(t) = F(t) | (1.3)

This non-homogeneous, linear, second order ordinaryrdiftéal equation of constant co-
efficients describes the motion of the forced vibration ef damped SDOF-system.

3 @loEle)
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

For the solution of the differential equatioh.B) we introduce its complementary differen-
tial equation:
mii(t) + cu(t) + ku(t) = 0. (1.4)

which is a homogeneous differential equation. Toeplete solutionf Eq. (1.3) can be written
in the form:

u(t) = uo(t) + us(t),
whereu,(t) is the solution of the complementary equation (the indexférseto the O right
hand side of the homogeneous equation), whil¢) is a particular solution of the original,
nonhomogeneous equation (the ingesefers to the forcing).
If initial conditions are given (e.g. the displacement amel ¥elocity at a given time), then
they must be fulfilled for the sum af,(¢) andu(t) with the free parameters occurringug(t).

1.1.2 General solution of the homogeneous ODE

Eqg. (1.4) describes the free vibration of the mechanical systenceSins a linear, homo-
geneous ODE with constant coefficients, the solution canbt&rmed with an ansatz function
u(t) = ¢, which is substituted back in Eql.@) alongside with is derivatives. The result is
the quadratic polynomial equation

mA +cA+k=0. (1.5)
The roots of the above equation are:

—c+ V2 —4Amk
= o . (1.6)

These roots might be either real or complex valued, depgnatinthe ratio of the system
parameters.

e If ¢ > 2v/km, the discriminant in Eq.1(6) is non-negative, thus botk, , are negative
real numbers, and the solution of Ef}.4) is the sum of two exponential function asymp-
totically approaching zero. (Figufe3(a) shows some typical graphs of this vibration.)
We call this damping as heavy damping, the system is an ovgred system. The limit
value2v/km is the critical damping....

o If ¢ < 2VEkm (Or ¢ < c¢g), the discriminant is negative, the solution of Ef.5) is a
conjugate pair of complex numbers. UsiBglers formula ¢* = cosz + isinz) the
solution of Eq. 1.4) can be rewritten in the form:

up(t) = e 0" (A cos(wit) + Bsin(wit)), 1.7)
where
(== =—
2Vkm  Cer

is therelative dampingcoefficient

Wy = Wo m
4 @l0lElo)
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

is thenatural circular frequencyf the (under)damped system,

wo =\ k/m

is thenatural circular frequencyf the undamped system with the same mass and stiff-
ness. The parametersand B are two free parameters depending on the initial condi-
tions. (Figurel.3(b) shows some typical graphs of this vibration.) We cals ttase as
underdamped system.

The solution Eq. 1.7) is a harmonic tern{ A cos(wt) + Bsin(wjt)) multiplied by an
exponential terrr(effwot). The latter one indicates an exponential decay in the asail)
motion of the body, which can be seen as an exponential greadd the oscillating
harmonic function in Figurd..3 (b). A higher level of damping has two effect on the
motion. First, the exponential decay will be more significaacond, the damped natural
circular frequency will be lower.

Figure 1.3: Typical time-displacement diagrams of free vibration obanged, elastic supported SDOF system.
(a) Overdamped system, no vibration. (b) Underdamped msydtarmonic oscillation with the amplitude
decaying exponentially.

There are further quantities in use, to describe the vitmadf a SDOF systemNatural
cyclic frequencyf is the number of total oscillations done by the body in a umiet f =
wo/(2m). Thenatural periodT; is the time required to make a full cycle of vibration, i.e.
Ty = 1/f = 27 /wy. Both of the above values can be written for the damped syssewel,
called the damped natural cyclic frequengty and the damped natural peridg,. They are
interrelated to each other withfp, = w?/(27) andTp = 1/ fp = 27 /wg.

Logarithmic decrement

Let us analyse the displacements of a mass during its damgedibration. We have seen,
that at a given time instamtthe displacement is (Eql(7)):

uo(t) = e %" (A cos (wit) + Bsin (wiit)) .

> @loEle)

by Németh & Kocsis



CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

Using the previously introduced damped natural pefigdwe can write the displacement after
a whole period of motion as well:

uo(t + Tp) = e~ 50UHTD) (A cos (wi(t + Tp)) + Bsin (wi(t + Tp))).
The ratio of the displacements can be written as:

uo(t) _ et (Acos (wit) + B (sinwgt))
ug(t +Tp) e so+TD) (Acos (wi(t + Tp)) + Bsin (wi(t +Tp)))

SinceT), is the damped period of the motion, the harmonic terms in tioité instants have the
same value, so we can simplify the above formula as

C ) ety (26V/1E) (1.8)

’LLo(t —+ TD)

This ratio is constant, and depends only on the damgir@ince we did not have any constraint
ont, Eg. @.8) holds for any two displacements measured in a time distdipcen practice,
the natural logarithm of Eq1(8) is used for the measurement of damping

) ser/T— €

uo(t +Tp)

Here? is called thdogarithmic decremenivhich is a system property. In typical engineering
structureg < 1, so the\/1 — &2 ~ 1 approximation can be used:

Uo(t)

9 =1In —o)
Mot + Tp)

~ 26T, (1.9)

Free vibration of undamped systems

The vibration of undamped systems can be derived in a simidgras we did it for the
damped system, or we can analyse our damped results in tieclimm 0. According to
Eqg. (1.3 the differential equation of motion can be written as:

mii(t) + ku(t) = F(t).
The complementary equation describes the undamped fresgioit:
mii(t) + ku(t) = 0.
The solution of the free vibration is directly obtained fr&qg. (1.7) atc = 0 (and{ = 0):
up(t) = Acos(wot) + B sin(wpt).

Herew, = /k/m is thenatural circular frequencyf the undamped system. The parameters
A and B can be calculated from the initial conditions. The purelynm@nic motion can be
rewritten into the form:

uo(t) = C'sin (wot + ¢) ,
with the amplitude of the motio6’ = / A%2 + B? and the phase angle= arctan % .
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

1.1.3 Particular solution of the non-homogeneous ODE with harmonic
forcing

A simple example for a harmonic excitation force is a rigidi{p@e.g. a machine) rotating
with a constant angular velocity around an axis which is not going through its center of
gravity (COG). The distance between the axis and the centgauity is called the eccentricity
and denoted by..) The COG of the body undergoes a planar motion on a circutanpigh an
angular velocityw. From kinematics of rigid bodies the acceleration of the CQGa¢sa,, =
mw?rc, its direction varies with the motion, its component paadlith an arbitrary chosen, but
fixed direction can be written as a harmonic function of tiued the same applies for the net
force acting on the rigid body. The opposite of this forcesamt the axis of rotation, resulting
in a harmonic excitation force on the load bearing structiiighe orthogonal component of
the force should be taken into account as well, but the vidomatan be prevented by structural
constraints, or by applying two well-tuned body rotatinghie opposite direction.)

Without loss of generality (for harmonic functions one caanslate the time scale to have
any other harmonic function with the same frequency and imalgl), we will write the har-
monic excitation force in the form:

F(t) = Fysin (wt).

HereF, is the amplitude of the force, andis the circular frequency of the forcing. Substituting
this forcing in the right hand side o1 (3) yields:

mii(t) + ci(t) + ku(t) = Fysin (wt) . (1.10)
To solve Eq. {.10 we assume that the particular solution is of the form:
up(t) = uposin (wt — @),

i.e. itis a harmonic function with the same frequency as thneifg, but with a phase shift of
. We substitute our ansatz into EG.10:

—mw*u g sin (wt — @) + cw o cos (wt — ) + kg sin (wt — @) = Fysin (wt) .
We apply trigonometrical identities for the sums in the sand cosine functions:

— mw*u g sin (wt) cos(—p) — mw?u g cos (W) sin(—p) + cwi g cos (wt) cos(—¢)

— cwu g sin (wt) sin(—p) + kugosin (wt) cos(—p) + kugg cos (wt) sin(—p) = Fysin (wt) .
Now we separate the sinusodial and cosinusoidal parts:

U o cos (wt) (mw?sin ¢ + cw cos p — ksin )

+ ugosin (wt) (—mw? cos ¢ + cwsin ¢ + k cos p) = Fysin (wt) .

This equation must hold for any tinte
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

e Whensin (wt) = 0, thencos (wt) # 0, SO

mw? sin p 4 cw cos p — ksinp = 0

must hold, which is true, when

E—mw? mw?—w?
cot p = = 0 — (1.12)

with 0 < ¢ < 7. (See Figurel.4 (a) for the dependence of phase angle on the ratio of

the forcing and natural frequency.)
e Whencos (wt) = 0, thensin (wt) # 0, SO
Ugo (—mw2 cos ¢ + cw sin ¢ + k cos gp) = Fj

must hold.
We use the identitiesos ¢ = cot p/+/1 + cot? p andsin p = 1/4/1 + cot? ¢ to get
—mw? cot ¢ + cw + k cot

Uro
d V' 1+ cot? ¢

and solve the above equation fof, using Eq. {.11):

= Fy

(k—mw?)?
c2w?

1+

(k—moﬂ)% +cw’

upo = Fo

Multiplying both the nominator and the denominator withleads to

1 1
Uf():Fg =

Fo
\/(k — mw2)2 + c2w? k \/(1 — %aﬁ)z + ,‘;—zuﬂ

Using the natural circular frequency and the fraction dical damping coefficientf, =

VE/m, € = ¢/(2v/km)) the solution foru  is

Fy 1
Ufo = —

) ey

From the above results the particular solution of the dafftial equation1.10 of the harmon-
ically forced vibration is:

(1.12)

F 1 -
us(t) = =0 sin [ wt — arccot . (1.13)

k 2 264
J(-5) e o
0 0
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

The complete solution of Eq1(10 is the sum of Eq.1.13 and (.7):

0.)2
Fy 1 : -
u(t) = — sin | wt — arccot B

K \/( _ :_§>2+4§25_; 285, (1.14)
0 0
+ e~ (A cos (wiit) 4+ Bsin (wit)) .
The second part of Eq1(14) becomes very small after a sufficiently long time for any kma
damping. That part is called thiteansient vibration The first part, which is equivalent to
the particular solution Eq.1(13, is called thesteady-statesolution of the problem. Since
the transient vibration decays exponentially with time,aolong time scale the steady-state
vibration determines the dynamics. Usually we are not @dted in the phase of the motion,
but in the amplitude of the vibrationy,, given by Eq. 1.12). In that formula the quotient; /k
can be regarded as tlséatic displacementinder a static forcé}, (which is the amplitude of
the harmonic forcing). We will refer to it as the static depement:s,. The static displacement
ust = Fo/k is multiplied by a coefficient in Eq.1(12), which depends on the damping and
on the ratio of the circular frequency of the forcing to theéunal circular frequency of the
system. We call this quantity as thesponse factgrand denote it by:. Figurel.4(b) shows
the dependence of the response factor on the ratio of fretpgen

o /

Figure 1.4: Responses of a damped SDOF system to a harmonic excitatophdse angle as a function of the
forcing frequencyw, (b) response factqr as a function of the ratio of the forcing and natural frequesw /w.

In short, the amplitude of the steady-state vibration cawtiigen as:

[0 = ]

where P
Ust = ?0 (1.15)
and
1
(1.16)
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CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

Now we further analyse the response factor functiofror smallw /wy it is small, but big-
ger thanl. As w/w, approaches it reaches a maximum. One can derive, that the maximum
occurs atv/wy = /1 — 2¢2, but in the practical range of dampig@f engineering structures,
the difference can be neglected, so in general we can sayhéhanaximal amplitude is ap-
proximately atw = wy with the magnitudgimax = 1/(2£). The state whem is maximal is
called theresonanceFor the case, when > wy, the response factor decreases asymptotically
to zero.

The spring force from the steady-state part of the motionbsanalculated from the elon-
gation of the spring:

Fso = kusyr = Fop,

i.e. the amplitude of the excitation force multiplied by tlesponse factor, thus for fast exci-
tation with largew or flexible structure with loww, the spring force will be small due to the
decaying response factoar But if we are looking for the force transmitted to the base alge
have to take into account the forgg in the damping element, which may result higher base
forces.

Effect of zero damping on the phase angle and response factor

The vibration of undamped systems can be derived in a simigar as for the damped
system, or we can analyse our damped results in the limit 0. In the latter case we can
conclude, that the particular solution of the non-homogesdifferential equationl(10) is
a harmonic vibration. The amplitude of the vibration can bkwlated from Eq.1.12 with

&= 0
Ey 1 o1

B ’fﬁ_?m
— 0
Wo

It is the product of the static displacement and the (undanpesponse factor (see Fify.4
(b)). In contrast to the damped case, this response factoamanfinite maximum in the state
of resonance = wy).

For the phase angle we can conclude from Eql(1)) that it is zero whemw < wy, and
itis 7 whenw > wy (see Fig.1.4(a)). In the first case the mass moweghe-phasewith the
excitation force, in the second case the mass mouesf-the-phasevith the excitation force.
At the resonance state= w, the phase angle is = 7 /2.

ldeal damping

Analysis of the damped response factor Ej1€) and its derivative with respect te-
results that an increasing damping coefficiérdecreases the location and the value of the
maximum ofy, (see Figl.4(b)). If ¢ reached /v/2, then the location of the maximum reaches
w = 0, and the value of the maximum reaches$-urther increase of the damping decreases the
response factor, but the maximum will be alwayatw = 0. This damping valug,y = 1/v/2
(or cig = v2km) is called thadeal damping

10 @0kl
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1.1.4 Support vibration of SDOF systems

In many cases the support of the structure is not in rest.ngwan earthquake or because of
the noise of traffic the base (which was assumed until now tio best) might move, making
the structure to vibrate.

In this subsection we will show how to handle the support orofor undamped systems.
The steps of the solution would be the same for a damped systevell.

In the case of support vibration we have to modify our meatamodel shown in Figl.2
(a) such that we set the damping to zere=( 0) and apply a support motiom,(¢) (where the
index g refers to the ground motion). Figuie5 (a) shows this model.

If we draw the free body diagram, there is only one force gatimthe body from the spring,
so we can write Newton’s second law of motion based on Figsé€b) as

—fs(t) = ma(t),
or by substituting the spring forcg (¢t) = ku(t) and the acceleration(t) = #(t) as
— ku(t) = mi(t). (1.17)

Figure 1.5: Support vibration of an undamped system (a) mechanical m@xjdéree body diagram

The elongation of the spring is now

u(t) = x(t) — uy(t), (1.18)
and the second derivative of the Efj.X8 results:
W(t) = @(t) — iy(t). (1.19)

One can follow two different approaches.
e Substitution ofu(t) from Eq. .18 in Eq. (1.17) leads to

—kx(t) + kuy(t) = mi(t),

which is a differential equation for the displacemefit) of the body. If we write it in a
canonical form

mi(t) + kx(t) = ku,(t) (1.20)
one can see, that it is a simple forced vibration.
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e Substitution ofz(¢) from Eq. .19 in Eq. (1.17) implies
—ku(t) = mii(t) + miiy(t),

which is a differential equation for the elongatia(¥) of the spring. If we write it in a
canonical form
mii(t) + ku(t) = —miiy(t), (1.21)

we obtain a simple forced vibration again.

In the next subsections we will show the solutions of thevaetidifferential equations for
a harmonic support vibration, i.@,(t) = wu, sin(wt).

Steady-state solution of the elongation of the spring due ta harmonic support motion

To find the solution of Eq.1(.21) we have to substitute the second derivative,gdt)
iig(t) = —wugyp sin(wt)
into Eq. (L.21):
mii(t) + ku(t) = mw?ug sin(wt).

This is the same equation as Ef.10 with ¢ = 0 andF, = mw?u,. Therefore, the amplitude
of the steady-state solution will be (see Epi1Q):

2 2
MWty 1 w 1

Ufo = k’

U0~ 35 |
9(,2 w?
oll—=
| wi

The amplitude of the elongatiar(t) will be the amplitude of the support vibration multiplied
by a response factor and by the square of the ratio of thenigiend natural frequencies. The
spring forcefs(t) is related to the elongation(t) of the spring so its amplitude will be:

2 2
maxr __ qu 1 315(’u ]'
S - g 2 w2 2 w2’
W — = W — =
0 ’1 wg 0 |1 w(z)

Here fg is the static force, which would cause an elongatignin the spring.
Figurel.6shows the product of two multiplie(s,? /w2 and1/|1 — w?/w?|) as the function
of the ratio of the forcing and natural frequencies.

Steady-state solution of the displacement(t) for harmonic support vibration

To find the solution of Eq.1(.20 we have to substitute,(t) into Eq. (L.20):
mi(t) + kx(t) = kugo sin(wt).

This is the same equation as Ef}.10 with ¢ = 0 andF, = ku,. Thus, the amplitude of the
steady-state solution is (see Ef].12):

k'ugo 1 1
iUfQ = = ugo

k )
(1-%)
12
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Figure 1.6: Response factor of the elongation of the spring as a functitime ratio of the forcing and natural
frequencies due to a harmonic support vibration

1.2 General forcing of SDOF systems

1.2.1 Duhamels integral

Static (or quasi-static) loads and harmonic forcing regme®nly a small segment of the
possible loads acting on a structure. Although many of thettlependent loads can be treated
as a quasi-static, or a sum of harmonic loads, there are targogxcitation forms (impact,
support vibration due to earthquakes, etc.) where theiganbehavior of the structure must
be analyzed. For this type of problem the equation of motiQn(E3)

mii(t) + cu(t) + ku(t) = q(t) (1.22)

contains an arbitrary functiof(t) on the right hand side (see Figuter (a)). We are looking
for the particular solutions(¢) of Eq. (1.22) for thet > 0 interval, with the assumption that
we know the initial displacement and velocity in the timetamtéz = 0. We denote these two
initial conditions withu(0) = «” and«,(0) = +°. We remind the reader that the solution
of a non-homogeneous differential equation always caonsisthe solution of the complemen-
tary equation (the free vibrational part) with free paraengtand a particular solution of the
non-homogeneous equation. The free vibration follows thssical scheme we presented in
Subsectiorl.1.2

We assumed linear response of the elastic and damping dfeifkeandc are constants),
so the differential equation is linear, and the rule of sppsition holds. If the excitation force
can be written in the form(¢) = vaz L ¢i(t), then the particular solution can be expressed as
us(t) = SO upi(t), where eachiy, is a particular solution of the differential equation

mii(t) + ciu(t) + ku(t) = ¢;(t).

Let us choose a sufficiently small time intervat at the time instant = 7, as shown in
Figure 1.7 (a), and let us examine the effect of the forge) during the intervalAr on the
displacement:;(¢). This specific part of the forcing is shown in Figute7 (b). We denote

13 @0kl

by Németh & Kocsis



CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

Figure 1.7: (a) General time-dependent forcing. (b) Small impulée) At of the forcing. (c) Increment of
displacement function from the impulgér)Ar.

the effect ofg(7) onu,(t) by Au(t, 7). SinceAr is small, the change of the force during the
interval can be neglected, so the impulse transmitted fitwenfarce to the mass ig(7)Ar.
From the theorem of change of linear momentum the impulsdtses suddem\v(7) change

in the velocity:

mAv(t) = q(T)AT — Av(T) = %AT. (1.23)

After this sudden change the forgér) will be zero, so the mass-damper-spring system
starts a free vibration with initial velocitAv(7). It is reasonable to assume that the force
q(7) does not have any effects on the displacements backwariiséngo we can say that the
displacement of the mass before the force is applied is zero:

Au(t,7) =0, t<T. (1.24)

The time evolution of the increment of displacemeént(¢, 7) is obtained from the previously
derived solution 1.7) of the free vibration of a mass-damper-spring system. Rigrapecific
case the initial conditions of Eql 22 come from Eqgs.X.23 and (L.24):
Au(r,7) =0, Au(r,7)= @AT. (1.25)
m
The exponentially decaying increment of the displacem®ntt, 7) comes from Eq. X.7)
with initial conditions (.25 fulfilling the differential equation1.22 and the initial conditions
(2.25 will be:
Au(t, ) = e 50t=7) a(r) ——Arsin (wi(t — 7)) | .
9 mwo 0
(Note that{ = ¢/(2v'km) andw = \/k/m~y/1 — £2.) This result is shown in Figure.7 (c).
If A7 tends to0, thenAu(t, 7) becomes an elementary incremeht(t, 7). For any timet
we have to integrate these elementary changes for all thdéquass, i.e. forr < ¢:

u(t) = /Ot me_gwf’(t_ﬂ sin (wg(t — 7)) dr. (1.26)

*
mwg
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The above formula is thBuhamek integral.

1.2.2 Numerical solution of the differential equation

For many types of excitation forcé&3uhamek integral (L.26) can be computed only nu-
merically. Instead of numerical integration of the form(lla26) the step-by-step calculation of
the displacements and velocities directly from the difftisd equation {.22) is possible.

In the numerical calculations it is a quite usual step tonmatdate the second order dif-
ferential equation into two, first order equations. For tHiast we introduce a new variable
function, the velocity:

ot) = =2,

and put it and its derivative with respect to time in the or&j second order differential equa-
tion (1.22. The resulting system of first order differential equasios

du(t)
= (1),
dt
(1.27)

with initial conditionsu(ty) = uy andv(ty) = wo.

Cauchy-Euler method

Let us assume, that we know the displacement and the velaicaygiven time instant;,
and we want to calculate them at the time instant. (Let the difference between,, andt;
be a chosen constantt = ;.1 — t;.) We denote the displacement and the velocity &ty u;
andv;. From Eq. (.27) we can calculate the differencés.; /At and Av, / At:

Au; Ui — Uy

At At
AUi o Vit1 — U; o C k Q(tl)
At AL ( e

The estimated values of both variables; andv; ., are

Ujr1 = Uy + UiAt,

Uiyl = V; + <—£vi — EuZ + M) At.
m m m
We can iterate the above map starting with 0, i.e. with the given initial values,, vy.

Figure 1.8 (a) shows the concept of the algorithm, and one can see the pnallem of
this method as well. Using the Cauchy-Euler method involvesnall error in every step,
accumulating during the calculation. The error dependsherstep-size4t). Smaller step-
size causes smaller error, but it requires more steps th thacsame time. The most important
guestion of numerical methods is the convergence and thgitstebut the discussion of these
properties are beyond the scope of this lecture notes. kr ¢ocavoid false solutions and crash
of the procedure, one has to set the time gkesufficiently small.
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iz

Figure 1.8: Explanation of (a) the Cauchy-Euler method and (b) the sttoodier Runge-Kutta method. The
continuous is the exact solution, the arrows represenetasg@nd increments.

Higher order methods

The key idea behind the higher order methods is to use a lsgifoximation for the
incrementsAu;, Av;, than we had from the tangents calculated at the end-poisteqfi.
It seems to be reasonable, that we rather calculate thertbegmewhere along the current
segment (based on one, or more points). These methods k@ teRunge-Kuttanethods.
In the second order Runge-Kutta method we calculate the margehe middle of the current
segment. So, we go forward with a half step-size, calculsdangents there, and use those
values to make the actual step-size. It means, that we haaddolate the derivatives twice as
much, but we get a higher precision. The algorithm is of thiefong steps. First we compute
the differences just as before:

0
Aui . Ujr1 — Uy

At At
AV v — v c k q(ts)
At At (_Evi_EuiJr m )

Next we step forward with a half step-size:
ug/Q = u; + Aul /2,
03/2 = v; + Avl/2.
Then we compute the differences at the mid-point (this vélttoe direction of the actual step):

Ui — Uy _ U;/z
At v
oy k t; + At/2
Vi+1 Uy _ (—£U3/2 _ _ull/2 4 q( i + / )) )
At m m m

Finally, the map of the iteration is
Ujp1 = Uy + Auz = U; + Uil/zAt,

k ti + At/2
i = v D= (= Salft = Ry AR
m m m
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Figure 1.9: Explanation of the finite difference approximation of vétp@nd acceleration using secant lines

Central difference method

Let us assume, that we know the displacement and the velatcihe given time instances
t;_1 andt;, and we want to calculate them at the time instant. (Let the difference between
two time instants be constankt = ¢;,, — t; = t; — t;_1.) We denote the displacement and the
velocity att; by u; andv;, att;_; by u;,_; andv;_1, respectively.

We can write the approximation for the velocity (see Figlu@®:

. Uil — Ui—1
i f— l N— —’ 1-28
V= Uy = N ( )

while the approximation of the acceleration is:

o Wivos — Uimos o (Wipr —wi) — (W — wimy)  Uipr — 2u; + Uiy
L= o~ = ) 1.29
= Al INE INE (1.29)

The equation of motion isl(22):

mii; + ct; + ku; = q(t;) = g;.

Let us substitute the velocity (EdL.28) and the acceleration (EdL.@9) into the above equa-

tion:
Uip1 — 2U; + Uiy Cui—i-l — U

At? 2At
One can solve Eq1(30 for u;:

() s (s
T A H (Q_At B A_t2>
Ujr1 = m C . (131)

INERIEY.Y:
Eqg. (1.3 is the map of the iteration containing only the displacetaai the previous two
steps (but no velocities). Therefore, not only the displaeetw, in the initial time instant, but

also the displacement , is needed to start the iteration. This latter condition cacdmputed
from uy anduv, as

—L 4k = g, (1.30)

U_1 = Uy — UoAt.
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1.3 Vibration of multi-degree-of-freedom systems

Behaviour of real life engineering structures usually carbedescribed by the displace-
ment of only one point of the structure. In fact, the exactcdpsion of the motion requires
an approach considering the structure as a continuum. Iy weses however, the motion of
the continua can be reduced to the motion of a finite-degideeedom system. In a multi-
storey building with rigid slabs the displacements of thdseaf the columns depend only on
the displacements of the floors. In a spatial structure tlwslavbe three degree-of-freedom
on each level (two translations in the horizontal plane armation around a vertical axis, see
Figurel.10(a) for a floor plate of one level). If the building is reducedatplanar problem, the
translation of each level can be regarded as a degree obiree(see Figurd.10(b)). Even
numerical methods applied in Finite Element programs deémee: they approximate the dis-
placements by interpolating from the displacements of g#ggeks of freedom. Figudel10(c)
shows a simple mechanical model for a two-degree-of-freedgstem: two bodies are con-
nected to each other by a spring, one of the bodies is sugpbytanother spring, the other
body has an excitation forde(t).

Figure 1.10: Examples of multi-degree-of-freedom structures (a) tllegrees of freedom of one level of a
spatial multi-storey buildingyandv are the translations; is the rotation), (b) mechanical model of a
three-storey frame structure (planar frame with threeekegof freedom) (c) mechanical model of an undamped
two-degrees-of-freedom system excited at its second dexjrieeedom

1.3.1 Equation of motion of MDOF systems

There are several ways to derive the equations of motion /MdD&®F system. Here we
show one for the system on FigutelO(c). The FBD of the system is shown in Figutel 1
The only displacement which is not constrained is the hotaldranslation of the masses,
andms. Variablesz,(t) andx,(t) denote the translations of these masses, respectively. The
number of degrees of freedom is therefos®. Newtors second law of motion is written for
the two masses:

— fs1(t) + fso = myaq(t),
— fgg(t) + F(t) = mgag(t).

The forces in the linear springs depend on the elongatioadt epring:fs,(t) = k1 Al (t),
fsa(t) = ko Aly(t). For the first spring\¢, () = x;(t) (assuming a fixed support) and for the
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Figure 1.11: Free body diagrams of the model shown in Fighir£0(c)

second spring\¢s(t) = zo(t) — x1(t). So the spring forces arefs,(t) = kix1(t), fs,(t) =

ko(zo(t) — x1(t)). The acceleration of each body is the second derivatives dfahslation with
respect to time, i.eq;(t) = Z1(t), ax(t) = Z2(t). Substituting these results into EG-32 we

get

— /{Z1[E1<t> + k?g$2(t> - kz$1(t> == mlil(t),

1.33
— kzl’g(f) + kgl'l (t) + F(t) = mgi'g(t), ( )

which can be written in the following form:
myE1(t) + kizi(t) + ko () — kawa(t) = 0, (1.34)

What we obtained is a coupled system of second order ordinfieyantial equations. Is it
worth noting that each equation corresponds to one bodytfihevith the external force acting
on that body (or zero when there is none) on the right handddittee current equation. On the
left hand sides there is always the corresponding;(¢) term (inertial term), and the spring
force. The springs appearing in each equation such thaptivegsstiffness multiplied by the
displacement of the degree of freedom is added to the equafithe corresponding DOF
(k121 (t) for the first spring in the first equatiofyz, (t) and kyz4(t) for the second spring in
the first and second equation respectively). If a spring eotstwo degrees of freedom, then
it couples the equations of the connected DOF$,(, term in the first and-k,z; term in
the second equation). The sign of the coupling terms dependbe sense of the coupled
DOFs, but is always the same in both equations. If two DOFsia@reonnected directly, their
equations are not coupled directly.

Equation (.34 can be written in a short form:

Mii(t) + Ku(t) = q(t) (1.35)

as a matrix differential equation. Here veciaft) contains the displacement variables, the
quadratic matriced andK are the mass and stiffness matrices, respectively, whitwve(t)
contains the external forces acting on each degree of freedBor an/N-degree-of-freedom
system the vectors haw®¥ entries, while the size of the matrices 6 by ). Properties
explained after Eq.1(34) yields that the matrices are symmetric matrices.
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For the example shown in Figuilel0(c) the elements are:

I L 0 . ]{?1 + k’g —]'1’}2 . l‘l(t) . . l’l(t) o 0
Similarly to the single-degree-of-freedom vibrations, dwade the problems described by
Eq. 1.3 in two groups:

e if q(t) = 0, then the system of differential equations is homogenean the resulting
motion is the free vibration.

e if g(t) # 0, then the system of differential equations is non-homogesgeand it is called
a forced vibration.

Equations of motion of a two-storey frame

Let us analyse the equations of motion for a two-storey fratmecture with a machine
exerting a force on the upper level. The floors are rigid, sonlg have two degrees of free-
dom. Figurel.12(a) shows the structure and one possible displacemeninsy$iigurel.12
(b) shows the free body diagrams for the same structure. fteenal forcesfs; (from the
columns 1 and 1’) ands, (from the columns 2 and 2’) depend on the inter-storey drifts
andz, — x1, respectively. Assuming linear elastic columns one caoutaie the equivalent
stiffness coefficient&; andk, for the columns on each level. Writing the equations of motion
and the elements of the mass and stiffness matrices areieftd reader as an exercise.

: L3S . (i e f
[rx) P o F () 6\_;{’} 5 F(t) a,
i | B e et S RS e ] 2 e == e S 2
i ™ : <=
. Ir' l,'/‘y)'l ;{51
= ’ %1 i
— —fse
L WA A | P i Y i . >4 1
1 I 4‘_‘___._.._.—
! | |
| il +5A
I 1
L!J :

Figure 1.12: Two-storey frame structure with rigid floors. (a) Mechahizadel, (b) free body diagram.

Equations of motion with different variables

The deformed state of the structure in Figlirg2can be described not only with the global
coordinates of each level, but with the inter-storey dasvell. (In accordance with the earlier
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notation we will denote them bsx¢; and A¢,.) Then we have to substitutg () = A/l (),
xo(t) = Al (t) + Aly(t) and their derivatives into Eq1(32, and we get

— Agl (t) + szgg(t) = mlA"ﬁl (t),

— k’gAfg(t) + F(t) = mgAnﬁl (t) -+ mQAEQ(t)
instead of Eq. 1.33. One can see, that using this description of the problemltseson-
symmetric mass- and stiffness matrices. This is due to ttte tfaat the equations still belong
to the globalr; andx, translations, while our variables are the relative disphaentsA/;

and A/,. Symmetry of the system matrices is often used during theutatlons, so we can
conclude, that this hybrid approach should be avoided i§ibdes.

1.3.2 Free vibration of MDOF systems

During the analysis of a multi-degree-of-freedom systeensiblution of Eq. 1.39 follows
the same steps as for SDOF systems. The free vibration ofyiters is analysed using the
complementary equation of EdL.85. That is the homogeneous matrix differential equation

Mii(t) + Ku(t) = 0. (1.36)
We search for the solution of EdL.G6) in the form:
u(t) = u(acos (wot) + bsin (wot)) , (1.37)

i.e. the displacement functian(¢) is assumed to be a product of a constant veagatescribing
the ratio of the degrees of freedom to each other and a hacriumition depending on time,
natural frequency, and two parametersandb. The cases whea = 0 ora = b = 0 would
lead to the trivial solution of the Eq1(36). We are looking for the nontrivial solutions.

The second derivative of the displacement veat@) is

i(t) = u(—wy) (acos (wot) + bsin (wot)) .
We substitutex(t) andi(¢) into the homogeneous differential equatidn3g):
Mu(—wj) (acos (wot) + bsin (wot)) + Ku (a cos (wot) + bsin (wot)) = 0. (1.38)

This equation must hold for any timg thus either(a cos (wot) + bsin (wet)) = 0, or
Mu(—w?)+Ku = 0. The equatioria cos (wot) + bsin (wyt)) = 0 holds for allt only with the
trivial solutiona = b = 0, therefore the time-independent matrix equatidn(—w?2)+Ku = 0
must be fulfilled, so it is rewritten in the more classicalfor

(K — ng) u=0. (1.39)

The above equation is a system of a homogeneous, lineal@ugiaihich is called a general-
ized eigenvalue problem in mathematics. It has nontriealtsons if and only if the matrix of
coefficients is singular, or equivalently if and only if itetdrminant is zero. The equation:

det (K — ng) =0
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leads to a polynomial of degre¥ for w? (whereN is the degree of freedom of the system).
Typically it hasN real, distinct solutions, denoted by, < w3, < ... < w?y (i.e. the first one
is the smallest), and their positive square roots

wor < w2 < ... < WoN

are the natural circular frequencies of the system. We chned® natural period of the system

as. 9 9 9
™ ™ 7T
Ty = — >TO2:_>7---;>TON:_-
wo1 Wo2 wWoN

In the next step we have to find the elements of veatpof Eq. (1.37). Since we have
N natural circular frequencies, we will havé different vectors. We will denote the vector
corresponding tay; by u;. The vectoru; must fulfill Eq. (1.39):

(K — ngl\/[) u; = 0. (1.40)

Because of the matrif — wg M) is singularu; has onlyN — 1 independent rows, i.e. it has
not a uniqueu, solution. Ifu, is a solution, then the vector; will be a solution for any real-
valueda. These vectors are the (generalized) eigenvectors of #teray The meaning of the
jth eigenvectow; is that if we displace the degrees-of-freedom in the sampqution as the
elements of the eigenvector, then it will move such a way timatratios of the displacements
will be the same during the motion with frequengy,. In this case the structure vibrates in
its jth mode. The shape of the vibration (the modal shape) is itbestcby the eigenvector (or
mode vector).

Normalized eigenvectors

For further calculations we have to make the eigenvectauailt can be done in different
ways:

e making the first element of the vector be equal to 1,

making the largest (in absolute value) element of the vdmarqual to 1,

making the length of the vector be equal to 1 ('u%uj = 1),

making the vector be normalized to the mass matrix (ijTeMuj =1).

The first method is useful when the calculations are done hy.héihe second method has an
important role in numerical solution of the eigenvalue peoin The third method would result
in possible small numbers in the case of a large system. Eherlethod has positive conse-
guences on further results so we assume that the eigensvactanormalized to the mass matrix.
(If we have a non-normalized eigenvector, we can still calculate the produat Mu; = «;.

It follows from the rules of matrix operations that the vectb/, /a;)a; will be normalized to
the mass matrix.)
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If we substitute thejth normalized eigenvector into EdL.89, and multiply it with the
transpose of the same vector from the left we get:

T 2 T —
u; Ku; — wgyu; Mu; = 0.

Because of the eigenvector is normalized, the vector-magéctor product on the left hand side
equals 1, resulting in:

ujTKuj = ng ) (1.41)

Orthogonality of eigenvectors

Let us take two different natural circular frequencies # wo;, and the corresponding
eigenvectorsy; andu;. Then it holds from Eq.X.40 that

Ku; = w}Mu,, (1.42)

Ku; = ngMuj. (1.43)
Multiplying Eq. (1.42 by ujT and Eq. 1.43 by u! from the left and subtracting the resultant
equations lead to:
ujTKui —u/Ku, = wgiuJTMui - cugjuiTMuj.
Due to the symmetry of matricds andM

u;‘-FKui = u; Ku;, ujTMui = u! Mu;, (1.44)

so we have:
2 2 T
0= (wg; — Wo]') u; Mu,.

The above equality only holds for differeng; andwy, if:

u]TMui =0/ (1.45)

Dividing both side of Eq.1.42 by wg;, then multiplying the result byr; from the left,
dividing both side of Eq.1.43 by ng, then multiplying the result bu? from the left, finally
subtracting the resultant equations lead to:

1 1
T T _ T T
—u; Ku; — —-u; Ku; = u; Mu; — u; Mu;.
Woi 0j

Due to Eq. 1.449
1 1
(—2 - — ) ujTKuZ- =0,

Woi Wy

which holds for different nonzero,; andw,; only when:

u Ku; =0| (1.46)

We refer to this latter properties as the orthogonality ef élgenvectors;; andu, to the
mass matrix (Eq.1.45) and to the stiffness matrix (EqL.46)).
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General solution of the homogeneous differential equation

The general solution of the homogeneous differential egudtq. (L.36) is constructed
from the sum of the solutions corresponding to the eigenstode

N
u(t) = Z u; (a; cos (wo;t) + b; sin (wg;t)) . (1.47)

j=1

To find the parameters; andb; we need the vector of velocities:
N
u(t) = Y ujwo; (—a;sin (woit) + by cos (wost)) - (1.48)
7=1

Initial conditions of a multi-degree-of-freedom systere displacements and velocities of the
degrees of freedom at a given time instant

u(to) = Up, U(to) = Vjy.

By substituting Eq.1.47) and (.48 into the above formula N constraints are obtained which
can be used to find the parametersandb; in the general solution Eq1(47). Using the
orthogonal properties of the eigenvectors one can avoiddhgion of a system at NV linear
equations. If we multiply theseN equations from the left byl;”M, then we get

a; cos (wo;to) + by sin (wo;to) = u;‘-FMug,

woj (—a; sin (woito) + bj cos (wojty)) = ujTMVO’

so, varyingj from 1 to N we have to solveV system of2 linear equations instead of a system
of 2V equations for the coefficients andb;.

The resultant motion will be the sum of harmonic vibratiowich is not necessarily a
periodic motion!

1.3.3 Harmonic forcing of MDOF systems

The solution of forced vibration problems of multi-degrefefreedom systems follows a
similar schema as we saw with SDOF systems. The completgmois the sum of the general
solution of the complementary differential equation andaatipular solution of the nonho-
mogeneous differential equation. So the solution of BBY) is Eq. (L.47) plus a particular
solutionuy(¢), which is the answer of the system to the forcing.

In this subsection we will give a solution for the problemthe case of the excitation force
is harmonic. Themy(t) can be written in the form:

q(t) = qosin (wt) . (1.49)

Herew is the circular frequency of the forcing, and the vegigrstores the amplitudes of the
forcing. Thus each DOF is excited with the same frequencys it worth mentioning that a
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zero external force acting on a degree-of-freedom can héetileas a harmonic force with zero
amplitude and arbitrary circular frequency.

While solving the inhomogeneous equation we are only lookinghe steady-state part of
the vibration. We show two possible solution methods:

e the direct solution,

e solution with the modal shape vectors and natural circuéguencies.

Direct solution

In the case of the direct solution we assume the particulatiso of the form:
us(t) = ugposin (wt), (1.50)

i.e. itis a harmonic response with the same harmonic termeafotcing, with constant ampli-
tudes given in the vectar,. The second derivative of EqL.60 with respect to time is:

iy (t) = —w?uysin (wt) . (1.51)

Substituting the load, the ansatz and its derivative (Ef<l9, (1.50, and (.51) into
Eqg. (1.35 we get:

— w?Muyg sin (wt) + Kuy sin (wt) = qgsin (wt) . (1.52)

The above equation fulfills either éfn (wt) = 0, or if Kuyy — w?*Muy, = qo. Because the
loading is a real, time dependent harmonic force, the témwt) cannot be zero for every
time instant. So, we can write the latter condition as:

(K — w”M) us = qo. (1.53)

The solution of this non-homogeneous matrix different@i&ion for the amplitude, is
needed. The coefficient matrix in E4..$3 is quadratic, so it has a solution if and only if there
exists its inverse matrix, i.e. the matrix is non-singutaryith other words, its determinant is
nonzero. In that case we get the solution by multiplying satles of Eqg. 1.53 by the inverse
(K —w?M) "

1

Uy = (K — (,UZM)_ J0- (154)

The particular solution then can be written as:
us(t) = (K — w?™) " qqsin (wt) . (1.55)

This is the steady-state part of the vibration. We can sdestizh degree of freedom vibrates
with the same frequency. Without computing the inverse maive cannot read out directly
whether a degree of freedom is in an in-phase or in an outiaé vibration.

We note that the inverse of the mat(iK — w?M) does not exist if its determinant equals
zero. But ifdet (K — w?M) = 0, then the circular frequency of the forcing equals one of
the natural circular frequencies of the system, hence th&syis in the state of resonance.
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It means that if the forcing frequency coincides with one loé hatural frequencies of the
structure, then the direct method gives an infinite ampditatithe vibration. However, in real
structures it does not occur, because there is always somginigin the system.

Direct solution requires the calculation of the inverserf\aby-N matrix. In general, the
required computational capacity increases proportiantie second- or third power &f (the
order of the computational time & (N? ~ N3)). Thus for large systems this method has a
very high computational costs.

Modal analysis

Instead of the direct solution one can make use of the sosibd the unforced system, i.e.
of the generalized eigenvalue problem Ef3¢. These solutions are of the natural circular
frequencieqwp;, woe, - .., won) and the corresponding modal shape vectors normalized to
the mass matriXu;, u, ..., uy). These eigenvectors are linearly independent and span an
N dimensional linear space. Let the displacements be writea linear combination of the
normalized mode shape vectors:

us(t) = > uyys(0), (1.56)

where functionsgy;(¢) are the modal displacements. The modal shape vectors angsint/in
time, so the second derivative of the displacement is:

N
() = > wyiji(t). (1.57)
j=1
Substituting the load, the ansatz and its derivative (El9, (1.56, and (.57) into
Eqg. (1.35 we get:

N N
M Z ujgjj (t) + K Z ijj(t) = o sin (Wt) . (158)
j=1 j=1

Let us multiply both sides of Eq1(58 from the left byu!. Using the orthogonality of the
eigenvectors (Eql(45, and (.46) we only have nonzero values fpr= i:

u; Mu,j; (t) + uf Kuy;(t) = ul qosin (wt) .
Moreover, the eigenvectors are normalized to the massxmatri
u/Mu; = 1, u Ku; = wp,,
which leads to the modal differential equations of vibratio
i (t) + wiyi(t) = fisin (wt), i=1,2,...,N. (1.59)

Here f; = u’ qq is the modal amplitude of the harmonic excitation force.
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For the particular solution;((¢) of the non-homogeneous differential equatiarb® we
assume the solution in the harmonic form:
ylf = ylfo sin ((_A.)t) .
Its second derivative is
Ui = —waifo sin (wt) .
Substitute these equalities into Efj.§9, and solve for arbitrary nonzesin (wt):
~Wyigo + Wolifo = fi-

If w = wy; and f; # 0, then the frequency of the load and theéth natural frequency;
coincide, thus the system is in the state of resonance. Uttsas an infinitely largeth modal
displacement. Otherwise, the unique, finite solution is:

1 1 1
Yifo = fi—wéi — fiw_gi—l w_Q
W(Z)i

The last term in the above product igesponse factoof an undamped oscillatory system
of natural circular frequencyy;, excited by a harmonic force of circular frequency The
absolute value of this coefficient is denoted,hy

Let us summarize the above results. In the absence of resetta steady-state part of the
motion (the particular solution) can be written in the form:

1
Z " ————w;u! qqsin (wt) . (1.60)

o2
i—1 “0i

sz

Checking the terms of the above equation from right to left we conlude that the response
is harmonic §in (wt)). For each mode the amplitude of the modal loafld;) is calculated. It

is then multiplied by the response factor(but without evaluating the absolute value) which
depends on the ratio of the circular frequency of the forend the natural circular frequency
of the corresponding mode. Finally, the amplitude of eacldens divided by the square of
the natural circular frequeney?; of the same mode. Due to this last term the effect of higher
modes is usually much smaller, except for the case when ttitagzn occurs close to one of
the natural frequencies of the system.

Apparently, the solution of the problem with modal analyg®ems to need even more com-
putational effort, than that of the direct solution, be@u® first have to solve a generalized
eigenvalue problem corresponding to the free vibratiom.|&ge systems, with many degrees
of freedom, the solution of the eigenvalue problem has hmghputational needs. However,
higher modes typically play a less significant role in theisoh. There are numerical algo-
rithms which do not compute all the eigenvalues and eige¢aveof the generalized eigenvalue
problem, but only the first few of them. Later in the semestemwill show that a reduced set
of mode shape vectors calculated with these methods carfflieesu to approximate well the
motion of the MDOF system.
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Problem 1.3.1(Example on harmonic forcing of a three-storey frame stm&t Figurel.13shows the dynam-
ical model of a three-storey building with rigid girders. ®ach level the stiffness of the columns is the same
and the levels have the same mass. On the top level a maclgrie @harmonic force on the structure. We are
looking for the amplitudes of each degree-of-freedom instieady-state motion.
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Figure 1.13: Vibration of a three-storey frame structure with rigid irgi®rey girders and elastic columns. (a)
Dynamical model with system propertigs = ko = k3 = 25 MN/m, andm, = my = mg = 150t. (b)
Degrees of freedom in a displaced position and the exaitdtice [y = 150 kN, w = 9 rad/s.

Solution. The matrix differential equation of the motion is:
Mu(t) + Ku(t) = qosin (wt) ,

where
u(t) = [z1(t), 2a2(t), 25(1)]"

qo = [Fo,0,0]" = [150,0,0]" kN,

my 0 0 150 0 0
M = 0 me O = 0 150 O t

0 0 ms 0 0 150
k1 + ko —ky 0 50000  —25000 0
K= —ko  ko+ks —ks | = | —25000 50000 —25000 | KkN/m.
0 —ks ks 0 —25000 25000

e Direct solution
The system of linear equations of the problem (BEg58) with substitution ofK, M andqq is:

37850  —25000 0 0
—25000 37850  —25000 | uyg = 0 (1.61)
0 —25000 12850 150

The solution of the above equation requires the inverseeoffithtrix of coefficients:

—25000 37850  —25000
0 —25000 12850

—0.02419 —0.03663 —0.07126

37850  —25000 0 -t
—0.04707 —0.07126 —0.06082

0.01044 —0.02419 —0.04707
-1073
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We have to multiply both sides of EdL.61) from the left, resulting:

0.01044 —0.02419 —0.04707 0
upo = | —0.02419 —0.03663 —0.07126 | -10%-| 0
—0.04707 —0.07126 —0.06082 150
—0.0070604
up = | —0.010689 | m. (1.62)
0.0091234

e Modal analysis
This solution requires the solution of the generalized migiie problem:

(K —wgM) ug = 0. (1.63)

First we compute the eigenvalues of the problem. The camditie use is that the determinant of the
matrix (K — w3M) must be zero:

50000 — 150w? —25000 0
0= —25000 50000 — 150w? —25000 =
0 —25000 25000 — 150w?

(50000 — 150wg ) ((50000 — 150) (25000 — 150wg) — (—25000)(—25000)) —
(—25000) ((—25000) (25000 — 150w3) — 0) + 0,

which results the following cubic equation fog:
—3375 - 10%wS + 2812.5 - 105w — 562.5 - 10%w?2 + 15.625 - 1012 = 0.
There are three real valued solution of the above polynoegjaétion:
wiy = 33.010, wiy = 259.16, wjs = 541.16,
resulting the natural circular frequencies in:
w1 = 5.7455 rad/ls  wge = 16.098 rad/s wp3 = 23.263 rad/s

(The corresponding natural periods afgi = 1.0936 s,7Tp2 = 0.39030 s, andTp; = 0.27009 s.)
We show only the calculation of the first eigenvectar) It must fulfill the equation:

(K —wj ;M) u; =0,

which has the form after substitution of previous results:

50000 — 150 - 33.01 —25000 0 U1
—25000 50000 — 150 - 33.01 —25000 uiz | =0.
0 —25000 25000 — 150 - 33.01 Ui3

Here we assume a trial vector in the fofm = [cy, 1, C3]T. So, with the first and the last equation we
avoid multi-variable equations. (It is not always possibiehat case we should solve a system of linear
equations.) From the mentioned rows we have:

45048c1 — 25000 -1 =10 — ¢ = 0.55496
—25000-1+20048¢c3 =0 — c3 =1.2470

(The second equation is linearly dependent, but it can be teseheck our results both for the natural
circular frequency and the vector elements.)
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Now the trial eigenvectoii; is normalized to the mass matiM. To do this, first we calculate:

150 0 0 0.55496
ap=ufMua; =[ 055496 1 1.2470 ] | 0 150 0 1
0 0 150 1.2470
0.55496
[ =83.244 150 187.05 | 1 = 429.44,
1.2470

then the normalized shape vector correspondiong to thenfitaral mode will be:

1
Va1

w = ——a; = [ 0.02678 0.04826 0.06017 | . (1.64)

The steps between EdL.03 and (.64 must be repeated fary, and forwgs as well, to calculate the
corresponding normalized eigenvectors. The final restiltsab calculations are:

u, = [ 0.06017 0.02678 —0.04826 |"

and .
us = [ —0.04826 0.06017 —0.02678 } .

Figurel.14shows the deformed shape of the structure correspondirtetthtee modal vector. Now
we can calculate the amplitude vector of the steady-stataton using the formula of Eq1(60). The
terms are summarized in Tatlel

| N
L ) | — —-——'-"“:-"‘TI ;__. )
| 1 yd
/
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Figure 1.14: Mode shapes of the three-storey structure of Figui@corresponding to the natural
circular frequencies (ayo1 = 5.7455 rad/s, (bxvoz = 16.098 rad/s, and (cos = 23.263 rad/s.

i 1 2 3
u’q 9.026 -7.238 -4.017
11; -0.6879 1.4556 1.176
- -0.02084 0.005613 0.002173
01
Smulq -0.1881 -0.04053 -0.00873

Table 1.1: Harmonic forcing of a three-storey structure. Modal load&fficients of resonance, this
coefficient divided by the square of thit natural circular frequency, participation of the modé¢ha
steady-state vibration.
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From Tablel.1we can see, that this specific loading has a projection inghesrder of magnitude in
each mode, and the coefficient of resonance does not chasgedportion much. Contrary to this, the
whole participation of the first mode is 4.5 times higher tha participation of the second mode, and
20 times higher, than that of the third mode, due to the divi&iyw?;.

The amplitude vector of the steady-state vibration will be:

—0.0070604
m (1.65)

uso = —0.1881u; — 0.04053u, — 0.00873u3 = | —0.010689
0.0091234

For both solution methods we can conclude, that in the stetatg vibration each level oscillates in a cm range,
the lower two levels are out-of-phase, the upper level igliase with the forcing.

1.3.4 Approximate solution of the generalized eigenvalue problem (Ritz-
Rayleigh’s method)

We have seen already, that a higher natural frequency of & dagrees-of-freedom system
plays an important role only if the forcing has a frequen@selto that natural frequency. In
practical problems, the first few natural modes are suffidierdescribe the vibration of the
structure. On the mode shape level, a mode vector of a higttaral frequency results more
changes in the sense of displacements of DOFs. Saitmgler mode shapes correspond to
lower natural frequencies, and an eigenvector (normalizé¢ide mass matrix) can be used as a
base for the calculation of the eigenvalue (see Edtl)).

The Rayleigh quotient

Approximate solutions can be obtained by guessing the mualgesvector of the structure,
and finding the corresponding natural frequency. This isofosite of the classical solution
of the generalized eigenvalue problem, where we startddfimding the eigenvalues from the
polynomial equation defined by the determinant of the maifizoefficientsK — w?M of the
homogeneous equation, and then the eigenvectors werdatattu

Let us assume, thatis a vector ofN element. We define the Rayleigh quotient as:

vIKv
R= . 1.66
viMv ( )
Altough we do not know the eigenvectokscan be written as a linear combination of them
with coefficientsa;:
N
vV = Z Oéjllj.
j=1

Let us expand the denominator and the numerator of E§6( The denominator can be
written as:

N T N N N
viMv = (Z ajuj> M <Z aiul) = Z Z ajoziufl\/[ui.
i=1

j=1 j=1 i=1
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Orthogonality of the normalized eigenvectors (Ef46) implies that the quadratic product
u]TMuZ- = 1if j = i and zero otherwise, thus

N
vIiMv = g aJQ-.
Jj=1

The numerator of Eq1(66 can be written as:

N T N N N
viKv = (Z ozjuj) K (Z aiui) = Z Z ozjaiu;prui.
j=1 i=1

=1 i=1

Orthogonality of the normalized eigenvectors (Eb4€) implies that the quadratic product
u; Ku; = wj; if j =i and zero otherwise. Therefore

vI —
Kv = g % woj

The above formula can be expanded to:

N

Ti — 2(, 2
v Kv = g (aj (woj—wm —|—ahw01 E a wOJ Wiy —i—E awm

Jj=1

The first summation term is zerojif= 1, so we got finally:

V7
KV—E aw01+g a woj wm

If we write the result into the definition of the Rayleigh queuti (1.66) we get:

N N N
21 oz?w%l + Zz 0432- (ng — wgl) Z 04]2- (ng — wgl)
R="2 - =Wl + =2 ~ . (1.67)
'21 O‘?“& Z W01
]: :

The sum on the right hand side of Eq.§7) contains only positive numbers (here we remind,
thatwy, is the smallest natural frequency), or zeros (if a speaifis zero). So we can conclude,
that the Rayleigh quotient is always higher than, or equah&dquare of the first natural
circular frequency. The accuracy of the result dependsraljtuon the initial guess on the
mode shape vector]: the closer the guessed shape veetds to the exact one;, the more
precisewy, Is.

Seeding the,?,, element instead af?, results in a proof for the Rayleigh quotient to be
smaller than, or equal to the square of the highest natuxallar frequency.

32 @0kl

by Németh & Kocsis



CHAPTER 1. DYNAMICS OF SINGLE- AND MULTI-DOF SYSTEMS

Problem 1.3.2(Example on finding an approximate solution for a two-stdireyne) Find an approximate
solution of the first natural circular frequency of the tworgy structure shown in Figure12 The masses
of the storeys aren; = my = 2t, and the stiffness of the columns is given by spring stéBesk; = ko =

50 kN/m. The first mode shape should be assumedras:[ 1 2 ]T

Solution. The system has the following mass and stiffness matrices:

2 0 100 —50
M_{o 2]’K_[—50 50 }

The numerator and the denominator of the Rayleigh quotient a

viMv =1 2}[3 SHHZ[Q 4]{”:10,

viKv=[1 2][1%% _5%0HH:[O 50]“}:100.

So, the Rayleigh quotient is:

vIMv 10 ’
resulting in the approximation:
w2 <10,  we < 3.162radls

Exercisel.3.1 Find first natural circular frequeneyy; of the above problem with the exact first mode shape
vector: -
u =1 1618 ] .

Problem 1.3.3(Example on finding an approximate solution for a multi-eyoframe) Let us find the first
natural circular frequency of a 10-storey frame. (See Eigut5(a).) The inter-storey stiffnesses and the level
masses are the same on each levek: 150t andk = 25000 KN/m respectively.

Solution. The mass matrix of the structure isl@ x 10 diagonal matrix, where each element equalsThe
stiffness matrix is

[ k+k -k 0 ... 0

-k k+k -k :

K=1 o —k k+k .0
e Lk

0 0 -k k

Itis a crucial step of the method to find a good assumptionefrial vector. During the drift of the storeys,
the rigid girders are staying horizontal, and so the stmectollows a pattern of displacements similar to a rod
with finite shear stiffness. The frame can be treated as aedésmodel of the sheared (continuous) column
(Figurel.15(b)). A sheared rod has a modal shape of a sinusoidal funeiithra zero value at the bottom and
a zero tangent at the free end. Similar displacement veatobe used with:

g™
2N +1’

Displacements are shown in Fif.15(c). The numerator and the denominator of the Rayleigh gubti
are:

j=1,...,N.

Vj = Sl

N N

j 2N +1
VTMV = Zvjmvj = stin2 2]\.771 1 =m 4+ = 7875,

j=1 j=1
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N N
VTKV = Ulk’Ul + Z (Uj_lkvj_l — 2’Uj_1k1)j + Ujk’t}j) = ’Ulk’Ul + Z (Uj - Uj_1)2 k =2931.9.
Jj=2 Jj=2
The Rayleigh quotient is:
_ vI'Kv 29319
- vIMv 7875
This will be an upper bound for the square of the first naturaltar frequency:

R = 3.723.

wd, <3.723, = woy < 1.930rad/s

Note: in this specific case the supposed shape vector wagtilna &rst mode vector, so in this problem the
accurate solution was obtained.

(2) (b) (c) 1
------------------ [
J |— ............ 2N +1
. h
sin ZJ'[
77 77 777 77

Figure 1.15: A 10-storey frame structure with rigid interstorey girdarsl elastic columns. (a) Dynamical
model of the structure. (b) Equivalent continuous rod witlitéi shear stiffness. (c) First modal shape of the
continuous rod.

The Ritz-Rayleigh method

We have seen in the previous problems what effect the asssimage on the accuracy of the
result has. If, instead of guessing one vector, we make aliv&ctor as a linear combination of
fixed base vectors, then the Rayleigh quotient will be a famctif the coefficients of the base
vectors. The first natural frequency will be equal to, or demdhan any Rayleigh quotients, so
the minimum of the available values in the space of the bas@wrgewill give an upper bound
for the first natural frequency. This is the theory behindRitz-Rayleigh method.

We have to choose some linearly independent base ve#tgis= 0,...,n) in the N-
dimensional space (whet® is the number of degree-of-freedom of the system), and make
the trial vector as a linear combination of these vectorseréHve call the attention, that the
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inequalityn + 1 < N, must hold, otherwise the vectdr; can not make a base of the-
space.) We want to make owr unique among all vectors parallel with it. We have seen,
that normalizing the eigenvector to the mass matrix is a peagtical way, but now it gives a
nonlinear constraint to the system, and that makes difftoultse. Instead of that, we set the
coefficient of one base vecto®;) equal to one, and write the trial vector as:

v(cr, ... cn) = Py + ZCz“I’z‘-
i=1

Using this trial vector the Rayleigh quotient will depend be variables;, .. ., ¢,:

vIi(er, ... co)Kv(cy, ... cn)
vT(er, .o en)Mv(cq, ... )

R(Cl,...,cn) =

We are looking for the possible smallest R in the space of duovs® 4, . .., ®,,:

R(cy,. .., c,) = min!
o Ifn=1:
The quotient depends on one single variable. At the minimuenfitst derivative van-
ishes: iR
() _ (1.68)
dC1

The solution of the (nonlinear) equatich 8 results in a possible best result for the trial
vector coefficient; in the space of the base vectors.

o If n > 1:
The quotient depends on multiple variables. At the minimbengradient of the quotient
is zero: oR
OR(ev,.en) g y_q (1.69)
801-

which is a nonlinear system of equations forvariables. This type of equations does
not necessarily have a unique solution, thus solution ntethost be chosen according
to this.

We mention here, that the Ritz-Rayleigh method is capable dirfinthe exact solution if
n+1 = N, ie., if the base vector®;(i = 0,...,n) span the wholeV space. Otherwise,
for the trial vector the method minimizes the error to the élxact solution, i.e. it finds the
projection of the exact solution on the space spanned byabe vector®,(i = 0,...,n), and
gives the corresponding Rayleigh quotient.

Problem 1.3.4(Exact solution of a two-storey frame}-ind the exact solution for the first natural circular
frequency of the two-storey structure of Problér8.2
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Solution. Let us assume the trial vectorasc;) = [ 1 ¢ }T, i.e. we chose the base vectors:

o-fi] et

Heren = 1andN = 2,s01 + 1 = 2, i.e. we will get the exact solutions.
The numerator and the denominator of the Rayleigh quotient a

VT (e)Mv(er) = [ 1 cl}{g gH 1 }:[2 zcl}[”:uzca

C1
T . 100 —=50 I 100 — 50¢;
v (c1)Kv(er) = [ L a ] [ 50 50 ] [01 ] - [ Ia ] { —50 + 50¢q ]
=100 — 100¢; 4 50¢3.
The resulting Rayleigh quotient is:

vT(c1)Kv(cr) 100 — 100¢; + 50¢7

R(e) = vI(c))Kv(cy) 2+ 2¢2

The first derivative is:

dR(c1) (=100 +100c1) (2 4 2¢f) — (100 — 100¢; + 50¢7) (4¢1)
der (2 +2¢2)°

200 (¢ —c1 —1) 0

Co4(d+22+1)

It is sufficient, if the nominator equals zero, so the coedfitic; we are looking for is the solution of the
quadratic equation:
cf —c1—1=0.

There are two solutions(1 + v/5) /2 and (1 — v/5) /2. If we substitute them back to the Rayleigh quotient,
the first one results the smaller number, so this will be ttst firode

R(1.618) = 9.549 — w; = 3.090 rad/s
while for the second solution we get
R(—0.618) = 65.45 — w1 = 8.090rad/s

The resultant modal shape vectors are:

R B 0
Vi=lqe18 > V27| 0618 |

Problem 1.3.5(Exact solution for a three-storey structur&ind the exact solution for the first natural circular
frequency of the three-storey structure of Problef 1

Solution. First we repeat the matrices of the system from Prokle3rL

150 0 0
M=| 0 150 0 |,
0 0 150
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50000  —25000 0
K= | —25000 50000 —25000
0 —25000 25000

Let us assume the trial vectoraéci,co) = [ 1 ¢ ¢ ]T, i.e. we chose the base vectors:

1 0 0
do=|0|, @ =|1|, @®=|0
0 0 1

Heren = 2andN = 3,s02+ 1 = 3, i.e. the Ritz-Rayleigh method leads to the exact solutajnise problem.
The numerator and the denominator of the Rayleigh quotient a

150 0 0 1
VT(Cl,CQ)MV(Cl,CQ) = [ 1 ¢ e ] 0 150 O c1
0 0 150 Ca
150
=[1 ¢ e ]| 150c; | =[150 (1+ ¢} +c3) |,
15062
50000  —25000 0 1
vi(er,e0)Kv(er,ea) =1 ¢ ¢ ]| —25000 50000 —25000 c1
0 —25000 25000 co

50000 — 25000¢;
[1 ¢ e ]| —25000 4 50000¢; — 25000c;
—25000¢; + 25000c;

=125000 (2 — 2¢; + 2¢; — 2cie2 + ¢3) |.

The resulting Rayleigh quotient is

25000 (2 — 2¢1 + 2¢§ — 210 + €3)

R(ci,c0) =
(c1, c2) 150 (1 + €3 + c3)

(1.70)

The first partial derivatives are:

8R(Cl,62) -0 8R(61,CQ) -0
861 ’ (902 '

The partial derivatives result a cumbersome system of twaians. However, the solution can be calculated
numerically, resulting in the following solution pairs:

e ¢; = 1.802, co = 2.247,
e ¢ =0.445, co = —0.802,
o ¢y = —1.247, co = 0.555.

These points are on the surface defined by the Rayleigh qaiater the(c, c2)-plane (see Eq1(70). The
shape of the surface is shown in Figuré&a

To decide, which one of the above three solution pairs leadké first natural frequency, we have two
options:

e We decide which one of the solution pairs correspond to thremum point of the surface given by the
functionR (c1, ¢2).

e \We calculate the Rayleigh quotient with the solution poantd pick the smallest one.
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Either way, the smallest possible Rayleigh quotient of ghigblem , and so the square of the first natural
circular frequency is

R =33.01,— |wo1 = 5.745rad/s|,

which is the same as the analytical result.

S

/’" %054
s
i
Wiy

s

Figure 1.16: Rayleigh quotient of Problerh.3.1

Exercisel.3.2 Find an approximate solution of the above problem for thé fisural circular frequencyg;
using the base vectors:

1 0
o= | 15|, & =1|0
0 1
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1.4 Summation theorems

Let us study the undamped free vibration of a MDOF, linearimeaal system described
by the matrix differential equation

Mii(t) + Ku(t) = 0.
It leads to the generalised eigenvalue problem
(K —wiM) up =0, (1.71)

the smallest eigenvalue of which ig,, the square of the lowest natural circular frequency
of the system. Here both andK are constant, symmetric, real valued;by-N matrices,
calledlinear, symmetric operatornis mathematics. We deal with simple models of engineering
structures which are not statically overdeterminate. Tthermass matri® and the stiffness
matrix K arepositive definite! Physically it means that the kinetic and elastic energigb®f
structure must be positive due to any displacements.

These properties of the system allow us to make use of a fewnstion theorems. These
theorems are used to get approximate estimates of the |loatstl circular frequencyy, of
a structure by combining natural frequencies of differefsoblems. Here we do not provide
the reader with the proofs of the theorems, they can be fouridei literature (for instance in
[9]), but we show some simple examples for their applications.

1.4.1 Dunkerleytheorem

Let us decompose thmass matrixas

M=) M
j=1
whereM; ( = 1,2,...,n). We write the generalised eigenvalue problem
(K—w’M;)u=0

and denote its smallest eigenvaluedgyfor j = 1,2,...,n
Using these values tHaunkerleyformula

n

1 1
— < Z — (1.72)
0 =1 j

allows us to approximate the lowest natural circular fregqyev,; of the original problem.
From this the first natural period of vibration is

n
2 2
To <> 17|
j=1

IMatrix A is positive definite ifv” Av > av”v for somea > 0, which implies that all the eigenvalues Af
are positive.
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This theorem states that the reciprocal of the square ofrttadlesst natural circular fre-
guency of the structure is not greater than the sum of recgtsmf the squares of the smallest
natural circular frequencies of the same structure sudyjetct subsystems of the mass.

This approximation underestimates the natural circulaquiency and overestimates the
natural period of vibration, thus it shows the structsodterthan in reality. The usage of this
summation theorem is preferable if the structure is suchithanass can be split into parts
and the natural circular frequencies of the resulting subgires are easy to compute. The
application of this theorem is referred to as tme€thod of split the massesThe closer the
eigenshapes of the substurctures are, the more precisgpftrigximation is.

Problem 1.4.1(Estimation of the natural circular frequency usibgnkerleytheorem) There is a clamped rod
of length3h and bending stiffnesB /. The total mass of the rod is concentrated at three pointseaidd: mass

my IS at the free end, mass, is ath from the free end, and mass; is at2h from the free end, as it is shown
in Figure1.17(a). Estimate the first natural circular frequency of thecture!

Solution. We make use of the method of split the masses. First wertakandms to be equal to zero and
compute the natural circular frequeney of a clamped, massless rod with one lumped masgsat its top
(see Figurel.17(b)). The complianceg; of this structure equals to the horizontal translation efttbp due to
a unit force acting horizontally at the top. We compute thepldicement using the theorem of virtual forces
(Castigliands method).

The spring stiffnes#; is the inverse of the compliance, and the square of the ddtecuency isw? =
k1 /m1. Then, we setn; andms to zero and compute the natural circular frequengwf the clamped rod with
only one massn, ath from the top (see Figurg.17(c)) in a similar way. Finallyyn, andms are set to zero
andws is computed. A brief summary of the computation is as follows

h3 1EI 1 EI
_ 2 _ 2
f1_2E1{3h} =95 7 Mg T T g
8 I3 3EI 3 BI
_ 2 _ _ 2
f2_2EI{2h} h=3mr 7 RTgm 7 T g,
2 1h3 El El
2 2
J— ka =3— 2 = .
fs 2EI{} BV A R *

The estimation of the first natural circular frequency of dhiginal structure is based of.72):

1 h3 1
— § ol {le + imz + 3m3} thus

w SET and
0 =\ B2 Tmy + 8ma + ma}’

3{2
T §27T\/h {27m, +8m2+m3}.

3EI
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El

2h

o

@

(©

M)

2h

3h

. mj_ F=1
El
(b)
El
. m3 F=1

(d)

M)

3h

h

Figure 1.17: (a) A clamped rod of lengtBh and bending stiffnes& with its mass concentrated at three
points of equal distancéds (b) The case when masses andms are zero with the corresponding
substructure and the bending moment diagram due to a htelaamt force ' = 1 at the top. (c) The case
when masses:; andmg are zero with the corresponding model and the bending modiagtam due to a
horizontal unit forcel” = 1 acting ath from the top. (d) The case when massesandm. are zero and the

substructure with the bending moment diagram due to a urgef = 1 acting at2h from the top.
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1.4.2 Southwelltheorem

Let us write thestiffness matrixn the form

Itis assumed thaK; (j = 1,2,...,n) possesses the same propertieKgge. symmetric and
positive definite). The generalised eigenvalue problem

(Kj—wQM)u:O, ji=12,...,n (2.73)

hasN eigenvalues for each The smallest of them is denoted by.
The lowest natural circular frequency,, of the original problem can be approximated
using theSouthwelformula

wh > > W (1.74)
j=1

The first natural period of vibration is estimated as

-1
"1
T021§<Zﬁ> .

7j=1 J

Thus this formula states that if the stiffness of the striecta composed of parts, then the
square of the smallest natural circular frequency of thecsitire is not less than the sum of the
squares of the smallest natural circular frequencies sporeding to the partial stiffnesses.

The formula underestimates the natural circular frequeride structure, i.e. the result
shows the structursofterthan in reality. We refer to this theorem as tredféct of stiffening
Let a structure havé stiffness parameters. We can group these parameters sgts. If the
structuredoes not become statically overdeterminateen all but one of the stiffness parameter
sets equaterq then theSouthweltheorem can be applied. Practically, decreaseall but the
jth sets of stiffness parameterszeroand then compute the corresponding smallest natural
circular frequency; for j = 1,2,...,n. Finally, we apply theSouthwelformula (1.74).

Problem 1.4.2(Estimation of the natural circular frequency usBguthweltheorem) There is a rigid roof of
massm supported by two clamped rods of lendtland bending stiffnessdsi;, ;. The rods are connected
to the roof through hinges and the mass of the rods is neglelteaddition, there is a linear spring of stiffness
k attached to the roof. The model is shown in Figliré8(a). Estimate the first natural circular frequency of
the structure!

Solution. We applySouthweltheorem, since the structure is such that if we set any 2eiff parameters out
of EI,, El,, or k, to zero, then the structure remains stable. First we takeandk to be equal to zero and
compute the natural circular frequenecy of a clamped, massless rod of lendttand bending stiffnes&’[;
with one lumped mass: at its top (see Figur&.18(b) and (e)). Then, we takel; andk to be equal to zero
and compute the natural circular frequengyof a clamped rod of length and stiffnessZ 1, with the mass
m at its the top (see Figure18(c) and (e)) in a very similar way. Finallyy7; and E1, are taken to be zero
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andws is computed simply: in this case the masss supported by a spring of stiffneéssow? = k/m. The
computation ofv? andw? briefly is

1 2, h3 3EL 5, 3EL
= — = k = —
h=9513" = 361, L= 7 “I= 7m0
1 2., R _ 3EL »  3EL
fo= 9FE, 3  3EIL S X Y27 .
m k
< |[EL El, =
F=1
@ é
e
h
c ()
(c) (d)

Figure 1.18: (a) Model of a rigid roof of mass: supported by a linear spring of stiffnessand by two
clamped, massless rods of equal lengtind bending stiffnessdsl; and E 5. (b) The case when the
stiffness parameter8/, andk are set to zero. (¢) The case wheih, andk are set to zero. (d) The case when
EI, andFEI, are taken to be zero. (e) A clamped rod of lenkythnd its bending moment diagram due to a
horizontal unit force at the top.

The estimation of the first natural circular frequency of dhiginal structure following1.74) is

3FEI, 3FEI, k
2
wyy > T T T + g thus

1 3
wo1 = \/m{h‘s{Ell —|—EIQ}+]€}, and

2m/m
(BI + EL} +k

To; <

3
n®
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1.4.3 Foppl-Papkovichtheorem

Let the eigenvecton, of (1.71) be a sum of pairwisd<-orthogonal vectorsy;, j =
1,2,...,n. (Vectorsu,; andu; are K-orthogonal ifu]TKu,- = 0.) Practically it means that
the deformation modes of the structure are independenthieestrain energy of the structure
does not contain mixed terms of the deformation modes.

The smallest eigenvalueé2 of the generalised eigenvalue problems

(K—w’M)u; =0, j=12,....n (1.75)

are the basis of the approximationwaf;. The formula we can use is
1 "1
— < — | (1.76)
Wiy ; %2'
From this the first natural period of vibration is
< 77|
j=1

This approach again shows the structsoéierthan it is.

We refer to this theorem as thentthod of split rigiditie§ or partial rigidizing. If a struc-
ture hasS stiffness parameters, then we can group themiinsets. If the structurbecomes
statically overdeterminate’hen all but one of the stiffness parameter sets egei@ then the
Foppl-Papkovicitheorem can be applied. In practice, imereaseall but thejth sets of stiff-
ness parameters tofinity and compute the corresponding smallest natural circuéguiency
w; forj =1,2,...,n. Then we can utilise formulal(76).

Problem 1.4.3(Estimation of the natural circular frequency uskigppl—-Papkovictheorem) There is a mass-
less rod of lengtth and bending stiffnes&’/. The top end of the bar is free and a masss attached to it,
while the bottom end is connected to a fixed hinge and equipgihda linear rotational spring of stiffness
See the model in Figure 19(a). Estimate the first natural circular frequency of thadtire!

Solution. The structure becomes statically overdeterminate if eitine of its stiffness parameter8 [ or s)

is set to zero. Therefore, we apply theppl-Papkovichtheorem. First we stiffen the rotational spring, i.e. we
takes — oo, which implies that the bar is rigidly clamped at the bottddow we compute the compliangg
(the translation of the top of the bar caused by a horizontilfarce), then the stiffness is, = 1/ f1, and the
natural circular frequency equalsdg = k;/m. See Figurel.19(b). Next we stiffen the bar against bending
deformation, i.e.EI — oo. Now the rod is a rigid body capable to rotate about the hingbeabottom end,
which generates a moment in the rotational spring. The camg /> is the horizontal translation of the top
end caused by a horizontal unit force. The moment of eqialibf the structure i$s — FFh = 0 (assuming
small displacements), as it is indicated in Figdré&9 (c). From this, if we takeF" = 1, the rotation of the
rigid body is¢ = h/s, and the horizontal translation of its topfig = ¢h = h?/s. (Again, we consider small
displacements.) The stiffness is the inverse off,, andw? = ko /m. This computation is summarised below.

12 B3 3EI 3BT

= — “pi= ko= 225 2 _ 27
h=3573 sEI VTR YT g
h? 5 9 s
fa=5 A B S el
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(@ (b)

= El =

©

Figure 1.19: (a) A straight, massless rod of lengttand bending stiffnes& carrying a lumped mass at
the top, connected to a fixed hinge and a rotational springfofesss at the bottom. (b) The case when
s — oo (rigidly clamped elastic rod) and the bending moment diagdaie to a horizontal unit force acting at
the top. (¢) The case whdiil — oo (elastically clamped rigid bar) and the free body diagram tua
horizontal unit force.

The estimation of the first natural circular frequency of dhiginal structure using Eq1(76) is

! < m + i thus
wi, ~ 3EI s

wo1 > ——, and
h3m N h2m
3ET S
h3m  h2m
Tor <2 —_—
e T T
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

Chapter 2

Dynamics of slender continua

Main load bearing members of engineering structures ofé®e bne significant dimension:
the extent of the member along this direction is larger witleast one order of magnitude than
in other (orthogonal) directions. The behaviour of thelemdermembers can be characterized
by fewer variables, than needed for a complete three-dimmealsdescription. In this chapter
we derive the equation of motion of some spedfender continuum rodgjive the solution for
the free vibrations and, in some cases, forced vibratiomslao studied.

First we collect the assumptions used hereafter for thaesdludds. Since in engineering
practice the most commonly used structural element igpttsnatic rod which is a slender,
straight rod of uniform cross-sections, we restrict ouestigations on this type of rods. It is
assumed to be homogeneous, isotropic, and linearly eld¥dmeglect the effect of damping.
The axis of the rod in the stress-free state is the straightdonnecting the centroids of the
cross-sections. In the stress-free state, the axis of theagiocides with axis: of a left handed
Cartesiancoordinate system (see Figuzel (a)). The rod obeys the principle of planar cross-
sections: during the deformation every cross-section iesrane and undistorted. The cross-
section of the rod is assumed to be reflection symmetric te @axiThe displacements are
considered to be small. Thengthof the studied rod is denoted Wyits cross-sectional area
is A, thesecond moment of the cross-sectrath respect to: is I, and thepolar inertia of the
cross-sectionvith respect to axis is I,. The material of the rod is characterised by: thass
densityp, the Young'’s modulug, theshear modulus, and thePoisson’s ratiov. * Themass
per unit lengthof the rod isy = pA.

We analyse the following simple vibration modes:

¢ Longitudinal vibration of prismatic barsThe rod deforms along its axis while all the
cross-sections remain parallel, thus their motion can beadlterised by the translation
u(zx,t) of the rod axis. The only non-zero internal force in this caste normal force
N. A simple model is shown in Figur 1 (a), and free vibrations are solved using both
standing and travelling waves in Sectidri

e Torsional vibration of prismatic shaftsThe cross-sections of the rod rotate about axis
x and this rotation is denoted lyy, (=, ¢). The cross-sections remain parallel. The only

tAlthough E, G, andv are not independenff = 2(1 + v)G.
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non-zero internal force is the torqlé The free vibration of this structure is discussed
in Section2.2

e Shear vibration of prismatic beam$he rod deforms along axis The non-zero internal
forces in this case are the shéaand the bending moment, but the rod is assumed to
beunbendableThus all the cross-sections remain parallel, their motexmbe described
by the translation(x, t) of the rod axis. A simple model is shown in Figl2e (a), and
the solution of the free vibration is given in Secti2:13.

e Transverse vibration of prismatic beamBhe rod axis translates aloggand the cross-
sections rotate about axis The translation and the rotation are denoted by, ¢) and
o(z,t), respectively. The non-zero internal forces in this casetlae sheal” and the
bending momend/, but rod is assumed to hashearablethereforev(x,t) andy(z, t)
are not independent. A simple model is shown in Figlilga), and a thorough vibration
analysis is given in Sectic®.4.

2.1 Longitudinal vibration of prismatic bars

In this section we analyse the longitudinal vibrations @f pinismatic bar, and introduce the
general steps of any continuous modeling.

In the stress-free state, the axis of the bar coincides withzaof a left handedCartesian
coordinate system. There is a longitudinal distributedllgdx, t) acting in the axis of the bar
(see Figure.1(a)). If we restrict buckling, then these conditions impiat the bar undergoes
a rectilinear vibration: the motion of each cross-sectibtine bar occurs parallel to axis

The only displacement is characterized by the translatient) of the centroid of the cross-
sections. The deformation of the bar is the normal strain, ¢): the relative displacement of
two "neighbouring” cross-sections. Assuming small displaents, its value is:

Ou(x,t)
or

Since the prismatic bar has planar and homogeneous croissase the relationship between
the internal stress (normal stress(x, t)) and internal force (normal forc&/(z, t)) is:

ex(x,t) =

N(z,t) = o,(x,t)A,

whereA is the cross-sectional area. The linear elastic matersglarese provides the material
equation Hookés law):
o.(x,t) = Fey(x,t),

whereF is the elastic Youngs) modulus of the material. Summarizing the above kinecadti
equilibrium and material equations yield:
ou(z,t)

N(a,t) = EA= =, (2.1)
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2.1.1 Differential equation of motion

We derive the equation of motion for an elementary segmenhefar. Figure2.1 (b)
shows this small segment of lengty: between the coordinatesandx + Ax. We assumé\x
to be sufficiently small, hence the changeygfr) and the acceleratiot?u(z, ) /0t* alongAx
can be neglected.

q,(x.t) u(x,t) N(x, 1) | 9,60 | N(x+Ax,t)
WTW 777777X
y< | - AX
() (b)

Figure 2.1: Sketch of (a) a prismatic bar subjected to a longitudindtithsted loady,, (x, ¢t) and (b) a bar
element of length\z subjected to the internal forces and the distributed loade deformation of the bar
element is neglected due to the small displacements.)

We write Newtors second law of motion for this segment:
Ou(x,t)
ot?
We write aTaylor expansion ofV(x, t) aroundz

pAx = qu(x,t)Ax — N(z,t) + N(xz + Ax,t). (2.2)

ON (z,1)

N(z + Az, t) = N(x,t) + pe

Az + O(Az?)

and substitute it into Eq2(2):

O*u(x,t) ON (z,t)
ot? ox
The symbolO(Az?) means, that those parts are in the order of magnitudedf We simplify

the above equation as

0*u(zx, 1) ON(z,1)
ot? ox

and divide both sides byAx. If we take the limitAz — 0 of both sides, then the term

O(Az?)/Ax vanishes, resulting in:

Az

= qn(z,t)Ax — N(x,t) + N(z,t) + Az + O(Az?).

pAx = qn(z,t) Az + Ar + O(Az?),

O*u(x,t)

ot?
We substitute Eq.2.1) into the above equation
0u(z,t)

ot?

ON (z,t)
ox

= Qn(xv t) +
0*u(z,t)
ox?
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rearrange it, and introduce the new quantity= F A/

82U(ﬂf,t) QaZU(wat) o Qn($at)
2 O gz = | (2.4)

Equation R.4) is the differential equation of the longitudinal vibratiof the prismatic bar. The
guantity

L (2.5)
o

is thevelocity of the travelling longitudinal waves

2.1.2 Free longitudinal vibration

The solution of the differential equation of motion of a danbus system consists of two
parts. The complementary equation i) has the same left hand side, but the right hand side
is zero: it is ahomogeneoudifferential equation. The solution of this equation gitles free
longitudinal vibration. Then a particular solution of then-homogeneousguation 2.4) can
also be obtained. The sum of these solutions (i.e. the honeages and the non-homogeneous)
is thecomplete solutionwhich must fulfill the initial conditions through the freaameters of
the homogeneous solution.

For longitudinal vibrations, we show only the solution oethomogeneous differential
equation

Pu(z,t)  ,0%u(z,t)

z " gg2 =0}
thus we deal only with the free vibration of the bar. Theresesxtwo methods for finding the
nontrivial solution (i.ew(z,t) # 0) of Eq. 2.6):

(2.6)

e solution with standing waves,

e solution with travelling waves.

We will show the solution for a bar of lengthwith fixed-fixed ends (i.e. with boundary
conditionsu(0,t) = u(¢,t) = 0) using the standing-wave method first. In this case we separa
the variables and seek the solution of the form:

u(x,t) = () (acos (wot) + bsin (wot)) . (2.7)
We substitute the abovensatznto Eq. @.6):

{—wga(@ _ 2 d%(‘”)} (a cos(wot) + bsin(wot)) = 0.

" dx

The harmonic parta cos(wot) + bsin(wyt)) is not zero for all time instant(unlessa = b = 0,
which is the trivial solution:(x,t) = 0), so we have to solve the equation:
, d?u(z)

wod(r) + €=
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Now we assume the solution of EQ.8) has the harmonic form:
u(x) = Asin (%x) + Bcos (%x) :

If we substitute the above formula and its second derivatie respect ta: back into Eg. 2.9),
then we get

w 2
wit(z) — 2 (70) u(z) =0,
which results in the relationship:
C @
The value otuy, 1)y, and the ratio ofA to B depends on the boundary conditions.
In our example the bar is fixed at its both ends, th(s¢) = 0 — «(0) = 0 andu(¢,t) =
0 — u(¢) = 0, according to2.7). Thereforeu(0) = 0 implies
Yo Yo

1(0) = Asin (70> + B cos (70) =0— B=0,

Wy =

and using this result on the other end-conditidf) = 0 yields

() = Asin <%€) =0 — sin (¢hg) = 0.
This second constraint holds in the trivial casg & 0) and in the case),; = j= for any
positive integer;. So the shape of the bar during the free vibration will be tiva sf sinusoidal
wave-functions. Different shapes exhibit different natwircular frequencies:

Jjmc,
Wo; = 7
The solution of the free vibration is:
u(z,t) = ;sin ‘% (aj Ccos ]W; + b; sin jw; ) : (2.9)

with infinitely many parameters; andb;, which must be determined from the initial condi-
tions.
We note that using the trigonometric identities

cos(a — 3) — cos(a + 3) cos(a — ) + cos(a + fB)

sinasinﬁ = , COSO(COSﬁ =
. 2 2 (2.10)
, sin(a — ) + sin(a + )
sin o cos f = 5
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

:;%sm{%(x—i-cnt)}—%008{7(x+cnt)}
% gin $ 17 (g — % cos LI (0 —
+5 sm{ 7 (x Cnt)}+ 2cos{ 7 (x cnt)},

J

© /a? + b ~ 4
R {sin {]W (x 4 cpt) — arccot Z—J}

+ cos {‘E (x — cut) — arccot b—]}] :
14 Q;

The above forms coincide with the outcome of ttevelling-wave methqdliscussed in details

in AppendixA.1.

2.1.3 Forced longitudinal vibration: kinematic loading
Let us study a bar fixed at the far end and vibrated at the rsgeetid harmonically in time
following f(wt). There is not any force load on the bar, tl6z, t) = 0 and we have to solve

(2.6) with boundary conditions
u(0,t) = f(wt), wu(l,t)=0. (2.11)

Assuming that the response of the bar is also harmonic inwmean separate the spatial and

temporal variables as
u(z,t) = a(z) f(wt).

The harmonic function is f(wt) = cos(wt)
In the case off (wt) = cos(wt) EQ. (2.6) becomes

{-&a(@ _ d?;f) } cos(wt) = 0,

yielding the solution
. w [ w
u(x) = Acos (—x) + Bsin (C—x) :
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The constantsl and B are computed from the boundary conditio8sl():

a0)=A=1,

u(l) = cos (%é) + Bsin (Ciﬁ) =0 — B=-—cot (;ﬁ) :

Therefore, the solution of the forced vibration is:

u(z,t) = {cos (;"—n;c> — cot (26) sin (;”—nx) } cos(wt). (2.12)

This is the solution in a standing-wave form. However, we again use trigonometric
identities @.10 to write a travelling-wave form:

u(z,t) = a(z) cos(wt) = {Acos <ﬁx) + Bsin (ﬁx) } cos(wt)

Cn Cn

_ g {COS {Z"—n(;p - cnt)} + cos {%(af + Cnf)H
+§ {sin{zj—n(x —cnt)} +sin{j—n($+0nt)}]

_ % {ACOS{%(x+cnt)} +Bsin{f—n(x+cnt)}]
+% {Acos{f—n(m—cnt)} —i—Bsin{Zu—n(:E—cnt)H ,

which, using the calculated constant@and B yields

m%w:%F%{%@+q@}—m4£%ﬁm{£@+%wﬂ
-+%%w{ggx—%@}—cm(gy)gn{ipp—%ﬂ}}

The above form can be compacted using the trigonometriditgléA.11):

u@¢)¢1+mﬁ(%®{mn{ﬁue+q@}an{ﬁggq@}} (2.13)

2 Ch, Cn

The harmonic function is f(wt) = sin(wt)
Now Eqg. @.6) is

{ﬂﬁa@y—ﬁdzgﬂ}ﬁmww:o,

u(x) = Acos (Zx) + Bsin (£x> :
Cn Cn
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The constantsl and B are computed from the boundary conditio8sl():

a0)=A=1,

u(l) = cos (£€> + Bsin (iﬁ) =0 — B=-—cot (26) :
Cn Cn Cn

Therefore, the solution of the forced vibration is:

u@j)z{am(gm)—cm(g¥>mn(£¢>}gmww. (2.14)

This is the solution in a standing-wave form. We can againttigenometric identities
(2.10 to rewrite a (general) travelling-wave form:

u(z,t) = i(z) sin(wt) = {Acos (ﬁx) + Bsin (ﬁx) } sin(wt)

2
[—Bcos {g}—n(a: + cnt)} + Asin {Zd—n(ﬂf + Cnt)H

+%[Bam{g%x—Q@}—ﬂﬂm{ggx—%ﬂ}y

which, using the appropriaté and B yields
1 w w . w
u(z,t) = 5 {cot (a€> cos {a(x + cnt)} + sin {a(m + cnt)}}
1 w w .| w
-3 {cot (aé) cos {a(x - cnt)} + sin {a(x - cnt)}} .

The above form can be compacted using the trigonometriditg€i.10):

u(z,t) = \/1 e <M> [cos {i(m —ﬁ—i—cnt)} - cos{i(a; . cnt)H . (2.15)

2 Cn Cn

2.2 Free torsional vibration of prismatic shafts

In this section we discuss the torsional vibration of a gtrashaft with rigid circular cross-
sections of radiusz. The length of the shaft i§ its mass per unit length g = oR?w. The
only displacement the cross-sections undergo is the ootati(x, t) about the shaft axis. The
twist k. (z, t) is the first derivative of the rotation with respectito

_ 0pg(z,1)
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This twist induces shear strain in the shaft. We assume arliglastic material, so the torque
T(x,t) can be written as:
T(x,t) = Gloky(x,t). (2.17)

HereG is the shear modulus of the material alyd= R'7/2 is the polar inertia of the cross-
section with respect to the axis of rotation

We take a short segmertz of the shaft at coordinate, with the torque at both ends
T(xz,t) andT'(z + Az, t), respectively. The theorem of angular momentum can beemrftir
this segment as:

- 0%y, t
T(x + Ax,t) — T(z,t) = 10%

Herel, = (uAxz) R?/2 is the kinetic inertia of the segment, afitlp, (x, t)/0t? is its angular
acceleration.
T(x 4+ Ax,t) can be approximated by its Taylor series with respect to

Ol (x,t)
ox

Substituting this approximation into the equation of mot{a.18 we get:

(2.18)

T(x+ Ax,t) =T(z,t) + Az + O(Az?).

2 2 52
8T(x,t)Ax L O(A) = (oR*mAx) R* 0 gp(m,t).

ox 2 ot?
Now we substitute the material equatidhX7) and the kinematical equatio2.@6 into the
above equation, and divide both sides Ay, then calculate the limit a&z — 0. A few
simplification results in:

Ppg(x,t)  Ppy(x,t)
¢ a2 o

Introducing thevelocity of shear waves

(2.19)

Cs —

¢
0

we can write the differential equation of the free torsioribtation of prismatic shatfts:

0, (z,t) 5 0%, (1)
e gt te ) o) (2.20)

This is a PDE with similar structure as the POX¥EG) of the free longitudinal vibration, so the
solution methods are the same.

2.3 Shear vibration of prismatic beams

In this section we analyse the planar vibration of a beammisimextensional, unbendable,
but shearable Considering small displacements the only deformation efdfoss-sections of
the beam is the translatiariz, t) parallel to axisy (see Figure.2(a)).
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q ()

| f V(x,t) T —— || Ve,

V(e

| AX

(@) (b)

Figure 2.2: (a) Sketch of an inextensional, unbendable prismatic bednjested to a transverse distributed load
qi(x,t). (b) A beam element of lengthz subjected to the internal forces and the distributed |daterhal
bending moment is not indicated.)

The material is linearly elastic and homogeneous. Henamrdmg toHookes law, the
connection between the shear strajp and the shear stress, is:

Toy = GVay.

HereG is theshear modulusf the material which can be computed from Yaungs modulus

FE andPoissors ratio v as 5

2(1+v)
Since thePoissors ratio v must be betweef and0.5, the shear modulus is between one-third
and one-half of th&oungs modulus:G = E/3 ~ E/2.

According to earlier studies, the distribution of sheaesdr,, is constant along the width,
but quadratic along the height of the cross-sectin Therefore, the shear straip, is also
guadratic iny. That would violate the principle of planar cross-sectjs based ofdimo-
shenké method [LO], we introduce the effective shear arég; of the cross-section. The ratio
k, of the effective shear areé.q to the aread

is called theshear correction factor For instancek, = 5/6 for a rectangular cross-section,
while k&, = 0.9 for a circular shaft. In this manner, the elastic energy audating in a beam
element computed with the quadratic stress and straintistyns equals to the elastic energy
computed with constant straif), and stress

Tay = G4y
distributions. For small displacements the shear stygjrof a beam element is:

_ ov(x,t
f)/a:y(xat) = é—x)

On any cross-section of the beam the resultant of the shesasst,, must be equal to the
(internal) shear forc& (z, ), thus

V(z,t) = Tuy(z, 1)k A.
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If we combine the above relationships, then the followingadiy is obtained:

ov(x,t)
or |

V(x,t) = k,GA (2.21)

Herek,G A is theshear stiffnessf the beam.

2.3.1 Differential equation of motion

We write Newtors second law of motion along directianon a small beam element of
lengthAz (see Figure.2 (b)):

@z, )Ax —V(z,t) + V(r + Az, t) = MAx%. (2.22)
TheTaylor expansion of the shear foréd&z, t) aroundz is
V(z+ Az, t) = V(z,t) + ava(i, DAz + O(A?), (2.23)
After substituting this expansion into EQ.22 and doing some simplification we can write
¢z, t)Ax + %Am + O(Az?) = ,qu%.
Dividing both sides byAz and takingAz — 0 leads to
o) + oV (z,t) _ Ma%(x,t)_ (2.24)

ox ot?
Finally we substitute Eq2(21) in the above equality to obtain

0?v(x,t) 0*v(z,t)
q(z,t) + ksGA Il v a
which is the second order partial differential equation loéa vibration of the unbendable
beam. If we introduce the velocity of shear waves

CS:,/@:\/E, (2.25)
" 0

then PDE 2.24) divided by yields the simple form

0?v(w,t) ,O?v(z,t)  qlx,t)
5 — ks o2 | (2.26)

Formally it is the same PDE ag.6), except for the coefficient here isc? instead ofc?,
and that the unknown function is the vertical translatidm, ¢) instead of the longitudinal
translationu(x, t) of the axis. Therefore, the solution df.26) follows identical derivation as
of the solution of 2.4). When pure shear vibration is needed in structural desigineicase
of the vibration of fixed-free shearable beams. It is ofteadu® approximate the dynamical
behaviour of high buildings with rigid slabs and elasticuisohs. Hence we shortly study the
free shear vibration of a fixed-free beam.
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2.3.2 Free vibration of a fixed-free beam

The complementary part 02(26) is the homogeneous second order PDE

Po(x,t) . ,0%v(x,t)
ot? T
which governs the free shear vibration of the beam. Usingtimeept of standing waves, we
assume that the solution d.27) is of the separated form

=0, (2.27)

v(z,t) = v(x) - {acos(wot) + bsin(wpt)} . (2.28)
Substituting the above expression infoZ7) yields

{_wg@(x) — ksci%} - {a cos(wot) + bsin(wpt)},

which is fulfilled for any time instant if the second order ODE

2 dz@(x)
5 da?

ksc +wit(x) =0 (2.29)

holds. From previous mathematical studigls fhe above ODE has the solution of

0(x) = Acos (%x) + Bsin (%x) : (2.30)
Here the coefficientst and B can be computed from twboundary condition®f the beam.
For the studied fixed-free beam we can write the followingrutary conditions:

ov(x,t) B
5 et = 0 (2.31)

i.e. the translation of the fixed end of the beam is restriatadi the shear force at the free end
of the beam is zero. It can be easily seen from Bq7) that

v(0,8) =0, V(L) =k,GA

0(0) =0 implies v(0,¢) =0 and

ov(z,t) | B
Ox o=t

do(x) N
- |._, =0 implies

It follows from the above statements, EQ.30, and Eq. 2.3]) that

0.

0(0) = Acos (0) + Bsin (0) =0
— A =0,

do (.%‘ ) wWo . wo Wo
— A =0 B =0 —
dx ’x ¢ \/k_scs { . ( \/k_scs ‘ o \/k_scs ‘ !

— Bcos (\/C;_SCSE) = 0.
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The last equality fulfills either ifB = 0 (which corresponds to a straight beam, no vibration)
or if the natural circular frequency equals any of the foilogwalues:

Ve g T

; _Z

5 r=12,..., . (2.32)

Wor

Thus there are infinitely many natural circular frequengcigs, of the shear vibration of un-
bendable beams. These frequencies form an arithmetic segweith common difference
mkscs /L. There is a corresponding shape functions for each nareiéncy:

o) B (2127, o

Finally, the shear vibration of a prismatic beam is the fell)y combination of the natural
modes:

= 3 o (L1207
forcon (VEZZB ) i (VB £ )

Problem 2.3.1(Elastically clamped, shearable columrgstimate the first natural circular frequency of a in-
extensional, unbendable column of rectangular crosseseécthe length of the column i§, its mass per unit
length isu.. The area of the cross-sectiondsthe shear modulus of the materialis The structure is elastically
clamped at the bottom with a rotational spring of stiffngsand it is free at the top end, as shown in Fig2ui@

(@).

(2.34)

GA GA
- H - H
s
S—
777777

@) (b)

— GA—o —

©

Figure 2.3: (a) Model of an inextensional and unbendable beam whictastieblly clamped at one end and
free at the other end. (b) The case when the rotational sfingid. (c) The case when the beam is totally
rigid.
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Solution. We have not derived the natural frequencies of a beam witlhdledary conditions given in this
problem. Therefore we make use of one of the summation theoirgtroduced in Sectioh.4in order to ap-
proximate the first frequency. Since the structure becomadisally overdeterminate if either the spring stiffness
s or the shear stiffnesS A is set to zero, we need to apply thegpl-Papkovics’ theorem (see Subsegel.3.
First we stiffen the rotational spring— oo as shown in Figur@.3 (b), and compute the natural frequengy

from Eq. .32 evaluated at = 1:
VEkscs GA T«
wy) = — =y |ks——.
‘2 w20

Here the shear correction factor = 5/6, since the cross-section of the beam is rectangular.

Next we stiffen the beam, i.&7A — oo, and compute the natural frequenacy of a rigid beam of length
¢ and massn = u¢, supported by a rotational spring at one end. That is shovgare2.3(c). We write the
theorem of angular momentum for the rigid beam:

3 .
160 = —polt)

This second order linear ODE has a solution

qﬁ(t)zAcos(,/Aigt)—&-Bsin( jlgt)

from which the natural frequency can be read out:

e — ]3P
2 = Mk

According to Eq. 1.76), the first natural circular frequency of the original sture is

1<1+1% 1_ 4€2+£3

wd; T w? o w2 wd, Mk:sGAWQ 'u357
1

w01> .

O
A kGAr? " 35

2.4 Transverse vibration of prismatic beams

The cross-sections of the studied beam are reflection synert@gxisy. There is a trans-
verse distributed load, (z, t) acting in the plane of symmetry — y of the beam, as shown in
Figure2.4 (a). If we restrict flexural-torsional buckling, then thesmnditions imply that the
beam undergoes planar deformation: the motion of the be&ragurs in the plane — y.

The beam is assumed to eextensible and unshearabl@he curvev(z, t) describes the
deflection of the beam axis alongat some position: and timet. Since the beam is un-
shearable, the rotatiom(x, ¢) of the cross-sections about axigquals the slope of the axis:
a(z,t) = Ov(z,t)/0x. The only deformation which is not constrained is the cumek(x, t)
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

of the axis of the beam:
~ Po(a,t)

K(x,t) = Oz -
(2]

The Bernoulli-Euler constitutive equation says that the (internal) bending e/ (x, t) is
linear in the change ir(z, 1), i.e.

M(z,t) = Elk(x,t).

Here E' is theYoung'smodulus of the isotropic material,is the second moment of the cross-
section with respect te, and their product”] is called the bending stiffness of the beam,
which is constant along. If the deflectionv(z,t) is small, and so is the slop#(zx,t)/0x,
then we can make the following approximation:

0*v(x,t)
ox?

Besides, in the case of small displacements, the trans\vaadechuses only transverse transla-
tion v(z, t) of the axis, so no translation occurs along axis

M(z,t) ~ —EI (2.35)

2.4.1 The equation of transverse vibration

Let us cut the beam at two nearby cross-sections =, andx = z, + Az, so that we
obtain abeam elementf length Az. We substitute the mechanical effect of the material by
an (internal) normal forceV, a shear forcd/, and a bending momernt/ at xy, and by an
(internal) normal forceV + AN, a shear forc&” + AV, and a bending momet + AM at
o+ Az. This beam element is shown in Figwtel (b). The acceleration of the center of mass
of the beam element is approximated®y (z,t)/0t* (evaluated at = z,). The resultant of
the distributed load; (z, t) is approximatelyy (zo, t)Axz. The smallerAx is, the more precise
these approximations are.

q,(x,1)

T

M(X,t) M(x+4%,t)

Cll=|I>

V(x,t) V(X+AX,t)
AX

@) (b)

Figure 2.4: Sketch of (a) a prismatic beam subjected to a transvergepdied loady (z, t) and (b) a beam
element of lengtAx subjected to the internal forces and the distributed lo@de (hormal forces are not
indicated, and the deformation of the beam element is negletue to small displacements.)
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

Now we writeNewton'’s second law of motian the vertical direction:

2
V(x4 Az, t) = V(x,t) + gz, t)Ax = qua g(;’ t), (2.36)
which is evaluated at = x,. TheTaylor expansion of/(z, ¢t) with respect tar aroundz; is:
2
V(z+ Az, t) = V(x,t) + MAw + MAx2 +...
=V(x,t)+ 8V(§x, t)A:c + O(Az?)
X

If we substitute 2.37) into (2.36), divide it by Az and applyAz — 0, then the following
formula is obtained:
oV (x,t) _ 0u(x,t)
- q(x,t) = Vo
Now we write thetheorem of angular momenturilVe approximate the moment of inertia
of the beam element with

(2.38)

I
/dem = /yQQdAAx = [pAx = Z,qu = iauAu,
") (A)

and its rotation withv(z,t)/0x. The quantityi, = /I /A is called the radius of gyration.
The smallerAx is, the more precise these approximations are, again. Huoedm of angular
momentum states that the angular momentum of the beam eleqpasls the moment exerted
by the (internal and external) forces and couples abouteh&e of mass, thus

Ax o OPv(z,t)
— M(x + Ax,t) + M(z,t) + V(I’t)T + V(z + Az, t>7 = ignAx LR
Now we substituteZ.37) and theTaylor expansion of\/ (z + Ax, t) in (2.39), divide the result
by Ax and tendAxz to zero. The result is
OM (x,t) o, PPzt
T V@D =Ty e
Differentiating the above equation partially with respiect and combining it with Eqs2.35),
(2.38 yields the fourth order, linear, inhomogeneous partitiedential equation (PDE):

O*v(z,t)  ,0%(x,t) dMv(x,t)
( TR e ) R

Ax

(2.39)

(2.40)

= q(z, 1) (2.41)

The above PDE describes the vibration of the beam axis céduysad arbitrary forcing, (z, t).
It is often reasonable to neglect the effect of rotary irefor example wher, is small).
Then @.41) simplifies to

0?v(x,t) d'v(z,t)
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We restrict our studies t®2(42. In order to solve it, we need to define boundary and initial
conditions. Let us start with the boundary conditions. Wedss only some well known type
of external constraints.

If the beam of length is supported by a fixed hinge and a roller at its ends (cqlieded-
pinnedhereafter, shown in Figur25(a)), then the deflection(z, t) and the bending moment
M(z,t) = —EI 8*v(x,t)/0z* are zero at both ends for any timeSinceE is not zero, these
conditions can be written as

0?v(x,t) 0*v(x,t)
0x?  la=0 0x?  la=e

If the beam is clamped at one end and free at the other onejttisecalledfixed-free as
shown in Figure2.5 (b). In this case the deflectiar({z, t) and the slopex = dv(z,t)/0x are
zero at the clamped end, while the bending momeiit:, ¢) and the shear forc® (z,t) =
—EI &v(z,t)/0z* (which comes fromZ.35), (2.40, neglecting the rotary inertia) are zero at
the free end. These conditions are essentially:

v(z, t)| 0, =0, o(x, t)‘ 0, =0. (2.43)

=0 a=t

dv(x,t) 0 0?v(z,t) 0 Dv(z,t)

¢ I S
”U(IE, >‘ ox =0 0x? =0 ox3 =0

0, —0. (2.44)

=0
The beam can be clamped at one end and supported by a rolker athter one, which is

calledfixed-pinnedas visualised in Figur.5(c). In this case the deflectiar{z, t) are zero

at both ends, the slope = Jv(x,t)/0x is zero at the clamped end, and the bending moment

M (x,t) is zero at the pinned end. These conditions yield

ov(z,t) 0?v(x,t) ‘
ox 0x? =/

The beam can be clamped at both ends, cdileti-fixed shown in Figureé2.5 (d). In this
case the deflection(x, t) and the sloper = Jv(z,t)/0x are zero at both ends, thus

v(z,t)| _, =0,

=0, v(z,t) 0, =0. (2.45)

=0 =l -

=0

ov(z,t)
Ox

—0.  (2.46)

=/

U(xvt>‘x:0 =0,

=0, v(x,t)‘ng =0,

2.4.2 Free vibration of prismatic beams

The simplest form of Eq.2.42) is wheng,(z,t) = 0, which is also the complementary
equation of 2.42 for anyq,(z, t) # 0 exciting force. Itis physically the unforced case, tree
vibration of the beam. Thus the homogeneous, linear partial differeeguation of the free
vibration is

Mv(x,t)  *v(x,t)
EI 5 g = 0] (2.47)
We could divide the above equation pyand write
o o 0M(z,t)  O%v(w,t)
zgci 9 + TR 0,
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v(0,1)=0 v(1,H)=0 a(0,t)=0 v(1,0)=0
M(0,t)=0 M(,)=0 q v(0,)=0 M(1,H)=0

B =

y
(@) Tv(x,t) (c)

y$v(x,t)

a (0,6)=0 V(1,H)=0 a(0,0)=0 a(,t)=0
q v(0,1)=0 M(1,)=0 # v(0,1)=0 v(l,H=0 l?

% X % Ié X
yvv(x.t) (b) yTvx,t) (d)

Figure 2.5: Common types of supporting modes: (a) pinned-pinned, (blifixee, (c) fixed-pinned, and (d)
fixed-fixed beams. The corresponding boundary conditiom$naiicated at the end points.

whereiy = /1 /A is the radius of gyration and, = /E/o is the velocity of the travelling
longitudinal waves, which was introduced already in Sub2dcl1(see Eq.2.5).

We search for the solution of PDE.47) using the method adeparation of variablesThat
means that we attempt to find a solution 2f47) as a sum of products of functions in which
the dependence of z, t) onx andt is separated:

v(z,t) = v(x) - {acos(wot) + bsin(wpt)} . (2.48)

It implies that the deflection of all the points of the beansasaries harmonically with time
Herewy is thenatural circular frequencyof the free vibration, while the coefficienisandb
come from initial conditions. It is clear that with the abdeemalism

ov(z,t)  d'o(x)
ort  dat

0?v(z,t)
ot?

Substituting 2.48) into (2.47) yields

{a cos(wot) + bsin(wot)},

= d(z) - {—awg sin(wot) — bwj cos(wot) } -

dat

{E[ o) _ wgu@(a:)} -{acos(wot) + bsin(wpt)} = 0.

The above equation is fulfilled for any time instanitthe following ordinary differential equa-
tion (ODE) holds:

d*o(x .
EI dx(4 ) _ wapt(z) = 0. (2.49)
The solution of the above linear, homogeneous OREY) is of the form
A A A A
0(x) = Acos (%x) + Bsin (7056) + C cosh (7035) + Dsinh (70x> ) (2.50)
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where we introduced the dimensionless natural frequency

2
_p A Wol
Ao =101/ I

For the computations of,, and of the coefficientdl, B, C, D, we need to take boundary con-
ditions into account. Here we discuss only the case of thegaifpinned beam.
The case of the pinned-pinned beam
It is a consequence 0248 that
d"o(x) 0"v(x,t)
dzn oz

The boundary conditions of the pinned-pinned beam are gwe(®.43. Thus we need to
express the second derivative £ 2) of (2.50 with respect tor:

d?o(z) A Ao (Ao Ao : Ao
w2 - e {—A cos (7x> — Bsin (737) + (' cosh (7$> + D sinh (Ym) } )

We substitute 2.50 and the above expression in®.43 and write the appropriate boundary
conditions in the compact matrix form

=0, n=0,1,2,...

F(X)-c=
I 1 0 1 0 T
S A2 A
e 0 2 0 B| (2.51)
cos(Aor) sin(Ao) cosh(Ag) sinh(\o) ol =
2 2 2 9
I —% cos(Ag) —% sin(Ag) % cosh(\g) % sinh(\g) | D

HereF()\) is called thefrequency matribandc stores the coefficients o2(50. The equation
F()\o) - c = 0 is satisfied for nontriviat # 0 if the determinant oF' ()

det (F(\g)) = —4% sin(\g) sinh(Ag)

is zero, thus either if, = 0, or if sin(A\g) = 0, or if sinh()\g) = 0. The trivial solution,
Ao = 0, impliesv(z, t) = 0, the steady state solution, when there is no vibration. Timgrivial
solutions are\, = rm, r = 1,2,...,00. There is a countable infinity of such solutions, from
which therth natural circular frequency of the free transverse vibrabf the pinned-pinned
beam can be obtained:

2,2 E]
T2 r=12. . (2.52)
2 1

Wor =
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The coefficientsA,., B,, C,., D, are derived from back substitution &f, = rx into (2.51):

1 0 1 0
_ 7’271'2 0 7“27'('2 0 fér
Firm)- e = {—{2}’" 0 cosﬁwr) sinh(r) C’: =0
I TZQ{—l}T“ 0 TZTQ cosh(rm) 7 sinh(rm) | D
From thelst and the2nd equations we get
A +C. =0, -A,+C. =0, — A, =C,=0.

From the3rd equationD, = 0. Sincedet(F(r7)) = 0, the4th equation is linearly dependent.
Therefore the coefficienB, can be chosen arbitrary. Finally, thiéh shape functiorf the free
transverse vibration is

U,(z) = B, sin (%x) . (2.53)
The shape functions amethogona) which means that
0 0
/@p(x)f)r(x) dz = /Bp sin (%x) B, sin (%x) dz
0 0
sin({p=rt=, gin({ptrim,, ¢ . (254)
B, B, [ 2({p—§~}w ) 2({p--jr}7f )} =0, ifp#r
— ¢ 0
- l
Bf {x—sm(%”;ﬂ/(%ﬁ] _ B? g) |f p=r.
0

It is often convenient to normalise the shape functions émtlass of the beam, i.e. to satisfy

l
u/@r(x)f)r(x) dz =1. (2.55)
0
This allows us to determine a specific value f§yrusing Eqgs. 2.59), (2.55:
l
. . ol 2
,u/vr(:z‘)vr(m)dx = ILLBT‘§ =1 — B,= i
0
Thus therth normalised (modal) shape functiohthe pinned-pinned beam is
. 2 . /rm
Uy () = \/ism (73:> : (2.56)

The solution of 2.47) is expressed as a combination of the normalised shapadusct

2 [e.9]
v(z,t) = 4 /ﬂ Z sin <%x> -{a, cos(wg,t) + b, sin(we,t)} |
r=1

65

(2.57)
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The coefficients:, andb, can be determined fronmitial conditions Let us assume that the
deflection of the beam at tinte= 0

and the velocity of each point at tinte= 0

0(x,0) = \/%;Sin (%m) - bywor

are given functions (fulfilling the boundary conditions).hus these functions(z,0) and
0(x,0) can be written as purely sirfourier series. Now we multiply the above equations
by thepth normalised shape functiai(x), integrate the result frore to ¢ with respect tar,
and apply the orthogonality2(54):

¢ ¢ ¢
2 2
/U(x,O)f}p(a:) de = /v(x,O), / ﬁ sin (%x) dr = mczp/sin2 <]%x> dz = %,
0 0 0
¢ ¢ ¢

. . , 2 . pm 2 .o (PT bywop
d pum —_— —_— d pu— _b d pum— .
/v(x,())vp(:p) x /v(x,()),//w sm( / x) x ", pwop/sm < 7 x) x .

0 0 0

From the above formula we can extract the coefficieptandb, from theknowninitial deflec-
tion functionv(z, 0) and initial velocity functiorv(z, 0) of the beam axis as

(2.58)

It can be shown that the orthogonality of the shape functamasa general property. Thus

u/ Up ()0, () = Oy (2.59)

0

holds for the normalised shape functions in case of othexstygd boundary conditions, too.
Here the symbod,,. is theKroneckerdelta, which equals to one jf = r and zero otherwise.
Moreover, the following equality could be derived for arlity boundary conditions:

l
4/\
EI d Up<x>

dat
0

o,(2) dz = W, O, (2.60)
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where, againy,.(z) is therth normalised (modal) shape function. For the pinned-pirtream
it is simple to prove the above formula:

¢ ¢
d*o,(z) . ptrt [
E]/ d;4 Oy (z)dz = ET 7 /vp(x)w(x) dr =
0 0
4

4
Er?

e ?
Eﬂ%._
tp

=0 ifp#r

=wp, fp=r

The effect of axial compression on the natural frequencies

During the examination of the free vibration of the prisrodteam, we neglected the effect
of the normal force. However, if aaxial compressiorP acts at the ends of the beam, and the
deflection of the originally straight axis is taken into agot an additional momermtAv(z, t)
is exerted on the beam element, as indicated in Figu6éa) and (b). Therefore, the left hand
side of .39 must be appended by Av(z,t) to deal with such an effect. Then, instead of
(2.47), the following equation can be derived for the free vilatof the axially compressed
beam:

Otv(x,t) 0?v(x,t) 0?v(x,t)
g T e i pp
(Here we neglected again the effect of rotary inertia.)

Separating the variables as 48, the equation

—0| (2.61)

dz? a2 ot T e

Z {EI d4@7($) + P dzﬁr(x) 2 dQ@r(«T)} . {ar COS(L«JOTt) + b, sin(wOTt)} -0

r

must be satisfied at any time Without going into details of the derivation (which follsw
a very similar procedure as in the previous case), we givéaimeula of the natural circular
frequencies of the pinned-pinned prismatic beam subjgotad axial compressioR:

P
_ po

Wor = worq | 1

r=1,2,..., 0. (2.62)

Herewy, is (2.52) and therth (Euler) critical load P°" of the pinned-pinned beam is known
from earlier studies: ) s

per _ Elrem

T EQ

The constant axial compression thadiscreaseshe natural circular frequencies. At the limit
when P = P{" wy; becomes zero, thus the first mode of natural vibration allmibtiginal,
straight state vanishes, and the bdaukles The effect of an axialensionis the opposite, it
increaseghe natural circular frequencies. Just think of a guitangtrthe more it is stretched,
the “faster” it vibrates if twanged slightly.

(2.63)
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The shape functions are not infected by the axial tensiompcession, hence they are iden-
tical to (2.53.

Problem 2.4.1(On the natural frequenciesYhere is a beam of length = 12m, total massn = 6t, and
bending momen#! = 200000 kNm? given. Determine the first three natural circular frequescnd the
corresponding normalised modal shape functions of the bekmv the first frequency is affected by a constant
normal forceP = 2 - 10" N?

Solution. First we exchange the given data into Sl units and computentaes per unit length: FI =
2 - 109 Nm?, . = m/¢ = 500 kg/m. The natural circular frequencies can be computed {&69):

EI 2. 109

7T
= A = 137.08 rad/
wot 144 500 S
EI 47?2 /2109
- = 22wg; = 548.31rad/
wo2 = p 122V 500 wo1 S
EI 2-109
wp3 = \/7 144 500 3 wo1 = 1233.70 rad/s

The normalised shape functions are fra2rb@):

2 2
01(z) = | /ﬁ sin (%x) =4/ 20013 sin (%x) = 0.01826sin (0.2618x) ,
2 2 2 3T
bo(z) = /= sin [ —x ) = in ( 222 ) = 0.01826 sin (0.52
Do () /Msm( 7 .73) 20012 5111(123:) 0.01826 sin (0.5236x) ,
. - 2 . (3rm - 2 . [ 2m B .
O3(x) = 4/ Y, sin ( 7 x> =\ 5001350 (12x> = 0.01826sin (0.7854x) .

Note, that the argument of function sine is in radian!
For the computation of the effect of the axial compresgioa 2-107 N, on the natural circular frequencies
first we need to calculate the critical loads frong3):

BElx?

P = Tf = 0.06845E1 = 13.71 - 107 N,
El4r?

PS = gf = 0.2742E1 = 54.83 - 107 N,
EI9r?

P = Tﬂ = 0.6169E1 = 123.37 - 107 N.

Since the given axial compressidhis smaller than the lowest critical loa®f", there exists a harmonic free
vibration around the straight equilibrium position of thealm. The first three natural circular frequencies of
this harmonic oscillation are computed using E60):

P
1- P—lcr = 137.08 - 0.9242 = 126.69rad/s,

. P
wWo2 = wo24 /1 — P—zcr = 548.31 - 0.9816 = 538.22rad/s,

P
Woz = wozq |1 — P = 1233.70 - 0.9919 = 1223.71rad/s.

Wo1 = Wo1
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Notice, that the axial compression has a smaller effect emither natural frequencies. I equals to thd st
critical load, thenvy; vanishes, and iP is further increased, theh,; becomes a complex number: there is no
harmonic vibration about the stress-free straight stataebeam any more, a buckling occurskt and the
stability of the beam is lost.

Exercise2.4.1 Estimate the first natural circular frequency of the bearegivn Problen®.4.1with and addi-
tional lumped mass:; = 2t at the midspan!

Effect of elastic support on the natural frequencies

If the beam iontinuously supportely elastic springs of stiffness then a transverse load
proportional to the deflection

qi(z,t) = —sv(z,t)

is exerted to the beam, as sketched in Figuug(c) and (d). The dynamical equation of the
elastically supported prismatic beam can be obtained bgtguting this load into2.41):

Ov(w,t) 0*v(z,t)
E[W + sv(xz,t) + MT =0| (2.64)

Without going into details of the derivation, we give theurat circular frequencies of the free
vibration of the beam laying on a continuous elastic support

64

Wor = wort/ 1

wherewy, is (2.52). Thus the elastic foundatiancreaseghe natural frequencies.
The shape functions are not infected by the continuousiekgpports either, so they are
the same a2(53).

Rayleighs method for estimating natural frequencies

Since we neglected the damping due to internal friction efealastic body, théotal me-
chanical energy’(t) + U(t) is preservedduring the free vibration

T(t) + U(t) = constant (2.66)

Thekinetic energyl'(¢) of the prismatic beam expressed with the modal shape fursiio

T(t) = % j " {a“(aﬁ’ J }2 do =& j {Z 00 () - wopdy cos(wort — @)}2 du.
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|
PN S ONE Y

Y v(x,t) s
(c)

AX AX

e 2] o]y

\% V+AV

\JA/q_I?x,t)=sv(x,t)

(b) (d)

Figure 2.6: Sketch of (a) a prismatic beam subjected to an axial comipeeksce P and (b) a beam element of
lengthAz. (The deformed shape of the beam element is shown, but oaiptérnal normal forc&v = —P is
indicated, the shear force and bending moment are not, tieehh@ same as in (d).) (c) A prismatic beam on an
elastic foundation of stiffnessand (d) a beam element of length: of this case. Deformation of the beam
element is visualised in (b) but not in (d).

(Here we used?.48), but rewrote the harmonic term cos(wo,t)+b, cos(wy,t) asd,. sin(wo,t —
¢.).) Thepotential energy/(¢) is

¢ ¢ 2
1 O*v(z, 1)) > EI 426, (x .
v =4 [ o1 {250 4 B[S0 a0
0 0 "

Since the modal shape functiofig ) are orthogonal, if we extract the square of the sum-
mation in the above equations, then the definite integratiseomixed terms,(z) - ,(x) (and
also d?d,(z)/ dz? - d*o,(x)/ dz*) vanish forp # r, therefore

L

— ZT’I‘( :U z:WOTd2 COS wOrt - Qbr)/ r( )dl‘

0

and

¢ . 2
Z U (t E[ Z d2 sin? (wort — ¢y) / { d2§;(2x) } dz.
0

Therefore, ifT,.(t) + U,(t) = constant fulfils for each independent modéhen it implies
that Eq. .66 holds. Let us use the first modal shape function

L

T()+U1() 'u201d2COS wmt—(bl /
0

¢
ET
—i—?d sin’ (wort — 1) /{ 2 } dz.
0
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Now, whencos(wpt—¢1) = 1, thenT} is maximal and/; is zero, while wheRin (wgt —¢1) =
1, thenT; is zero and/; is maximal. (The former case belongs to the straight statfesdbeam,
when its curvature changes, and the velocity is maximallenthie latter case belongs to the
state when the beam has the largest deflection and stops$ieghoints of the axis has zero
velocity at that moment.) Therefore, the following equahblds for the first mode for these
two limit states:
M+ 0=0+U" —
/ BI, [ d% ?
gwgldf/@%(x) da = 7d%/ {;’—;(f)} da,
0 0
which allows us to express the first natural circular freqyeas

fe{—d%l 7) }2 da
EI da?
wn == 0 ‘ . (2.67)

If the first modal shape functiofy (x) is not known, but estimated, then the above formula
gives anupper bound solutiofor wy;. The assumption fa#, () can be based on a polynomial
of degreen, if n boundary condition can be written for the beam. An exampgha@wvn in the
following problem.

Problem 2.4.2(Applying Rayleigh’s method for transverse vibratiangstimate the first natural circular fre-
quency of a fixed-free beam of length= 12 m, total massn = 6t, and bending stiffnesg] = 200000 kKNm?.

Solution. Since we can write four boundary conditions for the fixedapithbeam, as it is given by E®.44),
and also indicated in Figur25 (b), we use the following fourth order polynomial with founknown coeffi-
cients for the estimation of the first shape function:

o1 (x) = p(z) = 2* + azz® + apx® + a12' + ao.

We need the first, second, and third derivatives(af) with respect toc:

d
];(x) = 4a® + 3a32® + 2091 + ay,
T
d2
ﬁ = 122 + 6asxr + 2as,
x
d3
% — 24z + 6as.
x

Using the boundary conditions given bg.44) the following equations must be solved for the coefficients
aop, a1, a2, as:

0100 = 0 — 0*4a3-0°+a3-0°+a1-0"+a=0 — ag=0,
"
”59(:7) =0 5 4043800720 0t =0 = @ =0,
425
() — 0 = 120% 4+ 6asl + 2ay = 0,
d$2 =0
435
o (@) — 0 — 240+ 6ag=0.
dx3 x=0
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

The last two equations imply that = 6/? andas = —4/. Thus the approximated shape function is
01 ap(7) = 2t — dba® + 60727,

The approximated first natural circular frequency of thenbéathen

L d2171 ap(l') 2 4 9
L) Ly 1222 — 2402 41202} d
w1 |l { da? } T g |02 v 120} d

M Z
fvap
0

EI | 14465/5
B \/7 10469 /45 3530\/2 49.03 rad/s

According to [L1], the first natural frequency of a fixed-free beam is:

wo1 = 3.5164 | EE‘Z 48.83 rad/s (2.68)

2.4.3 Forced vibration of prismatic beams

Wo1,ap 0 7
f {zt — 4023 4 60222} du

Now we get back to the partial differential equati@4? of forced prismatic beams with
the rotary inertia neglected. The homogeneous solutigm.(t) = 0) was derived in the previ-
ous subsection. The case whef,t) # 0 is called the forced vibration and there is a corre-
spondingparticular solutionof the PDE 2.42). The complete solution of the forced vibration
is the sum of the homogeneous and the particular solutiarshE derivation of the particular
solution, we make use of the homogeneous one, i.e. the @olatithe free vibration of the
beam. We assume that the response of the structure to thimgxorces can be expressed as
atime dependent combination of the normalised shape furgtiqz) of the free vibration.
(Thus we again utilise the method of separation of variapl&his unknown combination of
the shape functions is written as

v(z ) =Y o) (t)| (2.69)

r=1

We search for the unknown time dependent functigris). Notice that herey,(¢) is not sup-
posed to be a harmonic function of timeas it was in the case of the free vibration in Ej48).
With the aid of .69 we reformulatez 42 as

d? vr
E]Z e +MZ dt2 = q,(z,1). (2.70)

Now we multiply the above equation lay(x) and integrate the result fromto ¢ with respect
to x:
l ¢

¢
= d'o,(z) . — d%n,(t) [ .
E[an(t)/ o Up(x) dz + p e /UT /qt x,t)0,(x) d.
r=1 0 0

r=1 0
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

Concerning the orthogonal propertiesg9 and .60 of modal shape functions we can write
the following system of second orderdinary differential equations

ngiz(t) + ngﬁp(t) = Qp(1)}, (2.71)
where
4
@Qp(t) = / ()0, (x) da (2.72)
0

is thepth modal force(p = 1,2, ..., 00).

Thus, we have managed to transform the solution optiréal differential equation(2.42
into solutions ofinfinitely many, independent ODE2.71). Each of these ODEs can be re-
garded as a single-degree-of-freedom, undamped osmillafia unit mass under an arbitrary
forcing Q),,(t). According to Eq. 1.7) (with ¢ = 0) and Eq. {.26), the solution of2.71) is

np(t) = a, cos(wopt) + by, sin(wo,t) + i / Qp(7) sin (wop{t — 7}) dr. (2.73)
?0

The first two terms of the right hand side form the homogenemhgtion of €.71), which
vanishes if there is a slight damping in the system—so stiggit we neglected it during our
analysis. The third term iBuhamek integral (L.26), the particular solution of2.71). The
coefficientsa, andb, can be determined from the initial conditions. Now we corda
only on the particular solution o2(42, which is the following sum of products of separated
functions:

A~

v(x,t) = Z Y

z)(oj) /QP(T) sin (wop{t — 7}) dr.

Some simple examples of forced vibrations and the correipgiparticular solutions are given
below.

Prismatic beam under a harmonic force

This example studies a prismatic beam loaded by a transkarsgonic forcel sin(wt) at
x = a. (See Figure.7 (a) in the case of a pinned-pinned beam.) The fagCe, t) in (2.42
can be written as
q(x,t) = Fsin(wt)d(z — a).
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

Hered(¢) is theDirac delta functionwhich has the properties

| 4oo, if £=0

/5(5) d¢ =1, and

(2.74)
+o0
[ #ese g = foo)
With this specific load the modal force due 72 is
l
Q,(t) = / Fsin(wt)d(z — a)i,(z) dz = Fsin(wt)i,(a)
0
andn,(t) from (2.73 is
va
sin(wT) sin (wop{t — 7}) dr
¥
Here we can simplify the integral
/sin(wT) sin (wop{t — 7}) d7
0
= / % {cos ({w + wop } 7 — wopt) — cos ({w — wop } 7 + wopt) } dr (2.75)

0
1 {Sin ({w + wop}m —wopt)  sin ({w — wop}7 + wopt) !
2 w + Wop W — Wop 0

“o .
= 5 gsin(wt) - —5——sy
wOp — W wOp — W

sin (wopt) -

The first term of the result is the definite integral evaluated = ¢, which is the steady-state
vibration of the forced beam. The second term is from theuatadn atr = 0. This and the
first two terms of Eq.Z.73 form the transient solution of the vibration. The initi@ritions
can be chosen such that the transient solution is zero. (@gghus transient vibration vanishes
with time if even a small friction is present.) Therefore, igeore the second term in EQ.75
and take the particular solution of this forced vibratio&

= o,(a) . ) =1 1 . .
U(I’, t) F E ﬁvp(x) Sin (wt) =F E g—wzz}p(a)vp(x) S1n (wt) . (276)
p=1 P p=1 P 1
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

We call the attention of the reader to the similarity of thidusion and the solution of the
harmonically excited MDOF system solved with modal analySlompare the above equation
with Eq. 1.60! The influence of higher modes on the response is smallsarlee system is
around the state of resonance, i.e. if the circular frequenthe exciting force is near to one
of the natural circular frequencies of the beanrs wy,.

a Fsin@t) vt F
X X

- o %
yrv(x,) YV v(x,t)

(a) (b)

vt Fsingt ) vt
jv(x,t) | Yy v(x,t) I

(©) (d)

Figure 2.7: Prismatic beam subjected to (a) a harmonic exciting féfea(wt) acting at a fix position: = «,
(b) a constant forcé” moving with a constant velocity, (c) a harmonic forcé” sin(wt) moving with a constant
velocity v, and (d) a constant distributed loadnoving with a constant velocity.

Problem 2.4.3(Machine excited beam)There is a machine installed on the first storey of an indaiditiilding.

It is placed at one fourth of the total lengt? m of a pinned-pinned roof beam. The mass of the beam is
500 kg/m and its bending stiffness2s 10° Nm?. Due to the eccentric rotating parts of the machine, it exert
harmonic force of amplitud&500 N and frequencys0 rad/s on the beam. Determine the maximum deflection
of the beam at its mid point! Take only the first three modapghfainctions into account!

Solution. The normalised (modal) shape functions and the correspgmditural circular frequencies are from

(2.56 and @.52):
. ]2 . rpm _ p?n? |EI
'Up(l') = ﬁ S11 (7x> s (AJ()p = ET 7

We substitute the above shape functions and frequenc're@'m@ up top =3

~F Z _tpl@) x) sin(wt) = 2K Z %ﬁa)? sin (pZ ) sin(wt).

_ 2
Wop w /M il —w

The bending moment is

P

2 3 2
M(z,t) = ('3 —IZZ sin [ a) P sin (%x) sin(wt).

—w? £

The given dataset 6= 12m,a = ¢/4, F = 1500 N, p = 500 kg/m, EI = 2-10° Nm?, andw = 80 rad/s.
The above formula is evaluatedat= ¢/2 andt = 2kx /w to get the maximum deflection of the mid point:

p7'r4 EI

bln P 3
vmax( > Z - sm( ) = 0.02853-107 +0-0.0002333- 10~ = 0.02830 - 10~ m,
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

and to obtain the maximal bending moment at the mid point:

2 pim EI — 2 02

M <£) EI Z oin (Fa)_p'r? sin (27) = 3911+ 0 — 287.8 = 3624 N,
p=1 /4

Notice that the second mode is intact in this load case bedagé/2) = 0, and that the third term is smaller
than the first term by two order of magnitude in case of theldegment, and by one order of magnitude in case
of the bending moment. In general it is true that the highedesdave larger influence on the bending moment
than on the displacement.

Finally, we also compute the maximal deflection and bendiognent at the point where the machine is
placed, i.e. at = ¢/4 (and at timet = 2kw/w again):

/ S
s [ =) & 2 Z M sin (m) = 0.02018 - 1072 + 0.001699 - 10~3 + 0.0001649 - 103
4 /M =1 % w? 2

=0.02204 - 103 m.

2
bln Z a P ’]T pT .
Mo < ) Z S sin (57 = 2766 +931.7 + 203.5 = 3001 Nn,

We can see here again that the h|gher modes have greatengd#loa the bending moment than on the dis-
placement.

Prismatic beam under a moving constant force

In a lot of examples in structural design, the forces actim¢he load bearing structures are
moving: trains, truck, cars, cyclists, or pedestrians mgwlong bridges, cranes carrying loads
along steel beams, etc. These loads can all be modelledbling forces Here we only deal
with the simplest example, when one single constant fétgaoves along a prismatic beam
with a constant velocity, as it is shown in Figur@.7 (b) for a pinned-pinned beam. The force
q:(z, t) that the beam is subjected to is

qi(z,t) = Fé(z — vt).

With the above load we can compute the modal force
¢
Q,(t) = / Fo(z — vt)o, () du = Fi(vt)
0

andr,(t)
t

np(t) = w£0p /@p(m-) sin (wop{t — 7}) dr

from (2.73 and @.72), respectively. Finally, the particular solution of thimd case is

=F Z () /vp vT) sin(wop{t — 7})dr (2.77)
=1 0

& @0kl

by Németh & Kocsis



CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

Problem 2.4.4(Vibration of a bridge under a moving vehicleJhere is a vehicle going through the bridge with
constant speed = 130 km/h. This vehicle is modelled with one constant fofce= 80 kN. The load bearing
structure is a reinforced concrete beam with a single-ddltex girder cross section. The length of the beam is
¢ = 30m, its mass ig; = 8t/m, and the bending stiffnessisl = 4 - 10" kNm?. Compute the deflection of the
mid point of the beam when the force arrives to the middle eflitidge!

Solution. The normalised (modal) shape functions and the correspgnutural circular frequencies of a
pinned-pinned beam are:

. 2 . /prw p’r? | Bl
Up(x) = ﬁ&n(?x), wop = e

We substitute these results in@ 17):

t

vz, t) = F3 i; 1 sin (%x) /sin (p%v7> sin(wop{t — 7}) dr.

0

Now, using R.75, we can simplify the integral in the above equality and obta

2 s (E0) [ wy o opm o
vz, t) = F7 Z 5 S (Tvt) - e sin(wopt)
weo3 wop Wop — gz ¥ W, — Tz
2 — <p7r ) 1 { (p7r v }
=F— sin(—x | ——5—5— ¢ sin —vt) — —— sin(wgpt
e 2 U)o ()~ 4 et

2 sin (ZXa ¢ 2n2 |EI
= F7 Z 5 2( £ ) {sin (%vt) - % sin (pg;i' —t .
Pl p22 {ng % _ v2} pT 1

It is worth mentioning that the displacement becomes sargfithe velocity of the moving force equals to one

of theresonant speeds
crit __ IE EI ¢

= — = wop—-
v e\ u % pr

The deflection of the mid point:(= ¢/2) of the beam at the time instant when the force arrives to tide m
point, i.e. vt = ¢/2 — t = £/2/v, can be obtained from back substitution in the above formWithout
going into details, the result concerning the first threeherfirst five modesy(= 1,--- ;3 andp = 1,--- , 5,
respectively) is

A
v < ) =1.087-10"3m,
2" 2v pe1, 3

A
v < ) =1.088-10"m.
2 2v p=1, 5

The bending moment i3/ = —E1 d%v(z,t)/ dz? which gives

M (é, é) = 5.253 - 105 Nm,
220/, 1.3

)

M (é, é) = 5.446 - 10° Nm.
2" 2v p=1. 5

e

Notice that higher modes have significant effects on the ipgndoment, but not on the displacement.
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CHAPTER 2. DYNAMICS OF SLENDER CONTINUA

According to earlier studies, the static deflection of the pwint of a simply supported beam if forée
acts at the midspan is

3
. static F

= =1.125mm.
e=t/2 = qgpy  123mm

Finally, the ratio of the static and dynamic deflections is

G 1.088

This can be much higher if the velocity of the force is closene of the resonant speed of the structure.

Prismatic beam under a moving harmonic force

In this load case a forcé’ moves along the beam with a constant veloeitywhile the
amplitude of the force pulsates harmonically in time witeduencyw (see Figure2.7 (c)).
Thus the forcey(z, t) is given as

qi(x,t) = Fsin(wt)o(z — vt).

The modal force is
V4
Q,(t) = / Fsin(wt)d(z — vt), () de — Fsin(wt)i, (ut)
0

andn,(t) is
np(t) = i /sin(wT)@p(vT) sin (wop{t — 7}) dr

wop

due to .72 and @.73. The particular solution of this forced vibration is

t

v(z,t) =F Z () /sin(wr)@p(m') sin(wop{t — 7}) dr.

Prismatic beam under a moving constant distributed load

Another, fairly simple way to model moving loads on struetiis to assume that the loading
is equally distributed and moves with a constant speeds shown in Figur.7 (d). Itis
applicable, for example, to approximate the dynamics ofngpke bridge under a magnetic
train, which exerts a fairly constant distributed load te guideway. The force,(z, t) is now
a constant distributed loadmoving with a constant speed

q(x,t) = qH(z){1 — H(x — vt)}. (2.78)
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Here H (&) is theHeaviside functionvhich obeys

0, if &£<0
H(E) =< 1/2, if £€=0 |,
1, if £€>0

+/OOJ”(E)H(@ dé = +/Oof(é) ¢

The consequence of the latter property is that

/f H{1—-H }dg—/f ¢)d¢,  and therefore

FEOHE{1 - H(E —a)}dE = [ f(§)dE
[ron /
The modal force is computed fror.{72):
l vt
Q1) = [ aH@){1 - Hz ~ v)}i,(a)do = g [ 5,(x)do.

It means that the distributed logdcts on the beam in between= 0 andx = vt, which is the
load case when the train arrives on the bridge. The time dkgen, () comes from2.73:

wlt) = o / {7@7(@ dx} sin (wop {t — 7}) dr

0 0

Finally, the forced vibration finally is determined by theegral

v(z,t) = qi B() /t {7131,(3:) dx} sin (wop{t — 7}) dr

0

Further interesting problems concerning the dynamics afefd slender continua, vibra-
tions of beams with various boundary conditions, non-unifd@eams, coupled beam-vehicle
systems, etc. can be found in the literatuseg, 11].
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Chapter 3

Dynamics of planar frame structures

In this chapter we study the dynamics of planar frame strastuPlanar frames are widely
used in engineering practice. They can be modeled by sldvean members connected by
hinges, rigid or elastic connections.

The beam members are prismatic. The axes of the beams arenmmaan plane, the cross-
sections of the beams and the loads are symmetric to that oamhane. We neglect stability
guestions, thus the frame remains planar during the det@nsa The beams are assumed to
be unshearable, but extensible and bendable. The matetied beams is linearly elastic with
Youngs modulusE. The cross-sectional area of a beam is denoted! pbwhile the second
moment of area with respect to the axis perpendicular to ldreeof the frame ig. The beam
is of length/, and its mass per unit length is denoted.byn this chapter we neglect the effect
of damping, and we also neglect the effect of rotary inertithe cross-sections.

First we overview the basics about static equilibria of plainames. The calculation of the
static stiffness matrix of one beam member and of the wholetire are shown. We introduce
two possible models to handle different support conditions

Then we go on with dynamical effects and demonstrate howltulegie the dynamic stiff-
ness matrix of the structure. We also show approximate rdetiho generate the dynamic
stiffness matrix. Based on the accurate or on the approxistdteess matrices, a system of
differential equations of motion can be compiled. Theseaiqus can be solved for external
dynamical loadings either directly or by using modal anigly$ special loading very impor-
tant in structural design is the support vibration, whichl&o discussed in details. Finally, we
present the reduced modal analysis technique and studyciisay.

Although planar frames are not the most general structurescan meet in structural de-
sign, the concepts shown in this chapter can be generalizether types of load bearing
structures. The reader can adopt the notations used hetteefapplications of these methods
to FE modeling readily.
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CHAPTER 3. DYNAMICS OF PLANAR FRAME STRUCTURES

3.1 Static matrix displacement method

We have already seen in our earlier studies, and also ind®ettB, that the continuous
structures constructed of slendeds can be approximated by multi-degree-of-freedom sys-
tems. In the simplest model, we divided the structure inttvidual (beam) members, and the
displacements of the end points of these members becamedheed of freedom. In the dy-
namical analysis, we concentrated the masses of each b&aitsiand points, which resulted
in adiagonalmass matrix. The rotational inertia of the beams was negfiediut sufficiently
short members implied sufficiently accurate results in geahthe vibration of the structure.
The accuracy was comparable to the results of the continsygiem. The matrix differential
equation of motion is

Mii(t) + Ku(t) = q(t).

We have also seen, that there are two simple method for ttetroation of the stiffness matrix
K.

e Calculation of the stiffness matrix based on its physical mrea
The productKu (stiffness matrix times the displacements of the DOFs)ltesn the
forcesfs needed to be applied on the DOF in order to induce the displentsu. If we
multiply the stiffness matrix by thé&h unit vectore;, then theith column of the stiffness
matrix is obtained. The entries of this column are the fotbes act on each degree-of-
freedom in such a way, that the displacements of all degreéégedom are zero, except
for theith, which is one. Thes& constrains make the calculation of the entries of the
1th column of the stiffness matrix possible.

e Calculation of the stiffness matrix based on the flexibilitgtnix.
In contrast to the stiffness matrix, thiexibility matrix F multiplied by the forced
results in the displacements caused by the forces. If wetitutestheith unit vectore;
into the vector of forces acting on the nodes, the prodiuct;, i.e. theith column of
the flexibility matrix. This column contains the displacertseof each degree-of-freedom
caused by a unit force acting on ttie degree-of-freedom, while the others are unloaded.
These displacements can be calculated with various metif&tsength of Materials, or
Structural Analysis. Finally, the stiffness matrix is tmerse of the flexibility matrix:
K=F1

For practical purposes the above methods are not recommebeeause the degrees-of-
freedom are connected to each other, so calculations ofitikeese of full matrices are needed.

A better approximation can be achieved by the matrix disgteent method of frame struc-
tures, thoroughly discussed in the field of Structural Aeslyheory 8]. Here we are going
through its main steps only.

3.1.1 Nodal decomposition of planar frames

A planar frame is composed of beam members connected todstivnges, rigid or elas-
tic connections, and the whole frame is attached to the graum statically determinate (or
indeterminate) way. If we are to analyse the structure bynmed the matrix displacement
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method, the first step we need to make is to decompose the fran@odesandframe mem-
bers The nodes are at the connections of the beams and at thersngpmints. The total
number of nodes of the frame is denoted My The frame members are the beam members
connecting these nodes. Thus each beam is connected to di@s abits ends. A general beam
member between nodésnd; is called beam;. (We consistently take < j everywhere in
this chapter.) As we will see, the deformation of beghfand so its internal forces) can be
fully described by the displacements of its end nodasd;j. Since we study the planar defor-
mation of the plane, one node has three degrees of freedariranslations and one rotation.
Therefore the total DOF of the frame /6 = 3M. We can reduce both the external loadings
and the elastic forces of the beams to the nodes of the frahen Wwe can compile a system of
equilibrium equations where the unknowns are the displacgésof the nodes. In this manner,
the statical analysis of a continuum frame structure caretlaaed to the analysis of a model
with finite number of degrees-of-freedom.

The easiest way to deal with the elastic forces that act frmehd of the beams to the nodes
is the following. First, we release only one DOF of the frame apply a unit displacement
there, while the other degrees-of-freedom are kept zeroor8k we collect the elastic forces
acting from the ends of the beams onto the nodes. There agetassmpose one column
of the total stiffness matrix. Then we repeat these stepalfdhe other DOF independently.
As a result, we can compile the total static stiffness mdiinf the frame. This compilation
requires that the displacements of a node induce forces dfeesedt node only if these nodes
are connected by a beam member. That is the reason why wedewadtrain the rotation of
the nodes too, and not just their translations, as it is destnated in Figure.1

| o -

Figure 3.1: Comparing various discretization of a fixed-fixed beam. (@cEte model with three translational

degrees-of-freedom. (b) Discrete model with three trdiwslal and three rotational degrees-of-freedom. (c)

Deformed shape of the 3DOF model due to a displacement ofrdtOF. (d) Deformed shape of the 6DOF
model caused by a displacement of the first DOF.

3.1.2 Global and local reference systems, transformations

We use two distincCartesianreference systems. One is called gfhebal reference system
which is a left-handed coordinate systeénY 7 fixed in the space. The frame structure is in
the planeXY’, and the axisZ points outward from the plane. The other coordinate system,
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thelocal one is the left-handedy > system. Figure3.2 shows a planar vectox in both co-
ordinate systems. From the figure one can conclude, thatahsformation between the local
coordinatesu,, w, and the global coordinatesy, wy can be done as

Wx = Wy COS (¥ — Wy Sin Wy = Wy SIN (v + W, COS v and (3.1)

W, = Wx COS & + Wy sin a, Wy = —wx sIn a + Wy COS Q.

We define a local coordinate system for each each beam mernilber.local reference
system of beany is oriented in such a way that axioints from node to the nodej. (Note,
thati < j holds.) The local axig is parallel with the global axig/, and axisy is oriented
accordingly tar andz.

Figure 3.2: (a) Transformation of the components of a planar veetdretween the local and the global reference
systems. (b) The local reference systegof theijth beam member and the global reference sys¥erm

The displacements (two components of the translation aedatation) of node is col-
lected into the vecton;. In the global reference system these components are

lob

lob uzg{(b

glob __ glo
ol — | o | (3.2)

glob

Piz

while in the local reference system of the beagith they are

loc

e _ | it

oc __ oc

Co= oyt |- (3.3)
loc

(piz

u

Since axes and Z coincide, the rotations are the same in both referenceragsiee. p\o¢ =
go??b. Therefore we leave the superscripts “loc” and “glob” in tase of the rotations. We
write the relation between the components of the displacénmetor in the global and local
systems (Eq.3.2), (3.3) as:

uf®” = T;ul, u = Tz;uzglob. (3.4)
In the above equations matrik;; is called thetransformation matrixof the local reference
system of beanij. Assuming, that the beaiy is rotated byq,; with respect to the global
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system (see in Figur@2 (b)), and using the transformation for the rotati8ly, the entries of
the transformation matrix are:

cosayj —sina;; 0
T;j= | sina; cosay; 0O
0 0 1

The transformation matrif;; is aproper orthogonal rotationso its inverse is its transpose:

cosay; sinay; 0

-1 f— T f— Q] .. ) ..
T, =T, = sinag; cosag; 0O
0 0 1

The displacements of the nodes of begrgiven in the local reference system are

M ,,loc ]
Wige

uloc

1y
oc u; iz
ul" = |: loc :| = ;0100 . (35)
Jjx
loc
JY
L Pj=
An example on the above modeling steps are presented ineg=&y8r The structure in
Figure 3.3 (a) is divided into five members and five nodes. This decontipasis shown in
Figure 3.3 (b) alongside with the global and the local reference systeifhe supports are
replaced by (support) noddsand5. They are treated equivalently with the internal nodes
during the compilation of the total stiffness matrix. Thg@gart conditions (whether they are
fixed, hinged, or elastic) are counted for in the total séiffe matrix.

u

) %

4) . N
% A~
./_‘b‘.,\‘\ I—}C o %

s A 5
I ,/’,\4

/ - . \f;_/i‘;‘- oY
P
| x
| | |

‘!. Wl _-
i ) g i

Figure 3.3: (a) Mechanical model of a planar frame structure. (b) Nodesraembers of the structure (a) with
the global and local reference systems.

Finally, we define two further rules that we follow during tim@del building process.

e \We set three degrees-of-freedom to every node, and thetéeigsh one member rigidly
connected to every node (see node 3 of the frame in3=8§0)).

e Elastic supports are modeled by introducing additiauglporting nodes
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3.1.3 Elementary static stiffness matrix in the local reference sysi

The elementary (static) stiffness matf@‘;c transforms the nodal displacements E3)5)

into nodal forces ({2°, fio¢, f1o°, f;5¢) and momentsu;., w;.) acting on the end of the beam:

loc 7
T
loc
1y
Wiz
loc
jx
loc
JY
U}jz

loc __

loc,  loc
= Kj5u;}°. (3.6)

These are called thrend-of-beam internal force3 he opposite of these forces act on the nodes.

The elementary (static) stiffness matMgC of beams:j can be derived in several ways.
In matrix Kﬁ‘;c, entry p,r (i.e., thepth element of the'th column of the matrix) denotes the
end-of-beam internal force in the¢h DOF due to a unit displacement applied at ttie DOF.
The first DOF of beamij is the translation of the starting endilong the beam axis. Due
to a unit displacement of this DOF, the deformed shape of #aerbaxis is denoted hy;,. (z).
The corresponding end-of-beam internal forces are ass$iggweV;;., Vi.., M;;, at end: and
Njiz, Viiz, Mji,, @t endj. Thus the notation of these internal forces are such thdirdtesub-
script refers to the “place”, while the rest are for the “cgiug hese end-of-beam internal forces
define the first column of the elementary stiffness matrixesrn:; in the local reference sys-
tem. The second DOF of the beam is the translation ofieldng axisy. The second column
of the elementary stiffness matrix thus contains the endeaim internal forces due to a unit
translation of its starting endalongy. This is visualised in Figur8.4 (a): the unit translation
of end: induces deformation and internal forces in the beam. Théip®slefinition of the
internal forces are well known from Statics. The end-ofrbeaternal forces and a sketch of
the bending moment diagram are shown in Figgidg(b). The positive definition of the entries
of the columns of the stiffness matrix corresponds to thitdgnded coordinate systeryz,
as indicated in Figur8.4 (c). The internal forces at the ends of the beam due to therani-
lation of endialongy are denoted bW, Viiy, Miiy, Njiy, Viiy, M;iy, While the corresponding
deformed shape of the axis of the beam is assigned,oy). The third DOF of beanij is the
rotation of endi. A unit rotation of end induces the deformation,(z) of the beam axis, and
the corresponding end-of-beam internal forces aig;, V.., Miiv, Njiy, Vjio, Mjip. The same
notation is used for the other 3DOF of the beam. The fourtt,the fifth DOF of beam; are
the translations of engl alongx andy, respectively. Unit translations corresponded to these
DOF are used to construct the fourth and fifth column of theel#ary stiffness matrix. At lat,
the sixth DOF is the rotation of end The deformed beam axis due to a unit rotation of ¢nd
is denoted by,.,(x), and the corresponding end-of-beam internal forcesVatge V.., M;, at
end: andNj;,, Vii,, Mj, at end;j. These are the entries of the sixth column of the elementary
stiffness matrix given in the local reference system of béam

We show two methods for the calculation of the entrieKJ;gF.
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% (0)=1 vy (I5)=0
\(0)=0 v, (X) vy ()=0

Figure 3.4: (a) Sketch of the deformed shape of a fixed-fixed béadue to a unit translation of endalong axis
y. (b) The bending moment diagram and the positive definitidh@internal forces at the ends of the beam. (c)
Physical meaning and positive definition of the entries efsacond column of the elementary stiffness matrix.

Solving the differential equations of rods

The entries of the first and the fourth columnskf© are computed from the differential
equation of the stretched bar (EQ.3) at;. = 0 andq(z,t) = 0)

FAY" (z) =0, (3.7)
which is fulfilled by the first order polynomial
u(z) = Byz + By. (3.8)

Here the unknown coefficient8,, B; can be computed from two prescribed boundary condi-

tions. These are

for the first column and

for the fourth column. The solutiom;,.(z) is the deformed shape of the beam caused by a unit
translation of end alongx. The corresponding end-of.beam internal forces are

Niig = EAU;D(O% Viie = O, M = O,

3.11
Njil‘ - EAu;x(£)> V}w = O, Mjix =0. ( )

The entries of the first column of the stiffness matrix are
K% = [~ Niiz, 0,0, Ny, 0,0]" (3.12)
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The positive definition of the entries of matrKi‘;C is given by the local coordinate system
xyz, while a positive normal force denotes tension. That is #ason why the first entry is the
opposite of the normal force here. See the positive defmiicthe internal forces and of the
entries oka;C in Figure3.4 (b) and (c).

Problem 3.1.1(Entries of the first column of the elementary stiffness matrThe fixed-fixed beanij is of
length/, normal stiffnessg” A, bending stiffnesd/7, and mass per unit lengjh Determine the entries of the
first column of the elementary stiffness matrix of the beam!

Solution. Entries of the first column of the elementary stiffness madrie the end-of-beam internal forces
caused by a unit translation of endlong the axis: of the member. First we compute the deformatign(x)

of the bar due to the unit translation of end.e. the solution of3.7) with boundary conditions3(9). The
solution of B.7) is (3.8), where the unknown coefficient$,, B; are from boundary condition8.9). We write
these boundary conditions usir@§):

um(O):Bl()—l—Bozl — B():L

Thus the deformed shape is given by

Uiz () = Bo + Bix =1 — %x (3.13)

The first derivative of this function is .

u;ac(z) =7

L
Now, according to3.11) and @.12), the entries of the first column 6(1;;‘3 are
oc EA
Kzlj,ll = —EAU;z(O) = 7
K%?,(:Ql = 07
K55, =0,
EA
Kzl?,czu = EAUQI(K) = T
Kvljo,%l = Oa
K% =0.

We can compute an entry of the second, third, fifth, or sixtluroos of the elementary
stiffness matrix by solving the differential equation oéthent beam (Eq2(47) with i = 0)

EI"(x) = 0. (3.14)
Eq. 3.19) is fulfilled by a third order polynomial
v(z) = Agz® + Ayr? + Az + A,. (3.15)

The unknown coefficientd,, A, A,, A3 can be computed from four prescribed boundary con-
ditions. For the second column, these conditions are

vy (0) =1, v, (0)=0, wv,()=0, wv (f)=0, (3.16)

Wy 1y
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i.e. there are a unit translation of endlongy, zero rotations of the ends, zero translation at
end;. See the corresponding shape in Figu#(a). In case of the third column, the boundary
conditions are

0ip(0) =0, v;,(0)=1, wv,(l)=0, v, ({)=0 (3.17)

) ip
(no translations at the ends, unit rotation at érekro rotation at the other endl For the fifth
and the sixth columns, we have to use

vjy(0) =0, v, (0) =0, wv,()=1, v, ()=0 and (3.18)
0p(0) =0, v;,(0) =0, w,(£) =0, vj,(£)=1,

respectively. The end-of-beam internal forces due to,ristance, a unit translation of end
are:
Niiy =0, Vi = —ETvy,(0), My, = —ETv; (0),

3.19
Njiy = O, V}iy = —E[U;/y/(f), Mjiy == —EIU;;(K) ( )

The entries of the second column of the elementary stiffrresix are then

kloc = [07 _‘/iiqﬁ Miiya 0, ‘/jiyv _Mjiy]T'

5,2 T

The positive definition of the internal forces and the estoéthe stiffness matrix is visualized
in Figure3.4(b) and (c).
The whole stiffness matrix has the following structure:

—Nyz 0 0 |-Nyjz 0 0
0 —Viiy —Ww 0 —Vigy _V;jso
0 . g 0 . .
loc __ Y 1% iJy ijp
Kij = Njix 0 0 Niie 0 0 ‘ (3.20)
0 Vjiy ij 0 ijy ijeo
L 0 =My —Mji,| 0 =My —Mj;, |

Problem 3.1.2(Entries of the third column of the elementary stiffnessnwrpat Beami; is of length?¢, normal
stiffnessE A, bending stiffnes€/7, and mass per unit lengih Determine the entries of the third column of its
elementary stiffness matrix!

Solution. Entries of the third column of the elementary stiffness imadre the end-of-beam internal forces
caused by a unit rotation of eddFigure3.5shows (a) the model, (b) the internal forces at the ends,@ritld
positive definition of the corresponding entries of thefiséigs matrix.

First we need to compute the shape functigp(x), which is the deformation of the beam due to a unit
rotation of end;, i.e. the solution of§.14) with boundary conditions3(17). The solution of 8.14) is (3.15.
Here the unknown coefficientdy, A;, Ao, A3 are from boundary condition8(17). We write these boundary
conditions using3.15):

0ip(0) = A3- 03+ A3 - 02+ A1 -0+ A49=0 — Ay=0,
U;¢(0)23A302+2A20+A1:1 — Alzl,
Ul¢(£)2A3£3+A2€2+£:O — A2:_1/£—A3»€7
Vi, (0) =3A3 -2 +2(—1/ = As)l +1=0 — Az=1/1>
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Thus the shape function is

15 2, _ z? LA
vw(a:)—ﬁa: — 7% —|—x—€({€} _2{6} +€>. (3.22)
The second and the third derivatives of this function are
6 4
v () = %

Figure 3.5: (a) Sketch of the deformed shape of a fixed-fixed béadue to a unit rotation of end (b) The
bending moment diagram and the positive definition of therirdl forces at the ends of the beam. (c) Physical
meaning and positive definition of the entries of the thirliom of the elementary stiffness matrix.

Finally, according t03.19 and @.20), the entries of the third column of the stiffness matrixtod fixed-fixed
beam:; are

K5 =0,

KiS%, = BI0L0) = 250,
Kigs = B (0) = 22,
K =0,

KigSs = —EI0(0) = —25,
Ki%%s = BTV} (0) = #
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Applying the principle of virtual displacements

Alternatively, we can apply the principle of virtual dispments to determine the entries of
the stiffness matrix. This principle is within the scope tfeBgth of Materials. The principle
states that The work of a statically admissible force system on any abytvirtual displace-
ment system must be z&[qd].

We show how to use this principle to compute, for exampleryeh® of matrix Kﬁ‘;c. This
entry is the bending moment at ehdue to a unit translation of endalongy. Therefore, we
have to computé/;;,, which is the bending moment at endrom the shape function;,(z)
fulfilling (3.16). See Figure.4for further explanations. First we take the force systenwsho
in Figure3.4 (b) as statically admissible. Then we consider the dispiece system caused
by a unit rotation of end as virtual, and apply the principle to these force and dispizent
systems. The displacement system(x) caused by a unit rotation of endis sketched in
Figure3.5(a). The corresponding end-of-beam internal forces aresho Figure3.5 (b).

The virtual work done by the force system on the virtual dispment system is:

¢ ¢
W = My - 1 — /Miy(x)mw(x) dr = M,y — El/vié(x)v;;(x) dz = 0.
0 0

Thus

¢
K95 = My, = E]/v;;(x)v;;(x) dx |

0

We can also take the force system corresponds to a unitootatiend: as statically ad-
missible, and consider the displacement system shown ur&sg4 (b) as virtual and apply the
principle of virtual displacements. We get

¢ ¢
W = —Vigp - 1 — /MZ (2)Kiy(z) de = =V, — El/vgfp(x)v;’y(x) dz =0,
0

0

thus

4
K55y = —Viip = EI / Vi (vl () do = K}9%,. (3.22)
0

The stiffness matrix is symmetric.
In order to write the formula oK}5° in a compact form, first we construct the matrix of
shape functions

u(r) 00 uy(z) 0 0 } (3.23)

0 wiy(z) vip(x) 0 vjy(7) ()

Herew;,.(z) is the shape function of the beam due to a unit translatiomdfi @longz. This
is the solution of 8.7) with boundary conditions3(9). Functionv,,(x) is the shape function
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due to a unit translation of endalongy, i.e. the solution of3.14) with boundary conditions
(3.16. The shape function,,(x) is corresponded to a unit rotation of endt is the solution
of (3.14) with boundary conditions3(17). The same holds for subscriptvith the appropriate
boundary conditionst Second, we introduce the matiixof differential operators

d
— 0
L=| do (3.24)
da?
and denote the product &fandN by B: 2
B = LN. (3.25)

Now, we collect the normal and the bending stiffnesses oftember in matrixD:

EA 0
S -

Finally, with the aid of these matrices, the elementaryratis matrixiK;> of the beam can be
written as

l
K = / B'DBdz | (3.27)

0

From this formulation it can be easily seen, that the stfgnmatrix issymmetric

Problem 3.1.3(Entry 3,5 of the elementary stiffness matrixThere is a fixed-fixed beaiy of length/, normal
stiffness £’ A, bending stiffnesg7, and mass per unit lengih. Determine the entrg,5 of its elementary
stiffness matrix!

Solution. Entry 3,5 is the bending moment at endlue to a unit translation of end From Eq. 8.27) we need
only the3rd row and thesth column.

L L
o EA 0 0
K19, = /bd Db; dz :/ z) | [ o Bl } [ o () } do = Ef/vw(x)vé’y(w) da.
0 0

]y
0

Herev;,(z) is the deformation of beam due to a unit rotation of énde. it is the solution of .14 with
boundary conditions3(17). The deformation of the beam due to a unit translation of gisl denoted by
vjy (), which is the solution of3.14) with boundary conditions3(18). The former shape functios, (x) was
already determined (see E§.21) in Problem3.1.2):

Its second derivative is
1 6 4
’in(x)(x) = ﬁl - Z

1if we used FE approximations, these function would be theslianctions of the corresponding member.
2This is called the strain matrix in FE modelling.
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The shape function,, (x) is the solution of 8.14), i.e. itis (3.15. The unknown coefficientd,, A;, Az, A3
are from the boundary condition3.18. We write these boundary conditions usit3gl®):

0jy(0) =A5-03+ Ay - 02+ A1 -0+ A49=0 — A;=0,
U;y(0)=3A3'02+2A2'0+A1:0 - A =0,
'ij(g):Ag'[S"‘AQ'gQ:l — A2:1/€2—A3£,
i, (0) = 3A3 - 02 +2(1 /0% — A3l)l = 0 — Az = -2/,
Thus the shape function is
2 3 3 2
vjy(x) = ——a° + —a*.

03 02
The second derivative of this function is

12 6
v (x) = Bt a

Finally, the entry3,5 is

¢ ¢
6 4 12 6
K = El/y;:a(x)vj’y(x) dz = EI/ {ﬁx - E} {—égx—k 62} dz
0 0

Y4
79242 84xr 24 —o4g3 4222 2427° 6EI

Whether we apply one method or the other, it makes no differamthe final result. The
entries of the elementary static stiffness matrix of a fiigdd beam of lengtld, mass per unit
lengthy, normal stiffness A, and bending stiffnesBg'[ are

[ EiA 0 0 EiA O O |
¢ ‘
12EI  6EI 12EI  6EI
0 3 2 0 2
0 6EI  AEI 0 _6EI  2EI
2 ‘ 2 ‘
K\ = . (3.28)
EA EA
- 0 0 - 0 0
‘ ¢
12E1  6EI 12E1 6E1
L N N 6o 2
0 6EI  2EI 0 6EI  AEI
L 22 ¢ 2 ¢

3.1.4 Equivalent nodal forces

We have computed already the end-of-beam forces due toabigoadeformations of beams.
Now we discuss the effects of static loading. There are twssite cases: either forces and
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moments act directly on the nodes of the structures, or e iexerted on the beams. In the
latter case we have to reduce the loads on the nodes, olgt@ginvalent nodal forces.

Let us study the beam shown in Figld®, which is loaded by a transverse distributed load
¢:(z). The transverse deflection of the beam due to the load is eéérnmtv,(z), while the
end-of-beam forces aw§,,, Vi,, Mi,, Njq, Vjq andMj,.

d v (I)=0

Mi, V
i C ||IIIIIIIIIIIIIIIIIIIIII|||||||||||»<--"'“““““““““lllllllllll N
i Via Myg

Figure 3.6: Beamij under a transverse, static, distributed lgad:)

First we determine the equivalent nodal moment atigndmely/,,. For this we write the
virtual work done by the force system on the virtual displaeat system due to a unit rotation
of endi (see Figure3.5):

4 4
Waw =My 1+ [ a)une(o)de — [ Myapis(o) da
0 0
)4

L

= M;, + / ¢ (2)vip(x) do — EI/U;'(JU)UZP(x) dz = 0.
0 0

Now the virtual work done by the force system due to a unittrotaof end: on the virtual
displacement system caused by loadji{(@) is formulated:

l l
Weq = — /Mw(:c)/ﬁq(:c) de = —Ef/vgfp(x)v;'(x) dr = 0.
0 0
The above equations yield
l
My =~ [ al@)olz)do
0

This is the end-of-beam moment at endriginated from the transverse logdx). The
opposite of this moment acts on the node, thus the third eftiye equivalent nodal force is:

g3 = /g%(l’)@w(x) dx.
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If the distributed load has both longitudinal and transeexsmponents, denoted hy(x)
andq(z), respectively, then the can be collected in the vettoy = [q,(z), ¢(z)]" and all
the entries of the nodal forces are computed shortly as

¢
qg’c::ij = /Nde:E. (3.29)
0

If the is also a distributed moment(x) on the beam, then matriX needs to be appended
by an extra row carrying the tangent of those shape functluatscorrespond to the transverse
translation. This extended matrix is

Uip(z) 0 0 wuj(z) O 0
Newt = 0 Viy(x) V() 0 vjy(z) wvis(x) |, (3.30)
/ / !/ /
0 viy(x) vw(x) 0 vjy(x) vjso(x)
while the distributed loads are collected in the vedtfz) = [¢.(x), ¢:(z), m(z)]*. With
the above notations the formula for computing the equivaledal forces is

l
q'g;ij = / NZ £ da. (3.31)
0

If a concentrated force, denoted by two compondhts: [F,, F,]”, acts on the beam at
x = a, then the equivalent nodal force is

q!aoqfij = NT|1’:aF- (332)
If there is also a moment/, i.e. Fey = [F, F,,, M]", then
ass;; = Nl o—aFext. (3.33)

Problem 3.1.4(Static nodal forces of a fixed-fixed beam under a constams¥exse distributed load)here is
fixed-fixed a beam of length loaded by a constant transverse distributed lpad) = ¢o. Determine the static
nodal force vectoy!

Solution. We apply formula8.29 with load vectorQ = [0, qo]T. The entries olN are give in AppendiA.2.

L

¥/ T
0 0 0 0 0 0
d / Qdz =g L0 we) wip@) 0 uy(e) viele)

0
0/2
l
0 0 r 2/12
=qo 0
0 0/2
/12
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3.1.5 Different end conditions of beam members

We have shown so far the elementary static stiffness matrikeofixed-fixed beam. Al-
though we could derive this matrix for other end conditior@f the corresponding shape
functions, there is another option, which is based ordreglic decompositioaf a matrix.

Let us consider the beam shown in F3g7: its endd) and/ are elastically connected to the
coinciding nodes andj through linearly elastic springs. The compliances of thingjs are
collected in a diagonal matrix

rn 0 0|0 0 O

0O o 0]0 0 O

10 0 r|0 0 0

R= 0 0 Ofry O O

0O 0 0]0 r O

L0 0 00 0 7|
qi qj
Lo DA
qi qj

(Do iy

Figure 3.7: A beam with its end$ and/ are elastically connected to the coinciding noflasd; through
linearly elastic springs

First we use fictitious nodesand/ at the ends of the beam, connected rigidly to the beam.
The equilibrium equation of these nodes are:

Kouy = qo + q;. (3.34)

Here K, is the static stiffness matrix of the fixed-fixed beamg,contains the displacements
of ends0 and/, qq collect the force components reduced to nodlesd ¢ from the load of
the beam, and;; contains the spring forces acting on nodeand/. The spring forces should
satisfy

u; — Ug = qu, (335)

whereu; contains the displacements of nodeand j. Let us expressi, from (3.35 and
substitute it in 8.34):
Kou; = qp + (I+ KoR)q;.
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(Here I is the 6-by-6 identity matrix.) Now the above equation is tiplied by (I + KoR) ™!
from the left:

(I + KoR)ilKoui = (I + KoR)ilqO + q;-
On the right hand side the loag indicates that the above equation corresponds to noales
j. Therefore

K = (I+KR) 'K, (3.36)
is the stiffness matrix of the elastically connected beath an
q=(I+KR) 'qo (3.37)

is the nodal force, the beam loads reduced to nedesl ;. In this way we have managed to
eliminate the fictitious noddgsand/.

Let us study now the case when only one degree of freedom cérile of the beam is
connected elastically, the others are rigidly connectdus diegree of freedom is denoted py
(I < p <6). Matrix R has only one non-zero in its diagonal, ifte one. The matrix can be
therefore easily formulated as

R = rpepef. (3.38)
Here the entries of vectey, are all zero except for itgth entry, itis 1. The produat,e] gives
a 6-by-6 matrix, called a dyad, which in this special casedmdgone non-zero entry: its entry
p,p is one. Using 8.38 KR yields
KoR =71,k e’

pp?

wherek,, is thepth column of matrixK,.

If a dyadvw?’ is added to a matriA, then the inverse of the resulting matrix can be
computed as
A-lvwTA—!
1+wlA-1v’
Applying this rule to the matrix inverse ir8(36), using @.1.5, with the substitutiolA — 1,
vw! — Tpkpeg, yields

(A + VWT)_1 =A1—

_ keT T
T—rkel ) =T—r,—2F -T2 kel T kel (3.39
(L= rokye;) "1+ relk, L4 rpky, 7P L (3:39)

With the above formula we can simplify the stiffness mat®@3g for a beam which has its
pthe degree of freedom elastically connected to the adjacmid as:

1
K=K, —kk;. (3.40)
Epp + —
Tp
Similarly, the nodal force is
q
q=9d0 — £ 1 kp- (341)
Fpp + —
Pp Tp
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Problem 3.1.5(Elementary static stiffness matrix of a fixed-pinned beamf)ere is a beam of length normal
stiffnessE A, bending stiffnes#/' 7, and mass per unit lengfh The beam is fixed at endand pinned at engl.

(It is fixed-pinned.) Determine its elementary static aeffs matriﬁ(i‘;c’fp!

Solution. We start with the stiffness ma’trKi‘j’-C of the fixed-fixed beam member detailed I3y28. Because

of the rotation of end (the sixth degree-of-freedom of the member) is relaxed, 6 andr, — oco. Thus the
entry6,6 and the6th column ofKi‘;C are needed. We apply formula.40 with these input data:

loc,fi loc 1 T
K P = Ki9° — —kek
1 1] kGG 6
24 0 0 |-EZ 0 0 ] [0 ]
0 12E1  6E1 0 __12E1 6E1 6E1
¢3 02 ¢3 02 02
0 6ET 4E1 0 _6EI 2EI 2ET1
02 L 02 £ L
— _ 1 [ 0 6EI 2FEI 0 _6FEI 4FEI ]
- 4F1 02 L 02 3
y4
-E4 0 o [E2 0 o0 0
0 _12BI_G6EI 12EI _ 6EI __6EI
73 02 73 02 02
6E1 2E1 6EI 4FEI 4ET
0 N N
L 02 L 02 2 L L -
r EA EA 7
T 0 0 =F 0 0
3EI SEI SEI
o & 1o -3 o0
3EI SEI SEI
0 2 3 0o 2L 0
loc,fp __
K oP =
EA EA
- 0 017 0 0
3ET 3ET 3EI
0 % %= 0 &= 0
L 0 0 0 0 0 0 ]

Problem 3.1.6(Elementary static stiffness matrix of a pinned-pinnednieaThere is a beam of length
normal stiffness A, bending stiffnes#/ 7, and mass per unit lenggh The beam is pinned at both endand
j. (Itis pinned-pinned.) Determine the elementary statfinsss matrixKi‘;C’pp!

Solution. We start with the stiffness matrik;%*"" of the fixed-pinnecbeam detailed by Proble811.5 Be-
cause of the rotation of end(the third degree-of-freedom of the member) is relaxed; 3 andr, — oo.
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ThereforeKi‘;C’fp, its entry3,3, and its3rd column are needed in formula.40):

1

loc,pp __ grloc,fp T
KPP = Ko — - lsk]
33
B 0 0 [<EA 0 0
3EI 3BT 3E1
0 BEL 3BL| o 3L
3BT 3ET 3ET
0 72 7 0 -5 0
I N I B
0 _3EI _ 3EI 0 3E1 0

03 02

[ EA 0 0| —-£4 0
0 2L 0| o 353
0 0 0] 0 0 0
-E4 0 o] £ o 0
0o -3 o| o 3£ _3E
i 0 SZEQI 0 0 _3£E2I Slﬂ

_3EI
62

3ET
72

L

3ET 0

3ET
72

0 ]

Problem 3.1.7(Nodal forces from a fixed-pinned beam under constant diged load;;). There is a beam of
length¢, normal stiffness A, bending stiffnesg€/ 1, and mass per unit lengjln The beam is fixed at end
pinned at end, and loaded by a constant transverse lgdad) = ¢o. Determine the nodal force vectqlo® P!

Solution. We start with the nodal force vectqt°>® = ¢o[0, ¢/2, ¢2/12, 0, £/2, —¢2/12]T of thefixed-fixed

beam. (See Proble®1.4) Because of the rotation of eridthe third degree-of-freedom of the member) is

relaxed,p = 3 andr, — oo. Therefore the vectot'*>T and its third entry are needed in formulza.41)
alongside with the entrg,3 and the3rd column ofKi‘;C’H:

qloc,ff

loc,ff 43

q klocﬂ 3
33

loc,ff

loc,fp _

a

0
2ot

2
qol?

12
0

2ot
2

qol?
12

98

0
6E1

21
e
0
6ET

1f1
a
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3.1.6 Transformation of the elementary stiffness matrix

The elementary stiffness matrix can be written in the blask.
loc,ii loc,ij
Koo — | Bu” | Ky
ij Ki(;c,u )

Toc,ji
K7
The nodal forces‘}J‘?C can be calculated from the nodal displacemenjji% with Eg. 3.6).
If the nodal displacements are given in the global referaystemXY 7, first we have to
transform them into the local reference system:

loc _ /1 _glob
u;; —sz ij

with the hypermatrix:

T TZ| 0
T"—l 0 Tz]'

We transform the resulting nodal forces

fil;)c Kloc loc KIOCT glOb (3 42)

i zg
into the global reference system with the hyper matrix
~ | Tyl O
i = [ 0 | Ty ] '
We multiply both sides of Eq3(42) from the left byT,;:

T floc _ fglob _ T KlocT uglob.

ijtig 1J g

In the above formula the matrix prodUE‘l;JKlocT transforms the nodal dlsplaceme\ln%l

into the nodal force£§jl°b. Therefore, the elementary stiffness matrix in the gloleétmrence
system (the global stiffness matrix, for short) is

lob loc
K& = T, KT, (3.43)

and the nodal forces can be calculated as

glob glob__glob
fij —Kij u;

The matrix product3.43 can be written in a simpler form using the hypermatrix sinve:

glob,ij

loc,iirmT

TyKy T, .

Kelobii
J

loc,ijT glob,ii
Tinij “sz _ Kij

- glob,ji
[ Kij

We cannot stress enough the physical meaning of the stfimasrix. Entryp, » of matrix
K¥° (i.e. the entry ofK¥°" in the intersection of theth row andrth column) is multiplied
by the displacement (rotation, #f = 3 or 6, and translation otherwise) of th¢h degree-of-
freedom the beany. The result is the force or the moment (momenj i 3 or 6, and force
component otherwise) acting on thn degree of freedom of beainm arising from the elastic

deformation of the beam member.

glob
K& =
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3.1.7 Compilation of the total stiffness matrix

In various displacement methods the equation of motion igtesr for every degree-of-
freedom of the system, so the forces acting on each degrireemfom must be calculated.
In the stiffness matrix we collect the (stiffness) coeffintge of the displacements needed to
calculate the forces arising from the elastic deformatiche structure. We use a linear theory,
so the forces acting on the same degree-of-freedom fromrdifft members must be summed.
This summation of the elastic forces (more accurately theffictents of displacements) is
called thecompilationof the total stiffness matrix of the structure.

The first step of the compilation is to find out which local naddeam:; corresponds to
which global node. We used the global indexasd; for the local nodes as well, so they are the
same. The effect of the membgron the whole structure is particular, only the displacement
of nodes:; and; affect the forces and moments on thile and;jth nodes. The global stiffness
matrix of membet; can be expanded on the structure level into a m&rix The matrixK;;
is of size3M by 3M corresponding to the DOF of the structure. It has one bloekand one
block column for each node (each block is of sizay 3):

] ‘ J _
RO [ [ REeT i
1] 1]
glob,ji glob,jj )
K¢ K¢ j

The matrixK;; represents the effect of beamto all nodes. The total stiffness matrix of the
structure can be constructed as the sum of the expandetessfiatrices of all the beams of

the structure:
K=> K.

Technically, it is more practical to carry out the compiatiby adding the blocks of the ele-
mentary stiffness matrin;;.‘)‘O to the corresponding blocks of the total stiffness makixvith
the scheme shown in EB.44).

3.1.8 Boundary conditions

Boundary conditions of frame structures are defined by the@tgonditions. The dis-
placement of some degrees of freedom is constrained to erjired value (igid support) or it
is proportional to the reactiorlasticsupport). These constrains must be incorporated into the
equilibrium equation:
Ku =q,

whereq is the external load vector of the system. There are two waysandle the boundary
conditions.

e The fixed support modek based on the solution of the equilibrium equations of the
prescribed degrees of freedom, and the application of sigtse
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e Thespring modeluses springs in the directions of the prescribed, elabtisapported
degrees-of-freedom. The rigid supports are approximayesphings of very high stiff-
ness (bigger than any other entry of the stiffness matrixdmgesorders of magnitude).

It is more accurate to handle the support displacementsthétfixed support model. Later
on, in dynamical analysis of structures, an important lcagkds the support motion.

Rigid supports in the fixed support model

We analyse the case when tfte degree-of-freedom of a structure is rigidly supported, s
its displacement is prescribed ly. (The prescribed displacement can be a translation or a
rotation depending of, and the prescribed value can be zero as well.) Then, in thé@qm
equation theth row differs from the other rows, because the displacermgistknown, but the
reaction forcer, represents an additional unknown in gtk entry of the force vector.

Let us exchange the order of the displacements such a waththptescribed displacement
becomes the last. This implies an exchange of columi&.dh order to resolve the symmetry
of K, we need to change the order of the equations as well. Thdiesngn exchange in the
entries of the load vector. If we denote the blocks of thdregs matrixK before thegth
degree-of-freedom by the superscriptand the blocks of the stiffness matiik after thegth
degree-of-freedom by the superscrijtthen above procedure leads to the following structure
of the stiffness matrix, the displacement and the load vecto

KPP KPq KPR uP ClP
K™ | k1 | KiF iy | = | qq+74
KRP KRq KRR uR qR
KPP | KPR | KP4 u? qP (345)
N KEP | KRR | K1 ul — qR
K | K | k2 U, qq +7q

Once we find the unknown displacement$ andu’, the last row of the matrix equation can
be used to calculate the unknown reaction fotrcelhe first” + R equations can be partitioned
into a known and an unknown part:
PP PR P P Pq

{ERPERR}{ER}_{ERl_{ERq}QQ' (3.46)
The matrix on the left hand side of E@.46 can be regarded as the stiffness matrix of the
reduced system, the vector on the left hand side is the vettitie unknown displacements,
while the vector sum on the right hand side is the reducedVeatbr, which also contains the
kinematical load caused by the support displacemgnthe resulting equations can be written
in the classic forrKu = q, but K andu are of reduced size, anglcontains the kinematical
loads as well.

Further supports can be treated in a similar way, only thealsteps need to be repeated
on the already reduced equatiBu = q.
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Elastic supports in the fixed support model

Now imagine, that nodéis supported elastically against the horizontal and valrti@ans-
lations and the rotation. The equivalent spring stiffnessfehe horizontal and vertical elastic
support arepx andpy, respectively, and the rotational spring is of stiffnpsgsee Figure3.8
(a))-

In the fixed support modeke introduce an additionaupporting nodey in the same geo-
metric location as node Then the degrees-of-freedom of nodesdg are connected to each
other by the massless springs, py andp,, (see Figure3.8(b)). The global stiffness matrix of
the member connecting nodeandy is

glob __
Kig™ = —px 0 0 | px O 0

0 0 —pp| O 0 Py

The displacements of the supporting nagare prescribed (here zero), so we can use the
method described in the previous subsubsection to elimib&iom the system of equations.

We note, that in thespring modelwe need to add the spring stiffnesses directly to the
corresponding main diagonal entries of the total stiffmaasrix. (In the case of rigid supports,
springs of numerically large stiffnesses need to be usegp&t displacements are taken into
account by external forces applied on the node, resultiegactly the prescribed displacement.

(&)

g‘f’ 1Y
Oy ,,E;;}‘Yf

Figure 3.8: (a) Spring modeltheith supported node of a frame structure constrained agaamstlations and
rotation by the equivalent springs;, py, andp,,. (b) Fixed support modekith an elastically supported node
Kinematical loads arising from the support displacemergsagplied on the supporting noge(The supporting

nodeg is drawn in a distance from the supported nodeorder to make the connecting springs visible.)
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3.2 Dynamic stiffness matrix of frame structures

Let us have an undamped MDOF dynamical system governed bgy#tem of ordinary
differential equations
Mii(t) + Ku(t) = q(t). (3.47)

Here dot denotes differentiation with respect to time. ThessnmatrixM and the (static)
stiffness matrixiK are of sizeNV by N, whereN is the total degrees-of-freedom of the system.
Vectoru(t) is of size N and it contains the unknown displacements of the nodes eR@ctor
q(t) is a given vector of sizéV: it contains the forces reduced to the nodes. jtheentry of
forceq(t) is work-compatible with theth entry ofu(t).

If the force is harmonic, for instaneg(t) = qosin(wt), then the steady-state response of
the undamped system is also harmonic. We have seen thas icetbe the particular solution of
the forced vibration isi;(t) = uy, sin(wt) and the equation to solve fary, is:

(K — w21\/[) Uy = qo-

We can alternatively introduce the dynamic stiffness mati= K —w*M and write the above
equation as A
Kl.lfo = . (348)

The question here is that how we can formulate the mass nidlyigr, equivalently, how
we can compose the dynamic stiffness maki® We can follow three different approaches.
The first, easier way is to apportion the mass of the membetkeoframe into the nodes,
which results in a totatliagonally lumped mass matrixThis is a rough approximation. The
second way is to derive the elementary dynamic stiffnessixnat a beam with continuous
mass distribution, and then to compile the total dynamitngtss matrix of the frame in the
same manner as for the static analysis. This approach ledats exactrequency-dependent
mass matrixof the frame. The main difficulty of this method is that it régs the dynamic
shape functions of the beam. In practice, dynamic shapdifunscare often substituted by the
static shape functions. In that case, the shape functidersyssed for the computation of the
static stiffness matrix is consistent with the shape fumsgiapplied to approximate the mass
matrix. This third approach leads to the construction ofigpderconsistent mass matriwhich
is an estimation of the accurate dynamic mass matrix.

We review these methods in the following subsections. Waydvwdeal with an unshearable
beam of lengtlY, mass per unit length, bending stiffnesg//. The ends of the studied beam
member are denoted Byandj, and the member itself is referred to as beam

3.2.1 Diagonally lumped mass matrix

In this case first we divide the beam into two equal parts: halthe part which is closer
to the end;, and halfj is the other part. Then the mass of haié concentrated to nodeand
the mass of halj is reduced to nodg.

Several members can be attached to one node of the frameddntorcompile the total,
diagonally lumped mass matriXl of the structure, we need to make the following steps. If
the pth degree-of-freedom of the frame is a translation, thempthediagonal entry of mass
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matrix M is the total mass of the halves of the beams attached to thespanding node. If
therth degree-of-freedom is a rotation, then ttie diagonal entry of matri® is the moment

of inertia of the (closer) halves of the rods attached to tireesponding node. If the center
of mass of the halves of the beams connected to one node @esnwith the node itself, then
the mass matriM is diagonal Otherwise, the translation of the node induces both ailinea
momentum and an angular momentum with respect to the nodetharrotation of the node
induces not only an angular momentum, but also a linear mamenThus the mass matrix
is not diagonal in this general case. Although, the off-drea) terms are usually neglected in
practice.

3.2.2 Dynamic stiffness matrix

Apportioning the masses to the nodes in the manner showreiprigvious subsection is
the easiest way to approximate the mass matrix of the frarnetste. However, the precise
approach is to directly derive thedynamic elementary stiffness matok a beam, and then
compile the total (dynamic) stiffness matrix of the wholeusture in the same way as for the
static case.

Let us examine a beam that is excited such that one DOF of oite @hds vibrates har-
monically with frequencw. According to our earlier studies, the steady state vibretias the
same frequency. Thus we assume that the translatiais, t), v(z, t) of the beam axis along
x andy, respectively, the rotation of the cross-sectief(s;, t), and also the internal forces
N(z,t), V(x,t), M(z,t) are harmonic functions of time with frequency We write these
functions in the separated forms

v(z,t) = o(x)sin(wt),  u(z,t) =d(z)sin(wt), o'(z,t)=70(z)sin(wt), (3.49)
N(z,t) = N(z)sin(wt), V(z,t) =V (x)sin(wt), M(z,t) = M(z)sin(wt). '
We show two methods suitable to calculate the end-of-be#mial forces, which are used to
construct the dynamic stiffness matrix of the beam.

Solving the differential equations of motion

~ The entries of the first and the fourth columns of the elenrgridgnamic stiffness matrix
Kﬁ‘;c are computed from the differential equation of the streddber (see Eq.2.6))

wii(x,t) — EAu"(z,t) = 0 (3.50)
subjected to boundary conditions

uw(0,t) = 1-sin(wt),  wu(l,t)=0, or (3.51)
u(0,t) =0, u(l,t) =1-sin(wt). (3.52)

Boundary conditions3.51) express that endof the bar vibrates harmonically alongwith a
unit amplitude, while end is fixed. The other two boundary conditior&%2 mean that end
vibrates while end is kept fixed.
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We split the variables andz of the unknown function
u(z,t) = u(z)sin(wt),
substitute it into Eq.3.50, and divide both side byin(wt) # 0:
wpi(z) + BEAG (z) = 0. (3.53)

The solution of the above differential equation is

u(z) = Dy cos (%x) + Dy sin (%x) , (3.54)

PN
V=07

The unknown coefficient®;, D, can be computed from two prescribed boundary conditions.
According to 8.51) and @3.52) these are

1:(0) =0, ;,(0) =1 (3.56)

where

for the first and the fourth columns, respectively. The atagks of the internal forces at the
ends of the bar are

Nz = EAu;,(0), Viie =0, M =0,

~ ~

Njiw = EAG,(0), Vi =0, My, =0.
The entries of the first column of the dynamic stiffness madre

IA{I.OC = [_NZZI7 0, 0, Njixu O, 0]T7

15,1 T

while the fourth column is composed of

A

IA{;(])',CZL = [_N’Lj17 07 07 NJJ"E’ O’ O]T

Problem 3.2.1(The fourth column of the elementary dynamic stiffness irptrThere is a fixed-fixed beam
17, which is of length?, normal stiffnesg7 A, bending stiffnes€s7, and mass per unit lenggh Determine the
entries of the fourth column of its elementary dynamic s&fs matrix!

Solution. Entries of columnt are the end-of-beam internal forces due to a harmonic aioslof unit ampli-
tude of end;j along the axis of the beam. Since the translation along thmlaxis induces only normal forces,
the entrie,4 (shear at end), 3,4 (bending moment at end), 5,4 (shear at end), and6,4 (moment at end)
are all zero: R R K R

Kzl?,cm =0, K;?E’A =0, Kzl?cszx =0, K};’),CGZL =0.

Entry 1,4 is the normal force at end

Kifiy = —Nijo = —BAi,(0),
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while entry4,4 is the normal force at engl
K354 = Njju = EAW,(0).

Hered,, (x) is the solution of 8.53 with boundary conditions3(56), i.e. it is the dynamic shape function of
the bar due to a harmonic translation of unit amplitude of ¢ndhe solution of 8.53 is (3.54). Here the
unknown coefficientd); and D, are from the boundary condition3.66). We write these boundary conditions

using @.59):

Uiz (0) = D1 cos(0) + Dasin(0) =0, — Dy =0,

Ujq(z) = D cos (fﬁ) + Dy sin (zﬁﬂ) =1, — Dy=1/sin(v).

(Here we suppose thaii (1)) # 0, i.e. the system is not in the state of resonance.) The dyndisplacement

function is: , .
() = — e (ﬂ) : (3.57)

It is differentiated with respect to, multiplied by £ A, and evaluated at endz = 0) andj (z = ¢). Positive
value of the result is a tension. However, a compression @t ,eand a tension at engl coincide with the
positive direction ofc. Thus

‘-loc  __ ~/ — % 1 S % = —EiA w
Kijia = —EAu,(0) = —EA; sin(g) (40> © L osin(y)’
-loc ~7 ¥ 1 ,(/J E4

K%j744 = BAu;, () = EAZsin(dz) cos (KE) = 71/1 cot(1)).

Exercise3.2.1 Drawf(};?fM andf(}/;?,‘i14 as a function of the forcing frequencyin the domainu = 0. .. 10wq; !

An entry of the second, third, fifth, or sixth columns of therakntary dynamic stiffness
matrix K;2° can be obtained from the differential equation of the tramse vibration of the
beam R.47), which is repeated here:

pi(z,t) + EIV" (z,t) = 0. (3.58)

Here dot and prime denote partial differentiation with exgpgos andz, respectively. There
are again harmonic boundary conditions defined 3059):

iy (0,1) = sin(wt), v}, (0,1) =0, vy (0, 1) =0, v, (£,t) =0, or

0;,(0,1) =0, v;,(0,1) = sin(wt), wvi,(¢,t) =0, v, (¢, ) =0, or

v,(0,t) =0, v7,(0,1) =0, vjy(€,t) = sin(wt), v}, (¢,t) =0, or

v,(0,t) =0, v7,(0,t) =0, vj,(L,t) =0, v, (£, 1) = sin(wt).
(3.59)

The first four conditions express that there is a harmonitstrarse translation of unit amplitude
at endi, while the rotations of the ends, and the translation of gade zero. The next four

conditions are for a harmonic rotation of unit amplitude di¢ then the next four correspond
to the harmonic transverse translation of unit amplitudenaf;, while the last four are devoted
for the harmonic rotation of unit amplitude of end
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We split the variables andx as
v(z,t) = v(x)sin(wt).

Substituting the above formula into EQ.%8 the ODE

Wpd(r) — BIY"(x) = 0 (3.60)
is obtained. The solution of the above differential equatto
0(x) = C cos (%x) + (5 8in (%x) + (5 cosh (%x) + (4 sinh (%x) , (3.61)

where

i wip
A=W Er

similarly to Eq. €.50. The unknown coefficient§’, Cs, C5, Cy can be computed from four
prescribed boundary conditions. According 859, these conditions for the computation of
the second column d&}° are

0iy(0) =1, 0;,(0) =0, 05(0) =0, v, (¢)=0. (3.62)
Similarly, the boundary conditions are
0i,(0) =0,  0;,(0) =1, 0, (£) =0, 0, (£) =0, (3.63)
05,(0) =0, ©3,(0) =0, o, =1, 0,(()=0, and (3.64)
0jp(0) =0,  ©5,(0) =0, 0;,(£) =0, V;,(£)=1 (3.65)

for the third, fifth and sixth columns, respectively. Thea #mplitudes of the internal forces at
the ends are evaluated as

Niiy =0, Vi = —ET0/(0),

Njiy — 0, ‘/jiy - —E[?A)m(g),

1y

M;y, = —EI9],(0),

in the case of boundary conditior3.62), i.e. for the second column of the dynamic stiffness
matrix. The entries of the second column of the stiffnesgimate

k5% = [0, —Viig, Misy, 0, Visy, =Mz, |
The positive definition of the end-of-beam internal forced the entries of the dynamic stiff-
ness matrix are the same as in the case of the static stifimess, which is shown in Figurd.4
(c). Therefore, the dynamic stiffness matrix has the sanuetsire as the static on8.0):

~Niw 0 0 |[-Ny 0 0
0 —Viiy = Viig 0 —Vijy = Vije
Ki(f _ 0 Miiy Miw 0 Mijy Mz’jg@ (3.66)
Njix 0 0 Njje 0 0
0 ‘A/J;iy ‘7];2'90 0 Vj;jy VJ;N
L 0 =My =M, | 0 =My —Mjj, |
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Application of the principle of virtual displacements

Let a beam be vibrating such that the translation of itsiéd;, (0,t) = 1 - sin(wt), while
all other displacements of its ends are zero (see Figu#¢op). The end-of-beam internal
forces are the harmonic functions

Niy(O, t) = Niiy Sin(wt), V;y(O, t) = ‘A/iiy sin(wt), Miy(O, t) = Miiy sin(wt),

. . A 3.67
Niy(l,t) = Nj;ysin(wt), Vi (0,t) = Vi sin(wt), M, (¢, t) = M, sin(wt). (3:67)

These internal forces and the bending moment diagram ataircéme instant are sketched at
the bottom of Figure.9.

6 (0=-ha, (x.)

X
Y (0= 09sin@b  (1,)=0
v, (1,H)=0

v,(0.0=0

1%

Figure 3.9: (top) Sketch of the deformed shape of begrdue to a harmonic translation of unit amplitude of end
1 along axisy. (bottom) The corresponding bending moment diagram angdkgive definition of the internal
forces at the ends of the beam.

Our aim is to determine the amplitudes of the end-of-beagmiat forcesNyy, Viiy, My,
Njiy» Viiy» M, due to a harmonic translation of unit amplitude of endFrom these values
the entries of the second column of tby-6 elementary dynamic stiffness matri«iIOC can
be obtained following%.66).

The computation of the end-of-beam internal forces of thenbés based on the prin-
ciple of virtual displacements. At any time instantwe apply the fictitious inertial force
q(z,t) = —pai,(z,t) as shown in Figur8.9. Thus we have a statically admissible force sys-
tem: the internal forces and the fictitious inertial force ar equilibrium. We take the (static)
displacement system,,(x), which is caused by a unit translation of enghown in Figure3.5)
as the virtual displacement system. We compute the virteak what the force system shown
in Figure3.9does on this virtual displacement system at time instant

¢
IWas = M,y (0,¢) - 1+ /{ paiy (2, ) b, (z /Mly x) dr = 0.
0

Here the first term is the work done by the momény, (0,¢) on the unit rotation of end.
The last term is the internal work done by the bending mondép{x, ) on the curvature
rip(r) = M,,(x)/EI. The second term is the work done by the (distributed) iadatice

—paiy (2, t) = —piy, (z,t) = pwi;, () sin(wt)
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on the translation;,(z) along the whole length of the beam. This, E8.49), and Eq 8.67)
implies that the above work is

4

‘
OWas = Muy—iruwQ/’Uzy )V (x /sz d:c sin(wt) =0. (3.68)
0 0

Next, we express the virtual work that the static force sygtghown in Figure3.5) does on
the dynamic displacement system (sketched in Figudeat certain time instant

¢
M, (2.t
OWea = Visp - {—1 - sin(wt) } — /Mw(x)# dz = 0.

Using Egs. 8.49 and 3.67) the above work is reformulated as

¢
Wy = Viie /Mw d:c sin(wt) = 0. (3.69)
0

Both Egs. 8.68 and (3.69 have zero on the right hand side. Therefore their left haaebsare
equal, which implies that the terms in the curl brackets gr&ak yielding

¢
Muy + pw? /@Z-y(x)viy(x) de = V.
0

In the above expressionV;,, equals the entrg, 3 of the static stiffness matrix of the beam by
definition. In addition, and due to the symmetB/32) of the static stiffness matrix;:V;;, =
K};%:}, - Kzl;)%z

Finally, we can express the amplitude of the dynamic bendhioment at end caused by a
harmonic translation of the same end, i.e. the eB2yof the dynamic stiffness matrKlOC.

¢
K5 = Miy = K5 — p® / Diy () Vi () A |
0

We can derive all the end-of-beam internal forces due toitadgpal and transverse (harmonic)
translations and (harmonic) rotations of unit amplitudethe ends in a similar way. We can
construct a matrix similar ta3(23:

o[ di(z) 0 0  dj(z) 0 0 ]

N 0 Uiy(x) Vg () 0 bjy(x) Vjp(2) (3.70)

Hered,,(x) is the dynamic shape function of the beam due to a harmomslaon of unit
amplitude of end alongzx. This is the solution 0f3.53 with boundary conditions3(55. The
shape functiori;,(x) is due to a harmonic translation of unit amplitude of éradongy, i.e.
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the solution of 8.60 with boundary conditions362). The shape functiof,(x) describes the

deformed shape of the beam caused by a harmonic rotationtatraplitude of end. It is the

solution of .60 with boundary conditions3.63. The same holds for superscriptwith the

appropriate boundary conditions. Itis important to notd these shape functions are functions

of x, but they depend on the parametersZ1, E A, ¢ (which are given for the studied beam),

and also omw (which is the frequency of the vibration). Therefolé s frequency dependent
Now we can write the elementary dynamic stiffness matrixesir:;j in the short form

K (w) = K% — w?MP (w) | (3.71)

Here K} is its elementary static stiffness matrix of beam andM'2¢(«) is the elementary

ij
mass matrix:
Vi

M (w) = / N'N dz, (3.72)
0
which depends on the circular frequencyof the external forcing. As a conclusion, we can
say that the elementary dynamic stiffness matrix equalsd@kementary static stiffness matrix
minus the mass matrix3(72 times the square of the forcing frequency. This dynamftnstss
matrix isfrequency dependerferom Eq. 8.72 it can be verified that the mass matﬁ&%;c(w)
is symmetricand so is the dynamic stiffness maﬁ%@c(w), which is evident from Eq.3.71]).

Problem 3.2.2(Entry 1,4 of the elementary dynamic stiffness matrixjhe fixed-fixed beanij is of length¢,
normal stiffnesgr A, bending stiffnes& 7, and mass per unit length Determine the entry,4 of its elementary
dynamic stiffness matrix!

Solution. Entry 1,4 is the normal force at enddue to a harmonic translation of unit amplitude of gralong

the axis of the beam: ,

K199, = K199, — o’y / 150 () a0 () .
0

Hered;,(x) is the dynamic shape function due to the harmonic (axialjation of end;, while u;, (x) is the
(static) deformation of the bar caused by an axial unit tedits1 of endi. The former functioni,,.(z) was
already determined in Proble®2.], its is given by Eq.3.57), which is repeated here:

() = 1 (Y
Ujr\T) = sin (1/)) S111 EIE .
The functionu,,. () was derived in Probler8.1.], its is given by Eq.3.13 as:

1
um(l) = B() -+ Bll' =1- zfﬂ
Entry 4,1 of the static stiffness matrix was also computed in Prol8ehil Due to the symmetry of the stiffness

matrix, entriest,1 and1,4 are equal:
EA

0

loc __ loc __
Kij,14 = Kij,41 = -
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Now, we can compute the entry of the dynamic stiffness mairoording to 8.71):

¢ ¢

. FA 1 1

Kzl?,cm = Kzl?,cm - WQM/fjx(l")Uiz(m)dl“ T qu/ o (D) sin (1/)];) {1 — aj} dx
0 0

(%) l l
L BA 0 0\ FA BACSW S BA EA b EA
T Tk Ysiny 2[4 EALsiny 2L ¢ sint 14
_EA Y
£ siny

The entries of the elementary dynamic stiffness matrix ahbg of length/, mass per unit
lengthy, normal stiffness A, and bending stiffnesg' [ are

T EA EA T
g ety 0 O T s 0 0
EI EI EI EI
0 FFG()\) _ZTF4()\) 0 ETFE)()\) ETFS()\)
EI EI EI EI
0 —5 (N —F()) 0 —5 (N —Fi(\)
Y4 Y4 Y4 /
Ko = . (3.73)
EA EA
7781;/1’1/} 0 0 —teoty 0 0
EI EI EI EI
0 ﬁFLa()\) _ETFS()‘) 0 ETFG()\) ETF4()\)
EI EI EI EI
sin A — sinh A cosh Asin A — sinh A cos A
F [ P ———— F -
1Y) /\cos)\cosh)\ -1 2(M) A cosAcosh A — 1
_ 2 coshA —cosA 2 sinhAsinA
Fs() = cosAcosh A —1’ Fa(A) = A cosAcosh\ —1’
Fy()) = A3 sinh A + sin A Fﬁ(A):7)\3cosh)\sm)\+smh)\cos)\

cosAcosh A —1’ cosAcosh A — 1 ’

N Ll Y ()
v=0/F A=0 5

We have to note here that if the forcing frequeneycoincides with one of the natural
circular frequencies; of the longitudinal vibration of the clamped-clamped blerty = j,
thereforey cot ¢» and)/ sin ¢ become singular. Besidesifcoincides with one of the natural
circular frequenciesy,; of the transverse vibration of the clamped-clamped beaem #il the
functions 'y (\), Fy(\), ..., Fs(\) become singular. Thus matrﬁ(%‘;o cannot be inverted in
these special cases. This phenomenon isdbenance

An alternative way to construct the elementary stiffnestimpurely from dynamic shape
functions is given in AppendiA.4.
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3.3 Consistent mass matrix

Construction of the elementary dynamic stiffness matrix afeanber of the planar frame
was discussed in the previous subsection, and an explianuia 3.71) was derived.

The drawback of that approach is that the mass ma8iXZ is frequency-dependent.
Therefore, if someone needs to analyse a structure suthjextdifferent loading (frequen-
cies), they need to compile the mass matrix éachload frequency for the same structure.
Another weak point is that the calculation of the mass matsgumed that each nodal force
has the same frequengy If it is not the case, for instance when the nodal forces lgferent
frequencies, or they are not harmonic functions of timen tinere does not exists a frequency
w which can be used for the calculation of the entries of thesnaatrix. In fact, the whole
procedure, assuming that the response of the structumvilhe same frequency, fails in
those cases.

Hence, in practice, the elementary mass matrix is apprdeitiay using purely static shape
functions (which are frequency independent) instead ofdyreamic ones. That estimation
leads to the construction of the so-callmhsistent mass matrix

0
M i = 1 / NN dz | (3.74)

0

Since here we use the same static shape functions as forrtigutation of the static stiffness
matrix (3.27), this composition of the mass matrix is consistent withdtaic stiffness matrix,
therefore it is often called the stiffness consistent maasin

Problem 3.3.1(Entry 1,1 of the consistent mass matrix) he fixed-fixed beany is of length?, normal stiffness
E A, bending stiffnes€ 1, and mass per unit lenggh Determine entryl,1 of its elementary consistent mass
matrix!

Solution. Entry 1,1 is of the consistent mass matrix according3o/@) and @.23 is

¢
Mclggs,ij;l = u/uw(x)uw(x)dx
0

Hereu;. (z) is the deformation of the bar caused by an axial unit traiesiaif end:. This functionu,,.(xz) was
already derived in Proble®.1.], its is given by Eq.3.13 as:

Uip(x) =1 — z

14

Now we compute the entry of the consistent mass matrix
4 0 4
loc 2 € xQ
Meons,ijin = B | wiz(@)uig(z) dz = p (1 - Z) de=p [1-25+ fzdx
0 0 0

x? x3 ¢ Y4
- [”C‘ﬂggz]o:“s
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The entries of the consistent mass matrixindependent of the loading frequenahich is
a huge advantage in the further analysis. The approximategiaic stiffness matrix expressed
with the consistent mass matrix is

K (w) = Ki3° — w’ Mgy

cons,ij |

Hereafter we leave the subscript “cons” and denote the samimass matrix byl = M.
The entries of the consistent mass matrix of a beam of lehgtid mass per unit lengjhare

- 1 1 -

3 0 0 5 0 0
13 11 9 13
0 — — 0 = -
35 210 70 420
11 1 13 1
—  —? — 0 -1
0 210 105 0 420 140
ML, ;= MU = it - BT
1 1
G 0 0 3 0 0
9 13 13 11
= 2 -~ -
0 70 420 0 35 210
13 1 11 1
- -
[0 420 140 0 210 105

In further analysis we use the consistent mass mafrjeven if the structure is subjected to
a general loading (forces that are arbitrary functionsragtior harmonic forces with different
frequencies).

3.3.1 Different end conditions of beam members

Similarly to the case of the elementary static stiffnessrixathe elementary consistent
mass matrix can also be modified using dyadic decompositions

The computation of the displacements of any point of the bagscan be achieved using
the end-of-beam displacementsand the static shape functio™ of the beam:

u(z) = No(x)up.
For an unloaded beamy(= 0) (3.34) yields
Koug = q;.
Multiplying it from the left by R and substituting3.35) in the right hand side we get:
RKouo = u; —ug — up= (I+RKy) 'u,,

thus
u(z) = No(x)(I+ RKU)’lui,
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which implies
N(z) = No(x)IT+ RK,) ™"
By definition the consistent mass matrix is
0 0
M = M/NTN dz = ,u/(I +RKg) "Ny No(I+ RKy) ' dz
0 0

l
= I+RKy) "¢ / N Nydr 3 (T+RKg) ™ = (I+RKy) " My(I+RKg) ™.
0

(Note thatl, R, andK, are independent af.) Here M, is the consistent mass matrix of the
fixed-fixed beam.

If only one degree of freedom (th&h) of the beam ends is connected elastically to the
adjacent node, then matrig can be written in the dyadic forn3(38), and

RKO =Tpe kT

PP
According to 8.39

e k”.

T—l 1
(I_Tpepkp) :I_k:pp+i pp

Hence

T
1 1
M =(I+RK,) "My(I+RK,)'=|I-——Fek | My(I-——ek
L L

Tp Pp Tp

1 1
= MU B — {kpegMO + M[)epkg} + —2kpegMOeka7
Fpp + ™ <k + L)
pp Tp
which yields

M=My— —— (km +mk)+ "y T 3.76

— 0 1(pmp+mpp)+ 1\2 e (3.76)
e (b +5)

Problem 3.3.2(Elementary consistent mass matrix of a fixed-pinned bedihg beami; of length?, normal
stiffnessE'A, bending stiffnesgZ1, and mass per unit length is fixed at end and pinned at end. (It is
fixed-pinned.) Determine its elementary consistent maSEier,l;;C’fp!

Solution. We use Eq.3.76 for the construction of the mass matrix. We start with tragiststiffness matrix
Ki‘;c and the consistent mass matM§§° of the fixed-fixed beam, given by8(28 and @.75, respectively.
Because of the rotation of endthe sixth degree of freedom of the beam) is relaxed, 6 andrg — oo. Thus
the entriess,6 and thesth column ofK}3¢ andM3¢ are needed:

i 4F1 b3
66 = —,—» 166 = T ¢
I 105
T _ 6EI 2EI _G6EI 4EI
ks = [ 0 *z ¢ 0 2 7 ]
T _ 130> ul® 1102 e
mﬁ_{o —20 w0 Y ~200 s
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Now we apply formula3.76) with the above input data:

1 m
MO = M2° — — (mgk{ +kemg) + —5 kekg

Ko ko
-0
_ 13uf?
a2g
1 e
_ nloc 6EI 2EI 6EI 4EI
=M — g |[—50— [0 F 0 - 4]
4 2
_ 1lps
ul
L Tos A
0
6L
1 2TI 130> I 110> I
- [0 _Lop _pt 0 — 2% L}
1ET 0 420 140 210 105
_BEI
2
4ET
7
0
6EI
pt? B
105 6EI 2EI 6EI 4EI
LB 2 5 [0 S5 2o -5 4]
(T) __6EI
22
4ET
7
- 1 1 -
— 0 0 — 0 0
3 6
17 3 39
0 — —/ 0 —
35 35 280
3 2 11
0 —0 —07 0 — 0
35 105 280
1 1
— 0 0 — 0 0
6 3
39 11 33
0 — —/ 0 — 0
280 280 140
L 0 0 0 0 0 0 |

3.3.2 Accuracy with the consistent mass matrix

In order to get some information about the accuracy of tHeis matrix obtained using
the consistent mass matrix, we compare the entries of theistent matrix with the same
entries of the accurate dynamic stiffness matrix.

Let us compare entries6 of the accurate dynamic stiffness matf{'&;?C and of the approx-
imated stiffness matrik;?* — w”Mj5°. (HereM5° is the elementary consistent mass matrix.)
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Entry 3,6 of K% is
X EI EI sin A —sinh A
K% = —F1(\) = — -
i5,36 /¢ 1(A) ¢ cosAcosh A —1

The Taylor expansion of the above function with respecitis
A EI
K95 = - (24 0.7143 - 1072A* + 0.1570 - 10*A% + 0.3182 - 10"\ + O(A'9)) .

Entry 3,6 of K}3° — w’M° is

. 2ET 1 2E EI
loc loc 2 loc __ 2 2 _ —2\4
5,36 ~ Kij,36 — W Mij,36 = 7 — W /Lg (—mg ) = 7 + 707143 . 10 )\ .
Here we used the identity
i wip 2 X

The difference between the accurate and the estimate values

. EI
K — (Kijs — w*Ms) = = (0.1570 - 107IA" + 0.3182 - 107"A™ + O(A')) .

As we can see) governs the magnitude of the error: it appears on the powaigber than
seven in the error. Hence, decreasing the valuk mlakes the approximation of the dynamic
stiffness matrix more accurate. Usually we cannot decréesenass or increase the bending
stiffness, because those are given parameters of thewsguctVhat we can do in order to
obtain a better accuracy is reducing the lengtt the members, i.e. applying more nodes. It
is important to note that higher forcing frequengyncreases,, thus it also increases the error,
i.e. decreases the accuracy of the approximate stiffnessxmanhus, the higher the forcing
frequency is, the shorter members (i.e. more nodes) we lause for the same accuracy.
A good rule of thumb is that the approximate model built whie tonsistent mass matrix is
usually accurate enough if the smallest natural circukgdency of the applied beam members
is larger than the largest natural circular frequency ofithele model.

members structure members structure
wO,min > wO,max ’ T07max < TO,min

3.3.3 Additional masses

Additional masses are often needed to be considered inwtalidesign (furnitures, plaster-
work, devices, etc.). These are modeled as continuoudiyidited mass, or as a concentrated
(lumped) mass on a beam.

Continuously distributed additional mass along a beam

Let a mass per unit length,qq be distributed along the whole length of the beam. In this
case one only needs to determinesguivalent masper unit length

Hekv = b+ Hadd
and use it (instead of) in the computation of the consistent mass matsix 9 of the beam.
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Concentrate additional mass on one node

If a massn is placed right on a nogeof the mechanical model, then the additional diagonal
mass matrix

m 0 0
MEY = 0 m O
0 0 I

is to be added to the corresponding block of the total massxadtthe structure. Herd, is
the moment of inertia of the mass with respect to the node.

Concentrate additional mass on a beam

Let a massn be on the beam at = a. An additional (consistent) mass matrix can be
computed as
Mla?icd =m NTlx:aN|a::a~

Then this 6-by-6 matri, is simply added to the original elementary mass matrix of the
corresponding beam member.

3.4 Equivalent dynamic nodal loads

If there is a dynamic, distributed loafdz,t) = [f.(z,t), f,(x,t)]" (whose components
are given by an axial load,(x,t) and a transverse loaf}(z, t)) acting on beamnij between
r = a andz = b, then anequivalent nodal loady. ;;(t) must be determined for the matrix
displacement method. Without going into details of theadgions, this equivalent nodal load
can be approximated as

b
q, (1) = / NTF(x. 1) da. (3.77)

Here vectorge, ij(t) = [deqi(t), deq(t)]” contains the equivalent loads on the endsdj of
the beam member. The static shape functions are collectdd gee 8.23).

In the case of a concentrated fof®¢) = [F.(¢), F,(t)]" acting atr = «a, the equivalent
load is estimated as

qle%ﬁij (t) = NT|z=aF(t)' (378)
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Problem 3.4.1(Dynamic analysis of a simple planar framé)et us examine the planar frame shown in Fig-
ure3.10(a). It consists of three beams of equal lengta 8 m, bending stiffnes&I = 100000 Nm?, normal
stiffnessEZA = 5000000 N, and mass per unit length= 200 kg/m. The frame is loaded by a dynamic exciting
force P sin(wt) = 100000sin(40¢) N at the right top node, leanintg:° from the horizontal, as it is shown in
Figure3.10(a). Determine the steady-state response of the frame dbestexciting force!

|
/Psin(oo t) Asin(oo t)

éjj] X2
y
5 X
_ v S I X
‘LY
TIITT7 3/51 @
(@) (b)

Figure 3.10: (a) Sketch of a simple planar frame. (b) Mechanical modeltfermatrix displacement method.
Solution. We use the total dynamic stiffness matfé(w) of the frame and solve3(48):
K(W)ufo =qo — uy = K™ (w)qo.

Hereuy, is the amplitude of the vibration of the nodes of the struetufhe steady-state vibration is then
governed by

uy(t) = uygsin(wt).
We also compute two approximate solutions by using the ster®i mass matri¥ and the diagonally lumped
mass matrixM,,,. With the aid of these matrices the dynamic stiffness matiix be estimated as

Kw)~K—w’M, and K(w)~K —w*Mpn.

For these approximations we need to compile the total sttiffness matrixkK of the frame, too.

First we start with the nodal decomposition of the framenthee define the local and global reference
systems, and the coordinate transformations. We applyrfodes, as shown in FiguBe10(b). Nodesl and2
areinternal nodeswhile nodes3 and4 aresupported nodesSince there is not any support motion, we exclude
these external nodes from the compilation of the totalf(&fs, mass, and dynamic stiffness) matrices. The
global reference system is the left handed &€~ shown in Figure3.10(b). There are local reference systems
xyz attached to each beam member, as indicated in Figjd@&(b). The vector of the unknown displacements
of the internal node$ and2 in the global reference system is

ulx(t)
uly(t)
e1(t)
t) = |4
u(t) uzx (1)
U/QY(t)
p2(t)
The force vector acting on the internal nodesnd?2 in the global reference system is
Fix(t) 0 0
Fly(t) 0 0
| Mi(t) | 0 . B 0
q(t) = @) | = | =P/v2 sin(wt) —  qo = —PivE |
Foy (1) P/V2 P/V2
Ms(t) 0 0
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The transformations from the local reference systems ahiséa, 13, 24 into the global reference system are
given by

100 0 -1 0 3/5 —4/5 0
To=|0 10|, Tis=|1 0 0|, Tou=|4/5 3/5 0
00 1 0 0 1 0 0 1

All the three beams are fixed-fixed, and they have the same gteionand material properties, which
implies that they have the sarelementarstiffness and mass matrices in the local systems.

The elementary static stiffness matrix of the beams in thallsystem is

- EA EA .
- 0 0 = 0 0
¢ ¢
12E1  6EI 12ET  6EI
0 Iz 2 0 E 02
0 6EI  AEI 0 6EI 2EI
2 ¢ 2 ¢
Ky = Kl = K =
¢ ¢
12EI  6EI 12E1 6ET
0 B2 0 3 2
0 6ET 2T 0 _6EI  4EI
L 2 ¢ 2 ¢
625000 0 0 —625000 0 0
0 2344 9375 0 —92344 9375
B 0 9375 50000 0 —9375 25000
—625000 0 0 625000 0 0
0 92344 —9375 0 2344  —9375
0 9375 25000 0 9375 50000

The (exact) elementary dynamic stiffness matrix of the kmeamthe local system comes frord.73. The
general formula of this matrix is fairly long and complicét& hat is one of the drawbacks of using the (exact)
dynamic stiffness matrix. Therefore we only provide thedevawith the entries of the matrevaluatedat the
given forcing frequencyw = 40 rad/s:

K% (w = 40) = K (w = 40) = K&y (w = 40)

—615805 0 0 —1406846 0 0

0 —1024410 —587067 0 —820788 613717

_ 0 —587067  —305208 0 —613717 458874
—1406846 0 0 —615805 0 0

0 —820788 —613717 0 —1024410 587067

0 613717 458874 0 587067  —305208
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The elementary consistent mass matrix of the all beams stieartied following 8.75):

- ) .
- 0 0 - 0 0
3 6
13 11 9 13
0 35 o200 | © 70 10
11 1, 13 1,
0 210 105 0 4206 - 1405
My = My = MY; =
1 1
- 0 0 = 0 0
6 3
9 13 13 11
- iy - =
0 70 420 0 35 210
13 1, 11 1,
0 _4206 _140€ 0 _2108 105€ i
533.3 0 0 266.7 0 0

0 994.3  670.5 0 205.7  —396.2

0 670.5  975.2 0 396.2 —731.4
266.7 0 0 533.3 0 0

0 205.7  396.2 0 594.3  —670.5

0 —-396.2 7314 0 —670.5 975.2

We also compose the diagonally lumped mass maifix,,,. We directly construct théotal mass matrix
in the global system. Entrielsl and2,2 correspond to the horizontal and vertical translationsoafel. The
values of these entries thus the sum of masses of the hal#seafonnecting) beami and13. Entry 3,3
corresponds to the rotation of notlethus it is the rotary inertia of the halves of (the connegtineamsl 2 and
13. Similarly, entriest,4 and5,5 correspond to the translations of na2leghus they are the sum of masses of
the halves of beam&2 and24. Entry 6,6 is the rotary inertia of the halves of beatisand24. Therefore the
total diagonally lumped mass matrix of the structure is

[ 2.u0/2 0 0 0 0 0
0 2-ul)2 0 0 0 0
N 0 0 2-u(€/2)%/3 0 0 0
fum = 0 0 0 2 pul]2 0 0
0 0 0 0 2-ul)2 0

0 0 0 0 0 2-u(€/2)3/3

1600 0 0 0
0 1600 0 0
0 0 8533 0
0 0 0 1600
0
0

o ol o o

0 0 0 1600
0 0 0 0 8533

Now we compile the total dynamic stiffness matrix, the tstatic stiffness matrix, and the total consistent
mass matrices of the structure. The block structure of ttad static stiffness matrix of the frame is

glob,11 glob,11 glob,12
Ki, o + K K7y

K=
glob, 21 ‘ glob,22 glob,22
Ki, K5, + K3,

Here the blocks are transformed from the local to the gloystesn as

glob,11 __ loc, 11T glob,22 loc,22T
K13 —T13K13 T13, K24 —T24K24 T,
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Blocks

glob,11 loc,11 glob,22 loc,22 glob,12 _ y-glob,12 glob,21 glob,21
K12 - K12 K12 - K12 ’ K12 - K12 ’ K12 - K12 ’

sinceT; is the identity matrix. The transformation follows the sapnecedure in the cases of the consistent
mass matrix, and of the dynamic stiffness matrix. We justdneesubstitute the corresponding blocks of
the elementary static stiffness matrix with the elementamysistent or with the elementary dynamic stiffness
matrices.

The total stiffness matrix of the structure is

627344 0 —=9375 | —625000 0 0
0 627344 9375 0 —2344 9375
K — —9375 9375 100000 0 —9375 25000
—625000 0 0 851500 298875 —7500 |’
0 —2344 —9375 | 298875 403188 —3750
0 9375 25000 —=7500  —3750 100000

while the total consistent mass matrix is

1128 0 —670.5 | 266.7 0 0
0 1128 670.5 0 205.7  —396.2
M — —670.5 670.5 1950 0 396.2 7314
266.7 0 0 1106  —29.26 —536.4
0 205.7  396.2 | —29.26 1150  —268.2
0 —-396.2 —731.4 | -536.4 —268.2 1950

The total dynamic stiffness matrix of the structure evaddadt the forcing frequeney = 40rad/s is

—1640214 0 587067 | —1406845 0 0
0 —1640214 —587067 0. —820787 613716
K(w — 40) = 587067 —587067  —610415 0 —613716 458873
—1406845 0 0 —1493116 196130 469653
0 —820787 —613716 | 196130  —1787312 234826
0 613716 458873 469653 234826  —610415

Approximation of this dynamic stiffness matrix can be obgal by

—1176847 0 1063387 | —1051667 0 0
0 —1176847 —1063387 0 —331487 643280
- T 2ng 1063387  —1063387 —3020762 0 —643280 1195286
K(w)~K—-w™ —1051667 0 0 —917582 345686 850710
0 —331487  —643280 345686  —1436112 425355
0 643280 1195286 850710 425355  —3020762

Another, less accurate approximation of this dynamicrstg matrix uses the diagonally lumped mass matrix:

—1932656 0 —9375 —625000 0 0
0 —1932656 9375 0 —2344 9375
S —9375 9375 —13553333 0 —9375 25000
~ K2 _
K(w) ~ K= M —625000 0 0 —1708500 298875 —7500
0 —2344 —9375 298875 —2156813 —3750
0 9375 25000 —7500 —3750 —13553333

(Both approximations are evaluated at the given frequeney40 rad/s.)
The first natural circular frequency of the structure, adog to the exact dynamic stiffness matrix, is
wo1 = 4.499rad/s. In fact, there are infinitely many natural circular frequiesf the structure if we use the
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exact dynamic stiffness matrix. (Remember, it containglframic shape functions, which are combinations of
trigonometric and hyperbolic functions.) If an approxismapproach is used (i.e. we apply the consistent mass
matrix, or the diagonally lumped one), then the number ofirgtcircular frequencies of the frame structure
equals to the number of total DOF of the model, which is our example. These natural circular frequencies,
and the first few frequencies of the exact model are sumnuhnizéhe following table.

wo,1  Wo2 Wo3  Wo4 Wos  Woe  Wo7

exact 1.429 4.452 7.138 7.816 7.882 15.14 18.54
consistent 1.437 5.320 11.25 19.88 27.16 47.47 — —
lumped 1.310 2.964 3.825 16.81 19.80 29.87 — —

Table 3.1: The first few natural circular frequencies (in rad/s) of trerie and all the six natural circular
frequencies of the approximate models (with the consistentliagonally lumped mass matrices).

In practice, the approximate model is usually accurate gindfuthe smallest natural frequency of the applied
beam members is larger than the largest circular frequehtyeomodel. The first natural frequency of the
fixed-fixed beam members of the studied framel{ [

. |EI
wiibeam — 22 4 T 7.826 rad/s.

This is far not larger than the largest natural frequencyhefapproximate models (see TaBld). Therefore,
we should introduce additional internal nodes, i.e. we &hdivide the structure into more beam members. We
do not do so, just go on with the inaccurate approximationsirav what differences appear between the final
results of the exact and the approximate models.

The final result, the amplitudes of the translations andimta of noded and2, are computed as

ufO = K_1q07 ufO ~ (K - OJ2M)_1CI0, ufO ~ (K - W2Mlum)_1q0
Using the exact dynamic stiffness matk the amplitudes of the displacements of the nodes are

0.01224
0.1352
| 05459
U0 = 17702135
~0.1815
0.6408

The application of the consistent mass matrix leads to thaltre

0.06310
—0.02154

| 0.04203

o~ 17502720 |
—0.07163
~0.005344

while it follows from the usage of the diagonally lumped mathat

—0.01345
0.00003283
0.00002799

0.04158

—0.02702

—0.00001546

Uyro ~
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3.5 Support vibration of MDOF systems

In this section we deal with the support vibration of plarranie structures. Several kine-
matical forcing of structures comes from the motion of thdentying ground (e.g. earthquakes,
ground vibration from underground and road trafic etc.). Wi a similar approach to the
one presented in the statical analysis. In the upcomingestibss we analyse the effect of rigid
supports on the applied model, the calculation of eladyicalpported structures, the harmonic
support vibration, and the support vibration equal at eagipsrted node.

3.5.1 Prescribed motion of DOFs

As a first step, we have to compile the static stiffness marithe consistent mass matrix
M, and the vector of external loag¢) reduced to the degrees-of-freedom. Here we have to
take into account alM/ nodes of3 degrees-of-freedom each. The unconstrained equation of
motion is

Mi(t) + Ku(t) = q(t). (3.79)

The above equation is subjected to the constrains on thergyed displacements of the sup-
ported nodes (prescribed values can be zeros for a rigidosuppa time-dependent function
for a vibrating support). Please note, that prescribingdisplacement of a degree-of-freedom
implies that we also prescribe its first and second derigatwith respect to time, i.e. its veloc-
ity and acceleration.

With row- and column exchanges in E§.T9 we can construct a special form of it, where
the equation of motion of the DOFs with prescribed valuesiratée last rows, and the dis-
placements of the DOFs with prescribed values are the lasegim vectoru(t). The schema
of the exchange of one row and column is the same as the one (8.2§. The same must be
done for the mass matrix as well.

Partitioning the matrices and vectors in this reorderenhfisrof the following blocks:

vt o] * e o)~ -

+ = . (3.80)
Mo9! | M9 wI(t) K9 | K99 uf(t) q’(t) + r9(t)
Here the vectonf(t) contains the prescribed displacements (typically theytlaedisplace-
ments of the supports, or ground, that is why the subsgrijst for), and the vecton’(t)
contains the displacements of the non-supported, intewdgs. The vectay’(¢) contains the
forces reduced to the internal nodes, and the vagt@r) contains the forces reduced to the
supported nodes. The vectgi(t) contains the reactions in the supports. The second block of
equations of .80 can be used to calculate the reactions once the unknowladespents of

u’(t) and the accelerations &f (¢) are known.
The first block of equations 0B(80 can be written in the form

M it (t) + K'a'(t) = q'(t), (3.81)

which is the matrix-differential equation of the forceddamped vibration of a MDOF system
(see EQ. 8.47) with the forcing vector:

q(t)=q'(t) — M7if(t) — Ku9(t). (3.82)
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The solution of the matrix differential equatiod.81) can be obttained by any of the known
solution methods.

Fixed supports as prescribed motion

Some of the supports have prescribed zero valued displatemé&he accelerations of
those supports are zero as well. These are called fixed depddre corresponding elements
of vectorsuf(t) andif(t) are zero in EQ.3.82), thus the corresponding columns of matrices
M%¥ andK®¥ are cancelled. Non-moving supports creates no vibratigheo$tructure, so it is
easier to exclude them from the calculations.

We can follow the strategy, that we make the reduction inéofthhm of Eq. 8.81) in two
steps. In the first step, we eliminate only the fixed suppottelvcause no vibration of the
structure. In this step the second and third terms on thé highd side of Eq.3.82 become
zero. In the second step, we eliminate the vibrating supdambdes from the previously re-
duced system. Here the load vector is modified by the suppwetion according to Eq3(82.

A rigorous analysis of the above steps makes it possiblegaterthe final matrix equation
of motion in one single step. This is illustrated in Fig&.&1, where two degrees-of-freedom
have the prescribed nonzero displacemesitét) andw??(¢) while one degree-of-freedom is
fixed tou = 0. The matrix block structure are shown before and after tineihtion process
in Figure3.11(a) and (b), respectively.

Elastically supported nodes

In SubsubsectioB.1.8we have seen, that in the fixed support model a massless simgpor
node is used in order to model the elastic support. The pbestmotion of a support can be
applied on the supporting node. Then we can eliminate thpastipg node, while its motion
results in an excess load given by the last two terms of E§2).

3.5.2 Harmonic support vibration

Let us analyse the situation when every supported nodetedbharmonically with the same
circular frequency. In this case the kinematical load vectei(t) in Eq. (3.82 can be written
as

u!(t) = udsin (wt),

and its second derivative with respect to time is
W(t) = uf(—w?) sin (wt) .
If the vector of nodal loadg(¢) can be neglected, then EQ.81) leads to

M0 (t) + K'u'(t) = — (K" — w”M") u sin (wt) . (3.83)
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(a) The block structure of the matrix equation of motion wiked support.” = 0
and vibrating supports” (t) andu??(t)

MAA ‘ mAg1 ‘ MAB ‘ mAgo ‘ MAC’ ‘ mAQQ ‘ MAD 1 r ﬁA(t) T
maA4 ‘ myrgt ‘ m9B ‘ mIr9o ‘ ma ¢ ‘ mI192 ‘ ma P 1191 (t)
MBA ‘ mBgl ‘ MBB ‘ mBgo ‘ MBC ‘ mBg2 ‘ MBD uB(t)
mooA ‘ myogi ‘ mdoB ‘ 19090 ‘ m9oC ‘ m 9092 ‘ m9oP 1190
MCA ‘ m091 ‘ MCB ‘ ngo ‘ MCC ‘ ngg ‘ MCD ﬁc(t)
mYz4 ‘ my29t ‘ m92B ‘ my290 ‘ m92¢ ‘ my292 ‘ m92P 1192 (t)
I MDA ‘ ngl ‘ MDB ‘ ngo ‘ MDC ‘ ngg ‘ MDD 11 ﬁD(t) |
B KAA ‘ kA91 ‘ KAB ‘ kAgo ‘ KAC ‘ kAgQ ‘ KAD 1T uA(t) ] B qA(t T
k914 ‘ k9191 ‘ k91 B ‘ 9190 ‘ k91 € ‘ 9192 ‘ k9P w9t (t) qf(t) —i—’r‘f(t)
KBA ‘ kBg1 ‘ KBB ‘ kBgo ‘ KBC ‘ k892 ‘ KBD uB(t) qB(t
+ k904 ‘ 9091 ‘ k9oB ‘ 9090 ‘ Kk90C ‘ 9092 ‘ k90D 290 _ q(9)<t> —|—7“g(t)
KCA ‘ KkCo ‘ KCB ‘ KkCao ‘ KCC ‘ KkCo2 ‘ KCD uC(t) ot
k924 ‘ 9291 ‘ k92B ‘ L9290 ‘ k92C ‘ 9292 ‘ k92D w92 (t) & (t) +r§(t)
KDA ‘ kDgl ‘ KDB ‘ kDgo ‘ KDC ‘ kDgg ‘ KDD | uD(t) | I qD(t) |

(b) The block structure of the reduced matrix equation
after the eliminating prescribed displacemeufts »7*, andu??

MAA | MAB | MAC | MAD A (1) K44 | KAP | KAC | KAD u (1)
MBA | MEBE | MEC | MED @B (1) N KP4 | KPP | KEC | KBD uB (1)
MCA | MCE | MCC | MCP @ (1) KC4 | KOF | KCC | KOP uC (1)
MPA | MPE | MPC | MPP P (1) KP4 | KPP | KPC | KPP u® (1)
q’(t) mA9 ‘ mA92 kA9 ‘ KkAg2
qB(t) m?P9 | mPe 9 () kB | kBo ud (t)
N q“(t) m&9 ‘ m©92 [ 192 (t) ] | KO ‘ kC92 [ u92(t) ]
q° (1) mP% | mPe kDo | kDo

Figure 3.11: The change of the block structure of the matrix equation diancduring the elimination of the
prescribed motion of supports.
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3.5.3 Support motion due to earthquake

Earthquakes induce sudden changes in the shape of the a#sthAn earthquake causes
discontinuity in the displacements. This discontinuigwvels in the continuum with the velocity
of the travelling waves. In contrast to the travelling waskewn in Subsectio®.1.1 the waves
in the solid continuum have a decreasing amplitude due iophepagation along an inflating
sphere. Hence the amplitude of the ground motion is affdayetie distance from the location
of the earthquake, too. The discontinuities travel as presand as shear waves. Pressure
waves travel faster in the solid materials than shear waves.

In a typical engineering structure on a typical solid groutigtances between the supported
nodes are small enough. Therefore the differences betweesnplitudes of the support mo-
tions, and the phase differences are often neglected. &wetiior of prescribed displacements
can be written as

u!(t) = u?(t)r?,

wherer, is an index vector selecting the vibrating supported noHese we assume that each
support vibrates in the same direction. The acceleratidgheo§upported nodes is

The matrix equation of motion is now
M i’ (t) + K"’ (t) = —MYiif (t)r? — K99 (t)r?. (3.84)

We remind the reader, that the unknowns in EJ84) are displacements. These displace-
ments are the components of vectd(t) in the global reference system. The displacements
can be written as the sum of the displacements of the supipattie direction of the support
vibration (u?(t)) and the excess elastic deformatian;(¢)):

u'(t) = ug(t) +u?(t)r'. (3.85)

The influence vectorr’ in the above equation describes the displacements of tleenait
degrees-of-freedom if we apply a unit displacement in tmeation of the support vibration.
With these definitions vectons andr? represent a rigid body translation of the whole struc-
ture. We refer to this rigid body translation of the wholecoanstrained structure with thetal
influence vector, for short:
[ : ]
r = .
r9

We substitute the displacemen885 and their derivatives into Eq3(84) and rearrange it
into

Mg () + K"y (t) = —M9i9 (#)r? — M i? (t)r" — K9 (t)r? — K"u?(t)r’,
which is written in a block form

r;

Mt (t) + K ug(t) = —i?(t) [ M" | M | [r—] —uI(t) [ K" | K% | [

Iy

] . (3.86)

Ty
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We already observed, that vectarsandr? represent a rigid body translation of the whole
structure. A rigid body motion causes no internal forceshim $tructure, so the last term in
Eqg.(3.86 is zero independently of the support vibratiett):

[K“Kig][r;]:U

Let us define the vector of forced massasas

r;

m? = [ M“ ‘ M ] [ ] = M'r. (3.87)

Ty

The final matrix equation of motion in the case of earthquakeen:

M" iy (t) + K" ug(t) = —i?(t)m?. (3.88)

3.6 Real modal analysis, internal forces

In the previous section we presented how to compile the systedifferential equations
of an undamped planar frame structure. The elastic pr@seofithe beams were incorporated
into the stiffness matridK, while the loads were reduced to the nodal load veqtej. The
masses of the structural elements were collected into th&stent mass matrixI. With these
components we can write the differential equations of nmoiticthe matrix form:

Mii(t) + Ku(t) = q(t). (3.89)

In this section we show how to solve the above equation in #se of an arbitrary load
functionq(¢), and how the internal forces of the structure can be caledlat

3.6.1 Solution of the MDOF system with real modal analysis

We have seen in SubsectitrB8.3that a system of differential equations like E8.§9 can
be solved with modal analysis in case of a harmonic load vegto = qo sin (wt). There, the
forced vibration of the MDOF system was reduced to vibrabbmdependent SDOF oscilla-
tors, using the eigenvectots normalized to the mass matrix. A similar approach can be used
for the case of general forcing, but then the answer of eadbFS@scillator is calculated using
the Duhamel’s integrall(26).

The first step is the calculation of the natural circular frexciesy,; and the corresponding
modal shape vectons; normalized to the mass matrix. These are the unique sotitibthe
generalized eigenvalue problem

(K — ng) u=0,

which is derived from the complementary equation of E3189. (See Subsectioh.3.2for
details.)

127 @

by Németh & Kocsis



CHAPTER 3. DYNAMICS OF PLANAR FRAME STRUCTURES

The second step is to write the particular solution of theriageneous matrix differential
equation 8.89 as a linear combination of the normalized eigenvectors:

N
us(t) = > wyy;(0) (3.90)

We collect the eigenvectors into tlmeodal matrixU and the modal displacements into the
vectory (t):

U = [u1 Uy . uN] s yT(t) = [yl(t) yg(t) e yN(t)] s (391)
so Eqg. 8.90 can be written in the form:
us(t) = Uy(2). (3.92)

We substitute the particular solutio®.92) into Eq. 3.89 and multiply both sides from the left
by the transpose of the modal mat(®&” ):

U'MUy () + U'KUy(t) = Ulq(t). (3.93)

(Here we used the fact, that the eigenvectors, and so thelm@dax U are independent of
time, hence the derivative af(t) depends only on the derivative oft): u(t) = Uy (¢).)

The orthogonality of the eigenvectors on the mass and thHtness matrices (see
Eqgns. (.45, (1.46) implies thatU’MU andU”KU are diagonal matrices. Moreover, the
matrix UTMU is a unit matrix, while the matrifXJ7 KU contains the squares of the natural
circular frequencies of the structure in its main diagosek(Eq. 1.41)):

U'MU=1, and U'KU=(w i ... wi)=0>  (3.94)
The matrix(? is called thespectral matrix Now we can write Eq.3.93 as:
Y (1) + Qy (1) = £(t), (3.95)
wheref(t) is the vector of modal forcing. Itgth entry is
fi(t) =ujq(t). (3.96)

Due to the diagonal structure of the spectral mafittx the system of differential equations
(3.89 falls apart intoN = 3M independent differential equations of SDOF oscillators in
Eg. 3.995. The differential equation of thi&gh mode is:

i5(t) + wiy;(t) = fi(t). (3.97)

The above ODE is an undamped version of BgR® with m = 1, ¢ = 0, andk = ng, so we
can write its solution with a Duhamel’s integral:

5 G (ot — 7)) dr. (3.98)

wo

y;(t) =

0
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This equality can be used in EQ.90 with the nodal load3.96):

us(t) = Zuj/o %{)@m (wo;(t — 7)) dr |, (3.99)

One can see in the formuld.99), that the vibration of each mode is divided by the correslpon
ing natural circular frequency. It results in a decreas@e#ffect of the higher modal shapes in
the final sum, just like we had in the case of the harmonic atioit of MDOF systemsl1(60).

Problem 3.6.1(Undamped planar frame with an impulse loatlet us analyse the structure already shown in
Problem3.4.1 The forcing is an impulse load acting on the first node in thezontal direction at = 0. We
solve the problem with modal analysis.

Solution. We do not repeat the calculation of the system matrices, ¢kl are in Probler8.4.1 The total
stiffness matrix is

627343.75 0 —9375 | —625000 0 0
0 627343.75 9375 0 —2343.75 9375
K — —9375 9375 100000 0 —9375 25000
—625000 0 0 851500 298875  —7500 |’
0 —2343.75  —9375 | 298875  403187.5 —3750
0 9375 25000 —7500 —3750 100000

and the total consistent mass matrix is

1128 0 —670.5 | 266.7 0 0
0 1128 670.5 0 205.7  —396.2
M — —670.5  670.5 1950 0 396.2 7314
266.7 0 0 1106  —29.26 —536.4
0 205.7  396.2 | —29.26 1150  —268.2
0 —-396.2 —731.4 | —-536.4 —268.2 1950

The force vector is an impulse on the first node in the horidagitection at time instartt= 0

1000
0
0

q(t) = 3(t) = qoo(t),

0
0
0
whered(t) is the Dirac delta function(74).
Solution of the generalized eigenvalue probl(al‘ﬁ— w%M) u = 0 results in the following natural circular
frequencies and corresponding (mass-normalized) modgkstectors:
wp1 = 1.4365rad/s u; = [0.01706, —0.00006692, —0.0001327, 0.01704, —0.01271,0.0007558]T
wo2 = 5.3204 rad/s uy = [—0.003077, —0.0006746, —0.01308, —0.003095, 0.001616, 0.01405) "
wo3 = 11.253 rad/s uz = [0.008010, 0.0006601, 0.02370,0.008609, —0.007061, 0.02132]"
woq = 19.882rad/s uy = [—0.01428, —0.005737, —0.0001224, —0.003592, —0.02463, —0.006325] "
us — [
[

wos = 27.163 rad/s 0.003505, —0.03264, 0.01145, 0.005892, 0.007928, 0.0003340] "
wos = 47.469rad/s  ug = [0.02727, —0.01069, 0.01284, —0.02683, —0.009150, —0.006025] "
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We can calculate the time-dependent part of integral E§Y for every mode:

t

/5(7’) sin (wo; (t — 7)) d7 = sin (wo,t) .

0

We have to calculate the modal participation fagtpr= u’ qo /w; for each node. The results are summa-
rized in Table3.2 It can be seen that the first mode has the biggest participatithe motion.

J 1 2 3 1 5 6
w0, 1.4365 5.3204 11.253 10.882 27.163 47.469
u’ qo 17.056 —3.0770 8.0102 —14.277 3.5051 27.266
pj = ulqo/wo; | 11.873 —0.5783 0.7119 —0.7181 0.1200 0.5744

Table 3.2: The first six natural circular frequencies of the frame, thagactions of the load vector to the
modal shape vectors, and the modal participation factors

Finally, the steady-state vibration of the structure cdusethe impulse at = 0 is

N
uyr (t) = Z u;p; sin (wojt) .
j=1

3.6.2 Calculation of internal forces

In the matrix displacement method the unknowns of our dynah@&quations are the dis-
placements (translations and rotations) of the nodes dsamicéon of time. However, in struc-
tural engineering the magnitudes of internal forces arsterest usually. We have seen that the
displacements can be calculated by the serial applicafiarodal analysis and the Duhamel’s
integral.

From the global displacement vectay(t) we can collect the displacements of the end
nodes of any beam member. If we denote itieand jth blocks of the displacement vector
uy(t) by u%s"(t) andu?°"(t), respectively, then the displacement vector of béais

glob

b ()
wio = | Uil |
v uy; (t)

The above displacement vector consists of the displacenoétite DOFs of beany. In order
to calculate the internal forces in a beam, it is recommenddcansform the displacements
from the global reference systemY Z to the local reference systemyz using the transfor-

mation matriceg‘fj andTiTj introduced in3.1:

loc L _glob
uyy;(t) = TG (t) = fob

lob
T?Z u? : (1) ]

In a static analysis one has to multiply the displacementovexy the stiffness matrix to
obtain the nodal forces. These nodal forces are directbtadlto the end-of-beam internal
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forces:
(240 0 |=£4 0 0 JT[ue]l [ -N]
0 12E] 6EI 0 —12B1  6EI uloe Vv
73 2 3 02 iy )
6E1 4EI —6EI  2EI
Kl'o'cul'o'c _ 2‘,4 2 i E(')A /2 A Splzz — +Ml (3 100)
1) 1) —LA LA ocC . ‘ "
¢ 1(2)EI (?EI ¢ 12951 GOEI Y Y
— — — ocC
0 s | 0 7 2 Uy +V;
6L1 2E1 —6EI  4AEI
. 0 2 7 0 2 ¢ 4 L ¥z | | —M;

The internal forces along the rod are calculated from thegr walues and the distributed load
along the beam. For further details s8 [

In a dynamical analysis of harmonically excited MDOF syseme have seen that the
elementary mass matrix depends on the circular frequentlyeoharmonic excitation. That
results in a frequency-dependent dynamic stiffness ma(ix) = K — w?M(w). If the load
vectorq(t) is not harmonic, i.e. there is no fixed valuewfthen we cannot use a dynamic
stiffness matrix of the above form. If we want to use the atkges of the finite DOF model,
then we have to make some approximations.

There is no acceptable reason why to use any specific cirftalguencyw, so, even if we
calculate the displacements with the consistent massx@tthe structure, the approximate
dynamic stiffness matri¥ (w) ~ K — w2M cannot be used for the calculation of the internal
forces. The only thing we can do is to use the approximakior: K, i.e. we apply a quasi-
static analysis for the calculation of the internal forces.

To decrease the error arising from the above approximatenhave to use shorter beam
members (more nodes, or a finer mesh in a finite element mod®&) effect of shorter beams
is twofold.

e The stiffness matrix of a shorter member contains largenemtgenerally speaking.
From the formula3.28 one can see that the entries of the matrix are inverselygorop
tional to the first-to-third power of the length of the beammier.

e The mass matrix of a shorter member contains smaller eniniggeneral. Either using
the frequency-dependent mass matB8x7@), or the consistent mass matri.74), each
entry of these matrices is proportional to the first-toghpower of the length of the
member.

The above statements imply that the difference betweenythendic stiffness matri¥ and the
applied static stiffness matrik decreases with the decrease of the member size.

We have to call the attention of the reader to the fact thasthaller the beams are, the
more nodal points there are, resulting in more total DOF efgysstem. Thus, the solution of
the generalized eigenvalue problem demands more comgnahtiapacityn exchangdor the
higher accuracy.

31f we follow a finite element approach, and calculate therimaéforces from the strains of the cross-sections,
which are obtained from the displacement functions appneied by the static shape functiofgz), then we
still have the same problem, because without a circulamugaqgy we cannot use the dynamic shape functions

N(z) only the static shape functio®$(z).
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Internal forces with the modal analysis

In the structural analysis we do not really need the intefioraks at all time instant, usually
we are interested in their extreme values. Using the forr(@1B9 we can calculate thgth
modal component of the structural response

t 4,1

s = [ 25 iyt - ) a
0o Woj

and its maximum in a given time interval, which we will denbtey; ...

The end-of-beam internal forces can be calculated fromiggatements of the end nodes
of any given beam. One have to transform the end-of-beantadsments into the local refer-
ence system, and then use the local displacements irBEf. The mode shape vectar;
contains the displacements of each node in the vibratidmtivéjth natural circular frequency.
We have to calculate the end-of-beam internal forces fratsplacement vectar; with the
above method. We denote the internal force in questiofijpwhere;j represents thgth mode,
andC can be any ofv;, Vi, M;, N;, V;, M; in Eq. 3.100, or any internal force in any other
cross-section.

During the forced vibration tha maximal modal internal fia the jth mode will be the
product ofC; from the modal shape ang,,., from the modal load

Cj,max = UjYjmaz-

The question arises, how should we sum up the maximal mottathil forces.
We can take theum of absolute valug&BSSUM):

N
Cma;r - Z|Oj7max|- (3101)
j=1

This is on the safe side, it is very unlikely, that each maximaccurs at the same time.
If the natural circular frequencies are separated, we dantteesquare root of the sum of
squareSRSS)

Cornas = (3.102)

or we can make an emphasis on the first mode, because it issatlvaynost important:

N
— E 2
Cmar - Cl,maz + Cj,maw'
Jj=2

The root square of the sum of squares can be written in matn:f

Conaz = /CT . 1Cpan. (3.103)

with the vector of maximal modal internal forces

CT - [ Cl,maac CQ,maa: ce CN,max j| .
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If there is a¢ damping in the structure, the modes are coupled. In thatmasean use the
complete quadratic combination ru{€QC)

Cmam =V C%axpcmaxa (3104)

where the correlation matrix represents the coupling between the modes. Its entriesabre ¢
culated by minimizing the error between the calculatedarsps of the structure to a random
forcing with broad spectrumw(ite nois¢ obtained by numerical integration and by modal
analysis. The entries in the correlation matrix are

3/2
s (1+2) (32)

2\ 2 2’
(1— (o) ) g (14 )
woj woj
The natural circular frequencies are well separated, whersiallest relative difference be-
tween any two frequencies is more than 10%. In an undampéeeinsys= 1.

Pij =

3.7 Partial solution of the generalized eigenvalue problem

We have seen in many examples about the forced vibration cDMBystems that higher
modes play a less significant role in the dynamics of the &trac This statement holds only if
the natural circular frequencies of higher modes are safftby far from the circular frequency
of the forcing. Otherwise, we have to take care of the statesinance.

It is enough to have a look at Eq4..60), (2.73, (2.76), (3.99 to realize that the natural cir-
cular frequency appears in the denominator in each fornuéla en higher powers, depending
on the type of forcing.

Discretization of continuous structures into a finer mesbrgémodes) leads to more DOFs
and, consequently, more natural circular frequencies.ritwe nodes we introduce, the better
approximations we get for the lower modes. But the accuratlyefigher frequencies is poor.
The application of the higher, inaccurate frequenciesasafore unnecessary, and pointless.

Reduced system of modal shape vectors

If we do not want to use the higher modes in our approximateutations, then there is no
use to calculate them at all while solving the generalizgemialue problem. In this case we
speak about a partial solution of the generalized eigeevatablem. For large system we do
not follow the classical way of calculating the natural fueqcies, i.e. we do not expand the
determinant of the matrii — w2M, because it would be numerically too expensive. Fortu-
nately, there are existing numerical methods capable tulzdé the lowest eigenvalues of of
the problem and the corresponding eigenvectors. We careimgit one of these procedures to
obtain the first» natural circular frequenciegv;, j = 1,...,n) and the first. modal shape
vector normalized to the mass matfix;, j = 1,...,n). Similarly to Eq. 8.91), we introduce
thereduced modal matriXJ as

U=uy u ... u,l, (3.105)
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and approximate the displacement with the firshodal displacements (¢):
u(t) = Uy(t).

A crucial question of every iterative method is its accurdnythis case we have to find out,
what number is sufficient to perform an accurate calculation. To anatysg we recall the
orthogonality of the mass-matrix-normalized eigenvextorthe mass matrix. Eql @45 with
the modal matriXU is

UTMU =1, (3.106)

wherel y is the N-by-N identity matrix.U” is a quadratic matrix of linearly independent rows.
It has the inverse with the property

U” (U =1y,
so, we can conclude from E®.006, that
(UT) ™ = MU,
and using this inverse matrix in the computation of the poo@dUU? we obtain the identity
MUU” = (UT) ' U” =1y, (3.107)

If we use the partial solution of the eigenvalue problem gilgenvectors are still orthogonal
and normalized, so ) .
U'MU =1,

wherel, is a the smallerp-by-n identity matrix. Now, neithetU” nor MU is quadratic, i.e.
they cannot be inverted, but we still can calculate theidpod

MUU” (3.108)

as a pseudo-unit matrix. The better the approximation ik witly » modes is, the closer the
above matrix is to the unit matrixThe accuracy is analysed in accordance with the load vector
and the structure.

Accuracy of the reduced modal analysis in the case of a givendd vector

In the reduced modal analysis the load veeér) is multiplied by the transpose of the
reduced modal matrikJ: ) .
f(t) = Ulq(t).

The effective part of the load vector is defined as:

q(t) = MUf(t) = MUU (). (3.109)

“Here, close refers here to the result of the transformakiahthe matrix does. A unit-matrix transforms any
vector into itself. A pseudo-unit matrix transforms a swdaspof thelV-space into itself.
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(Note, that if all the eigenvectors are used, M&JU? = I, andq(t) = MUU7q(t) holds
evidently.) The neglected part of the load vector is theeddhce between the effective and the

real load vector:

Aq(t) = q(t) —a(t) = q(t) - MUU q(t).
The magnitude of\q(¢) compared tay(¢) gives an estimation of the error of the calculation
with » natural mode on behalf of the load vector.

Problem 3.7.1(Excited vibration of a fixed-fixed beam).et us analyse the structure shown in Fig@r&2
(@). It is a fixed-fixed beam of length = 6m, bending stiffness®] = 18000 Nm?, mass per unit length

1 = 420 kg/m. The beam is taken to be inextensible, so no longitldiisalacements occur. This allows us to
take only two degrees-of-freedom per nodes (the vertiealstation and the rotation) into account. The beam
is excited by the concentrated forgg) in its mid-span.

/ (&) ] "”-{Ii,}

o
-
T A
(i
- 'R-_,'-
-
L
s

Figure 3.12: (a) Sketch of a fixed-fixed beam. (b) Mechanical model for tlagrix displacement method
(fixed support model).

Divide the structure into four equal members, and analyseatituracy of the reduced modal analysis using
various number of eigenvectors!

Solution. Figure3.12(a) shows the beam members, and the used internal nodes b&achis the same and
the local and global reference systems coincide. So, tkame heed for the transformation between the local
and global systems. We do not have displacements and fortles horizontal directions, so the first and fourth
rows and columns can be omitted from E8.28 and @.75. Thus the elementary stiffness and consistent mass

matrices are

12E1 6E1 12E1 6E1

73 02 E & 64 48 | —64 48
6L 4ET _6EI 2ET
Kloc — elob _ 02 7 2 7 . 48 48 | —48 24 -1000
o "My T | 12EI _6EI | 12BI _6EI | | —64 —48 | 64 —48 ’
3 ’2 63
6ET 2ET _6EI AF1 48 24 | —48 48
Iz ? 2 7
234 49.5 81 —29.25
49.5 13.5 29.25 —10.125
81 29.25 234 —49.5
—29.25 —10.125 | —49.5 13.5

From the above matrices we can compile the total stiffnedsnaaiss matrices of the structure. In a fixed
support model we must take into account the supported nodesi4 as well. While taking the fix supports
into account, we should erase the block rows and block coduinam the unconstrained matrices in this case.
The erase process is done on the matrices:

KOO ‘ KOi ‘ K04 MOO ‘ MOi ‘ M04
K=| K| Ki |K* |, M=| M°| M¢ |M“ (3.110)
K4O K4i ‘ K44 M40 M4i M44
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by canceling the first and third block rows and columns. Thufsat remains is thé-by-6 matricesK* and
M, which are referred to &K andM hereafter:

[ 128000 0 | —64000 48000 0 0
0 96000 | —48000 24000 0 0
K _ | —64000 —48000 | 128000 0 | —64000 48000
~ | 48000 24000 0 96000 | —48000 24000 |’
0 0 | —64000 —48000 | 128000 0
0 0 48000 24000 0 96000
468 0 81 —20.25 | 0 0 ]
0 27 | 2025 -10.125| 0 0
Mo | 8L 2025 | 468 0 81 —29.25
| 2925 -10125| 0 27 [29.25 —10.125
0 0 81 2025 | 468 0
L0 0 | -2925 -10.125| 0 27 |

w1 = 4.0739rad/s

The natural circular frequencies and the correspondingmegrix-normalized eigenvectors are:

01724, .01610, .03172,0,.01724, —.01610]
02933,.01054, 0, —.03856, —.02933, .01054]
.02855,.02240, .02941, 0, —.02855, —.02240]

[
woo = 11.319rad/s [.
[-
[—.01350,.08587, 0, —.09601, .01350, .08587]
[-
[

wpz = 22.456 rad/s

T
1
T
Uy
T
3
woa = 42.484 radls ul
T
5
T
b

(3.111)

wps = 70.262 rad/s
woe = 113.21rad/s

.005953, —.1445, .02800, 0, —.005953, .1445]
01655, .1413,0,.2298, —.01655, .1413]

We can observe, that there are reflection symmetric andyamtietric modal shapes. The load is reflection
symmetric:

q(t) = q(t),
so the antisymmetric modes will not participate in the muotidhe results of a calculation with the reduced
mode numbern = 2 is equivalent with the results of = 1. The result of the calculation carried out with

n = 4 eigenvector is equivalent with the resultsrof 3 eigenvectors. The results using= 6 eigenvectors is
equivalent withn = 5 eigenvectors. The effective load vectpr(¢) for odd numbers are:

[0 0|1 0]0 0]

0.3374 0.01449 0
0.04322 0.08631 0
~ 0.5894 _ 0.8967 ~ 1.0000
ai(t) = 0 q(t), as(t) = 0 a(t), as()=1| "5 | @)
0.3374 0.01449 0
—0.04322 —0.08631 0

Accuracy of the reduced modal analysis in the case of suppovibration

We have seen in Subsecti@mb.3that the support vibration can be treated as a forcing,
where the excitation force is calculated from the accelematf the supportsi?(¢), the mass
matrix M, and an influence vecter This influence vector denotes all degrees-of-freedom that
are able to move in the direction of the support vibration.
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Standards prescribe the use of as many natural modes, asnaedgd to get back 90%
of the total mass in the analysed direction. To calculateeffective mass with the reduced
number of eigenvectors, we can follow a similar approachéodne we used for the loads.

In the case of the full modal analysis we can conclude from(&4.07) that the following
identity holds:

MUU'M = M.

In the reduced modal analysis the product
M = MUU™M (3.112)

i.e. thereduced mass matri¥ is different from the total mass matrixI of the structure.
The accuracy of the calculation with the reduced modal amlyepends in general on what
fraction of the total mass matrix appears in the reduced massx.

In the vibration analysis of the MDOF system the total masthefstructure appears in
every admissible direction. At once we are only interestedne of these directions. Let
us define the influence vecterthat gives the displacement of each degree-of-freedomalue t
the unit displacement of the supported nodes in one choselpaly direction. So, this vector
represents a rigid-body translation of the structure i sipcific direction. In the case of a
planar frame, the influence vectog associated with the horizontal displacement is

ri =1[1,0,0,1,0,0,...,1,0,0],
and the influence vectat, associated with the vertical displacement is
rl =1[0,1,0,0,1,0,...,0,1,0].
Thedirectional mass vectors
my = Mry and my = Mry (3.113)

represent the total masses vibrating in the degrees-efidra along the direction¥ andY’,
respectively. The quasi-static, rigid body translatiothaf structure requires the displacement
of the supported nodes as well, so the influence vectors rafestto the supported degrees-
of-freedom of the structure, too. Therefore, the dire@lanass vector must be calculated in
accordance with Eq3(87). The further calculations are the same for both directiSrendY”,

so we show the upcoming steps of the calculation withoutehodexes.

Themodal participationof the jth mode is the projection of the directional mass vector on
the modal shape vectar;. We can collect all the products] Mr in the modal participation
vector.

I'=U"Mr =U"m. (3.114)

The jth entry ofT" is related to the motion of the center of gravity of the stuoetin the case of
the vibration of thejth mode. The square of th¢h entry of T is the effective mass appearing
in the jth mode. This effective mass is denotedry; ;:

Mefi; = L7, j=1,2,...,N.
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The sum of all effective masses corresponding to a givenanfla vector gives the total mass
of the structure:

N
m = Zmefﬂj =T7T.
j=1
If we use a partial solution of the generalized eigenvaluwblem, we can calculate a reduced
modal participation vector:
'=U"Mr =U"m.
The partial solution of the generalized eigenvalue proldemdently provides the same modal
shape vectors for the firstnatural modes, therefore the element§ @fre the same as the first
n elements of". The effective masses are calculated in the same way as tasieeof the total
solution of the eigenvalue problem, but for smaller numbienodes:

~ ~2 .
meffJ:meff’j:Fj, j:1,27...,n.

The reduced effective mass of the structure using the reldseteof eigenvectors is
meff - ZmeffJ — f‘Tf
j=1
We can substitute the modal participation vector into thevaldormula:
~ T /. ~ ~
et = (UTMr> (UTMr> — :"MUU? Mr.
We can conclude, that the total effective mass of the stractan be calculated using the
reduced mass matrix EgB.12 and the influence vector with the quadratic formula:
Meff = r'Mr.

The ratio ofme to the total mass: gives the estimation on the ratio of the used mass. As
we mentioned earlier, this ratio must exceed 90% in the chsarthquake analysis.

Problem 3.7.2(Support vibration of a fixed-fixed beaml)et us analyse the reduced modal analysis for support
vibration of the structure shown in FiguBel3(a). It is the same fixed-fixed beam of lendth- 6 m, bending
stiffnessEI = 18000 Nm?, mass per unit length = 420kg/m as we had in Proble®.7.1 The beam is
inextensible, so no longitudinal displacements occur.sHtliows us to take only two degrees-of-freedom per
nodes (the vertical translation and the rotation) into aotoThe beam is excited by support vibratigy{t) at

its both supports. Calculate the effective mass of the nbmmoaes!

"W
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Figure 3.13: (a) Sketch of a fixed-fixed beam. (b) Mechanical model for tlagrix displacement method
(spring model).

Solution (Using the fixed support modelYhe structure has the same stiffness and mass matrices rabiari
3.7.1, so the natural circular frequencies are the same as we bawdrsEq. 8.111).

In the influence vectory we must take the supported nodeand4 into account as well (see F&j12(b)
for these excess nodes). Since we do not use the horizomtaldtions, the applied influence vector is

rl =[1,0,1,0,1,0,1,0,1,0].

We must use the mass matrix of the unconstrained structii.i@.113. In our case itis the middle block row
in Eg. 3.110: [ M | M | M ]. The blocks are compiled from the elementary consistensmmesrices
M;%¢ of Problem3.7.1

[— MiO ‘ Mii ‘ Mi4 } —_

81 29.5 468 0 81 —29.25 0 0 0 0
—29.25 —10.125 0 27 29.25 —10.125 0 0 0 0
0 0 81 29.25 468 0 81 —29.25 0 0
0 0 —29.25 —10.125 0 27 29.25 —10.125 0 0
0 0 0 0 81 29.25 468 0 81 —29.25
I 0 0 0 0 —29.25 —-10.125 0 27 29.25 —10.125 |
The directional mass vector is finally:
[ 630
0
my = [ M?',O ‘ Mii ‘ Mi4 ]I‘y _ 630
630
L 0 -

The modal participation vector is from EQ.114:
r=uU"my = [41.71 0 \ —17.44 0 \ 10.14 0 ]T.

It is easy to spot that the antisymmetric (odd) modal shapatibute no mass to this support vibration. The
effective modal masses are:

Meff,1 = 1739 kg7 Meff,3 = 304.3 kg7 Meff 5 = 102.8 kg7 Meff,2 = Meff 4 = Meff,6 = 0 kg

The total mass of the structureris = uf = 2520 kg. The effective mass appearing in the modal analysis is:
Meff = Meft,1 + Meff,3 T Meft,5 = 2146.1 kg

Itis still less than the 90% of the total mass of the strugtsoghere is not either a reduced or a full set of mode
shapes, which would be sufficient to calculate the suppbration with modal analysis. This is caused by the
large fraction of total mass reduced to the supported nddigaling the beam into five members would reduce
this effect. In that case the first three active modes (dukeé@ymmetries, these are the first, the third and the
fifth modes) would produce an effective mass more than 90%eofdtal mass.

Solution (Solution of the same problem with the spring support modél show the solution steps of the
same problem with the spring support model too. In that caskave to use a five-node model and connect the
supported nodes with stiff springs to the support (see8Fig(b)). The elementary stiffness and mass matrices
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are the same as in Probled7.1, but we must compile th0-by-10 matrices, and add large spring stiffnesses
py andp, to the corresponding entries in the main diagonal of thénstss matrix. The resulting stiffness
matrix is

r 64000 4 py 48000 —64000 48000 0 0 0 0 0 0 1
48000 48000 + py —48000 24000 0 0 0 0 0 0
—64000 —48000 128000 —64000 48000 0 0 0 0
48000 24000 0 96000 —48000 24000 0 0 0 0
K= 0 0 —64000 —48000 128000 —64000 48000 0 0
- 0 0 48000 24000 0 96000 —48000 24000 0 0 ’
0 0 0 0 —64000 —48000 128000 —64000 48000
0 0 0 0 48000 24000 0 96000 —48000 24000
0 0 0 0 0 0 —64000 —48000 64000 + py —48000
L 0 0 0 0 0 0 48000 24000 —48000 48000 + pp A
while the mass matrix is
r 234 —29.25 0 0 0 0 0 0 7
49.5 29 25 —10.125 0 0 0 0 0 0
81 29.25 468 0 —29.25 0 0 0 0
—29.25 —10.125 27 29 25 —10.125 0 0 0 0
M — 0 0 29.25 468 0 81 —29.25 0 0
- 0 0 29 25 —10.125 27 29.25 —10.125 0 0
0 0 0 0 29.25 468 0 81 —29.25
0 0 0 0 29 25 —10.125 0 27 29.25 —10.125
0 0 0 0 0 0 81 29.25 234 —49.5
L 0 0 0 0 0 0 —29.25 —10.125 —49.5 13.5 i

The results of the solution of the generalized eigenvalwbdlpm is summarized in Tab@3. It worth
realizing, that if the spring stiffnesses are beltd¥, then the first six natural frequencies are affected. If the
spring stiffnesses are equal to or larger thah, then there is a significant effect only on the last four raltur
frequencies. So, if we want to model the system with sprimgpstt, we have to take this value into account
when choosing aufficientlylarge spring stiffness.

The analysis of the efficient modal masses can be done on i@ atass matrix with the same influence
vector as we used in the previous solution.

PY = Py wo1 wo2 wo3 wo4 wo5s wo6 wor wos wo9 wo10

104 1.9480 4.2419 7.5605 14.132 24.586 43.230 | 67.054 102.95 178.53 193.41

105 3.4599 8.6133 14.748 22.307 31.827 50.547 | 77.019 115.07 282.09 292.01

106 3.9976 10.955 21.328 38.351 56.479 75.025 | 94.437 123.79 755.84 771.06

107 4.0661 11.281 22.343 42.109 69.183 111.12 | 232.66 236.59 2344.3 2387.7

108 4.0732  11.315 22.444 42.447 70.160 113.04 | 722.18 728.36 7398.7 7534.6

109 4.0739 11.318 22455 42480 70.252 113.19 | 2279.7 2297.9 23392. 23821.

1010 4.0739 11.319 22456 42.484 70.261 113.21 | 7207.7 7264.8 73971. 75329.

Table 3.3: The natural circular frequencies of the beam with elastppsuts for various spring stiffnesses.

In this solution we presented the application of the springpert model for the dynamical calculation of a
beam with elastic end supports.

In the fixed support model we should add two supporting noddise system, but the mass matrix would
be zero in their block rows and block columns (the supporsipigngs are supposed to be massless). Therefore,
we can leave out the excess nodes from the calculationsllyriwa can conclude that the stiffness and mass
matrices are the same in the elastic supported case for bpgiog models.
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3.8 Second order effects

In this section we analyse the effects of the rotationaltiaeand the normal force to the
dynamical stiffness matrix of the beam.

3.8.1 Rotational inertia

We derive the dynamical stiffness matrix of a beam membeilaiinto Subsectior8.2.2
using the principle of virtual displacements. The only esien we make here is that the rotary
inertia of the cross-section is taken into account. As insgaghbon3.2.2 we let the beam
be vibrating such that the translation of its end isv;,(0,t) = 1 - sin(wt), while all other
displacements of its ends are zero (see Fi@utdtop). The internal forces at the ends of the

beam are the harmonic functions
Nl-y((), t) = Niiy Sin(wt), V}y(O, t) = ‘A/Z'Z‘y sin(wt), Miy(O, t) = Miiy Sin(wt), (3 115)
Niy(€,1) = Njiysin(wt), Vi (£,t) = Vi sin(wt), M, (€,t) = My, sin(wt). '

These internal forces and the bending moment diagram atarcéme instant are sketched at
the bottom of Figure.14

qt (Xit):_uaiy (X,t)

v, (x,H)= Y(X)Sln(wt) v, (LH=0
v(0.9=0 (D=0

iy ....nm||||||||||||II|IIIIIIIIII
IIIIIIIIIIIIIIIIIIIIIIIIIIII

J'y l'y

Figure 3.14: (top) Sketch of the deformed shape of begmdue to a harmonic translation of unit amplitude of
endi along axisy. (bottom) The corresponding bending moment diagram angdkgive definition of the
end-of-beam internal forces.

We need to determine the amplitudes of the internal fordes,(Viiy» Miiy, Niiy» Viegs Miiy)
due to a harmonic vertical translation of unit amplitude d € with the rotational inertia of
the cross-section taken into account.

The computation of the end-of-beam internal forces is basethe principle of virtual
displacements. At time instant we apply the fictitious force system to the beam as shown
in Figure3.14 The inertia forcey(z,t) = —pa;y(z,t) is due to the linear momentum of the
beam elements, and the fictitious inertia momentz,t) = —ol @y (x,t) = —pigpi,(x,t)
arises from the angular momentum of the beam elements.i#erd /A.

Thus we have a statically admissible force system: thenatefiorces and the fictitious
inertia force and moment are in equilibrium. We take thetist displacement system, (z)
due to a unit translation of end(which is shown in Figure.4) as the virtual displacement
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system. We compute the virtual work that the force systemwehn Figure3.14does on this
virtual displacement system at time instant

l l

IWas =Viy (0,8) - (1) + /{—,uaiy(x,t)}viy(x) dr + /{—uig@y(x,t)}v;y(a:) dz

0 0

/ o (@, )Ry (z) dz = 0.

Here the first term is the work done by the shear forgg0,¢) on the translation of end
The last term is the internal work done by the bending moniépi{x,¢) on the curvature
riy(z) = M, (z)/EI. The second term is the work done by the (distributed) iadadtice

—pag,(z,t) = —piy,(z,t) = pw?o;, sin(wt)

on the translation;, () along the whole length of the beam. The third term is the wanked
by the (distributed) inertia moment

— g Gy (T,t) = —,uigi};y(x,t) = ,uingf);y sin(wt)

on the rotationu;y(x) along t_he whole length of the beam. This, E§.49, and Eq 8.67)
implies that the above work is

4 4
5st - {‘A/uy + ng / f)iy (x)viy (ZE) dz + /,Ling / @;y(:p)vz,'y (ZE) dz
0 0

-

Next, we express the virtual work that the statical forcdesys(shown in Figur@&.4) does
on the dynamical displacement system (sketched in Figii4 at certain time instarit

(3.116)

dx} sin(wt) = 0.

Wt = Vigy(0) - {—1 - sin(wt)} — / Miy(x)% dz = 0.

Using Eqgs. 8.115 the above work is reformulated as

¢
W = Viiy /sz dx sin(wt) = 0. (3.117)
0
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Both Egs. 8.116 and 3.117 have zero on the right hand side. Therefore, their left lsaels
divided bysin(wt) # 0, are equal:

/

y4
= Vi g [ o)y (o) do -+ g [ (o) ) da
0

S—

~

l V4
_/Miy(x) Ey[ doe = _Viiy_/Miy(m) EyI
0 0

dax.

Here the virtual internal works are the same:

~

f I,y () Mggx) dz = f Miy(2)

zy(x)
Joli dx.

Finally, we can express the amplitude of the dynamical bepdioment at end caused by a
harmonic translation of the same end. This is the enyof the dynamical stiffness matrix
Kloc:

)

~

K};CQZ = —‘/;-iy = —‘/”‘y — Iu,(,,d2 ’IA}ly(.I')’U“j(l') dz — ILLZ(Q)WZ / ’lA);y(fL')’U;y(m) dz

~

/

By ()05 () Ao — pizw? [ o (z)v;, () dz.

o loc 2
= Kij,22 — pw iy

O\JN o\(\

0

We can derive all the internal forces at the ends of the beanallongitudinal and trans-
verse (harmonic) translations and (harmonic) rotationsn@famplitudes of the ends in a sim-
ilar way. mass related matrix. We can construct a matrixlaimo (3.23:

N, =[0 d,(x) d,(z) 0 ),(x) 0),(z)]. (3.118)

Here prime denotes derivation with respecttd he shape functiofy, () is due to a harmonic
translation of unit amplitude of endalongy, i.e. the solution of the homogeneous part of

(2.4Y):
Pv(x,t)  ,0M(x,t) o'v(z,t)

with v(z,t) = vsin(wt) and boundary condition8(62. The shape function;,(x) describes
the deformed shape of the beam caused by a harmonic rotdtionit@mplitude of end. It

is the solution of 8.119 with boundary conditions3;63. The same holds for superscript
with the appropriate boundary conditions. It is importantbte, that these shape functions are
a functions ofz, but they also depend on the following paramejer#’/, F A, ¢ (which are
given parameters of the beam), andwhich is the frequency of the forcing. Therefd%ép is
frequency-dependént
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Now we can write the elementary dynamical stiffness matfizeam:; in the short form

KU (w) = K — o (M7 (w) + M (0)) | (3.120)

HereK}%° is the elementary statical stiffness matrix of beiam\A/Iﬁ‘;C (w) is the elementary mass
matrix

l
M (w) = p / N”N dz, (3.121)
0
andl\A/Ii‘;C‘P (w) is the elementary rotational mass matrix:
L
M (w) = pif / NN, dz. (3.122)
0

These mass matrices depend on the circular frequeraythe external forcing. Concluding
the results, we can say, that the dynamical elementaryasi#f matrix equals to the statical
elementary stiffness matrix minus the sum of the mass nestr@ 121, (3.122 times the
square of the forcing frequency. This dynamical stiffnessrixis frequency-dependernErom
Eq. 3.120 it can be verified, that the mass matri®dd(w) andM;* (w) aresymmetricand
so is the dynamical stiffness mat&?c(w).

Similar to the translational mass matrix, the rotationasgiaatrix can be approximated by
a consistent rotational mass matrix, if necessary. In thse the matriN;, is estimated by

N:p: [ 0 U;y<l‘) v;@(x) 0 v;-y(x) U;w(l’) ]

and the consistent rotational mass matrix becomes

consij

l
Mt = pig / NN, dz.
0
In this case the dynamical stiffness matrix is approxinyatel

consij consij

KL(;C(W) ~ KB'C o w2 <Mloc + Mloc<p )

3.8.2 Static normal force

In this subsection we will incorporate the effect of conststatical normal forces on the
motion of the rod using similar approach as in Subsedi@m2

If the beam vibrates so that the translation ofiftsend isv;,(0,¢) = 1 - sin(wt), while all
other displacements of its ends are zero (see Figurétop), then the end-of-beam internal
forces are the harmonic functions

Niy(0,t) = Ny, sin(wt),  Viy(0,1) = Vigysin(wt), M, (0,t) = My, sin(wt), (3.123)
Niy(£,t) = Njsysin(wt), Vi, (0, 1) = Vig,sin(wt), My, (0, t) = M, sin(wt). '
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The amplitudes of the internal forced',, Vi, Miiy, Njiys Viiys Mji,) due to a harmonic
translation of unit amplitude of endof the beam can be determined using the principle of
virtual displacements.

This time we take the moment that the normal fotexerts on the (rotated) elemen-
tary beam segment into account, which is shown in Figui®& The rotation of the segment
causes an eccentricity of the normal force, which indicatésstributed momentig(x,t) =
—Sv;y(w, t).

Figure 3.15: Demonstration of the moment caused by the normal féroa a rotated elementary segment of the

beam.
At time instant¢, we apply the fictitious inertia force,(z,t) = —pa;,(z,t), the ficti-
tious inertia momentn;(x,t) = —ol@;,(x,t) = —uitd;,(z,t) and the distributed moment
ms(z,t) = —Sv;y(x, t) to the beam. The internal forces, the fictitious inertia éoribe ficti-

tious inertia moment and the distributed moment causedédjotiteS are in equilibrium. We
take the (statical) displacement systeg{z) due to a unit translation of eridwhich is shown
in Figure3.4) as the virtual displacement system. The virtual work that(dynamical) force
system shown in Figurg.14does on this (virtual) displacement system at time instast

0Was =Viy (0,) / {—naiy(z,t)}viy (x) dz + / {—pigpay(x, ) vy, (z) do

/{ Sw, xt}vly / y(@, 1)k (z) dz = 0.

Here the first term is the work done by the shear forgg0,¢) on the translation of end
The last term is the internal work done by the bending moniépi{(x,¢) on the curvature
kiy(z) = My, (z)/E1. The second term is the work done by the (distributed) iadaiice

—piagy (2, 1) = — iy, (z,t) = pw?d;, sin(wt)
on the translationw;, (z). The third term is the work done by the (distributed) inertiament
— i iy (2, 1) = —uigé};y(:v,t) = ,uz'gw%;y sin(wt)
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on the rotatiorv;y(x) along the whole length of the beam just as before. The newtHderm
is the work done by the distributed moment from the normatdor

—Sv, (x,t) = —Sv;, sin(wt)

on the rotatior; ().
This, Eq. 8.49, and Eq 8.67) implies that the above work is

¢ ¢
Wys = —f/ﬂy—l—uw?/@z«y(x)viy(:c) dz + (pigw® — /17 vy, (
, " 0 (3.124)
/sz d:c sin(wt) = 0.
0

Here, similarly to Subsectiod.2.2and3.8.1,

l
zzy / sz
0

Therefore, the amplitude of the dynamical shear force at eadsed by a harmonic translation
of the same end, i.e. the entty2 of the dynamical stiffness matri»(1OC is

dx.

V4 l
k%?,%Q = _Viiy = —Viy — ,UWQ / iy (1) vy () dr — NZOW - /
0

0

¢
= K%, —l—S/UZy Jviy () dz — prw /vly(x)'uly( )da — pigw? /@Zy(:c)v;y(a:) dz.
0

0

We can derive all the internal forces at the ends of the beasrtallongitudinal and trans-
verse (harmonic) translations and (harmonic) rotationsdfamplitudes of the ends in a sim-
ilar way.

The elementary dynamical stiffness matrix of begrs

KI5 (w) = KU+ KisC (w) — w? (M) + N7 (@) ) | (3.125)

Here K}>° is the elementary statical stiffness matrix of be@mK‘OCG( ) is the elementary
geometrlcal stiffness matrix and

K2 (w / NN, dz, (3.126)
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with the matrix of shape functions E®.0L18. This matrix related to the change of the geom-
etry with respect to the straight unloaded case, and modifeestiffness of the beam element.
M%(w) is the elementary mass matrix

l
M (w) = p / N”N dz, (3.127)
0

andM;>**(w) is the elementary rotational mass matrix

¢
M (w) = pif / NN, dz. (3.128)
0

Finally we can say, that the dynamical elementary stiffrmaasrix equals to the statical
elementary stiffness matrix plus the geometrical elemgraiffness matrix 8.126 minus the
sum of the mass matrice8.(2J), (3.122 times the square of the forcing frequency. This
dynamical stiffness matrix fsequency-dependernfrom Eq. 8.129 it can be verified, that the
mass matriceKﬁ?CG (w), Mﬁgc(w) andl\A/IEC“”(w) aresymmetricand frequency dependent, and
so is the dynamical stiffness matrﬁy;c (w).

The calculation of the geometric stiffness matrix can ber@ygmated with the static dis-
placement functions. In this case we have to use the sam&matr

NZP: [ 0 U;y(ﬂ;’) U;@(I) 0 v;y(x) U;¢(x) ],

what we used for the calculation of the consistent rotatiomass matrix: This way, the ap-
proximate geometric stiffness matrix is

consij

y4
K¢ — g / N/N, dz, (3.129)
0

and the dynamical stiffness matrix can be approximated by

% oc loc
KBC(W) ~ (KIZCJ)C + K'é’cf%w) — w? <M1:onsij + Mconﬁij) .
Here we have to call the attention of the reader, that in tiserde of harmonic forcing (i.e.
w = 0) the above stiffness matrix simplifies to
Klz‘(;c(w) = (K'i(}c + Kltg)(fr%ij) 5

which can be used for (statical) stability analysis of theicture. Eq. 8.129 provides the
exact geometric stiffness matrix (however it requires tbemal force S for its calculation
which leads to an iterative solution in some cases). Thisaustatical and geometric stiffness
matrices allows stability analysis of a structure.
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Chapter 4

Damping in structural dynamics

In real structures the energy of the vibrating system dadsgpthrough various mechanisms,
such as thermal effects of cyclic loading, internal friatiaf the body, friction at connections,
opening and closing of microcracks, et@].[It is very difficult to model all of these effects.
Instead, in practice, a so-callequivalent viscous damping often used, which stands for all
the important energy dissipating components while remstififairly easy to handle (se€]
for further details). In the case of viscous dampings, therggndissipation is proportional to
the loading frequency. However, laboratory cyclic loadexgperiments on structural metals,
and vibration tests of real structures within the usual eamigoading frequency show that the
energy dissipation is essentially independent of the laatfequency. This observation has led
to the development afate-independent (linear) damping structural design. (This damping
is also called as structural damping, solid damping, ordresic damping.) Rate-independent
damping is mainly associated with static hysteresis, whaharise from plastic strain, local-
ized plastic deformations within the global elastic limitloe structure, for exampl&]. Apart
from the internal energy dissipation properties of the malehe friction of connections, etc.,
there can be real dashpots built in or attached to the steictven the surrounding soil has
damping effects, which are often worth considerif [

In this chapter we introduce some important concepts raggrthe effects of damping
on the vibrations of structures. We show how the steadstdiration of a harmonically
excited, damped MDOF system can be obtained by direct saldéchniques. The idea of
mass- and stiffness-proportional damping is introducduckvmakes real modal analysis of
the structure possible. Rate-independent damping is ateghdirectly from the results of the
real modal analysis of proportionally damped systems.riatehe damping effects of soil and
the phenomenon of radiation damping is revealed. Finalljidaly used numerical procedure,
theNewmarkmethod is discussed.
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4.1 Steady-state vibration of viscously damped systems

The system of differential equations of a (linearly) damgedced MDOF system is given
in the matrix form

Mii(t) + Cu(t) + Ku(t) = q(t) | (4.1)

HereM, C, andK are the mass, (linear, viscous) damping, and stiffnessaeeatof the system,
respectively, whilai(¢) contains the unknown displacements of the degrees of freetivthe
next subsection the direct solution of the above equatigiven for harmonic loadings.

4.1.1 Harmonic excitation of damped MDOF systems
If the forcing varies harmonically with time, then the loadkq. @.1) is eitherq(t) =

qo sin(wt), or q(t) = qp cos(wt), or a combination of sine and cosine functions with différen
amplitudes.
Sinusoidal excitation

First let us determine the particular solution of the sindalty forced mechanical model
described by the second order matrix differential equation

Mii(t) + Cu(t) + Ku(t) = qg sin(wt). (4.2)
The solution is searched for in the separated form
us(t) = ug sin(wt) + uyps cos(wt), (4.3)

i.e. as a linear combination of sine and cosine functiond Wit same frequenay as the
forcing. If we substitute the trial functio®(3) into Eq. @.2), then we get

— w?M (uyy sin(wt) + uys cos(wt)) + wC (uy cos(wt) — sy sin(wt)) (4.4)
+ K (uy sin(wt) + uge cos(wt)) = qo sin(wt). '

Collecting the coefficients of sine and cosine in both sidesare obtain the following two
equations:

(—U)2Mu]01 —wCuypy + KUfl) sin(wt) = qq sin(wt)
(—W2Mu}f2 + wCuy; + KUfQ) cos(wt) = 0.
The latter equation can be solved for,, and it is substituted back into the former one:
U = —Ww (K — MQM)_l C Ur,
(K - M +u2C (K - M) ' C) uy = ag

-1
—  up = (K — w*M + w?C (K — W2M)71 C) qo-
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Therefore, the particular solution of this forced vibratis:

us(t) = (K —w’M+w’C (K — sz)_l C) - qo sin(wt)

B (4.5)

—w(K-w™M) ' C (K- w’™+w’C(K-wM) ' C) " qo cos(wt).
Cosinusoidal excitation

The determination of the particular solution of the cosaidally forced mechanical model
described by the second order matrix differential equation

Mii(t) + Cu(t) + Ku(t) = qg cos(wt) (4.6)
goes in a very similar way. The solution is searched for instarated form
us(t) = uy sin(wt) + ups cos(wt) 4.7)
again. We substitute the trial functio#.() into Eq. @.6):

— w?M (uy sin(wt) + s cos(wt)) + wC (s cos(wt) — upysin(wt)) .8)
+ K (uy; sin(wt) 4+ uyy cos(wt)) = qp cos(wt). '

Collecting the coefficients of sine and cosine in both sidesavewrite the equations:
(—w*Muy; — wCuys + Kuyy) sin(wt) = 0
(—w*Muys + wCuyy + Kuys) cos(wt) = qq cos(wt).
The former equation can be solved for;, and it is substituted back into the latter one. Thus
up =w (K — (,JQM)il C Uyro,
<K —w’M+w’C (K - w21\/I)_1 C) up = qq
-1
= up= (K- wM+w?C(K-w’™™) ' C) a
Therefore, the particular solution of this forced vibratis:

1

us(t) =w (K—w’M) C (K —w’M+w’C (K — wQM)_l C) B qo sin(wt)

(4.9)
-1

+ (K —w’M+w’C (K — (,qu\/I)_1 C> qo cos(wt).
Sine and cosine forcing handled together

In order to handle both the sinusoidal and the cosinusomiairfg together, we cannot
avoid using complex functions. We write the force in the fain

q(t) = qo {cos(wt) + isin(wt)} = qoe™".
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Here i is the imaginary unit, satisfyingf = —1. The matrix differential equation of motion in
this case is ) ' .
Mu(t) + Cu(t) + Ku(t) = qoe™". (4.10)

Notice, that now the vector of unknown displacemants can be complex, that is the reason
why it is distinguished by a tilde from the previous, realtees.
The particular solution is searched for in the separated for

Uy (t) = upoe™’. (4.11)
We substitute the trial functio(11) into Eq. @.10:
(—wQM + iwC + K) Use™ = qoe™’. (4.12)
Now the coefficient of the trial functiord(11) can be obtained by inversion:
U = (—w’M + iwC + K) ' qo. (4.13)

The final result is

Us(t) = K 'qpe™, (4.14)
where B
K=K — M + iwC

is the complex dynamic stiffness matrix of the damped sysmreal andimaginary partsof
solution @.14) correspond to theosineandsine forcing respectively. This abstract approach
leads to a simple formalism, therefore we prefer using ieatter. However, we have to note
that a complex matrix must be inverted in E4.13), thus the computation is not easier than in
the previous cases when sine and cosine forcing were selyasatdied. If the reader is further
interested in how to invert a complex matrix and whetherelresults really coincide with the
previous ones, then they may read Appendlig.

As a conclusion, we can state that using complex functicaddéo simpler formalism, but
requires us to be familiar with complex algebra. In thesesathe complex algebra appeared
because of the damping: the first derivative of the trial fiomc(4.11) introduced the imagi-
nary unitiinto (4.10. We hardly need to say now that damping makes structuramycs
calculations much more difficult in general.

However, if the damping matrix is special, then both the hgem®ous and the particular
solutions of the forced system can be obtained using the-mas$x-normalized modal shape
vectors of the same system without damping. A special dagnmiatrix means that it is pro-
portional to the mass and/or stiffness matrices. In thefatg subsection we demonstrate the
physical origin of this proportionality.
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4.2 Mass- and stiffness-proportional damping

4.2.1 TheKelvin-Voigt material

If the material is such that it can be described byKledsin-Voigtmodel, then the stress
the straine, and its derivative with respect to timere related by

o= Fe+ aFe.

Herea is a material parameter, aadv is the (internal) viscous damping of the material. This
eqguation can also be applied to shear stresses. Howevdreams are unshearable, so we only
deal with the normal stresses.

Normal stresses are associated with normal force and bgmdament in planar frame
members. Thus the above constitutive law implies that thternal) normal force and bending
moment are

N(z,t) = FAe(x,t) + aFBAs(x,t), M(x,t) = Elk(z,t) + aElk(x,t) | (4.15)

4.2.2 Stiffness of a damped beam made #felvin-Voigt material

Let us examine a beam that is madekallvin-Voigt material, and that is further damped
by a continuously distributed (external) viscous dampwgich is constant along the length of
the beam. This damping is denoted gyWe derive the dynamic stiffness matrix of the beam
member using the principle of virtual displacements. Wethsesame steps as in Sectidi2,
but with the damping considered. We show how to obtain ong/emamely entry2,2 of the
dynamic stiffness matrix. Here the first index is the “pladbus we need the shear force at end
7, while the second index is the “cause”, which is the trarmstadf end: alongy. Therefore
we need to compute the shear force of énfla beam that vibrates so that the translation of its
endi is v, (0,t) = 1 - e, while all other displacements of its ends are Zefsee Figuret.1
top).

We assume that the vibration of the beam can be written ascidarof separated variables
x andt:

Vi (2, 1) = V() .
The dynamic shape function,(z) can be complex in the presence of damping. It is distin-
guished with an overtilde from the real-valued dynamic shfamction of the undamped case
(for which a hat was used instead). The end-of-beam intdanaés can also be written in
separated forms:

Niy(o’t) - Niiyeiwt’ V;y((), t) - ‘Ziyei“’t, Mz‘y<07t> = ]\/Z'iy ema (4.16)
Nz‘y(&t) = Njiy eiwt, Viy(f, t) = ‘Z’iyeiwtv Miy(& t) _ -Z/-\ijiyeiwt. .

These end-of-beam forces and the bending moment diagrantetain time instant are
sketched at the bottom of Figudel

INote that uprighti denotes thémaginary unit while italic subscript refers to end of the beam.
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Figure 4.1: (top) Sketch of the deformed shape of a beam due to a dynabriatidn of end along axisy. The
beam is continuously damped with a viscous damping of caexiic. (bottom) The corresponding bending
moment diagram and the positive definition of the internedés at the ends of the beam.

The computation of the end-of-beam shear fof/gg is based on the principle of virtual
displacements. At time instatitwe apply the fictitious force

Qt(xv t) = _:uijiy(xv t) - C@iy(‘r’ t)

originated from the inertial mass and the damping, as showfigure4.1. Thus we have a
statically admissible force system: the internal forcestae fictitious force are in equilibrium.
We take the (static) displacement systefj{x) caused by a unit translation of emndshown
in Figure3.4) as the virtual displacement system. We compute the vivtwak that the force
system shown in Figuré.1 does on this (virtual) displacement system at time instant

¢
IWas = Vi (0, ) /{ Py (2, 1) — Uiy, 1) iy ( /sz x,t)kiy(z) de = 0.
0

Here the first term is the work done by the shear fdfg€0, ¢) on the virtual translation of end
i. The last term is the internal work done by the bending moméptx,t) = Elmy(:z: t) +
aEIfy(x,t) = —EI{1 + iwa}v}, (z)e™" on the virtual curvature,(z) = —vj, (). The
second term is the work done by the (distributed) fictitiousé

gz, t) = — iy, (7, 1) — (O (7, 1) = pw?y, (1) ™' — iw(vy, (z) ™!
on the virtual translatiom;, (x) along the whole length of the beam. Thus, the above work can
be written as

¢ ¢
(Sst = V;zy + pw / (x)vzy( )d.’B - ICW / Eiy(l’)ﬂiy(l’) dz
0 0
, , (4.17)
E[/v x)dx — 1awE[/v et =,
0 0
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Finally, we can express the amplitude of the dynamic sheeefat end caused by the vibration
elwt of endi. Due to the positive definition of the end-of-beam interoatés, and of the entries
of the elementary stiffness matrix (s€g6), this shear force is the opposite of enixg of
the dynamic stiffness matrix:

¢ ¢
[?;;’32 - _‘Ziy :E[/@”y(x)v;’y(aj) do — pw? /@y(m)viy(m) dx
0 0

¢ ¢
+ iawEI/%;(x)vZ/(x) do + i(w/ﬁiy(m)viy(x) dz.
0 0

As we can see, the dynamic stiffness is complex, which caigis from the damping effects.
That is the reason why we distinguish the elementary dynatiffoess matrix by an overtilde
for the damped case.

Similarly to 3.70, we can collect the (damped) dynamic shape functions iantatrix

_ {mﬁ@ 0 0 @) 0 0 }

N= 0 Uiy () i () 0 Ujy(2) jp() (4.18)

Following the earlier used definition8.3—(3.27) and the notatioB = LN, the whole
elementary dynamic stiffness matrix of beams
l l
1o loc : T 2 : N
K (w) = (1+ 1aw)/B DBdzr — (w” — 16w)u/N Ndz, (4.19)
0 0

where
B=C(/p.

We can substitute the (damped) dynamic shape functionsthatistatic ones in order to
approximate the stiffness matrix as

(4.20)

r-loc ~ . loc 2 . loc
K (w) ~ (1 +iaw)Kj3° — (W — ifw)M

cons,ij |

Here Ki5° and M, ;; are the static stiffness and the consistent mass matricttge dfeam,

respectively. The complex part of the approximate stiffnestrix is the (approximate) ele-
mentary damping matrix

CY = oK + fMS

cons,ij |

(4.21)

Since this (approximate) damping matrix is proportionalhbtw the static stiffness matrix
(3.27 and to the consistent mass matrx44), it is often called themass- and stiffness-
proportional damping matrix If this approximate version of the dynamic stiffness maisi
applied, then we have to use beam members short enoughnmagsthe dynamic behaviour
of the structure accurately. If the structure is not sulgi@db harmonic excitation, but to an
arbitrary forcing, we can still use the approximate, (s&fs) consistent mass matrix, the static
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stiffness matrix, and the proportional damping matdx(l) with sufficiently short beam mem-
bers.

Finally, it is worth noting that the stiffness-proportidrdamping is originated from the
material behaviour, while the mass-proportional dampgndue to external viscous damping.
The mass-proportional damping appears for example whesttheture is in viscous fluid (in
water, for instance).

If all the frame members are of the sankelvin-Voig) material (thusx is the same for
each beam), and the external damping is also the same fomeawiber (thereforg is also
the same for all of the members), then the total damping ratiihe structure is proportional
to both the total stiffness and mass matrices of the strectarthis special case, the system of
equations of motion4.1) is simplified to the form

Mii(t) + (K + M) u(t) + Ku(t) = q(t) | (4.22)

The advantage of this formulation is that it can be solvedh \@rital) modal analysis, as shortly
reviewed in the next subsection.

4.2.3 Real modal analysis of proportionally damped systems
Free vibration
Let us consider the homogeneous part of BR2):
Miy, () + (oK + M) u,(t) + Kuy,(t) = 0. (4.23)

We recall the results of Subsectio.6.1 There is a new variabley,(t) =
[Yn1 () yna(t) .. yun(t)]* introduced as

uy (t) = Uyh (t) .

HereU is the modal matrix, that contains the mass-matrix-nomedleigenvectors of the same,
but undamped system. See E8.91). Using this new variable in the homogeneous equation
(4.23, and multiplying it by the transpose &f from the left we get:

U'MUy,(t) + (@U"KU + SU'MU) y,(t) + U'KUy,(t) = U'0.

According to the orthogonality ol to MU and KU (see Eq. 8.94), the above system of
equations splits intdv independent homogeneous equations of motion:

in; (t) + (awd; + B) gns(t) + wiyn(t) =0, j=1,2,---  N.

These SDOF, damped, free vibrations can be solveg,fot). If the damping is small for every
7, then the previously derived solution of each damped SDQ@tesy (repeated from EdL.(7))

yn(t) = e " L A cos (wit) + Bsin (wit)}
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can be used with the substitutions

2 2
m=1, c¢=awy +5, k=uwpy,

fo G :ang—l—ﬁ o /—1—5 . 1_ awoj+ﬂ> . (4.24)
2¢/k;ym; 2wo; ’ 2wo;

Thus the free vibrations in the modal space (if all the modailmtors are underdamped, i.e.
& < 1)is:

w2 B Ozw2-+ 2
yhj(t) =ce gj t Aj COS woj\/l — <0]—ﬁ) t

2w0j

(4.25)
2 2
. awg; + B
+Bj S11 Woj\/l — (2;—%) t
We note here that thgh logarithmic decrementl(1.2) is
Ynj(t) ozwoj + 05
Uy =In—F——"~"— = . (4.26)
yns (¢ + T5;) \/1—52 1— O‘WoﬂL/@
2(.0()]

Finally, the solution fony,(¢) is obtained by transforming bagk, (¢) from the modal space:

uh(t) = Uyh(t).
The free parameterd; andB; (j = 1,2,..., N) can be determined from the initial values of
uh(O) andﬂh(O).
We have to emphasize that the final results given here (andtedogarithmic decrement)

is for the case osmall modal dampinglf there are some large modal damping coefficients,
then we have to modify4(25 for somej.

Forced vibration

The particular solution of the forced vibratiofn.22 can also be derived using the modal
matrix U of the same, but undamped system. Substitutid = Uy(¢) into (4.22 and
multiplying it by U7 from the left yields

U'MUy,(t) + (eU"KU + BUMU) y;(t) + U"KUy,(t) = U q(1).

The mass-matrix-normalized eigenvectors of the undamps@®mU = [u; uy ... uy] are
orthogonal toMU andKU (see Eq. 8.94). Therefore, the above system of equations splits
into independent equations of motion:

yfj(t) + (Oéng + 6) yfj(t) + w(Q)jyf]'(t> = u]Tq(t) = fj(t)a ] = 17 27 T 7N' (427)
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Arbitrary forcing  If the loadq(t) is an arbitrary function of time, then each of the equations
(4.27) can be solved separately by using ighamek integral (L.26)

t
1
- /fj (1) e Swoitt=h gin (wéj{t — T}) dr
0j

() =
yri(t) m,

with the substitutions4.24) and f;(t) = ul q(t). Thus
1
ypi(t) = -
. (ang + ﬂ)
wair |1 — (=% T
? 2o, (4.28)

t

_mﬂj—ﬁ Qw?. + 2
X /u]Tq(T)e 2=} gip woj\/l - <OJ—5) {t—7}] dr.
0

20J0j

Harmonic forcing If the loadingq(¢) in Eq. @.27) is harmonic, for instance if
q(t) = qosin(wt),
then Eq. 4.27) becomes
i (t) + (awg; + B) 455 (8) + wijyps(t) = ujqosin(wt), j=1,2,--- N.

According to (.13 and @.24), the solution fory;(¢) in the case of this harmonic forcing is

2

v
ul 1 W
yri(t) = —2 o sin | wt — arccot 0
i kfj w? 2 w 2 2£i
) (4.29)
T ==
uj Jo 1 w()j

= — - sin | wt — arccot —w
wOj w2 w 2 aw + 5—2
l=— ) +|aw+f— Woj

If we have solved Eq.4(27) for a given load, then the particular solution of the orain
system of equationgh(22) is obtained simply by transforming the results back fromntodal
space:

us(t) = Uyy(t).

If one needs to take initial conditions into account, themdbm of the homogeneous and
particular solutions are needed, and the initial condgisinould be used to determine the free
parameters of the homogeneous solution. (Modal analyieisecommended tool for this.)
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4.3 Rate-independent damping

Damping of structural materials are considered to be smallfeequency independent ac-
cording to experiments. Laboratory tests and on-site nteasents recorded that the logarith-
mic decrement (the rate of the vibration amplitude decgyisdrequency independentor
example, the same logarithmic decremehtx 0.01, is measured in case of steel beams of
different natural circular frequencies (i.e. differemdghs and cross-sections). For standard
structural materials it is arountl= 0.01...0.1.

Previously we assumed that the damping is proportionaldartss and stiffness matrices.
This led tofrequency-dependeldgarithmic decremen#(26) for each vibration component in
the modal space. If we want to take our result closer to thigyefrst we sets = 0, since the
mass-proportional damping was originated from externadixs, and now we are interested
in the damping properties of the building material.5lf= 0, then the logarithmic decrement

(4.26 simplifies to
Qo

.
2

_ %
a)oj ’

19A:

J

Second, wdormally set

a: (4.30)
(This is a rude step, it should be thought of as if the frequatependency of the logarith-
mic decrement were “penalized”.) With these assumptiorddgarithmic decrement really
becomedrequency independent B

28T
Vi-¢
Here¢ is called thestructural damping coefficientlt depends only on the material type. It
hassmall values for building materials (it is arourtd01 for reinforced concrete, for exam-
ple). Therefore, we can approximatél — £2 ~ 1, and we can estimatefrom the measured
logarithmic decrement as

9 =

—y
o

(Note that in BSc Dynamics we used= 1, /7 ~ 2¢ as structural damping coefficient.)

4.3.1 Real modal analysis in case of rate-independent damping

Rate-independent damping is a special proportional dampitings = 0 anda = 2&/wy;.
Therefore the results of proportionally damped systemsbeadirectly applied, we only need
to substitute? = 0 anda = 2¢ /wy; into the final results of Subsecti@dn2.3

The free vibration of a rate-independently damped MDOFesyss given by the homoge-
neous solution4.25) of (4.23 with 8 = 0 anda = 2¢ /wy;:

ynj(t) = e 0" {A; cos (wiyt) + Bysin (wyjt) },
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where

(JJSj = WQJ'\/ 1— 52.

The particular solution of the arbitrary forced system witite-independent damping is
(4.28 with g = 0 anda = 2¢ /wy;

t
1 _
yri(t) = - / ulq(7) e D gin (wy{t — 7}) dr,
0j
0

while the particular solution of the rate-independentlyngad, sinusoidally excited system
((4.22 with g(t) = qg sin(wt)) is from (4.29

T
u’ qo 1 . Woj
J sin | wt — arccot J

2
Wy 2\ 2 a 2 26—
’ (1 - w_2) + <2§i> gWOj

4.3.2 Direct solution of rate-independently damped systems

yri(t) =

We search for the particular solution of the stiffness-prtipnally damped, harmonically
excited system

Mu(t) + aKu(t) + Ku(t) = qo (cos(wt) + isin(wt)) = qo e’ (4.31)

in the complex form _
ﬁf(t) = ﬁfo GMt. (432)

Substituting the above trial function intd.B1) yields
(—w2M + iawK + K) e =qp et
We can turn the damping associated termvK into frequency independent by setting

_ %
==,

(07

where( is the previously introduced structural damping coeffitien
With that choice the complex, linear system of equation teesfor the unknown coefficient
u o of the trial function 4.32) is
(Kst - w2M) U = qo,

where B )
Ky =(1+12)K (4.33)
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is thecomplex (static) stiffness matrikinally, the particular solution o#(31) is
~ —1 .
us(t) = (Kst — w2M> qoe™’,

the real part of which corresponds to the cosine excitafiptvs(wt), while the imaginary part

is due to the sine excitatiaf, sin(wt). As we can see, a complex, frequency-dependent matrix
has to be inverted in order to obtain the solution. The cormpéet of this matrix is originated
from damping, while the frequency-dependence is purelyftioe inertial effects.

The damping now is not a linear, viscous one, but a speciahgstional one: the rate-
independent (or structural) damping. In this special cisedamping and stiffness matrices
can be combined into the complex stiffness matix38. With the aid of this complex matrix,
the equations of motion of the forced system can be writtenshort form:

Mu(t) + Ky u(t) = q(t). (4.34)

Notice that there is not any velocity vector and damping matrthe above equation formally.
But damping is present, it is built in the complex, frequenyependent static stiffness matrix
K.

4.4 Equivalent rate-independent damping

In the case of mass- and stiffness-proportional dampiregptatrix differential equation of
the structure can be written a&.22 only if all the structural elements have the same damping
properties. If that is not the case, then the elementary dampatrix of a frame member is
still proportional to its elementary stiffness and massrioas, but the compiled, total damping
matrix of the structure is not proportional to the total masd stiffness matrices.

The direct solution given is Subsectidril.1still works for this case, but inverting a large
matrix requires very high computational capacities, amaflarge number of DOF it is not al-
ways technically feasible. The problem with structuredrasting uniform elementary damping
mechanisms is that the matrix differential equation theyll® cannot be solved by real modal
analysis. In these cases the much more difficult complex haogaysis should be used, but the
discussion of this method is beyond the scope of this textbBor large systems the reduced
(complex) modal analysis, numerical time integration reghes, or Fagtourier Transforma-
tions can be applied.

However, we show aapproximate methqavhich is often used for cases when the damping
is proportional to the (elementary) stiffness matricesisTeéchnique is based on the determi-
nation of equivalent structural damping coefficientshich can be later used in real modal
analysis. The equivalent damping coefficient for themode can be computed & [

. > &GurKiuy
Eoqr = — . (4.35)
o Z uZinz‘j Urij
ij

HereK;; is the elementary stiffness matrix of beajn¢;; is the structural damping coefficient
of beam:j. The vectoru, is therth eigenvector of the structure without damping, ang;
contains its entries corresponding to the end nodes of hgam
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4.4.1 Quasi-modal analysis for equivalent rate-independent damping

The results of Subsectioh3.1can be directly applied for structures which are not made
of the same building material, but for each material ratlependent damping holds. We only
need to replacé with the equivalent structural damping coefficie#t35) of the corresponding
mode. We have to emphasize that this givesstmate resujtwhich can be quite inaccurate. It
is also important that the applicable value of equivaletg-radependent damping is maximized
by building codes for structural design.

4.5 Dynamics of soil, the equivalent soil bar

In this chapter we introduce an estimate method to model ithration of soils. Instead
of investigating the stress and strain distribution in aastt half-space, we assume that the
normal stress distribution is constant in a given depth apdopagates within an exponential
envelope in the vertical direction, as it was suggested blf M¥8]. This simplified, planar soil
bar model is shown in Figuré.2

l F(t)

s
‘o(v) O—(YIE&( )
O ageae 3] ¢
N A(y+ly)
L a(y+4y.t)
/—‘\Aoe2

@) (b)

Figure 4.2: (a) Assumed stress propagation in the equivalent soil la(l@the free-body diagram of a slice of
the bar

On the ground level there is rigid disk of ardg = R?r, whereR is the radius. If there
is a constant vertical forcg, on the top of this plate, then the normal stress on the top igve
oo = Fy/Ap. Itis supposed that at depththe normal stress is constant within the envelope,
i.e. it is constant on the circular area

Ay) = (Re!I)’m = Age®//, (4.36)

and zero outside of it. Her¢ denotes the characteristic depth of the soil bar. It is cdetgu
from the condition that the static stiffness of the modehesgame as the static stiffness obtained
from the solution of the classical problem of elasticity: iskdying on an elastic half-space.
The model is called thequivalent soil bar

First we derive the differential equation of motion of theieglent soil bar. Then we cali-
brate our model by fitting its static stiffness to Beussinesgolution through the characteristic
depthf. Finally, the normal force on the top due to a harmonic vibrabf unit amplitude of
the top is computed from the equation of motion, leading eodynamic stiffness of the soll
bar by definition.
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4.5.1 Differential equation of the equivalent soil bar
Free vibration of the soil model

We cut the soil model with two horizontal plane beifg apart from each otheNewtors
second law of motion is written for this piece of the soil bar:

Pv(y,t)
oz
Herepu(y) = 0A(y) is the mass distribution of the model. The mass of the cut ywasoi-

mated byu(y)Ay in the previous equation (which is accuraté\if — 0). The Taylor expan-
sions ofo(y, t) and A(y) with respect ta; are:

—o(y,t)A(y) + oy + Ay, 1) Aly + Ay) = 0A(y)Ay

(4.37)

o(y+ Ay, t) = o(y,t) + %Ay + O(AyQ),
Aly+ Ay) = Ay) + %;y)ﬁy + O(Ay?).

Substituting these equalities in E4.87), dividing it by Ay and tendingAy — 0 yields

dA(y) = Jo(y,t) Pv(y,t)
Ay) = pA . 4,
o(y,t) oy (y) = 0Aly)—5 ;3 (4.38)
The constitutive law is
du(y,t)
t)=F
O‘(?/? ) & ay )
whereF. is theconstrained modulus
1—v
Ee= (14 v)(1 —2v) (4.39)

corresponding to the general spatial stress state. Hesethe Youngs modulus, and’ is the
Poissors ratio of the soil.? This equation is substituted in Ect.89):

2
g 0v(y, 1) dA(y) v g5? v(y,t)

vy, 1)
C oy dy dy? '

ot?

A(y) = 0A(y)

Now we divide the above expression ByA(y) and introducec,, =/ E./o|.

Poly.t)  Ovly,t) dAly) 1 _ 1 0%u(y,1)
Oy? oy dy A(y) & o2

2Note that the shear modul@ the Youngs modulusE, and thePoissors ratio v are not independents’ =
1/2/(1+v)E.
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The termdA(y)/ dy can be determined from the derivative of E4.36):

dA(y) _ d 29/f) _ 2 2w/f _ 2
1y (Aoe )—one —fA(y).

With this equality the partial differential equation of nwt of the unloaded soil bar is

Polyt)  20v(y,t) 1 0%(yt)

4.5.2 Static stiffness of the soil model

In the static case there is no vibration, i?égg—’t) = 0 and @.40 yields

d*o(y) 2 do(y)
— =0 441
dy? - fdy (4.41)
The solution is searched for as
v(y) = Ae,
leading to the characteristic polynomial
2 2 2
N+ = XA+32)=0 M =0, \=-—=.
+ )\ ( + f) — 1 3 2 f

From these roots the solutions fofy) is the linear combination
U(y) = Al + AQ e_%y.

Here the coefficientsl; and A, are computed from two boundary conditions.
If we are interested in the static stiffness of the soil bentwe need to compute the normal
force on the top due to a unit translation of the top. Thus tisé lioundary condition is

v(y) o 1.

The second boundary condition should correspond to the etitkof the bar. Since analytical
solutions for the stiffness of the elastic half space ardable, we study asemi-infinite soll
bar. We assume that the other end is in the infinity and its digplemt is zero:

v(y) = 0.

Yy—00

Using the above two boundary conditions we obtdin= 0 and A, = 1, thus the static shape
function of the semi-infinite soil bar due to the unit tramisla of its top is:

(y) = e 1Y,
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The normal force on the top of the bar due to its unit transteis the opposite of the static
stiffness:

dv(y) tati 2-E‘c"q() Rm
Ly |gstatie — —2B.RL|  (4.42
dy =0 soil f f ( )

From the classicaBoussinespsolution for the static problem of a disc lying on an elabadf
space the static stiffness #4):

kstatic _ —N(()) — _ECAO

soil

1 1-2
ket — AGR—— = 2B, R———
1—v (1—-v)?

soil

Finally, we can equate the above two stiffness values anesghe characteristic depftas:

(1-v)?
1o |

f=R (4.43)

4.5.3 Dynamic stiffness of the soil model

Now we investigate the case when the disc vibrates harmibniocaime with a unit ampli-
tude, described by the complex, harmonic displacementiumc

v(0,t) =1 e™". (4.44)

We separate the variablesndt in v(y, t), assuming that the vibration of the soil model at any
depthy is also harmonic in time:

v(y, t) = o(y) ™. (4.45)
This separated form af(y, ¢) is substituted in4.40 yielding:

{ doly) 2 dily) | o } et =0,

w Tia e 0(y)

The above identity holds for any time instant

+ —v(y) =0|. (4.46)

We search for the solution of E¢}.46 in the exponential form:
U(y) = Be. (4.47)

(Here bothB and )\ can be complex.) Substituting.47) in (4.46 we get

2
<A2+EA+W ) M =0,

e
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The roots of the above quadratic polynomial are

1 1\* [(w)?
M“?*WE) -(2)

thus the solution of Eq4(46) is the linear combination

5@):318{—% <;>2—<;>2}y+Bge{—;— (-2 a8

CoefficientsB; and B, are computed from two prescribed boundary conditions.
Note that if

Cn

w < 7, (4.49)
then the solution(y) is real, but if
w> (4.50)
f

thenwv(y) is complex These two different cases imply different soil stiffnessu@acteristics.
We start with the discussion of the complex case.

The case of higher forcing frequencies

If w > 07” then the term in the square roots 4f48) is negative, and(y) is complex. First

B ¥ O 13 TR
S

u(y) = By e{_%ﬁi}y + By e{_%_ii}y,

Then by introducing

(4.48 becomes

and @.49 finally yields

— Y i (y+cgqt Y Y (y—cuat
o(yt) = Bye b im0l | g o mimeat)

_y w .. w
= Bje 7 [cos (a {y + csdt}> + isin (@ {y + csdt})} (4.52)
+ Bye f |:COS (i {y — csdt}) — isin (i {y — csdt}>] .
Csd Csd
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From this form it can be recognized that there taagelling wavesn the soil model due to the
harmonic vibration of the top. If timeis changed byt (t = ¢t + At), while y is increasedby
csa At (y = y + csqAt), then the argument — ¢4t does not change. Thus the terms multiplied
by B, represent mechanical waves travellshgwnwardsat a constant speed,;. Similarly, if
time is changed byA¢, while y is decreasedby c,qAt, theny + ¢4t does not change. Hence the
terms multiplied byB; are the mechanical waves travellingwardsat a constant speeg;.
However, if asemi-infinitesoil bar is excited at the top, and the soil is assumed to be
homogeneous, then only the waves that travel downwards &g reason of this is that the
excitation of the top induces waves travelling downwards] these waves do not reflected
from any material discontinuity, which would be one sourtwvaves travelling upwards. The
bottom of the bar can also reflect downward-travelling wassshe other source of the upward-
travelling waves, but the bottom is in the infinity now, sostlsiource does not exist either.
Therefore, for the specific case of themogeneous, semi-infinite soil bae keep only

3(y) = Byel 1711, (4.53)
The boundary condition at the top implies that

u(y) = By e{_%_ii}o =1 — By=1

y=0

The normal force on the top due to the harmonic vibration efttp is:

dvfy) :—a%(%+mi),

N(0)=—-FE.A
() ’ dy Csd

y=0

which is the opposite of the dynamic stiffness of the homegeis, semi-infinite soil bar:

~ E.A E.A
ksoil - 0 + lw 0 .
f Csd

As we can see, the stiffness of the soil bar is complex, whieama that besides an elastic spring
of stiffnessE.Ay/ f, there is also a viscous damper of coeffici€ntl,/csq in our system, even
though no internal (material) damping is considered in tbesttutive law. The origin of
this energy dissipation mechanism of the soil is that therdeavd-travelling waves are not
reflected back and so radiate energy from the system. Thipidgnphenomenon is called
radiation damping

(4.54)

The case of lower forcing frequencies

If w < <, then the term in the square roots 4f48) is positive, andi(y) is real. Instead of
deriving the stiffness of the soil starting from E4.48), we simply make use of the previously
derived complex dynamic stiffnesd4.64). We have to take into account that no&g1) is
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complex and we have to reformulate%4) as
ECAOJF_ECAO 5 1+- 1\? 1)\?
1 = L -+ 1 — | =
;Y e B A A fu

sl oG}

Thus the dynamic stiffness of the soil in the case of low fogdrequency is:

foNre a

. 1 1 2
kson = EcAg {— Y et w_} . (4.55)

And the real dynamic shape function is:

We can verify this result by comparing it to the static sefs 4.42), which is the limit case
w — O:

- 2FE A :
ksoi — c — kstgtm
1 w0 f soil \/
The other limit case is — ¢,/ f, when
7 EcAO 1 static
soil = = _ksoil ]
w—ren/f f 2

which equals the real part of the complex dynamic stiffndss4j.

As a conclusion we can state that the soil can be modeled byasiicespring and a dashpot
if the forcing frequency is high enough, and by a single @asgiring if the forcing frequency
is sufficiently low. Tablet.1summarizes the results obtained for the equivalent spongtant
k., and damping coefficienr{’,, depending on the forcing frequengyand soil parameters.

Finally, we mention that internal damping of the soil madkttself can also be taken into
account by replacing’ with the complex elastic modulus

E = (1 +1 2gsoil)E

in the previous derivations. (Hefg,; is the structural damping coefficient of the soil.) In this
case there can be two types of damping in the model. One at&grirom the internal damping,

which is rate-independent, thus appears at any loadingiérezy. The other one is due to the
radiation damping, and it only appears at higher forcingudencies. We note that the stiffness
of the soil due to horizontal translation and to rotationtd tigid disk can be computed in a
similar way.
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. Cn Cn,
Forcing frequency w < 7 w > 7

1 . ) 1 )
H H static eq static eq _ static
Spring stiffness §ksoill <kgon < Eon© keon = éksoill
E.Aq
. .. eq eq c
Damping coefficient Coo] = Cooll = ]
S

Table 4.1: Equivalent spring stiffnesk ., and damping coefficien{’, of the soil, assuming a homogeneous
elastic half space, corresponding to “low” and “high” faorgifrequencyw. Here E.. is the constrained modulus
of the soil, 4, is the area of the rigid plate on the soil surface~= +/E./o with ¢ being the mass density of the
soil, while the characteristic depphis given by @.43 for a disk. The velocity of the travelling wavg, is
computed according tel(51)

Problem 4.5.1(Modelling the soil under a machine foundatiorhere is a machine that exerts a periodic
force q(t) = qosin(wt) on its foundation which can be regarded as a rigid disk of étemD = 2m. The
circular frequency of the force is = 50 % The underlying soil is sand witffloungs modulusE' = 30 MPa=
30 - 10° N/m?, Poissors ratiov = 0.4, and mass density = 2t/m3 = 2 - 103 kg/m?. Determine the equivalent
soil parameters for the dynamical calculation!
Solution. First we compute the constrained moduldsand the characteristic depgh from Egs. 4.39 and
(4.43:
1—v 0.6
B, = E= 30-10°% = 64.28 - 10 N /m?
T+ -20)  (1.4)(0.2) /e,
(1—v)? B (0.6)2
1w T 02

We also need,, = \/E./o:
64.28 - 106 m
n = = 179.28 —.
c 5. 103 79.28 .

Now we can compare the circular frequenewf the forcing toc,, / f:

1 ¢, 179.28 1 Cn
=50-, —= =31.70 - > —,
Y s’ f 1.87 e Y f
thus the forcing frequency is high enough to induce travgllivaves which radiates in the soil. Hence we
need an elastic spring and a viscous damper, too, to modsbtheThe velocitycyy of the travelling waves is

computed from4.57)

EEN SO S R Y #2—4313 1032 5 —231.84 =
Ve fo) ~\ 17928 18r.50) m’ Gd = 20ET

Finally, the equivalent stiffness and damping parameigtsandc_.; of the soil are calculated frord (54):

soil

= 1.87m.

E.A 64.28 - 106 - N

g = Zeo T _35.71-10° =,
sot f 1.8 m
E.A, 64.28-10%. 71 Ns

ed et =87.10-10* —.
Csoil = T 231.84 -
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Problem 4.5.2(Vibration of a prismatic soil bar)Study the vibration of a prismatic soil bar!

Solution. We can simply take: = 0 in the previous analysis to obtain the differential equatibthe longitu-
dinal vibration of a prismatic (cylindrical) bar. The difemtial equation of motion is fron4(40:

u(y,t) 1 9*v(y,t)

-~ —0.
0y? 2 ot?

(Compare it to 2.6)!) If the top is vibrating by a unit amplitude, then the pautiar solution is written in the
separated form4(45 leading to the ordinary differential equation for the shépnction

d%o(y)  w?_
a7 + gv(y) =0.
Using the Ansatz
U(y) = BeV

the roots for\ are

w 2 w

Ao =+4/— () =+i—

Cn Cn

Thus
u(y) = By elen¥ + Bye eV,

We can observe travelling waves in this solution, too, batamplitude of the vibration does not decrease with
depth. The constani8, and B, can be determined from boundary conditions.

If we study an semi-infinite bar with a harmonically vibragitop, usingB; + B, = 1 andB; = 0 as
before, then the vibration of the prismatic soil bar is gitgn

v(y,t) = Bye e W) — By {cos (: {y — cnt}> — isin (Zu {y — cnt}>] ,

yielding the stiffness

~ d E.A
JRrsm — _N(0) = —ECAOL(‘”)’ = w0,
sol dy y=0 Cn
Damping(the complex part of the stiffness) is present due to the tdd¢ke upward-travelling waves, but the
static stiffness (the elastic resistance, the real patt@ttiffness) izerodue to the infinite depth of the bar. It
seems strange, but based on our previous studies of strehgtaterials we can check what the stiffness of a
stretched semi-infinite bar of normal stiffne8sl and lengthy — o is:
EA
ki = — =0
bar A VNS
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Problem 4.5.3(Complex dynamic shape function of a prismatic bassing the complex differential equation
of motion of a prismatic soil bar determine its dynamic shapetion corresponding to the end conditions
v(0,t) =1- e'“" anduv(l,t) = 0.

Solution. The bar is free from force load. As in the previous problem WEJﬁ;— 0 in (4.40 to obtain the
differential equation of motion of a prismatic bar:

0v(y,t) B i@%(y,t)
0y? 2 ot?

The spatial and temporal variables are separated as
v(y,t) = y) e’
Similarly to the previous problem, the shape functigp) satisfies the ordinary differential equation

d?o(y)  w?
dy2 + gﬂ(y) - Oa

=0.

leading to
U(y) = Bye'enV + Bye len¥,

The boundary conditions that must be fulfilled®y) are

y=0 y={
yielding
Bi+ By =1,
Bie'en! £ Bye et =0

Solving the above equations we get

ey .
—e i -1 . P
B = = —=7 = e 1%5:76 1%2,
e'v = e 2isin (20) 2sin (£0)
n ’Vl
" .
e'cn 1 Cw —1 Cw
32 = iiz o0 = QICne = 761&,1[,
et = e gisin (20) 2sin (£0)

Thus the complex dynamic shape function is:

~ i _‘ fw o iw
lcﬂ e Cny+7elcnze oY
25111 (ié) 2sin (i€>
c Cn
i ol (=0 4 ! o i (=0

- 2sin <Z€) 2sin (%é) 7

In order to compute the stiffness of the bar we need to diffigaiee the shape function with respectto

@y i ewen Il el P
dy 2 sin (%E) 2sin (%4)
__w 1 e @ 1 ciseeo
Cn 2sin (£ ®n 2sin cﬁﬁ)
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For the bar stiffnesses’ 11 and]~{41 we calculate the above derivative at the ends of the barjphuit by the
normal stiffnesg? A of the bar, and apply the appropriate sign rule, similarlizép 3.12) and 3.12):
w 1

do(y)|  _
ZI; ‘y:O - EAZQSin (%f) {e

1
= EAii [cos <w£> — isin (wﬁ) + cos (w€> + isin <w€>}
Cn 2sin (ﬁ@) Cn Cn Cn Cn
dv(y)

Ky =EA—2
41 dy

Ky =—EA

—igl eic%”€:|

1 3w ;W 1
_pa¥ L [ga0 im0 = s

y={ Cn 2 sin (%E) Cn sin (%Z)

The bar hageal-valued stiffnesses, since there is no internal (strutturamaterial) damping and all the
travelling waves can be reflected back and forth from the efittse bar. Note that the above values identical
to the corresponding entries &.73).

Finally, let us compile the particular solution of the palrtlifferential equation:

i Ly —1i e (gt
elen (¥ e+cnt)+7 i (y—l—cpt)

2 sin (ié) 2 sin (%8) c

iwt —

v(y,t) =v(y)e
1 i(

_ m {cos{;(y—f—i—cnt)} + isin{cn y—€+cnt)H
- W [cos{;(y—f—cnt)} - isin{;(y—f—cnt)}] .

Now we use the trigonometric identity

2 w
1+ cot (C—né)

v 1 + cot? <w€> — ! =
sin? (%6) n 2sin (%E) 2
and expand theeal partof (4.5.3:
1 + cot? (Cﬁé) w w
Re(v(y,t)) = 5 [—sin{c(y—€+cnt)} —sin{c(y—é—cnt)}] .

It is important to understand that the above result is thet&ol corresponding to the vibratiams(wt) of the
starting end of the bar, and so identical with13).
Similarly, the complex part of4.5.3 is

Tm(v(y, t)) = : +CO: <M> {cos {‘”(y iy cnt)} — cos {;(y . cnt)H ,

n

which is the solution corresponding to the vibration(wt) of the starting end, and so the same24%.
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4.6 Numerical solution of the matrix differential equation of
damped MDOF systems

In this section we will analyse possible solution methodshef matrix differential equa-
tion (4.1). These methods are required when the damping is non-gropal, and the modal
analysis cannot be used, but we restrict our analysis taeaping matrixC.

As we have seen earlier for SDOF systems in Sedi@nthe numerical integration of the
equation of motion provides the displacement of the systedisarete time steps. From the
displacements one can recover the motion of the system, angutethe internal forces as
well.

Explicit methods calculate the next points of the solutigsatisfying the differential equa-
tion in the starting point. Implicit methods calculate thexnhpoints of the solution such that
they satisfy the differential equation in that point. Forther details seell].

4.6.1 Newmark method

At a given timet; the vectors of displacement, velocity and acceleratiorkaosvn:

We want to derive a formula for the calculation of these viecd the time; ., = t; + At:
W1 = u(tl -+ At), l:ll'Jr]_ = U(tl —+ At>7 iji+1 = U(tl + At)

Let us assume, that the continuous change of the accelebatioreen time stegsandt;, ;
can be described by the scalar valued funcion):

Herer is a nondimensional time. One can conclude from the abovauiar, thatf(0) = 0
andf(1) = 1. Integratlng the acceleratlon with respect to time prosithe velocity functiof
(similar to the formulav(t +f0 7)dr):

T

u(t; + TAt) = u(t;) + At /ul + f(T) (W41 — 1) T
0
We expand the argument of the above integral

@t + TAE) = W + AL+ (s — i) At / £(T)dT. (4.57)

0

3In the integral formulaft AT i dt we must substitute the absolute times the product of the time step and

the nondimensional timeAtr. The elementary time will be thedt = At dr. Using this exchange of variables
the integral becomefy At dT.
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1
Let us introduce the parameter= [ f(7") d7', and write the velocity at the ¢+ 1)th time
0

instant (i.e. atr = 1):
W1 = W + WAL+ (41 — 1) Ata,

or in a more elegant form:

flprl = ul + [(1 — Oé) U_Z + Oéﬁi+1] At. (458)

Next, we introduce the function(7) = [ f(7') dT into Eq. @.57) and integrate it in order
0
to get the displacement vector:

T

0

We expand the argument of the integral:

. APTE
'Ll(tz -+ TAt) =u; + TAtu,» + 5 u; + At uz—l—l g (459)
0

1

We define the parametgr= [ ¢(7") dT", and write the above displacement at the ()th time
0

instant (i.e. wherr = 1):

. A 9 . .
U = u; + Atu; + - W + At (4 — ) B,

or, in a more elegant form:
i 1 . . 9
;1 = U, + uiAt + § - 5 u; + ﬂuiﬂ JANAR (460)
We solve Eq.4.60 for the acceleration

. 1 ) 1 N
Uit = GAp (Wi —u; — WAL — (ﬁ - 1) u;, (4.61)

substitute the acceleration into E4.%8), and solve it for the velocity:

. . . e . 1 ;
U] = u; + (1 - Oé) llZ'At + m (lli_H —u; — ulAt) — <% — 1) uiAt

= %(ui—&-l —w) + (1 - %) i+ <1 - %) At
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We substitute the acceleration and the velocity into theimdifferential equation4.1)

1 1

C {& (ui+1 - uz) + (1 - %) i+ (1 - %> Atu,] + KuZ_H qQit1-

Let us define the effective stiffness matke™ as

(4.62)

1
K=K+ -2 C M
+ BAt + BAt2

and the effective load vectef; as:

1 1 1
eft M (= -1
qz—i—l qz+1+ |:BAt2 +/BAtUZ+ (25 )uz:|

+C|:ﬁAt Z—i—(g—l)ui—l—(%—l)Atui].

Then, the iteration formula for the calculation of the d&m@ments in the time instaht ; can
be written in the short form:

Keﬁui—i-l = Q?L g (4.63)

In a linear system the effective stiffness matrix is constaming the computation, so it is
sufficient to calculate its inverse only once. The effectoad vector depends on the load at
the next step, and the current state of the system, thusaitéaulated at every time step.

Special cases of the functiorf ()

The parametersa and g depend on the shape of the assumed change of the acceleration
during the analysed time steyr.

In a simple case we can assume, that the acceleration is ¢hagavofii, andii; ;. This
corresponds tg(7) = 0.5, g(7) = 0.57, which leads tax = 0.5 andg = 0.25.

The next case assumes a linearly varying accelerationffith= 7 andg(7) = 72/2. The
numerical parameters are then= 0.5 andg = 1/6.
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Chapter 5

Earthquake analysis

The most significant horizontal load of structures was thedwoad for many years of
standardized design. Change in applyed materials emergechffortance of earthquake as a
load case. In this chapter we go through the basic mechahiearthquake engineering, as
a preparation for the specific subject devoted to it. We thice the mechanical aspects of
earthquakes, and their propagation as waves. Then the mewfeelastic analysis of single-
and multi-DOF structures, and some notes about the advane#tbds are presented. We do
not focus here on the standards but on the mechanical carmegtheories which are reflected
in the prescriptions of building codes, for example in Ewbe 8 {].

5.1 Introduction to earthquakes

The structure of Earth in a very simplified description cetssof acore (divided usually
into an inner and an outer core), surrounded byniamtleand covered by therust The core
is mostly composed of iron and nickel. The inner core is swlith a radius of 1220 km, while
the outer core is liquid with a thickness 2270 km. The mantle consists of a highly viscous
solid material with a thickness @850 km. The solid crust has a varying thickness between
5km (oceanic crust) and) km (continental crust).

The crust consists dectonic platedloating on the surface of the mantle. Convection in
the mantle results in a continuous motion of the plates. N#gring plates are in contact, and
due to the friction between the plates there are stresseswatating in those region. When the
stress exceeds its ultimate value somewhere, a suddenmumionirs between the plates and
a huge amount of energy is released. This rupture is the acdusestearthquakes (Further
causes are volcanic activities, mine blasts, landslideg, €he location, where the rupture hap-
pens is called theypocenteor focus The point on the ground level right above the hypocenter
is theepicenter

The dislocation travels through the solid soil as a wave. Types of travelling waves are
distinguished.
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¢ In P-wavedhe particles are moving parallel to the travel directionhef wave. They are
called pressure waves, or primary waves. The velocity oWes is

M
Cp =] —,
P 0
whereM is theelastic P-wave modulus
(1-v)E

M =

1+v)(1—2v)

Here E, v and o are the elastic modulus, the Poisson ratio and the densityea$olid
material, respectively. The typical velocity of P-wavesail is in the rangé& — 13 km/h.

¢ In S-waveghe particles are moving transverse to the travel direatiaine wave. They
are called shear waves, or secondary waves. The velocity@h\@s is

Cs = R

Y

where(G is theelastic shear modulusf the solid. The typical velocity of S-waves is
smaller than that of the P-waves in the same material, it teérranget — 5km/h. In
liquid material (like the outer core) the S-waves do not pigade.

The difference between the velocities of P- and S-waves s®ssible to calculate the
distances of the hypocenter from seismic measurement aitelsto determine the location of
the hypocenter.

On interfaces between various materials both P- and S- weaesxhibit four types of
behaviour. They can reflected (back, into the same side ahtedace zone) or refracted (by
entering the other side of the interface zone) into a P- or-aa&. This property helped to
analyse the inner structure of Earth.

On the ground level both P- and S-waves causes displaceméhnésr superposition re-
sults insurface wavesPressure waves and the vertical shear waves (also cal®d-asves)
results in elliptic motion of the particles. These waves thee Rayleigh waves or R-waves.
The horizontal shear waves (also called as SH-waves) asetedl from the surface and from
interfaces between various materials near the surfaces rébults in an other type of surface
waves, which are called the Love waves, or Q-waves. The almeveioned solid and surface
waves are drawn in Figui 1

Far from the epicenter typically the horizontal displacaetsere dominant, and they may
resultin large excessive internal forces. Therefore gadke analysis of engineering structures
typically focus on the lateral motions.

Historical earthquakes were qualified by the caused damatie dciuman feelings. These
gualifications incorporate many architectrual and sogiaial factors as well, but unaware of
the distance of the place of perception from the epicenterenBfically exact classification
requires the energy released during the earthquake, ahalctiieon of the epicenter. The most
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i e

Figure 5.1: (a) Motion of a soil particle from vertical shear (SH), press(P) and Rayleigh (R) waves. (b)
Deformed shape of a soil block, caused by the Rayleigh wdegotion of a soil particle from horizontal shear
(SH) wave and the reflection of SH-waves on the materialfates. (d) Deformed shape of a solid block, caused

by the Love (Q) waves of the surface.

frequently used scale is the Richter magnitude scale. ThedRisbale is a logarithmic scale,
two units higher magnitude on the scale represents 100G tinoge released energy.

It is also worth to mention, that formation of earthquakesseal by the continuous motion
of the tectonic plates. As long there is no earthquake odouasexposed region, more and
more energy accumulates thus the next earthquake hasyubigdder magnitude. This theory
is justified by statistical analysis too.

In a specific location the earthquake is represented by thengrmotionu, (). This geo-
metric load can be used as a load, allowing the solution oflifierential equation of motion.
Technically it is much easier to record the acceleratiorhefground instead of the displace-
ment. The tool is called aaccelerometerlin an analog accelerometer a supported mass moves
a pencil on a moving paper. We call the recorded functigit) as a time history function, it
can be used later for modelling the ground motion.

5.2 Response spectrum of SDOF systems

5.2.1 Response functions

Let us analyse a single degree-of-freedom system of masgscous damping, spring
stiffnessk, and general forcing(¢). The ODE of the system is:

mii(t) + cu(t) + ku(t) = q(t). (5.1)

Herew(t) is the elongation of the spring (or the deformation of thesttastructure) Thee-
sponseof a SDOF system depends only on the natural circular frequand the damping
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ratio. The displacement can be calculated from the solutidhe Eqg. 6.1) (see the Duhamel’s
integral in Subsectiofi.2.1for one possible solution).
Once the displacement functiaiit) is obtained we can calculate the spring force

fs(t) = ku(t),

or we can apply this force to the structure to calculate atiternal forces. We can express the
spring stiffness: in terms of the mass and the undamped natural circular frexyue:

fs(t) = mwiu(t).

Herew?u(t) is an acceleration-like quantity, which can be used to descthe current state of
the motion of the analysed SDOF structure. Because it is nealaacceleration, it is called
pseudo-acceleration responggthe structure and denoted by (t):

ap(t) = wiu(t). (5.2)
Then, the spring force can be calculated as:
fs(t) = map(t).

Please notice the difference between the actual acceleriatt) and the pseudo-acceleration
ap(t) = wiu(t).
Similarly to the above concept, we define fhseudo-velocity responséthe structure as

vp(t) = woul(t),

which differs from the actual velocity(t).
In an undamped system the elastic displacement can bemaiste

u(t) = —— / o(7) sin (wo(t — 7)) dr.

mwo
0

Thus the pseudo-acceleration response of the undampexsinsigst

ap(t) = wiu(t) = % / g() sin (wo(t — 7)) dr.

Problem 5.2.1(Calculation of response functionsh damped, single DOF system is characterized by the mass
m = 1Kkg, viscous damping = 0.5 Ns/m and spring stiffneds= 10 N/m. The system is forced by an impulse
load shown in Figur®.2 (a). Calculate the displacement, velocity, and accelmmatsponse functions and the
pseudo-velocity and pseudo-acceleration diagrams!
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(a) Load (b) Displacement
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Figure 5.2: (a) The load function. (b) Displacement response functionVelocity response function. (d)
Acceleration response function. (e) Pseudo-velocityarse diagram. (f) Pseudo-acceleration response
diagram.

Solution. The calculation was carried out with the Cauchy-Euler metAthe results are shown in Figuse2
(b-f).

Response functions due to support vibration

We have seen in Subsectidnl.4that support vibration,(t) can be treated as a forced
vibration with loadg(t) = —mii,(t). In this model the unknown displacemeiit) represents
the elastic deformation of the structure.

One can substitute the above load vector into the Duhamnmeégiial (L.26):

u(t) = / —_i‘jf”e&wo@ﬂ sin (wy (t — 7)) dr.
0
0

The pseudo-acceleration response of a damped SDOF syséeta slwpport vibration is then:

t

ap(t) = Wi / —_ung)e’£“°(t’T) sin (wg(t — 7)) dr, (5.3)
“o
0

and the equivalent spring force can be calculated as alfoug,= map(t).
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As we have seen, the computation of the response functiafishe same steps technically
both for an external loading and for support vibration. la tter case the mass times ground
acceleration is used as an equivalent external forcing.e @duivalent load is directly, the
response is inversely proportional to the mass, so theseffeots cancel each other.) In the
further analysis we focus on earthquake analysis, so weahdalwith support-vibration-type
excitations.

5.2.2 Response spectrum

A central concept in elastic earthquake engineering is tmeept ofresponse spectrum
For a given structure the most important quantity is the maxdisplacement and the maximal
spring force. The response spectrum is the collection cdethmaximal values for a given
load. We must calculate the peak values of the responsedasdor structures with different
natural circular frequencies but with the same damping €ati hen we plot the natural circular
frequencies versus the maximums of the response functrorafous structures in a common
coordinate system. This diagram is called the responsdrapeclt is constructed for several
damping ratios. It depends on the load, the damping ratid tlae natural circular frequency.
Once we have the diagram of the response spectrum based oalthéation of sufficiently
large number of structures with different natural frequescwe can find the value for any
natural frequency from interpolation between two neighibv@uknown points. Depending on
what kind of peak values are drawn, we can talk about variesiganse spectra. For example,
displacement response spectr(denoted by, (£, wy)) collects the maximums of displacement
responses, whilacceleration response spectrifdenoted by, (¢, wy)) collects the maximums
of acceleration responses.

We note here that theseudo-acceleration response spectiag®noted bysp, (£, wy)) can
be easily calculated from the displacement response spediased on the definition of the
pseudo-acceleration responSeX:

SPa(éa WO) - wgsu(g, wo).

In engineering practice the response spectrum is oftemgigethe function of the natu-
ral periodTy = 27/wy of the structure. We note here, that every above responstrspe
corresponds to one given load (here one ground-maij@n)), and one structural damping
coefficients.

Problem 5.2.2(Calculation of response spectrunAn undamped, single DOF system is characterized by the
massm = 1kg, and spring stiffnesk = 10 N/m. The system is forced by an impulse already shown in Eigur
5.2(a) Calculate the displacement- and pseudo-acceleraggponse spectra!

Solution. The calculation were carried out with Cauchy-Euler methbiakee examples of the response func-
tions are shown irb.3 (a) with the peak values highlighted. The resulting speateashown in Figur&.3
(b-c).
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Figure 5.3: (a) Example diagrams of the displacement response funetistiuctures with various loading.
(b) Displacement response spectrum vs. the natural cirfrelguency. (c) Displacement response spectrum
vs. the natural period.

Spectral characteristics of structures

For structures with large natural circular frequencies (mall natural period) the mass is
connected to the ground with a very stiff spring. Therefbeedeformations are small, and the
(peak) value of the pseudo acceleration approaches thk)(@eeeleration of the ground. This
type of structures are calletceleration sensitivstructures.

For structures with small natural circular frequencies. (large natural period) the mass
is connected to the ground with a very soft spring. Therefbeedisplacements of the mass
are small, and the (peak) value of the deformation appraaitiee(peak) displacements of the
ground. This type of structures are calldidplacement sensitistructures.

In the region between the above two types, structures aedaadlocity sensitivebecause
the structural response appears to be related to the wetoainly.

5.2.3 Design spectrum

The peak structural response to a given load can be caldutate the response spectrum
of that given load.

For design purposes the application of the response speciiculated from the support
motion is still not a good choice. First, there may be steempsiin the spectrum, where the
analysed structure would exhibit a small peak responsethbuteal structure would exhibit a
much larger response. Second, different earthquakes lideeedt time history and different
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response spectra. It is because of the difference in théidocaf the hypocenter, and in the
strength of the earthquakes.

Because of the above reasons we want to crealesgyn spectrummwhich represents the
typical earthquakes based on the response spectra of pasuraments, and avoids sharp

jumps. So, the design spectrum is defined as a smootheneblui a lot of recorded response
spectra.

Design spectrum is given in standard$fpr various damping coefficients In most cases
they are given as the pseudo-acceleration versus the haduied: S, (7;). To separate various
effects,S. (7o) is given as:

Se(To) = vragrSB(1o),

where~; is an importance factor representing the damage causeclmpliapse of the struc-
ture, ayr is the reference value of the ground acceleration on sotild, 1§ is a soil coefficient
representing that soft soils increase the effect of eaetkes, and’(7;) describes qualitatively
the pseudo-acceleration. A typical shape of the diagséfy) is shown in Figures.4.

Figure 5.4: The function3(Ty) of the pseudo-acceleration response versus the naturatiper

The function5(7,) depends on the structural dampiggvia a correction facton =
max(0.55,1/10/(5 + £)). The functions(T;) consists of a linear segment in the zdne< T

B(Ty) = (1 + %(2.577 — 1))

B

and a constant coefficient in the zofig < Ty, < T

B(Ty) = 2.5n — 1.
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In these zones there are the acceleration-sensitive wtesct\Velocity-sensitive structures have
constant pseudo velocity, therefore the cup(éy) is inversely proportional to the natural

period in the zon€x < Ty < Tp
T
B(Ty) = 2.5n (—C> .

Th
Displacement-sensitive structures are in the redipn< T, with a decaying3-function.

TcTp
T )

B(1p) = 2.5n (

The periods's, T, andT, depend on the type of the soil.

5.3 Response spectrum of MDOF systems

Earthquake analysis of MDOF systems can be carried out wgration of the matrix
differential equation of motion with proper support viboaits as forcing. We have seen in the
case of SDOF systems, that time history of earthquakessyastethis type of analysis would
require proper (real or artificial) earthquake records.

5.3.1 Modal analysis

Another way of the computation is based on the modal analygeshave seen in Section
4.2, that it requires proportional damping. We can calculatedisign modal displacement
from the design response spectrum, and calculate the megfadmse for each natural mode of
the structure.

We repeat the important, applied equations here. The difteal equation of motion

MU(t) + Cu(t) + Ku(t) = q(t) (5.4)

is reduced to the modal equations of motion
() + 2w () + wiu(t) = ula) = (1), j=1,...,N. (5.5)

In the case of earthquake the load vector is
q(t) = —if(t)m? = —i? (t)M"r. (5.6)

(HereM" is the rows corresponding to the internal nodes in the uricgined mass matrix of
the structurer is the total influence vector. See Subsec®dh3) The modal response can be
calculated with the Duhamel’s integral

1fJ ((:;] e*ﬁwoj (t—7) sin (ng (t — 7')) dr. (5-7)

y;(t) =

0
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We can substitute the modal load given by E§sS)(and 6.6) into (5.7)
t ..
/ ul (—u9(r))m?

. e~ S0 (=) gip (wi;(t— 7)) dr
W

y;(t) =

t
— uijg / —Iugz) e8woi (t=7) gipy (wf;j(t - 7')) dr.
0 07
The integral in the above formula is thth modal displacement response to the support vibra-
tion 49(t). During the design process we do not have support vibratinotions (since we do
not know the time histories of upcoming earthquakes), bugsagnh response spectrum. There-
fore, instead of the calculation of the integral, we shoeladrthe response spectrum value at
wy,; for the structural damping rati&. However, usually we do not have the displacement re-
sponse spectrum either, but the pseudo acceleration dgsegtrum. In this case we have to
divide this pseudo-acceleraticfi(&, wy;) by ng. The maximal modal displacement is then

' Se(gv ij)
J ng ’
The design values of displacements of the structure duadartbdal displacement of thgh

mode is: 5.6t )
Wha
W)y = Ujulmy =00
’ J w2
0j

(5.8)

We can use this displacement vector to calculate the irtéorees of the members belonging
to thejth mode.

Note: The quasi-static nodal force system that results in the@b@placement system can
be calculated with the stiffness matrix as

ij,max = Kuj,max'

One can apply the above fictitious force on the nodes to cletihe equivalent static response
of the jth mode.? If we write the nodal forces with Eq5(8)

Se (&, wps
ij,max — Ku]u?mQM
wOj

one can realize, thd€u; = wj;Mu; results in the simplified formula
ij,max = MUijSe(f,U)Sj)

with the modal participatiof; = u?mg introduced in Eq.3.1149.

1Apparently, that analysis would start with the solution loé ttlassical static equatid§u = q with q =
fs; max. It should not be a surprise, that the solution willbg,, ..
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Summation of modal responses

With the previously presented method we can calculate agdedipeak value for every
mode, from which a peak value of the modal internal force canlidained. Let us denote the
designed peak of the internal for€ein the jth mode byC; yax

The question arises, how we should sum up the maximal motathel forces?

e We can take theum of absolute valugsBSSUM):

N
Crnax = Y _|Ciman- (5.9)
j=1

This is on the safe side, it is very unlikely, that each maximaccurs at the same time.

e If the natural circular frequencies are well separ&tage can take thequare root of the
sum of squareéSRSS)

(5.10)

This method emphasizes the modes with larger responsesodhequare of the sum of
squares can be written in matrix form too:

Crmax = v/CL_ICax (5.11)

with the vector of maximal modal internal forces
C%ax: [ Cl,max C’Q,max CN,max } .

e The first natural mode is often the most important. We canidenshis in the SRSS
method emphasizing the first mode:

N
— E 2
Cmax - Ol,max + Oj7max'
Jj=2

e If there is a damping in the structure, the modes are coupled. In that case onesean u
thecomplete quadratic combination ru(€QC)

Cmax = v/ CihaxP®Crmax, (5.12)

where the correlation matrig represents the coupling between the modes. Its entries
are computed from minimizing the error between the respo$dhe structure to a

2 The natural circular frequencies are well separated, whersiallest relative difference between any two
frequencies is more than 10%.
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random forcing with broad spectrumwljite nois¢ obtained by numerical integration and
by modal analysis. The entries in the correlation matrix are

, 3/2
woi woi
s (1) (32)
2\ 2 2’
(1—(5—)) g (14 )

In an undamped system= 1.

Pij =

5.4 Various guestions about earthquake analysis

5.4.1 Inelastic response of structure

Large earthquakes usually belong to the ultimate load c&tasctures are expected not to
collapse under the ultimate loads, however, some plastrmation is allowed. If we want to
take the plastic deformation into account during our ang/yse have to implement it in the
constitutive law.

For example, a simple bilinear model, the linear elastas{it material can be used. The
spring behaves linearly up to a yield forég. When the spring force reaches this yield force,
the displacements grow further without any change in thegfolf the spring is unloaded when
itis already in the plastic state, then it behaves elasaadut a residual strain remains, which
equals to the plastic deformation. (See Figbire(a).)

Numerical results of the response spectrum of linear elgdsistic structures shows, that
for large natural periods (small natural frequencies,, defavy structures) the response spec-
trum is not far from the results of the linear elastic analyshe structure avoids the large
displacements through its plastic deformations. Howelerelastic-plastic materials require a
certainductility 14, i.€. it must bear the plastic deformations beyond the nglgoint, which
is represented by the ratio of the maximal deformatigp,, and the deformation at yielding
Uy

uma:p

Uy

Ha =

The numerical simulations suggest that the necessaryitiuetjuals approximately to the ratio
of the spring force from the elastic calculation and thedirej force.

Inelastic response spectrum

We can take the ductility of a structure into account in theiglephase, by using design re-
sponse spectrum. We introduce an equivalent elastic gteuttiat has the same initial stiffness
as the elastic-plastic structure in the elastic regime sgare5.5 (b)). Then we calculate the
loads from the earthquake with the design response spectnutine equivalent elastic struc-
ture. We decrease the load because of the ductility and danidlgsis with the decreased load
on the elastic-plastic structure. In standards the aboweess is implemented such that the
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design response spectrumdefined to be the elastic design response spectrum dibigléue

behavioral coefficieng:
Se (Tt
Sa(Ty) = (q )

Figure 5.5: (a) Force-deformation diagram of the linear elastic-jtasiaterial model: loading, reaching the
yield pointY’, further loading (plastic deformation) , unloading at fidih Notice, that there is a residual plastic
deformationu, — u, in the unloaded state. (b) Force-deformation diagram ofitfear elastic-plastic and the
equivalent elastic structures.

5.4.2 Time history analysis

Numerical solution of the differential equation of motiomsvpresented in Sectigh6. It
can be used to calculate the structural response for ang giyeport motion. Using real time
histories of previous earthquakes makes it possible to aterihe response of a structure. In
this case, the stiffnesses and masses of the structure eagstérmined correctly to achieve
a given accuracy. For safety reason, these analysis mugrfemped for various earthquake
records.

Another advantage of the time history analysis is that theerred and geometrical nonlinear
behaviour of the structure can be considered in the calonladnly the stiffness matrix must
reflect the nonlinearity in Eq4(63.

Artificial time-history functions

Existing earthquake records are not suitable to be usedsigmi@rocess. That is because
there are only a few of these records, with various intenartg they do not cover a wide range
of the design spectrum. Because of that we want a procedwaeuses either th elastic, or
the design response spectra in time history analysis. We gamerate artificial earthquake
records, which have a response spectrum close to the desigarnrse spectrum. The assumed
form of the artificial earthquake record is

uw!(t) = I(t) Z A, cos (wit + i),
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wherew; is a chosen circular frequency; is the corresponding phase angle chosen randomly,
andA;, (i = 1,..., M) are the unknown amplitudes of each harmonic component. e f
tion 7(t) is an envelope function representing the typical behavie@aothquakes. That enve-
lope function usualyy starts with an initial part where th&ensity increases, followed by the

strong quake, and finished by a decaying intensity. Typicealpe functions are presented in
Figure5.6.

Figure 5.6: Typical envelope functions of artificial earthquake resor@) boxcar: constant value as long the
earthquake lasts. (b) trapesoid: linear increasing andyileg part, with a constant strong quake. (c) exponential:
the sum of two exponential function. (d) compound: quadratireasing part, constant strong quake, and

exponentially decaying part.

The amplitudesA; are iterated so that the elastic response spectrunf (0f calculated
from Eqg. 6.3 be the closest to the elastic design spectrum. Technjaally/ points, e.g.
in the pointsw; we can fit the response spectrum and the design spectrumisTdogse in an
iterative process, hence the change of an amplitljddhanges all computed response spectrum
values. When the amplitudet do not change significantly anymore, we stop the iteratind, a
analyse the response of the structure to the support metion

This procedure must be repeated for various phase angle3etimg the calculation, the
actual deformations and internal forces can be determined.
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Appendix A

Additional derivations and notes

A.1 Travelling-wave solution for the free vibration of a
prismatic bar

Instead of assuming a solutieriz, t) of Eq. 2.6) as a standing wave (ER.()) we can
search the solution as the sum of two travelling waves:

u(z,t) = ui(z1) + ua(22). (A.1)

In the above equatiam, = z—c¢,t andx, = x+c¢,t are thephase®f a forward and a backward
travelling wave, respectively. The functiong(z;) andus(x2) are the current shapes of those
waves travelling with the velocity, forward and backward, respectively. At 0 both phases
are zero{; = xy = x), so theu; (x) anduy(z) functions describe the shapes of the waves at a
frozen time instant.

The wave functions, (z1) andus(z9) are single variable functions. In the assumed form
Eq. (A.1) the arguments of the wave functions are internal functiming andt, so for the
derivatives we have to use the chain rule. In the followirngfalasu/ (x,) denote the derivative
of the wave functionu; (x;) with respect tar;, andu}(x2) denote the derivative of the wave
functionus () with respect tar,. For the partial derivatives with respect to the coordinate
we will have:

Ouy (z , O(x —cpt , 0?uy (x ”
é(x 1> :Ul(fﬂl)% :u1<x1)7 8156(2 1) :ul(xl).
For the partial derivatives with respect to time we have:
Ouy (x , d(x —cut ,
1) _ @) 200 (o),
82ul (xl) " a<$ — Cnt) 2,1
o —cpuy (1) T = ciuy(xy)
The same can be used for the wave functigof the backward travelling wave:
Ouy(x L0+ et , 0?uy(x "
20s(s) _ o a) 2O L) gy, T gy
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For the partial derivatives with respect to time we have:

Ous(x , O(x + cpt ,
28(t 2 = Ug(@)% = Cntiy(2),
0uy( a, L O0(x+ et B
% = can(xg)% = Ciuz(@)'

If we substitute the sum of the above second derivativesintq2.6) we get:

(ciu’l'(x —cpt) + ciug(x + cnt)) — ci (u)(x — ept) + usy(x + cut)) =0,

which is an identity, so the assumption EA.X) is correct, and:, is indeed the velocity of
travelling waves.

To find the wave functions, (x;) andus(x2) we have to use the initial conditions. Let us
assume, that the displacement and the velocity-at) are given functions:

u(z,0) = up(x), u(x,0) = vo(x). (A.2)

We substitute the sum of the travelling wavesz — ¢,,0) andus(x + ¢,0), and the sum
of their derivatives with respect to timec,u|(x — ¢,0) and ¢,u(z + ¢,0) into the initial
conditions A.2):

Uy (ZL‘ - Cno) + UQ(ZL‘ + Cno) = UO(x)7 (A3)
—cpul (2 — ¢,0) + cpuy(x + ¢,0) = vo(z). (A.4)

We differentiate Eq.A.3) with respect tar, and divide both sides of EGA(4) by ¢,,, and leave
behind the:,,0 terms:

uy () + uy(w) = ug(w),
vo(z) (A.5)

-y (w) + upla) = 22

The system of differential equationé.6) can be simplified, if we take the half of the
difference of the equations and the half of the sum of the o=

(A.6)

The ordinary differential equations of E¢A.6) can be solved by integration with respectito

un(2) = %/0 (ug@ - ”Uc(@) a + Cy,

n

us(z) = 3 /Ox (ug(g) + %?) d¢ + Cs.
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Since the whole solution is constructed from the sum of thevaliwo functions translated,
their constant terms will be added at any given time, in amgm@point, so, instead of them we
have to take only one as a parameter, which must be deterrmoradhe boundary conditions.
So, a simpler form of the shape functions will be:

UO("T) . fom UO(g) df

up () = > e el
v (A.7)
uy () = Uo(2) 1 Jo vo(§) d€
i 2 2¢, ’
And the final solution with varying time will be:
r—cpt xdcnt
d d
uo(x — cnt) + uo(x + cut) { w(&) dg E( vo(§) d§
tolet) = 2 a 2c i 2c +C.

FigureA.1 (a) shows a simple application of the above result, where avith fixed-free
ends is released from restéat= 0, but the pointB has an initial displacement, while points
A andC are held in their original position. So, the functiep(x) can be constructed from
linear segments. Using EGA(7) and the initial zero velocities the shape functiensandu,
will be half of the initial displacement, travelling forward and backward, respectively (see
Fig.A.1 (b)). However, we need special care with the shape functigpiasidu, because of the
boundary conditions.

4

C o~

Figure A.1: (a) Rod with fixed-free ends with an initial displacemen). The forward and the backward
travelling waves. (c) Bouncing back of the travelling wakanfi the fixed end. (d) Bouncing back of the
travelling wave from the free end.

Figure A.1 (c) shows the fixed end, as the backward travelling wavegoes through it.
But the boundary conditiom(0,¢) = 0 requiresu; to enter the bar at the same time with
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the opposite sign. (This part of the(x) function was out of the bar in the beginning of the
motion!) One can see, that the wave reaching a fixed end beulrak with the opposite sign

and the opposite shape. Figukel (d) shows the free end, as the forward travelling wave

u; goes through it. Here the boundary conditi@ii0,¢) = 0 requiresu, to enter the bar at
the same time with the same sign. (This part of the functig:) was out of the bar in the
beginning of the motion!) On can see, that the wave reachifngesend bounces back with the
same sign and the opposite shape. Of course, the new partsaofdu, entering one end of
the bar, will reach the other end, "bouncing back” agaimdirig new and new segmentsaf
andu, into the observable part of the bar.

A.2 Static shape functions

The static shape functions of a beam member are collecté imatrix

:[uz(x) 0 ‘ 0 ‘u](x)‘ 0 ‘ 0 ]

0 ‘ Uiy () ‘ Vip(T) ‘ 0 ‘ vjy() ‘ Vjeo ()

The strain matrix of a beam member is collected in

ul(x 0 0 u(x 0 0
B:LN:[ ()‘ 1" ‘ " ‘ ]<)‘ 1" ‘ 1" ]
0 ‘ _Uiy(@ ‘ _“w(x) ‘ 0 ‘ _ij(x) ‘ _ij<x)
In the case of a fixed-fixed beam, the entries of ma¥iare:
-z o ] o g0 o
N = 3 2 3 2 3 2 3 2 )
xr A xr xXr xr X xr s

or, using¢ = z/¢:

R R I R [ B R
L0 28332410282+ 6) | 0] 283432 U —¢%) |

The entries of the strain matrix are:

Bff: g g
o —12Z 16l Z6Z 1al] 0 128 6l |6t 4ol |
R P B PR RPN B PR
or, usingé = z/¢:
Bff: g g
2. 6| 6 4 2. 6| 6 2
ClmEt el et Vet E TR
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In the case of a fixed-pinned beam, the entries of ma&{rixre:

3 \ LA R 2 B
N — /4 /4
- Lle8 3%\ 128 822 | ) 12° 327
283 2021202 27 203 22
For a pinned-fixed beam the entries of matare:
-gl o fofgf o ] o
NPt — 4 4
- 0 . 1353_390 olo 123 3a 13:3_1
26 24 o6 T2l 22 2"
For a pinned-pinned beam the entries of mal¥ivare
-] o Jolglofo
pr — l 14
X T
o J1-FlofofF]o
1 14
A.3 Stiffness matrices of beam members
Elementary stiffness matrix of the fixed-fixed beam:
T EA EA 7
— 0 0 - 0 0
1 14
12E1 6ET 12E1  6F1
0 3 (2 N (2
0 6ET 4E1 0 _6E] 2ET
2 14 02 14
loc,ff
Koot =
EA EA
- 0 0 — 0 0
14 14
12E1 6E1 12E1 6FT
L 0 G e
0 6ET 2ET 0 _6E] AET
L 2 14 02 ¢
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Elementary stiffness matrix of the fixed-pinned beam:

loc,fp
Koo —

loc,pf
Koot =

- EA EA
- N 0
3EI  3EI 3BT
L L
3EI  3EI 3BT
L N
EA EA
7 0 0
3EI  3EI 3BT
—— gz | Y iE 0
0 0 0 0 0 0
Elementary stiffness matrix of the pinned-fixed beam:
- EA . N2 .
] ]
3BT 3EI  3E]
N ! B
0 0 0 0 0 0
gA , | EA . .
] ]
3BT 3EI  3EI
0 0 0 P
3BT 3EI 3BT
A
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A.4 Elementary dynamical stiffness matrix using purely
dynamical shape functions
As an alternative method to that of shown in SecBdh 2 we can formulate the elementary

dynamical stiffness matrix using only dynamical shape fioms. For that we write the virtual
work of the force system shown in FiguBe9 on thesamedisplacement system:

¢ ¢
OWaq = {Vuy + ,uwz/ﬁiy(x)ﬁl—y(x) dr — /Mly(x)/%ly(x) dx} sinz(wt)
0

0

0

¢
— {Vuy + pw /vzy(x)vzy( )dx — E[/{”’ (z)}? dx} sin®(wt) = 0.

Expressingz,-y, the entry2,2 of the dynamical stiffness matrkﬁ‘;c, we get:

KI?CQQ = A”y =FI /{A" ()} dz — pw /{vzy }dx |

If we denote the product of matric&s(3.24 andN (3.70 as
B =LN

Y

then with matrice®3, and with matrice® (3.26 andN (3.70 we can shortly write

l J4
K = / B'DB dz — w’u / NTNdz|. (A.8)
0 0

It makes no difference whether we useql) or (A.8), the final resulf{gC will be the same.
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A.5 Consistent mass matrices of beam members

Elementary consistent mass matrix of the fixed-fixed beam:

1 1 -
= 0 0 = 0 0
3 6
13 11 1
o = Lyl 2D
35 210 70 420
11 1, 13 1,
"ot st | Y =t T
Mi‘;c’ﬁ:uﬁ
1 1
= 0 0 = 0 0
6 3
9 13 1 11
0 — — 0 13 -
70 420 35 210
B, 1, EEEIR
L 420 140 210 105
Elementary consistent mass matrix of the fixed-pinned beam:
S ] ;
- 0 0 - 0 0
3 6
17 3 39
_ iy =
0 35 35 0 280 0
3 2 11
S A —— —
ot U 35 105 0 280 0
oC,Ip _
Mij = ul
! 0 0 ! 0 0
6 3
39 11 33
"o ot | Y o !
0 0 0 0 0 0 |
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Elementary consistent mass matrix of the pinned-fixed beam:

S ] -
- 0 0 — 0 0
3 6
33 39 11
LR v R
0 0 0 0 0 0
M — ¢
L 0 0 L 0 0
6 3
39 17 3
11 3 2
A B - E R 5
Elementary consistent mass matrix of the pinned-pinnethbea
e 0 0 ! 0 0o |
3 6
0 L 0 0 ! 0
3 6
0 0 0 0 0 0
MISS™ =
1 1
- 0 0 - 0 0
6 3
1 1
0 = 0 0 = 0
6 3
0 0 0 0 0 0 |
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A.6 Few trigonometric identities

Here we derive two identities which are used in the particatdutions of damped, har-
monically excited systems.

Let us start with the trigonometric identity

R cos(wt — ¢) = Rcos(wt) cos(p) + Rsin(wt) sin(yp).
This is reformulated as

R cos(wt — ¢) = (Rcos(p)) cos(wt) + (Rsin(y)) sin(wt)
= acos(wt) 4+ bsin(wt), where
a = Rcos(p),
b= Rsin(p)

Herea, b, andy are computed from

S|

2102 = R¥(sin®(p) 4+ cos’(p)) = R?  — R=+a2+102
a (A.9)
=cot(¢) — = arccot (Z) :

> e

Therefore

acos(wt) + bsin(wt) = Va? + b? cos (wt — arccot (%)) :

(A.10)
Similarly, from the trigonometric identity
Rsin(wt — ¢) = Rsin(wt) cos(¢) — R cos(wt) sin(p)
we can formally write
Rsin(wt — ¢) = (R cos(p)) sin(wt) — (Rsin(p)) cos(wt)
= asin(wt) — beos(wt), with
a = Rcos(p),
b= Rsin(p)
Herea, b, andy are computed again ad.Q). Thus
. . a
asin(wt) — bcos(wt) = Va? + b?sin (wt — arccot <—>> : (A.11)
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A.7 Damped SDOF system solved with a different approach

We have shown the solution of the equation of motion of a dambarmonically excited
SDOF system. Here we recall these results. First we givedhaian if the exciting force
is a sine function. Then we go on with a cosine excitation. tNex show an approach that
can handle both sine and cosine excitation in one hand, batdrawback, this analysis re-
quires complex functions. Finally we study cases when thd Is a combination of harmonic
functions, or it is &ourier series.

A.7.1 Sine

We have seen that the damped, harmonically excited SDOF

mii(t) + ci(t) + ku(t) = Fysin(wt)

has a homogeneous and a particular solutions. The lattexvaseassumed to bes(t) =
w s sin(wt — ) intuitively.
The usual mathematical way is to search for the solutions as

us(t) = Cysin(wt) 4+ Cy cos(wt).
If this form is substituted back into the equation of motitren
— mw? {C} sin(wt) + Cy cos(wt)} + cw {C] cos(wt) — Cy sin(wt)}
+ k{Cy sin(wt) + Cy cos(wt) } = Fysin(wt).

Collecting the terms multiplied byos(wt) andsin(wt), respectively, we can write two equa-
tions for the coefficients’, andC,

Oyt WOy ARGy =0 = Cy= —C—
k — mw?

— mw?Cy — cwCy + kCy = Fy.

ThusC; andC, are

kE — mw?
C, = F
! O(k — mw?)? + 2w?’
Co— cw

(k — mw?)? 4+ w?’
and the solution of the equation of motion is

kE — mw? cw

ug(t) 0 (k — mw?)? + c2w? sin(wt) 0 (k — mw?)? 4 c2w?

cos(wt).
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This form of the solution, however, can be reformulated atiog to (A.11) as

(k — mw?)? 4+ 2w? . E— mw?
5 sSin wt — arccot [ ———

{(k — mw?)? + c2w?} cw
2
w
1 - 2
jo 1 . wp
= — sin | wt — arccot 5

k 2\ 2 2 -
w C w
\/(1 — w—(%) + CUQE k
A.7.2 Cosine

If the load is described by a harmonic cosine function, tivenelquation of motion is

mii(t) + ci(t) + ku(t) = Fy cos(wt) |.

The particular solution is again searched for as
us(t) = Cysin(wt) 4+ Cy cos(wt).
This form is substituted back into the equation of motion:

— mw? {Cy sin(wt) + Cy cos(wt)} + cw {C} cos(wt) — Cysin(wt)}
+ k{C} sin(wt) + Cy cos(wt) } = F cos(wt).

Collecting the terms multiplied byos(wt) andsin(wt), respectively, we can write two equa-
tions for the coefficients’, andC,

— mw?Cy 4+ cwCy + kCy, = F,

—mw?Cy — cwCy +kC, =0 — C, =0, i

k—mw?’

ThusC, andC;, are

cw
C, = F
! 0 (k — mw?)? 4+ 2w?’
Lk — 2
Co— F mw

(k — mw?)? + 2w?’
and the solution of the equation of motion is

cw n(wt) + F k — mw?
sin(w
(k — mw?)? 4+ 2w? O (k — mw?)? + 2w?

up(t) = Fy cos(wt).
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This form of the solution can be reformulated according&d Q) as

(k — mw?)? 4 c2w? kE — mw?
5 COS wt — arccot | ———

{(k — mw?)? + 2w?} cw
2
FO 1 “o

= — cos | wt — arccot

A.7.3 Sine and cosine

The approach introduced here can handle both sine and doautiags. In the equation of
motion the loading is given as a special complex (harmomicgtion:

mu(t) + cu(t) + ku(t) = Fy {cos(wt) + isin(wt)} = Fye“!

Here tilde distinguishes the complex unknown functi@n) from the previous real ones. Now
the particular solution is searched for in the form

Us(t) =ugpoe™
Substituting the above form back into the equation of motkeget:
(—=mw® + iwe + k)i e = Fye™
The complex coefficienty, is expressed as
1 Iy 1
—mw? + iwe+k  k ( w2) we’
1 - — + l?

2
Wo

'ljfo — FO

Now both the nominator and the denominator are multiplietth wie conjugate of the denomi-
nator
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The whole particular solution is then

(,d2 .wce
1——2 — 1—
Fy ( w0> k

up(t) = usppe™ = — {cos(wt) + isin(wt)}

k W\? w2
12 we
( wg) e

up(t) = - cos | wt — arccot

The real part of the above solution (i.e. the first term) igegponded to the cosine excitation
function, while the imaginary part (the second term) is us#en the loading is given by a
sine function. The main advantage of this abstract appratiat it handles both harmonic
excitation modes in one formula, and that it prepares thdertor the even more abstract
Fourier transform.

A.7.4 Quasi-periodic loading

It is rarely the case that the load is a harmonic function. DO systems, it is even less
likely, that all the loadings are governed by the same harofanction. It is more general, that
a loading is given as a combination of harmonic functiongs Thalso the case if the loading
is turned into &ourier series.

The particular solution of such a problem is simply just thenf the particular solutions
of the same system with one of the harmonic loadings. Foamt, if we have a SDOF system

mii(t) + ci(t) + ku(t) = Fy sin(wit) + Fy cos(wat) + Fysin(wst),
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then theparticular solution is

Wi
F 1 Cw?
up(t) === sin | wyt — arccot 2}0
k w2\ 2 o2 w1 —
(1 — —é) +uwi— k
W k
w)
F 1 W
+ -2 cos | wet — arccot (2)0
k w2\ 2 2 Woe
_ 27 k
W k
wj
F 1 Wl
+22 sin | w3t — arccot ]
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A.8 Damped MDOF systems solved using complex algebra

A.8.1 Inverse of a complex square matrix

_ Letus have a complex matrix of size N by N. The inverse of this matrix is denoted by
B = A~'. This matrix is searched for.
MatricesA andB are decomposed into real and imaginary parts:

A =Ap+iAy,
;&_1 = E = By +:iBy.
We compile the N-by-2N real matrix

Ar| A
Aoy = {_—Afj‘flg] . (A.12)

A mathematical statement says that the inverse of the aleavenatrix equals to

Ag A[}l_{ Br BI]

-1
A2N - |: _AI AR _BI BR (A13)

Thus the real pamBy of the inverse of the complex matrik is the upper leftN-byN block

matrix of the inverse of the real matriX, . The imaginary pam; of complex matrixA is the

upper rightV-byN block matrix of the inverse of real matrik,,. Consequently, the inversion

of a squared complex matrix can be traced back for the irmexsi a double-sized real matrix.
The definition of the inverse matrix implies thAt\ A,y = Aoy ALy = Loy, wherelyy

is the2 N-by-2 N identity matrix. With the above notations this identity igpeessed:

[ Ag| A Br|Br| [ In|Ox
nas = [ R - e

Herely is the N-by-N identity matrix, and0y is the N-by-N zero (valued) matrix. If we
execute this matrix multiplication for the blocks we get
ArBr — A;B; =1y,
AgrBr + A;Br = Oy,
—ABr — AgrB; = 0y,
—A/B;+ AgBr =1y.

Only the first two of these equations are linearly indepehdéfe extractB; from the second
equationB; = —A; 'A;Bp, and substitute it back into the first equation:

1

Br= (Ar+AAR "A;) . (A.14)

That is thereal part of the inverse of the complex matrix. Finally, from back substitution of
this into the expression d8; we get themaginary partof the inverse of the complex matrix
A:

B, = —Ap 'A; (A + A/AR'A) T (A.15)
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A.8.2 Application forced MDOF systems
We copy here the solutiod (14) of the harmonically excited, damped MDOF system:

U(t) = (M + iwC + K) ' goe'

We have to invert a complex matrix, then multiply it with a qolex function, and separate
the real and the imaginary parts of the solution. The redllpsromes the particular solution,
the steady-state vibration of the system due to a cosinaktdcing with frequencyv and
amplitudesgy. The imaginary part is governs the steady-state vibratidheosystem due to a
sinusoidal forcing with the same frequency and amplitutlssng the definitions introduced in
the previous subsection, the matrix to invert is

K =K — w’M + iwC,
i.e. the (complex) dynamical stiffness matrix. Its real andginary parts are
Re <R> =K - wM, Im (K) = wC.

Using these parts, and following the definitigh12), the block structure of theN-by2 N real
matrix is

)
KzN:[K wl\/_[‘ wC }

—wC  |K—-w’M
According to the derived formulad(15) and A.14), the real part of the inverse s
ro—1 2 2 2 -1 -t
Re(K™) = (K-w’M+wC(K-w'M) "' C) | (A.16)
while the imaginary part of the inverse Bf = K — w?M + iwC is
ro—1 2 -1 2 2 2 -1 -t
I (K!) = —w (K - *M) ' C (K- w*M+w’C (K- w'M) 'C) . (A7)
The final solution4.14) is then
ur(t) = {Re (IN(_1> +1i-Im IN(_1> } qo e
= {Re (K’1> 4+ i-Im }
= {Re (f(* ) qo cos(wt) — Im ( > Qo sin(wt)}
{Re ( ) qo sin(wt) + Im (K ) Qo cos(wt)} :
It can be checked, that the real part of the above expressitimei same as4(9), i.e. the
steady-state vibration due to a cosinusoidal excitatiaih Wwequencyw and amplitudesy,.

Besides, the imaginary part of the above expression is it @.5), which is the steady-
state vibration of the model subjected to a sinusoidal fgyci

qo{cos(wt) + isin(wt)}
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