FUNDAMENTS OF THE DISCRETE ELEMENT METHOD

Draft Budapest University of Technology and Economics

> Katalin Bagi 2012

The preparation of this book was supported by the OTKA under grant no. 100770.

The inspiring discussions with my students on the DEM courses are greatly acknowledged.

CONTENT

1. INTRODUCTION TO DEM	5
1.1 What is DEM?	5
1.2 The elements	6
1.3 The contacts	7
1.4 The initial geometrical arrangement	9
1.5 The main steps of discrete element modelling	12
2. THE EQUATIONS OF MOTION	14
2.1 Introductory remarks	14
2.2 Perfectly rigid elements	14
2.3 Elements made deformable by subdivision into finite elements	17
2.4 Deformable elements without subdivision	20
2.5 Time stepping versus quasi-static models	21
3. Overview of Numerical Methods	24
3.1 Introductory remarks	24
3.2 The Newton-Raphson method	24
3.3 Relaxation: The Gauss-Seidel method	26
3.4 Solution methods for initial value problems	28
4. BALL-TYPE MODELS	36
4.1 Introduction	36
4.2 The elements	36
4.3 The contacts	37
4.4 The equations of motion and their time integration	40
4.5 Damping	42
4.6 Applications	43
5. UDEC	45
5.1 Introduction	45
5.2 UDEC: Two-dimensional modelling	45
5.3 3DEC: Three-dimensional modelling	52
5.4 Applications	54

6. QUASI-STATIC METHODS	56
6.1 Theoretical background	56
6.2 The most important quasi-static models	65
6.3 Applications	68
7. THE DDA MODEL	69
7.1 Introduction	69
7.2 The elements	69
7.3 The contacts	71
7.4 The equations of motion	72
7.5 Time integration: Analysis of a single time step	72
7.6 Applications	74
8. THE CONTACT DYNAMICS METHOD	77
8.1 Inroduction	77
8.2 The elements and the contacts	77
8.3 The equations of motion	81
8.4 The iterative solver	82
8.5 Applications	86
9. INTERPRETATION OF THE RESULTS I.:	
Geometry	87
9.1 Introductory remarks	87
9.2 Microstructural variables for the geometry	87
9.3 The material cell system and the space cell system	90
10. INTERPRETATION OF THE RESULTS II.:	
STRESS AND STRAIN	95
10.1 Stress tensors	95
10.2 Strain tensors	98
10.2 Duum onborb	70
SUGGESTED READING	103