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4. BALL-TYPE MODELS 
 

 

4.1 Introduction 
 

We shall start the introduction of the different types of DEM techniques with the BALL-type 

models which are definitely the most widespread and popular discrete element techniques. 

The name “BALL” was used for the software introduced by Cundall & Strack (1979). This 

was the first software which was widely applied for the simulation of granular mechanics 

problems. Though the first code of Peter A. Cundall was UDEC (see Section 5), he became 

world-famous for BALL.  

 

 BALL, and those several similar codes inspired by BALL, applied strictly circular 

elements in those first times. Towards the end of 1980ies the three-dimensional version 

TRUBAL (using spherical elements) was prepared by Cundall, who provided the two codes 

free to anyone who wanted to use, and several scientists all over the world took advantage of 

this possibility. The quick development of granular mechanics in the 1980ies and 1990ies was 

partly due to this. 

 

 BALL and TRUBAL are so simple from mechanical point of view that anyone with a 

little experience in computer programming is able to prepare a BALL-type code (of course, a 

user-friendly input and output system already needs some expertise). No wonder that several 

similar codes were born, differing from each other only in the element shapes, the constitutive 

models for the contacts the user is offered, and in the applicable boundaries. However, the 

principles of the mechanical and numerical modelling are the same. These common principles 

will be introduced in this Section.  

 

 In the 1990ies the commercial versions of BALL and TRUBAL, named PFC-2D and 

PFC-3D (“Particle Flow Code”) were born. Their input and output systems were much more 

convenient, and – which is even more important – an option to “glue together” circles/sphere 

into irregularly shaped particles was introduced. As already mentioned above, other 

researchers developed different codes (mostly research softwares) with particle shapes like 

ellipses, ovals/ovoids, elements composed of cylinders and parts of spheres etc.  

 

 However, there are a few characteristics shared by all BALL-type models, so they are 

the criteria to consider a method a BALL-type model:  

 they are time-stepping methods, and within this, they apply the method of central 

differences for the time integration,  

 the elements are perfectly rigid,  

 the elements form point-like, deformable contacts with each other. The wide variety of 

contact models (e.g. cohesional, Coulomb-type frictional, concrete-like, linear, 

Hertzian, arbitrary user-defined etc) allow the users to simulate a large range of 

different granular materials.  

 

 

4.2 The elements 
 

In the BALL-type models the perfectly rigid elements can have any shape which satisfy the 

condition that the contacts occur between separate, discrete points, and not along extended 

straight or planar surfaces. In the free software OVAL (Kuhn, 2003) for instance, the 
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elements are composed of parts of toroids and spheres. Ellipses are applied in the 2D model 

of Ting (Ting et al, 2003) and in (Ng, 2001). Hopkins (1996) uses elements consisting of 

cylinders and parts of spheres etc. Today’s granular mechanics literature is rich in models 

applying very realistic particle shapes consisting of dozens of spheres and/or other elementary 

shapes. Figure 1. shows 2D models of sand (Matsushima and Saomoto, 2002):  

 

 

 

 

 

 

 

 

Figure 1.  

Simulated “sand particles” of Matsushima and Saomoto 

 

 Irrespectively of how complicated their shape is, rigid elements in 3D have the same 

six degrees of freedom: their reference point translates (3 components) and the element rotates 

about the reference point (3 components). All existing models use the center of mass for the 

reference point. The displacement vector of element p is: 
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which, if being collected for all elements of the system, can be summarized into a hypervector 

consisting of as many 6-scalar blocks as N, the number of elements in the system:  
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These are the basic unknowns which should be determined being accumulated along a series 

of small t time steps. 

 

 

4.3 The contacts 
 

4.3.1 Description of the contact state 
 

Contacts in the BALL-type models are born when two elements intersect with each other. 

Apart from unrealistic cases, the common (intersected) domain is small in comparison to the 

size of the elements, so the contacts can be considered point-like. A concentrated force and 

perhaps a concentrated moment can be transmitted in this point between the two elements.  

 

  To every contact, e.g. to contact c formed by the elements p and q, assign a local 

coordinate frame (n, t, w). The axis n is the normal direction of the common tangent plane of 
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the two surfaces at the contact point. Considering p as the first and q as the second element 

forming the contact, n points outwards of element p. The axes t and w are perpendicular to 

each other and they are inside the common tangent plane. It is important to emphasize that as 

the elements move, the local frame changes.  

 

  In this coordinate frame the force and moment acting on the first element expressed by 

the second element can be summarized into a single vector:  
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N
c
 denotes the normal force in the contact (positive if tension, negative if compression), c

tT  

and c

wT  are the two components of the tangentional force, c

nM  is the twisting moment 

between the two elements (rotating in the tangent plane), finally c

tM  and c

wM  are the two 

components of the bending moment (they are perpendicular to each other and both of them lie 

in the tangent plane).  

 

 The increment of the relative displacement of the two small material points forming 

the contact can be written in the local frame of the contact as  
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Here the first three components are the increments of the relative translations in the normal 

and in the two tangential directions, while the last three components are the increments of the 

relative rotations around n, t and w (in the twisting and in the two rolling directions). 

 

 

4.3.2 Constitutive relations 
 

 The constitutive relations of a contact describe how the contact forces and moments 

depend on the relative displacements, they give limitations to the contact forces ad moments 

which can be resisted by the contact, and they may also specify how the contact behaves after 

these limits are reached (e.g. frictional sliding, plastic deformations etc). According to the 

logics of DEM, after the displacement increments during the actual timestep are determined, 

from them the contact forces and moments are calculated afterwards. So the basic role of the 

constitutive relations is to provide a calculation recipe to determine the actual contact forces 

from the displacement history of the contact. 
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 The simplest and most widely applied contact model is the linearly elastic contact 

with Coulomb friction. In this case the normal force can only be compression, and its 

magnitude is proportional to the n-directional “overlap” between the two elements:  
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It is also valid in an incremental sense (with no limitation on the sign of the force increment): 
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The normal force cannot become positive: when the overlap disappears, the contact does not 

exist anymore.  

 

 The tangential force and the tangential relative translation are related to each other in 

an incremental sense, and a limit depending on the compression is given for the magnitude of 

the tangential force:  
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When the tangential force reaches this value, the relative tangential translations increase 

beside a constant tangential force (i.e. with zero stiffness), as long as the direction of relative 

translations do not change.  

 

 Another widely applied contact model is the Mindlin-Hertz-approximation. The well-

known Hertz theory (Hertz, 1881) describes the compressional behaviour of two spheres. For 

equal radii, for instance, the stiffness of the contact depends on the normal force in the 

following way: 
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(here  is the Poisson-coefficient and E is the Young-modulus of the material of the spheres). 

The meaning of this formula is illustrated in Figure 2. Similar, though of course more 

complicated, relations apply to a few other cases like unequal spheres; otherwise the above 

formula is a basis for approximative relations.  

 

 

 

 

 

 

 

 

Figure 2.  

The Hertzian relation between  

contact normal force and normal deformation 
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Based on this, during a small t time step the increment of the compression force and the 

increment of relative translation in normal direction are related to each other as  

 

; 0c c c c
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The tangentional behaviour can be approximated based on the theories proposed by Cattaneo 

(1938), Mindlin (1949) and then completed by Mindlin és Deresiewicz (1953). The theory 

describes the case of two equal, linearly elastic – perfectly plastic spheres compressed into 

each other, and gradually displaced along each other in the tangentional direction. The 

validity of the very complicated formulas is rather limited, so in those practical cases like 

unequal spheres, non-spherical elements in contact etc. approximations are derived from 

them. In general, the application of these simplified approximations is computationally rather 

expensive.  

 

 Cohesion means that the normal force can be positive (i.e. tension): the contact 

survives if the two elements diverge from each other, until the contact gets to the breakage 

limit. Cohesion is usually accompanied by linearly elastic force-deformation-law both I 

normal and in tangentional directions in the different DEM codes. Since a cohesional contact 

suffers relatively small deformations until being broken, it is not necessary to make a 

difference between incremental and accumulated force-displacement relations. The 

constitutive relations are: 
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The contact breaks either of the tension exceeds the prescribed limit, Nmax, or the shear force 

reaches Tmax . (In the latter case in most DEM models the contact becomes frictional, but 

cohesionless.) 

 

 Concrete, granular rocks etc. are granular materials where the contacts between the 

grains resist relative rotations in addition to relative translations, which means that moments 

are transmitted between the grains. To simulate such materials with DEM, the constitutive 

model of the contacts have to express how the twisting and bending moments depend on the 

relative rotations. Usually this is done with the help of constant rotational stiffnesses. The 

constitutive relations are completed with the limit moments which can be resisted by the 

contact. 

 

 Several other types of contact behaviour can be included in a DEM code (e.g. time 

dependent, plastic, loosing etc. models). In some codes (e.g. in PFC or in YADE) the user can 

prepare his or her own constitutive model. Such an option is very useful both for researchers 

and for practicing engineers. 

 

 

4.4 The equations of motion and their time integration 
 

BALL-type models use the equations of motion shown in Section 2. for rigid elements:  

( ) ( ) ( , ( ), ( ))M a f u v
p p pt t t t t   . 
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This equation consists 6 scalar equations for element p (3 for translational acceleration 

components and 3 for rotational acceleration). According to the method of central differences 

(see Section 3), the calculation of a (ti, ti+1) interval whose length is t is based on the 

following data, which have to be known when starting the calculation of the time step:  

 position of every element at ti , and the displacement increments during the last time 

step;  

 average velocities belonging to the last time step, vi-1/2-et,  

 external forces acting at ti.  

From the positions, displacements and contact constitutive relations, the actual contact forces 

(i.e. those belonging to ti) are determined. Then the actual contact forces all the other forces 

are reduced to the reference points. For element p the equations of motion can be discretized 

as  
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All quantities on the right are known, so the average velocities belonging to the analysed 

interval can be calculated, and from them, the new position of the element is received:  

 

1 1/2u u v
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Then a new time step can follow. 

 

  It is important to emphasize that the calculations do not take into account that within a 

single time step the contact forces change. Velocities in the analysed interval are calculated 

from the accelerations valid at ti. However, when an element displaces, the deformations in its 

contacts will change, and it modifies the contact forces. This effect, and any other changes of 

forces acting on the elements, is expressed by the stiffness matrix of the system (i.e. the 

Jacobian matrix of the reduced force vector) in the different displacement methods of 

structural analysis. Since the stiffness matrix is missing from the equations of motion of 

BALL-type models, the calculations may significantly over-estimate the displacement 

increments during the time step. (The larger is t, the more significant is the over-estimation.) 

The too large displacement increments cause too large internal forces against the 

displacements, and these too large forces too strongly push back the elements in the next time 

step. The calculated behaviour oscillates around the exact solution. When the exact solution 

is, for instance, an equilibrated state, the calculated results vibrates around the equilibrium 

state. A too large timestep length may even cause a numerical breakdown.  

 

 To decrease this problem, BALL-type models set a limitation to the length of the 

applicable time step, and the different commercial codes usually do not allow the user to 

arbitrarily choose t. The maximally allowed length can be estimated with the help of the 

largest eigenfrequency of the individual elements:  
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This expression is based on the numerical stability condition of the central difference scheme: 

in the case of a perfectly elastic system the time step should not exceed the value T/  where T 

is the minimum eigenperiod of the whole system (Bathe and Wilson, 1976). A BALL-type 

system of discrete elements is, however, not necessarily elastic – the contacts may frictionally 

slide, and different damping effects may also significantly influence the behaviour; in 

addition, even in the very unusual perfectly elastic case the large number of elements would 

make the exact determination of the eigenperiod a rather time-consuming task. Hence, 

Cundall proposed to find a critical timestep length separately for every degrees of freedom of 

every particle, as if the each particle would be supported against all possible individual 

motions by elastic springs attached to its neighbours being perfectly fixed. Then take the 

smallest value of these critical timestep lengths. So, in the above formula the stiffnesses p

transk  

and p

rotk  denote the translational and rotational stiffnesses of element p (these can be compiled 

from the contact stiffnesses), and I
p
 is the rotational inertia belonging to the direction of 

largest rotational resistance.  

 

 

4.5 Damping 
 

A system of perfectly rigid, undeformable discrete elements with elastic-frictional contacts 

dissipates energy through frictional sliding only. In physical reality, however, the situation is 

different: colliding particles are damaged and yielded in the small neighbourhood of the 

newborn contacts, and even the already existing contacts yield (hence dissipate energy) with 

increasing compression. In addition, when the grains float in some kind of a liquid, velocity-

dependent drag forces dissipate the kinetic energy of the grains.  

 

  In addition to the effort to simulate these effects, in the BALL-type models damping 

has another role: it should help the convergence of the explicit solver, and ensure that when 

the model simulates a system converging to equilibrium, the model should also arrive to 

equilibrium instead of oscillating around it. So the role of damping in a BALL-type model is 

twofold: it should overcome the non-physical nature of contact models, and at the same time, 

it should stabilize the time integration.  

 

 O’Sullivan (2011) gives an extended overview on most usual types of damping; we 

shall focus now on the two most important types in BALL-type models, called local damping 

and contact viscous damping.  

 

 Local damping means adding a damping-force term to the right side of the equations 

of motion: a force vector whose components point opposite to the velocity components is 

added to the reduced force vector. Each component is –times the corresponding component 

of the reduced force vector.  

 

 As an example, consider the x-component of the translation of element p. Without 

damping, the equation of motion in the central difference scheme is  
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Local damping modifies this equation in the following way:  
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Another example is the last scalar equation of motion of element p (i.e. the one describing the 

rotational acceleration about axis z):  
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The value of the coefficient  is optional; a usual value is, for instance, 0.70. (It means that 

the every non-zero component of the reduced load vector is cut back by 70%, hence the 

accelerations will be less by 70% than without local damping.)  

 

 Local damping has several interesting and advantageous features (see, for instance, 

O’Sullivan, 2011 or Itasca, 2008). Only accelerating motions are influenced: steady-state 

solutions are not affected, so – as an example – an equilibrated flow with constant velocity 

can be correctly simulated, and this kind of damping does not distort the flow kinematics. 

Those parts of the system are damped most which have the largest equilibrium errors (hence 

the name “local”). In addition, the constant  is a non-dimensional proportion, which means 

that the user should not worry about the scaling of .  

 

 Contact viscous damping (e.g. Itasca, 2008) can be imagined as small dashpots being 

placed at each component of the contact forces. These dashpots act in parallel with the 

existing contact model. Numerically it means that a damping force is added to the contact 

force, of which the magnitude of the normal component is, for instance, given by 

, 1/ 2

c c

N N N iD c v     . 

Here cN is the damping constant (N stands for “normal”), and vN
c
,i-1/2 is the normal component 

of the relative velocity at contact c. This kind of damping is similar to physical reality, to the 

real way of energy dissipation in the contacts of touching grains.  

 

 When viscous damping is used in a dynamic problem, such as a simulation of 

bouncing particles, appropriate viscous damping constants should be specified for the 

simulation to reproduce a realistic response. In a quasi-static problem the a damping constants 

may be chosen such that the calculation converges to equilibrium more quickly. However, the 

user should check that the influence of viscous damping on the results is acceptable, e.g. by 

comparing the results gained with different damping coefficients (Itasca, 2008).  

 

 

 

4.6 Applications 
 

BALL-type models played a fundamental role in the science of granular mechanics; their 

importance cannot be overestimated. They have been also applied in practice-oriented 

problems like pharmaceutical industry (e.g. Foo et al, 2004), soil mechanics (e.g. Calvetti et 

al, 2004), simulation of snow or ice blocks floating on a river (e.g. Hopkins et al, 1996), 

asphalt and railway ballast behaviour (e.g. Lu és McDowell, 2007), silo problems, or even the 

behaviour of a crowd in panic (Helbing et al, 2000).  
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Figure 3.  

BALL-type modelling of floating ice blocks on a river.  Hopkins et al, 1996 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  

Motion of a crowd in panic. Helbing et al, 2000 

 

 

 

Questions 
 

4.1. Under what conditions does a discrete element model belong to the BALL-type models? 

4.2. What quantities are contained in the vector of contact forces, and in the vector of relative 

displacement increments belonging to a contact in a BALL-type model?  

4.3. What types of contact models do you know? Shortly describe them!  

4.4. Explain the calculation of a single time step in the BALL-type models! Why is it 

important to set a limit to the length of the time step, and how can this limit be estimated? 

4.5. Why should damping be used in BALL-type models? Introduce local damping and 

contact viscous damping!  

 


