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5. UDEC 
 

 

5.1 Introduction 
 

On a conference in 1971 Peter A. Cundall, the doctorial student of Imperial College, 

introduced a novel software called Universal Distinct Element Code (UDEC). This software 

(Cundall, 1971) aimed at simulating the behaviour of fractured rocks around tunnels, 

excavations, landslopes etc. This was the first discrete element software in the world.  

 

 Applying polygonal/polyhedral elements, UDEC and its three-dimensional version 

3DEC is particularly suitable for the analysis of masonry structures too. The commercial 

versions of the 2D and 3D code are widely applied in the engineering practice. In comparison 

to the DDA models (see in Section 6) which are implicit but also use polyhedral elements, 

UDEC (which follows an explicit time integration scheme) is less accurate, and numerical 

stability problems more often occur. On the other hand, many users enjoy the well-developed 

input and output system, which is indeed a great advantage over the rather troublesme DDA 

research codes. 

 

 This introduction will first focus on the two-dimensional version, in the hope that it 

will give a good impression on the logic of UDEC, but avoids the complicated problems of 

three-dimensional geometrical analysis of the contacts. Then we shall turn the attention on the 

three-dimensional version.  

 

 

5.2 UDEC: Two-dimensional modelling 
 

5.2.1 The elements and the nodes 
 

 The elements in UDEC may have arbitrary polygonal shapes. They can be perfectly 

rigid: in this case they have a reference point, so the degrees of freedom and the equations of 

motion are in principle the same as those in BALL-type models. Alternatively, they can be 

deformable, and this option is more important for practical applications.  

 

 The elements are made deformable by being subdivided into uniform-strain simplexes, 

triangles in 2D (see Figure . The vertices of the simplexes will be those nodes in the analysis 

whose equations of motion will be solved. Nodes can take place either in the interior or on the 

boundary of the elements.  

 

 

 

 

 

 

 

 

Figure 1.  

Deformable element in UDEC, subdivided into simplexes 
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 Since contacts between sharp corners, or between a corner and an edge, would cause 

stress peaks which are on one hand difficult to treat numerically, and on the other hand, would 

cause non-realistic damages, the corners of the elements are modified in UDEC: their 

neighbourhood is replaced with a rounded domain (see Figure 2). The rounding length is 

defined by the user (the same value is applied for every corner), but it should be definitely 

smaller than the smallest simplex edge, to make sure that only the corners are affected by 

rounding. This length gives the distance between the corner and between the point on the edge 

where the rounding arc touches the edge. (The difference between the younger or older, less 

or more damaged stone blocks can nicely be simulated with the help of appropriate rounding 

length.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  

Rounding of the corners in UDEC  

 

 The nodes only have translational degrees of freedom. The displacement vector of 

node p consists of three scalar component:  
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and these are collected into the total displacement vector of the system containing altogether 

N nodes:  
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Within one simplex (called “zone” in UDEC terminology) the translation vector in any point 

can uniquely be determined through the linear interpolation of the translations of the vertices 

(this is the reason why simplexes are applied for the subdivision). Because of the linearity of 

the translation field, the gradient of this field is constant, hence the strain, i.e. the symmetric 

part of the translation gradient, is also uniform, and uniquely determined by the translations of 

the vertices.  

rounding 

length 

rounding 
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 Rounding affects only the recognition and geometrical characteristics of contacts. Any 

other characteristics are based on the original geometry without rounding. The calculation of 

strains in the zones at rounded corners is a good example for this: strains are calculated from 

the translations of the original nodes.  

 

 The constitutive relations of the deformable simplexes specify how to calculate the 

stress tensor if the strain tensor (and perhaps some kind of a history data of these state 

variables) is known. There are several optional constitutive relations offered by UDEC:  

 The simplest type is the “null element”, an empty domain having zero material 

density and zero stiffness, playing no mechanical role. This type of “material” can be 

used, for instance, to simulate voids and holes.  

 The elements can be isotropic, linearly elastic, with infinite resistance to stresses (no 

plastic or fracture failure limit). Such elements are characterized with the Young-

modulus (E) and the Poisson-coefficient () , or, alternatively, with the bulk modulus 

(K, the ratio between isotropic stress and strain) and the shear modulus(G). The two 

pairs of quantities can easily be calculated from each other:  

;
3(1 ) 2(1 )

E E
K G

 
 

 
  . 

 

 Failure conditions can also be assigned to the elements. The Mohr-Coulomb model, 

the Prager-Drucker model and many others are built-in options; but the user can also 

prepare his or her own failure criteria if the existing options are not suitable for the 

problem under consideration. These failure criteria set a limit to the stresses in the 

deformed zones, and describe how the zone should behave if a failure criterion is met. 

(Inside the same element, some zones may be in plastic or damaged state while others 

are still elastic, but the element always remains the set of the same zones as initially.)  

To summarize, from the constitutive relations the stress state can be determined if the strain 

(and perhaps the stress and strain history) is known. 

 

 

5.2.2 The contacts 
 

For rigid blocks, a contact in UDEC is created at each corner interacting with a corner or edge 

of an opposing block. If the blocks are deformable (internally discretized), point contacts are 

created at all nodes located on the block edge in contact. Being more complicated, we shall 

focus now on the deformable case; after understanding it, the contact treatment in the first 

case is rather straightforward.  

 

 Contact is formed when a node belonging to an element gets into the interior of 

another element. In 2D there are three different ways it can happen:  

1. Contact can be formed between an internal node on an edge of an element, and the 

edge of another element (see Figure 3a). Figure 3b shows the two elements slightly 

displaced, so that the figure could better be seen.  
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Figure 3. 

 a) Contact between an      b) Length of the contact 

 internal node and an edge 

 

The L
P
 length belonging to node P is defined in the following way:  

 Draw a line normal to the other edge, i.e. the edge NOT containing P. This normal 

intersects with the edge in point R. 

 The two nodes of the zone edge which contains R are Q1 and Q2. 

 The half of the straight section RQ1 , and the half of the straight section RQ2  form 

the contact between P and the other element (see the thick green line in Figure 3b). Its 

length is simply  

1 2

1 1

2 2

PL RQ RQ   . 

 The direction of the contact normal vector is the same as that of PR so the contact 

normal is perpendicular to the edge Q1Q2.  

 The normal deformation of the contact is the same as the distance between P and R, 

so it is the depth by which P got into the interior of the other element.  

 

2. Contact can be formed when the rounded corner of an element gets on the internal side 

of an edge of another element. The contact normal vector in this case is perpendicular 

to the edge of the other element. The length of the contact is simply the distance 

between the intersection points of the rounded arc and the edge, as shown in Figure 4. 

(Note that the contact still does not exist if only the original corner gets into the 

interior of the other element, but there is no intersection between the rounded 

boundary of the first element and the edge of the other element.)  
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Figure 4. 

Contact between a rounded corner and an edge   

 

3. Finally, contact can be formed by two rounded corners. In this case the contact normal 

vector is determined by the straight line connecting the two arc centres, and the 

contact length is the distance between the intersection points of the two arcs. The 

deformation of the contact in normal direction is equal ti the magnitude of maximal 

overlap.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  

Contact between two corners 

 

 When two elements get so close to each other that their boundary domains overlap, 

usually a series of contacts is formed: several contacts belonging to the neighbouring nodes 

on both elements exist. The interaction between the two elements is given by a set of contacts 

belonging to the neighbouring nodes along the edges of the two elements.  

 

 Independently of how the contact is formed, a distributed force – assumed to be of 

constant intensity – is transmitted from one element to the other. This distributed force has a 

normal and a tangential component, k
n  and k

s  respectively. The superscript k denotes that 

the k-th contact (which is perhaps just one part of the interaction of two elements). Two 

consecutive contacts may carry different distributed forces, so a stair-like distribution may 

exist along the complete interaction.  
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 The contact area is the L
k
 length of the k-th contact times the unit width of the whole 

2D model.  

 

 Let k

nu  and k

su  denote the increment of the normal and tangentional relative 

translation in contact k. The intensity of the normal and tangemtional components of the 

distributed contact force is modified:  
k k k

n n nk u     

(negative sign expresses that compression is positive in UDEC), and 
k k k

s s sk u    . 

 

The stiffnesses kn and ks are constant in the case of linear relation, but theoretically they can 

depend in any way on the actual contact forces and deformations. UDEC offers several 

constitutive relations for the contacts (but the user can also prepare his/her own relations):  

 linearly elastic, non-cohesional contact with Couomb-friction (“fric” is the friction 

angle):  

; 0k k k k

n n n nk u       

; tan( )k k k k k

s s s s nk u fric        

 Coulomb-friction with cohesion and non-zero tensional failure limit: 

;k k k k húzó

n n n n nk u         

; ( tan( ))k k k k k

s s s s nk u coh fric         

 different models for the behaviour after sliding has started (e.g. plastic models). 

 

To summarize, these models describe how to determine the distributed forces between the 

elements, when the displacements are already known at the end of the time step. Then at the 

beginning of the next time step these forces are applied when calculating the reduced force 

vectors.  

 

 

5.2.3 Time integration of the equations of motion 
 

 It was explained in Section 2.3 that the equations of motion of node p can be written in 

the form  

a f
p p p

i im   

where m
p
 is the mass of the Voronoi-cell of the node, and f

p
 is the resultant of the distributed 

forces acting on the Voronoi-cell. This force is the result of different effects:  

 external loads (e.g. weight or drag force); 

 stresses inside the simplexes cut by the boundaries of the Voronoi-cell of the p-th 

node;  

 if the node is on the edge of the element, contact force may also act on p.  

The force f
p
 is assumed to go through the node, and its eccentricity is neglected.   

 

 According to the method of central differences, the discretized form of the equations 

of motion is: 
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Using this, the analysis of the time interval (ti, ti+1) of length t is done in the following way:  

 At ti the positions, and the reduced forces acting on the nodes is known.  

 The velocities belonging to the middle of the previous time interval is known (which 

are considered to be the average velocity of the previous interval). 

 The new characteristics:  

1/ 2 1/ 2

1
v v f

p p p

i i ip
t

m
     

1 1/2u u v
p p p

i i it     

 

 Similarly to the BALL-type models, different damping methods (see below) are 

applied to decrease the numerical instability problems. In addition, the time step length is 

limited: 

( )
2 min

p

pp

m
t

k

  
    

  

 

where k
p
 is the translational stiffness of node p (see the manual of UDEC for details, Itasca 

(2011)). 

 

 

5.2.4 Damping 
 

 Like BALL-type models, UDEC applies different types of damping, partly to simulate 

energy dissipation, and partly to improve convergence.  

 

 Adaptive global damping works in such a way that a velocity-proportional damping is 

used, but the viscosity constant is continuously adjusted to ensure that the calculated change 

of kinetic energy during the actual timestep is cut back by a user-defined ratio, for every 

degree of freedom. If this ratio is, for example, 0.55, it means that every reduced force 

component is modified separately in such a way that the change of kinetic energy belonging 

to that degree of freedom would be 55% less than calculated by the explicit solver. If the 

system tends to an equilibrium state (e.g. to a state with constant velocities), this kind of 

damping gradually disappears, and becomes zero in the equilibrium state. Adaptive global 

damping is very helpful and efficient if the system strongly oscillates around the equilibrium 

state.  

 

 Local damping is the same as that explained in Section 4. for the BALL-type models: 

a damping force component is added to the reduced forces corresponding to every degree of 

freedom:  

, 1/ 2

, 1/ 2 , 1/ 2 , ,

, 1/ 2
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The  coefficient is chosen by the user (e.g. 0.8). This kind of damping is particularly 

advantageous if some parts of the system are already close to equilibrium while other others 

are just collapsing or strongly oscillating; or if the loads quickly change.  

 

 Strangely enough, UDEC does not offer a built-in contact damping option. The user 

can, however, prepare and code any arbitrary individual constitutive relation, so contact 

damping can be simulated this way. 

 

 

5.3 3DEC: Three-dimensional modelling 
 

3DEC, the three-dimensional version of UDEC, works in basically the same way as UDEC. 

According to Itasca (2007) and (2011), the most important differences are the following: 

 

5.3.1 The elements 
 

Similarly to UDEC, there are two types of polyhedral block that can be modelled in 3DEC: 

rigid blocks, which have now six degrees of freedom (three translational and three rotational); 

and deformable blocks, which are subdivided internally into tetrahedra that have three 

(instead of two like in UDEC) translational degrees of freedom at each vertex (node). Rigid as 

well as deformable blocks must have planar faces that are polygons of any number of sides. 

For deformable blocks each original planar polygonal face is discretized into triangular sub-

faces, in accordance with the internal discretization into tetrahedra. (In some versions there is 

an alternative option to apply 10-node tetrahedral elements. based on quadratic displacement 

interpolations functions. For this purpose, new nodes are created at the midpoint of every 

zone edge. The higher-order element formulation allows a quadratic displacement field to be 

represented inside the zone and also on the zone faces. However, for purposes of contact 

calculations, and for plotting, in this case the block boundary is still approximated by a mesh 

of triangular faces. Each face of a 10-node tetrahedron is divided into 4 plane triangles.) 

 

 In general, elements in 3DEC may be convex or concave, may contain holes, may be 

multiply connected. However, there are so many advantages to convex blocks that within the 

program concave blocks are decomposed into two or more convex blocks: one is termed a 

“master block”; the others are “slave blocks.” In contact detection and contact analysis the 

slave blocks are treated in exactly the same way as master blocks, in order to take advantage 

of convexity. However, in the mechanical calculations, the whole block (master and slaves) is 

treated as one unit: a common centre of gravity, a common mass, etc. are determined.  

 

5.3.2 The contacts 
 

An important difference from UDEC is that while in UDEC rounding is applied to identify 

and characterize contacts of corners, in 3DEC contact recognition and the definition of 

contact characteristics happen in a different manner.  

 

 When two blocks are close to each other, they are tested for contact. (If they are not in 

contact, the maximum gap between them must be determined so that block-pairs separated by 

more than a certain tolerance may be ignored.) For block-pairs separated by less than this 

tolerance, but not touching, a “contact” is still formed. Though such a “contact” carries no 

load, it is tracked at every step in the mechanical calculation, to ensure that interaction forces 

start to act as soon as the blocks touch. The contact-detection logic must also provide a unit 
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normal vector, which defines the plane along which sliding can occur. This unit normal 

should change direction in a continuous fashion as the two blocks move relative to one 

another. Finally, the contact-detection logic must classify the type of the contact rapidly—

e.g., face-to-edge or vertex-to-face. This information is needed in order to select the most 

appropriate physical law to apply at each contact. In summary, the contact-detection logic 

must supply, with as little delay as possible, the contact type (if touching), the gap (if not 

touching), and the unit normal vector. 3DEC applies a scheme based on a common plane 

between the two blocks.  

 

 The analysis consists of the following two parts: (1) determining a “common-plane” 

that, in some sense, bisects the space between the two blocks; and (2) testing both blocks 

separately for contact with the common-plane.  

 

 The “common-plane” is analogous to a metal plate that is held loosely between the 

two blocks. If the blocks are held tightly and brought together slowly, the plate will be 

deflected by the blocks and will become trapped at some particular angle when the blocks 

finally come into contact. Whatever the shape and orientation of the blocks (provided they are 

convex), the plate will take up a position that defines the sliding plane for the two blocks. To 

carry the analogy a bit further, imagine that the plate is now repelled by the blocks even when 

they do not touch. As the blocks are brought together, the plate will take up a position 

midway between them, at a maximum distance from both. Then we can easily find the gap 

between the blocks, simply by adding the block-to-plate distances. 

 

 The algorithm for locating and moving the common plane is based on geometry alone, 

and is applied at every timestep, in parallel with the mechanical calculations. The algorithm is 

stated as “Maximize the gap between the common-plane and the closest vertex”. For 

overlapping blocks, the same algorithm applies, but the words “gap” and “closest” must be 

used in their mathematical sense for the case of negative signs—i.e., gap means “negative 

overlap” and closest means “most deeply buried.” To improve readability, the algorithm may 

be restated for the case of overlapping blocks: “Minimize the overlap between the common-

plane and the vertex with the greatest overlap”. The algorithm then applies a translation and a 

rotation to the common-plane in order to maximize the gap (or minimize the overlap). 

 

 Contact interaction exists if the overlap is positive, or equivalently, if the gap is 

negative between the two blocks. The normal vector of the common-plane is the contact 

normal; and the contact characteristics can easily be determined from simple geometrical 

considerations.  

 

 If a block face is in contact with the common-plane, then it is automatically discretized 

into sub-contacts. For rigid blocks, faces are triangulated to create the sub-contacts. These 

sub-contacts are generally created at the vertices of the block face. For deformable blocks, the 

triangular faces of tetrahedral zones at the block surface contain a number of internal surface 

nodes, each of which has three independent degrees of freedom. In this case, a sub-contact is 

created for each node on the face. 

 

 Two types of sub-contact are defined: vertex-to-face and edge-to-edge. In order to 

simulate face-to-face contact, each sub-contact is assigned an area allowing standard joint 

constitutive relations, formulated in terms of stresses and displacements, to be applied. Edge-

to-edge sub-contacts model both edge-to-edge contact between blocks, and face-to-face and 
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face-to-edge contacts at the points of intersection of edges on the common-plane. The 

interface displacement at each sub-contact is taken as the sub-contact displacement minus the 

displacement of the coincident point on the opposing face. The area “owned” by each sub-

contact is, in general, equal to one-third of the area of the surrounding triangles, but this 

calculation must be adjusted when the sub-contact is close to one or more edges on the 

opposing block. If the other side of the interface is also a face, then identical conditions apply: 

sub-contacts are created, and relative displacements, and hence forces, are calculated.  

 

 When two blocks come together, the contact logic described above is equivalent to 

two sets of contact springs in parallel — in this case, the forces from both sets are divided by 

two, so that the overall interface behaviour is the average of that of both sets. 

 

 

 

5.4 Applications 
 

 UDEC/3DEC is the most widely used discrete element technique to date in the 

engineering practice. A few interesting applications: 

 

 earthquake analysis of the Funcho dam and the Camambe dam (Lemos, 1996; Lemos, 

1999); 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 

  Camambe dam      Funcho dam 

 

 

 Underground ice hockey stadium, Norway, Gjovik (Chryssanthakis and Barton, 1999);  

 

 

 

 

 

 

 

 

 

 

Figure 7. 

      Overview of the stadium in Gjovick   cross-section and excavation order 
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Figure 8. 

 UDEC model of the fractured rock in Gjovick (Chryssanthakis and Barton, 1999) 

 

 

 Weathering of the Nishida Bridge, Jiang and Esaki (2002):  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. 

Nishida bridge and it UDEC model, 

Jiang and Esaki (2002) 

 

 

 

 

 

Questions 
 

5.1. What are the degrees of freedom of the deformable elements in UDEC and in 3DEC? 

5.2. What is the meaning of the rounding length? How can a contact be formed between two 

elements, and what is the size and direction of the contact in the different cases? 

5.3. Introduce the most important contact types of UDEC! 

5.4. Explain how a time step is analysed in UDEC! 

5.5. What are the most important differences between UDEC and 3DEC? 

5.6. What kinds of damping are applied in UDEC, and why are they necessary?  

 


