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8. THE CONTACT DYNAMICS METHOD 
 

 

8.1 Introduction 
 

The NSCD (Non-Smooth Contact Dynamics) method was presented to the public at the end 

of the 1980ies by M. Jean and J.J. Moreau (Moreau, 1988; Jean and Moreau, 1992). Its first 

main field of application was granular mechanics: in comparison to previous discrete element 

techniques, the NSCD method turned out to be particularly fast and efficient when simulating 

granular flows, rapid avalanches, segregation, vibration problems of granular materials etc. 

Since the individual deformations of the grains are usually negligible in these problems, 

models consisting of perfectly rigid elements were mostly applied at that time. In the first 

versions the elements were mostly spherical, but later the application of polyhedral elements 

also became widespread. Contact Dynamics models brought significant scientific 

achievements in the field of the dynamics of granular materials. While the original papers on 

NSCD were rather abstract and not very helpful in providing practice-oriented explanations 

how the method really worked, the paper of Unger and Kertész (2003) brought a leap 

forward: it gave a clear, detailed introduction to the line of thought of the method, providing 

valuable help for those who wanted to write their own code and also for those who just 

wanted to understand the main concept lying behind the software which they were applying in 

their researches. 

 

 For masonry structures and fractured rocks the application of polygonal or polyhedral 

elements is obviously more suitable than spheres, and the deformability of the elements is 

often also important to take into consideration. Jean and Moreau (1992) and Jean (1999) 

introduced the basics of modelling masonry walls with deformable rectangular blocks in 

NSCD, and Jean developed the software called LMGC that gave realistic results for the quasi-

static selfweight problem of planar walls (Jean, 1999). Dubois extended the method, 

developed the open code LMGC90 (Dubois and Jean, 2006), and offered it to the research 

community not only for being used by any colleague but also for further developments. 

LMGC90 can model rigid or deformable, 2D or 3D bodies of spherical or polyhedral shape. 

Since its release in the early 2000ies several scientists and engineers have applied it for 

different quasi-static or dynamic problems related to masonry mechanics.  

 

 Another available Contact Dynamics software is SOLFEC (Koziara and Bićanić, 

2008). SOLFEC aimed at providing a user friendly platform for testing formulations and 

solution methods. The code implements different (rigid, uniform-strain and finite element) 

block models, contact detection algorithms, and time integration techniques. SOLFEC is 

particularly powerful in modelling element deformability with the help of FEM subdivision. 

In order to have reasonable computation times for real problems, parallelization is also 

applied in SOLFEC. 

 

 The approach of the Contact Dynamics method is very different from other discrete 

element techniques often applied for masonry analysis, 3DEC (Cundall, 1988) or DDA (Shi, 

1992) for instance. In NSCD the basic unit of the analysis is the pair of two randomly chosen 

elements (contacting or non-contacting). The essence of the method is to find the contact 

forces transmitted between the two elements of the pair in such a way that during the analyzed 

time step the two elements should not overlap each other. The contact force is set to zero if 

the elements would not touch each other without this contact force even at the end of the 

timestep, and a non-zero force vector is chosen (satisfying conditions corresponding to the 
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mechanical behavior of the contact) if the two elements have to be slowed down in order to 

avoid overlap. So the motion of the system is numerically simulated in time through finite 

time steps, but in such a way that at a considered actual time instant an iterative process 

sweeps along randomly chosen pairs of the system over and over again, and gradually adjusts 

the estimated contact forces to get an improving approximation of a state that satisfies the 

dynamic equations of the system.  

 

 Contact recognition and the determination of its geometrical data (i.e. point of action 

of the contact force, and the normal direction) for polyhedral shapes require more 

sophisticated techniques than the treatment of spherical elements. The “common plane 

concept”, a very efficient solution of the problem (also applied in 3DEC) is an advantageous 

and widely applied possibility in NSCD also, and it will be recalled in this section.  

 

 Most discrete element methods represent the deformability of the elements either by 

using an internal FEM mesh in the elements (e.g. 3DEC), or by concentrating the 

deformations into the contacts, like in the case of the BALL-type models. The calculation of 

the contact forces between the elements is based on the stiffness characteristics of the contacts 

in those techniques. The philosophy of NSCD is different. According to the oldest NSCD 

models, the elements are perfectly rigid, and the contact forces are not related to any stiffness 

data: the contact forces are calculated to ensure the dynamic equations of the elements, and in 

addition, they must not violate requirements like the Coulomb limit for friction or the no-

tension requirement in cohesionless contacts, but the calculation does not apply any 

constitutive relations. For statically highly indeterminate systems like e.g. a masonry wall, 

there exist several alternative force systems that satisfy the equations of motion; NSCD 

produces randomly one of them, while several equally valid solutions could be received if the 

problem is calculated repeatedly with the method starting from the same initial state but 

considering the pairs of elements in different random orders. This non-uniqueness partly 

explains the doubts why NSCD is not widespread in the analysis of quasi-static engineering 

problems. On the other hand, since the method is computationally very efficient for the 

simulation of dynamic problems, NSCD is more popular in earthquake simulations or 

vibration analysis. It has to be emphasized that there is a general lack of validation studies 

about the simulation of quasi-static as well as dynamic problems. The attempts of Ceh et al 

(2015a, 2015b) are very promising in this respect; similar verification examinations (static as 

well as dynamic) could potentially resolve the existing skepticism of the engineering 

community and give a fair general evaluation of the strengths and limitations of the technique. 

So this is a basically important task for future researches. 

 

 The aims of Section 8 are (i) to provide an insight into how the method works; (ii) to 

call the attention on the possible problems and questionable issues the user should be aware 

of; and (iii) to present a collection of characteristic applications.  

 

 This section is built up as follows. The basic variables describing the state of the 

model are presented in Section 8.2: for the sake of simplicity, in Section 8.2 rigid elements 

are considered only. Section 8.3 presents the contact model. Section 8.4 introduces the 

equations of motion and the time integration scheme. Section 8.5 focuses on deformable 

elements and calls the attention on the most important differences from the rigid-element 

model. Finally, Section 8.6 introduces different applications of the Contact Dynamics method 

in the analysis of structural engineering problems. 
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8.2 The basic variables: Modelling with rigid elements 
 

8.2.1 Geometrical characteristics of the pair of two elements  
 

Unlike in other methods where the basic unit of the analysis is the element or a part of the 

element around the node, in CD the basic unit is the pair of neighbouring elements. As 

already mentioned above, the aim of the calculations is to iteratively find the suitable contact 

forces in all pairs in the system. 

 

 For simplicity, the introduction below starts with the case of perfectly spherical three-

dimensional elements. A reference point is defined for each element coinciding with its centre 

of gravity (see Figure 1a).  

 

 Focus now on an arbitrarily selected pair of two elements close to (perhaps in contact 

with) each other. Denote it by c. Material points pc and qc are those having the shortest 

distance from each other among all material points of the two spheres. Let g
pq

 denote the 

distance between them. (From now on, p is considered as the first and q as the second entity 

in the pair.) If their distance g
pq

 equals to zero, the two material points share the same location 

and two elements have a (point-like) contact (Figure 1b), where a concentrated contact force 

can be transmitted between the elements. Unlike in most discrete element techniques, now the 

contact and the elements do not deform, so contacting elements must move in such a way that 

there would be no overlap between them: g
pq

 cannot become negative.  

 

 

 

 

 

 

 

 

Figure 1a.      Figure 1b. 

The distance g
pq

 between the elements p and q  The normal vector of the pq contact 

 

 Assign an (n, t, w) local coordinate frame to the contact:  n is the common unit normal 

of the contact plane (i.e. the common tangent plane), pointing towards element p (see Figure 

1b); t and w are an arbitrary pair of orthogonal unit vectors in the contact plane. 

 

 For polyhedral elements also a reference point is defined, coinciding again with the 

centre of gravity (see Figure 2a). In order to decide whether p and q are in contact at an actual 

time instant, the two nearest points on the boundary of p and q are determined (material points 

pc and qc respectively). In general case they are node-to-face neighbours, as shown in Figure 

2a: in other words, assume for simplicity that the problem to find the two closest points has a 

unique solution. (The non-unique cases, i.e. edge-to-face neighbours when an edge lies in 

parallel to a face, or face-to-face neighbours when two planar faces lie parallel to each other, 

can be modelled as the simultaneous neighbouring pairs of a small finite number of node-to-

face pairs. The details will not be considered here.)  

n

p
q

c

pqg

p

q

pcr pc qc

qcr



Katalin Bagi:  Section 8 

Fundaments of The Discrete Element Method  The Contact Dynamics method 

 

80 

 

 

 

 

 

 

 

 

Figure 2a.      Figure 2b. 

Distance g
pq

 between elements p and q   The local coordinate system of pair c and 

       the definition of vectors r
pc

 and r
qc

 

 

 Several possible algorithms are available to find the two closest points. LMGC90 

applies the common plane concept (Dubois and Mozul, 2013). To recall it, remember that the 

common plane can be imagined as a plate that is held loosely between the two polyhedral 

blocks. If the blocks are brought closer slowly, the plate will be moved by the blocks, and 

finally will become trapped at some particular position when the blocks come into contact. 

Whatever the shape and orientation of the blocks (provided they are convex), the plate will 

take up a position that defines the sliding plane for the two blocks. To carry the analogy a bit 

further, imagine that the plate is now repelled by the blocks even when they do not touch. As 

the blocks are brought together, the plate will take up a position midway between them, at a 

maximum distance from both. The algorithm for locating and moving the common plane can 

be formulated as an optimization problem: “Maximize the gap between the common plane 

and the closest vertex”. The optimization algorithm applies translations and rotations to the 

common plane in order to maximize the gap. 

 

 The normal vector of the common plane will serve as the contact normal, and the 

points having the shortest distances from the common plane are the material points pc and qc. 

After finding the two closest points, sum up their distances from the common plane, and let 

g
pq

 denote this sum which is equal to the gap width between the two blocks.  

 

 Similarly to the case of spherical elements, assign an (n, t, w) local coordinate frame 

to the pair in the way shown in Figure 2b. The unit base vector n is directed towards the 

nearest point of p (first entity of the pair); base vectors t and w are an arbitrary pair of 

orthogonal unit vectors parallel to the contact plane. If the g
pq

 distance equals zero, the two 

elements form a point-like contact, and a concentrated contact force can be transmitted 

between the elements. Since the contact and the elements do not deform, the two elements 

must move in such a way that there would be no overlap between them: the gap width g
pq

 

cannot become negative. In addition, the two elements can slide along each other (i.e. the two 

material points forming the contact point can translate relatively to each other in a direction 

perpendicular to n) only if the frictional limit is reached in the contact. 

 

8.2.2 The reduced contact forces  
 

The force acting on p by q is f
pc

, and the force expressed on q by p is f
qc

: 

 

( )

( )

( )

f

pc

x

pc pc

y

pc

z

F t

F t

F t

 
 

  
 
 

  and  

( )

( )

( )

f

pc

x

qc pc

y

pc

z

F t

F t

F t

 
 

  
  

  , 

p

q

pcr
qcr

n

t,w
p

q
pqg

pc qc
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and these can be reduced to the reference points of p and q with the help of the B
pc

(t) and 

B
pc

(t) transition matrices, respectively: 

 

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1
( ) ; ( )

0 0

0 0

0 0

B Bpc qc
pc pc qc qc

z y z y

pc pc qc qc

z x z x

pc pc qc qc

y x y x

t t
r r r r

r r r r

r r r r

   
   
   
   

    
    

    
   
       

   . 

The vectors r
pc

 and r
qc

 point from the reference points to the contact. The reduced forces are 

then: 

( ) ( ) ( ) ; ( ) ( ) ( )f B f f B fpc pc pc qc qc qc

red redt t t t t t      . 

 

Summarize these two forces into the 12-scalar reduced contact force vector of the pair:: 

( )
( )

( )

f
f

f

pc
pq red

qc

red

t
t

t

 
  
 

  . 

This vector will take part in the equations of motion of the pair.  

 

8.2.3 The relative velocity 
 

 The vector v
pq

 denotes the velocity vector of the (p, q) pair:  

( )
( )

( )

v
v

v

p
pq

q

t
t

t

 
  
 

  , 

which can be expressed as the time derivatives of the displacements of the reference points 

(translations and rotations):  

( ) ( )

( ) ( )

( ) ( )

( ) ; ( )
( ) ( )

( ) ( )

( ) ( )

v v

p q

x x

p q

y y

p q

z z

p q

p q

x x

p q

y y

p q

z z

du t du t

dt dt

du t du t

dt dt

du t du t

dt dt
t t

d t d t

dt dt

d t d t

dt dt

d t d t

dt dt

   
   
   
   
   
   
   
   
    
   
   
   
   
   
   
   
         

 

 

 

  . 

 

Consider now those two material points, pc and qc, which form the contact. Their velocities, 

v
pc

 és v
qc

, can be expressed again with the help of the B
pc

(t) and B
pc

(t) transition matrices: 
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( ) ( ) ( )

( ) ( ) ( )

pc pcT p

qc qcT q

t t t

t t t

 

 

v B v

v B v
  . 

 

The relative velocity of the contact is the difference of the velocities of the two material 

points pc and qc:  

( )

( ) ( ) : ( ) ( )

( )

μ v v

pq

x

pq pq pc qc

y

pq

z

t

t t t t

t

 
 

   
 
 







 

which yields  

 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )μ v v B v B vpq pc qc pcT p qcT qt t t t t t t        . 

 

This vector shows the relative translation of point pc with respect to point qc, so if the two 

points are already in contact, the n-component of this vector must be positive to exclude 

overlapping. The tangential component has to be zero if the contact is not sliding, and can be 

arbitrarily large if the tangential component of the contact force reaches the frictional limit. 

 

 

8.3 The mechanical conditions of the contacts 
 

In Coulomb-frictional, no-tension contact models the following requirements are to be 

satisfied in every pair: 

 

(1) If the two elements are in contact, i.e. if  g
pq

 = 0 , then a contact force can be 

transmitted. If g
pq

 > 0 , then there is no contact, and no contact force exist in the pair. The case 

g
pq

 < 0  is not possible. 

(2) The normal component of the contact force, N
pq

, can only be negative, i.e. 

compressional, but otherwise its magnitude ( ( )f npq pcTN     or f npq qcTN   ) is arbitrary. 

The (N
pq

, g
pq

) relation is shown in Figure 3: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 

Normal force versus gap width in CD 

 

(3) The magnitude of the tangential T
pq

 (which has a t and a w component) is limited by 

the Coulomb friction law: 

Tpq pqN   

 

pqg

pqN
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where  is the friction coefficient. Figure 4. illustrates this limitation: the vector of the 

tangential force must point from the origin either to inside the cone (non-sliding contact) or 

just to the surface of the cone (sliding contact).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 

Columb limit for the tangential force 

 

As long as T
pq

 is below the friction limit, the tangential component of the relative velocity 

must be zero (elastic deformation not possible). When reaching the friction limit, the contact 

starts to slide: the ( )μpq t  relative velocity has to be just opposite to the direction of the T
pq

 

force (the tangential relative translation must not have a component perpendicularly to the 

frictional force reaching the limit), and the magnitude of T
pq

 is equal to N
pq

. The 

magnitude of the relative translation is not limited in the contact model, this can be 

determined from kinematical considerations.  

 

 Without presenting the details, it is interesting to mention that Acary and Jean (2000) 

introduced more sophisticated representations of the real joint behaviours. They gave 

suggestions how to model finite tensional or shear resistance, elastic contact behaviour, brittle 

cohesion or progressive damage behaviour. These extensions of the joint modelling allow the 

user to give a realistic prediction for structures with mortared contacts. A wide range of such 

possibilities is available in LMGC90. 

 

 

8.4 The equations of motion and the iterative solver 
 

 Contact Dynamics is a time-stepping method. Its fundamental kinematical unknowns 

are the time-dependent positions and velocities of the elements. The force-type unknowns are 

the contact force vectors. They are searched for pair by pair. 

 

 Assume that at ti the state of the system is known: according to the exactness 

numerically prescribed, the positions and velocities of the elements are given: ( )u up p

i it  ; 

( )v vp p

i it   , and the external forces acting on the elements ( ,p ext

if ) and contact forces for all c 

( f pc

i ) are also known. The external forces are reduced to the reference points; the contact 

forces act in the point-like contacts. The time-dependence of the external forces is also known 

(e.g. that the gravitational force is constant), so the external forces are given also in 

1i it t t    ( ,

1

p ext

if ). From these data the state of the system at ti+1 (contact forces, the 

positions and the velocities of the elements) is searched for.  

pqN

pq

wT

pq

tT
arctan
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 CD applies the implicit version of the Euler method for this search. The basic step for 

the p and q pair can be written as: 

 
1

1 1

1
1 1

( )
:

( )

v v fM

v v fM

p p pp
i i i

q q qq
i i i

t


 


 

      
         

      
  ; 

1 1

1 1

:
u u v

u u v

p p p

i i i

q q q

i i i

t 

 

     
       

     
  . 

 

Here 1f p

i  and 1f q

i  denote the resultants of the external and all contact forces acting on p and q 

respectively, being reduced to the reference points. (Note that according to the implicit 

scheme, the velocities and accelerations belonging to the end of the time interval are 

considered to be valid along the whole interval.) These reduced forces are  

 
,

1 1
( )1

,
1 1 1

( )

:

p ext pk pk

i ip
pki

q q ext qk qk
i i i

qk

 



  

  
   

       
 





f B f
f

f f B f
  . 

 

Summation over index pk runs along all contacts of element p , including the just analysed 

contact c as well. Similarly, index qk runs along all contacts of q.   

 

 The transition matrices are assumed to be constant during the (ti, ti+1) time interval, 

and equal to their values at ti. Indeed, if the displacement increments are small during the 

timestep, the modification of the vectors pointing from the reference points to the contacts is 

negligible.  

 

 Collect the mass and rotational inertia of the elements into the matrices M
p
 and M

q
 , 

which have the following form in the case of spherical elements:  

M

p

p

p
p

p

p

p

m

m

m

I

I

I

 
 
 
 

  
 
 
 
  

  . 

(Note that because of the spherical symmetry, these matrices are constant in time.) For non-

spherical elements the inertia matrices have the following form:  
p

p

p

p

p p p

xx xy xz

p p p

yx yy yz

p p p

zx zy zz

m

m

m

I I I

I I I

I I I

 
 
 
 

  
 
 
 
  

M  

The lower right block depends on the actual orientation of the element so it varies with time. 
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 In order to determine the velocity of the pair ( 1v pq

i ), the resultants 1f p

i  and 1f q

i  should 

be known. So, in addition to the external forces acting at ti+1, the contact forces should also be 

known at the end of the timestep. The Contact Dynamics models search for these contact 

forces with the help of an iterative solver (which has to be performed over and over again at 

every timestep, as the contact forces change with time).   

 

 The solver sweeps along all pairs of neighbouring or nearly contacting elements. 

When considering a given pair, an approximation is given based on the equations of motion of 

the pair (see the details below), so that the conditions assumed on the mechanical behaviour 

would be satisfied: no overlap; Coulomb-friction etc. Then a next pair is considered. After all 

pairs were swept over, the solver starts the pairs from the beginning, and it is repeated over 

and over again, until the next approximations are already sufficiently close to the previous 

ones. It means that the contact forces belonging to  ti+1 have been found, and the next time 

step can follow.  

 

 The length of the timestep can be relatively large in comparison to models using 

explicit time integration (e.g. PFC or 3DEC). As explained by Radjai and Richefeu (2009), 

the limit on the timestep length is given by the occurrence of cumulative numerical errors 

leading to undesired excess overlaps between the particles. They suggest that a typical value 

for time step length is 10
-4

 sec for a system that consists of 10
4
 rigid elements. 

 

 The approximation of the contact force in the pair (p, q) is based on the equations of 

motion of that pair. Before turning onto the details, a few notations have to be introduced:  

 

 For element p, reduce to the reference point all those forces (external and contact 

forces) acting at ti+1, except from the force expressed by element q through contact c:  
, _ ,

, 1 1 , 1:p no c p ext pk

red i i red i
pk pc

  


  f f f   . 

The 1f pk

i  contact force is only an actual approximation of the force indeed acting in contact pk 

at ti+1; it receives new and new values during the iterations. (At the beginning of the analysis 

of the time step the contact forces are approximated to be the same as their final, just 

determined values at the end of the previous time step, which is the same as the beginning of 

the just analysed timestep.) 

 

 Similarly, reduce all the forces acting at ti+1 on q – except from that force acting in qc 

– to the reference point of q:  
, _ ,

, 1 1 , 1:q no c q ext qk

red i i red i
qk qc

  


  f f f   , 

and collect the two vectors into a hypervector:  
, _

, 1, _

, 1 , _

, 1

:
p no c

red ipq no c

red i q no c

red i







 
  
 

f
f

f
  . 

Summarize the two transition matrices belonging to c into a hypermatrix: 

:
B

B
B

pc
pq

qc

 
  

 
 

and the matrices of inertia of p and q into a block-diagonal matrix, whose inverse is: 
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 
 

 

1

1

1
:

M 0
M

0 M

p

pq

q







 
 
 
  

  . 

Later the following two matrices will also be necessary:  

   
1 1

:M B M Bpq pqT pq pq 

   , 

and 

  
11

:M B M Bpq pqT pq pq


   . 

 

 And now the equations of motion of the pair (p, q) can be compiled. First, the 

equations belonging to the end of the time interval can separately be written as: 

 
, _

1 , 1 , 11

, _

, 1 , 11

1
p no c pcp p

red i red ipqi i

q no c qcq q
red i red ii i

t

  

 

   
   

    

f fv v
M

f fv v
 . 

 

Multiply both sides by BpqT  from the left:  

 

 

1 , _

1 , 1

1

1

1 pq pq pqT pq pq no c

i i red i

pqT pq pq pc

i

t



 





     

 

B M f

B M B f

 
 

(it was taken into consideration that 1 1f fqc pc

i i    ). After some rearrangements:  

    
1 1, _

1 , 1 1

pq pq pqT pq pq no c pq pc

i i red i it t
 

        B M f M f    . 

 

 It is easy to notice that on the left side the vector in the parentheses means that relative 

velocity which would occur in the contact at ti+1 if 1f pc

i  is zero, i.e. if there is no force in the 

contact. This vector will have a special importance in the forthcoming derivation, so a special 

notation is given to it:  

  1, _ , _

1 , 1:pq no c pq pqT pq pq no c

i i red it


    B M f    . 

The equations of motion can now be written as: 

 
1, _

1 1 1

pq pq no c pq pc

i i it


     M f   

where 1

pq

i   and 1f pc

i  are the unknowns. So the equations of motion give the relation between 

the unknown contact force and the unknown relative velocity belonging to the contact. This 

will be the starting point of the forthcoming calculations.  

 

 Finally the normal and tangential components of the relative velocity vector of the 

contact will be needed:  

;n npq T pq pq pq pq

n tw n         

(Remember that pq  denoted the velocity of the material point pc  relative to the material 

point qc. Hence a positive pq

n  means increasing gap between the two material points.) Since 

the vector , _

1

pq no c

i  belonging to the time instant ti+1 can directly be calculated from the already 
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existing approximations of all other contact forces except from c, the components , _

, 1

pq no c

n i   and 

, _

, 1

pq no c

tw i  can also be determined, while the components of the vector 1

pq

i   are unknowns. 

 

 The unknown  1

pq

i   and 1f pc

i   vectors are determined in three steps:  

Step 1. First decide whether the two elements will be in contact at ti+1 : calculate how 

large will the gap be between them, assuming zero contact force:  
, _ , _

1 , 1

pq no c pq pq no c

i i n ig g t      . 

A positive result means that there will be no contact at ti+1 , and the analysis of another 

pair can immediately follow. A negative result, on the other hand, means that without 

a contact force the elements p and q would overlap, so an f
pc

 contact force is needed to 

avoid the overlap. In this case Step 2. follows.  

Step 2. The contact force should modify the velocities of the two elements in such a 

way that instead of overlapping, they would exactly touch each other at the end of the 

time step. In Step 2. the aim is to determine 1f pc

i  that satisfies the following two 

conditions:  

(i) at ti+1 the gapwidth between p and q is exactly zero:   

, 1 0pq pq

i n ig t    

(ii) the contact does not slide, so the tangential component of the relative translation is 

zero: 

, 1 0pq

tw i    

To satisfy these two conditions, the relative velocity of the contact should be:  

1

1
npq pq

i ig
t

    


 

(the negative sign means that if the gapwidth was larger than zero, then p should get 

closer to q to touch it).  

 

The 1f pc

i  has to be such a force that if continuously acting between p and q during (ti, 

ti+1), at  ti+1 the relative velocity would be just equal to 1

pq

iμ . From the equations of 

motion, this force turns out to be equal to:  

, _

1 1

1 1pc pq pq pq no c

i i ig
t t

 

 
    
  

f M n   . 

Now the question is whether this force violates the constitutive conditions. There were 

two conditions on the components of the contact forces. The first one required the 

normal force a compression. This is automatically satisfied because of Step 1. The 

second one was the Coulomb-condition:  

1 1Tpc pc

i iN    

If this holds for the calculated 1f pc

i , then the analysis of the (p, q) pair is ready, and a 

next pair can follow. However, if the tangential component exceeds the friction limit, 

then the calculated contact force cannot be transmitted in the contact: the contact 

slides, which means that the tangential component of 1

pq

i   is not zero, and the 

calculation based on zero tangential component should be corrected. This correction is 

done in Step 3.  

Step 3. In a sliding contact the tangential force component has to satisfy the following 

to conditions, and – as the third condition – the equations of motion:  
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(i) The contact is sliding, so the magnitude of the tangential force component is equal 

to the Coulomb-limit:  

1 1Tpc pc

i iN    

(ii) The direction of the tangential relative velocity is just opposite to the direction of 

the tangential force component:  

, 11

1 , 1

T

T

pqpc
tw ii

pc pq

i tw i







 

   

(iii) the equations of motion: 

, _

1 1 , 1

1 1pc pq pq pq no c pq

i i i tw ig
t t

  

 
     

  
f M n    

From these conditions the unknowns 1f pc

i  és 1

pq

i   can be calculated, and the analysis of 

the (p, q) pair is ready. The next pair can follow.  

 

 These calculations introduced above give an approximation for the contact force in a 

pair, assuming that all other contact forces are unchanged and keep their values last 

approximated. When turning to the next pair, the latest approximations in other pairs are 

applied. Proceeding from pair to pair this way, an approximation is received for the whole 

system of contact forces. By sweeping through the complete set of contacts and nearly-

contacting pairs over and over again, the results (at least, hopefully) get closer and closer to 

what should really exist at ti+1. (Note that convergence is still an open issue: a precise proof 

does not exist in the literature.) The modifications caused by the consecutive iteration cycles 

cause smaller and smaller modifications in the contact forces; and the iteration can be 

terminated as the modifications decrease under a prescribed threshold. Now the state 

belonging to ti+1 has been found, and a new time step can be analysed. 

 

 The order according to which the pairs are considered within an iteration step is 

random; the only requirement is that every pair should be considered once. In the next 

iteration steps the ordering is different, prescribed also by a random number generator.  

 

 If the same problem is analysed twice, by starting the random number generator from 

two different initiations, the two resulting contact force systems will be different. This non-

uniqueness of the solution has been emphasized by e.g. Jean (1999) or Moreau (2006). 

Indeed, for a statically highly indeterminate system several equilibrated force systems can be 

found, and without the flexibility data the “correct” one cannot be selected. In addition, the 

possibility of frictional sliding makes the solution history dependent. Moreau (2006) gave a 

very interesting discussion on the non-uniqueness of the solution. However, experiences on 

granular assemblies, e.g. Radjai and Richefeu (2009), show that though the order of the pairs 

greatly affect the individual contact forces and even the topology of the system, the overall, 

“macro” characteristics like average stress tensor or frequency diagram of contact force 

magnitudes remain the same, apart from slight statistical deviations. This conclusion might be 

valid for masonry systems too, but the existing investigations up to the present are still 

insufficient to draw reliable conclusions. 
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8.5 Modelling with deformable elements 
 

8.5.1 Elements and contacts 
 

 Blocks in NSCD can be made deformable either by applying a uniform strain field in 

the whole block (like in DDA), or by using a finite element subdivision inside the blocks. 

Koziara and Bicanic (2008) presented the possibility to apply uniform-strain blocks. They 

used the term “pseudo-rigid bodies” to the approach, and suggested it as an intermediate 

model between perfectly rigid blocks and FEM-divided bodies. A finite element subdivision 

seems to be more appropriate for practical problems particularly in the case of complex block 

shapes or significantly varying stress fields inside the blocks.  

 Jean (1999) applied uniform-strain finite element subdivision as the simplest 

possibility for FEM meshing. A two-dimensional illustration is shown in Figure 5: a 

rectangular block is subdivided into eight uniform-strain triangular elements.  

 

 

 

 

 

 

 

Figure 5.  

Deformable 2D block consisting of triangular finite elements: 

: nodes;  : potential contact points 

 

The mass of the element is distributed to the nodes (denoted by empty dots in Figure 5). The 

degrees of freedom are the translations of these nodes, which means that nodal rotations are 

not considered in the model: the usual strain field of classical continua is the basis of stress 

calculations (no Cosserat- or other non-classical continua are applied).  

 The equations of motion of a node specify the relations between the translational 

accelerations of the node, and between the forces reduced to the node: 

  mass-proportional forces (e.g. selfweight); 

  external loads (including velocity-proportional forces like drag force); 

  contact forces acting on any face belonging to the analysed node; 

  internal forces: effect of stresses inside elements belonging to the analysed node. 

The determination of the point where the contact forces act on the considered element is a 

crucial issue. Instead of performing a detailed analysis of the force distribution along the 

contact surfaces, a simplified approach is used. Dark dots in Figure 5 denote the candidates 

for contact points with neighbouring faces. They are chosen to be in the centre of the finite 

element face. Their actual position can be linearly interpolated from the nodes forming the 

face where the candidate contact point is located. If such a candidate touches a neighbouring 

face, contact forces act on the element at this contact point. The contact forces are then 

reduced to the nodes, according to the usual way at uniform-strain finite elements.  

 Note that LMGC90 offers more sophisticated FEM meshing options too (Dubois and 

Mozul, 2013), and in those cases the interpolation of contact point position and the reduction 

of the contact force become more complicated. 
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8.5.2 The non-uniqueness of the solution 
 

 Similarly to the rigid-element case, the equations of motion of the whole system of 

deformable blocks at a time instant t can be written in the following general form:  

( ) ( ) ( ) ( ) ( )t t t t t   Ma Cv K u f . 

In this expression the meaning of the terms are as follows: 

 u(t) is the hypervector containing the nodal translations from an initial 

deformation-free configuration to the actual nodal positions at t; 

 v(t) and a(t) are its first and second time derivatives (hypervectors of nodal 

velocities and nodal accelerations respectively); 

 K(t) is the stiffness matrix expressing the elastic properties of the finite elements: 

its j-th column contains the opposite of nodal forces which arise when a unit 

translation is introduced at the j-th scalar of u(t); 

 C(t) is the damping matrix: its j-th column contains the opposite nodal forces if a 

unit velocity occurs at the j-th scalar of v(t); 

 M(t) is the block diagonal mass matrix that consists of as many blocks as the 

number of nodes, every block in it is a diagonal matrix containing three elements each 

of which being equal to the mass assigned to the corresponding node; 

 f(t) is the hypervector of the external loads and contact forces reduced to the nodes. 

 

Assuming that: (i) the structure is statically indeterminate or, at least, determinate, (ii) sliding, 

cracking or other abrupt changes of material behaviour can be excluded during u, (iii) u is 

so small that K remains approximately the same as in the initial configuration, and (iv) loads 

are quasi-static, then since the stiffness matrix is invertible and constant, the iterative solver 

introduced in Section 2.4 corresponds to a Gauss-Seidel relaxation solution of the equilibrium 

position corresponding to the given loads. In this case the solution would be unique. If the 

structure is kinematically indeterminate but nonlinearities do not occur, then K is singular 

(though constant), and for general quasi-static loads the iterative solver does not lead to an 

equilibrium state but to an accelerating motion of the elements. (This phenomenon can 

characterize only an initial, small-displacement range of the behaviour.) Large displacements 

led to the gradual modification of K. When sliding, contact cracking, or other dissipative 

material nonlinearities occur, K varies, and the solution becomes history-dependent and non-

unique. In this case (similarly to the rigid-element case) repeated solutions of the same 

problem may differ from each other. Even if the system converges to an equilibrium, there are 

various paths of motions possible, and they typically lead to different equilibrium states. The 

user should be aware of this feature of Contact Dynamics. Acary and Jean (2000) discuss the 

problem and suggest a few possibilities to deal with the issue. 

 

 

8.6 Applications 
 

 The Contact Dynamics Method has been rather popular among physicists studying 

granular dynamics problems (e.g. Daudon et al, 1997; Radjai et al, 1998; Unger et al, 2004). 

In the field of masonry mechanics most applications are related to seismic simulations, though 

a few examples on quasi-static analysis can also be found in the literature as shown by the 

applications below. 

 

 Chetouane et al (2005) applied the Contact Dynamics method for the simulation of 

Pont Julien, a 1
st
-century BC roman bridge in South France, in Vaucluse. They built a 2D 

model with dry frictional contacts, and compared the results provided by the rigid-element 
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and the deformable-element modelling approaches for quasi-static case. The load was the 

selfweight of the structure. Principal stress directions, hydrostatic stress components and 

contact states were compared. They found that while the computation time was definitely 

longer, deformable elements provided more realistic results. The 3D analysis of the same 

bridge under the effect of flood was published in Rafiee and Vinches (2013). The selfweight 

of those parts of the structure being under water level was decreased according to buoyancy, 

and increasing crosswise horizontal forces acting on the pillars at different levels were tested. 

A variety of failure mechanisms were revealed. 

 

 Raifee et al (2008a) modelled the Roman aqueduct in Arles, near Fontvielle, France. 

The aqueduct was collapsed, but the reasons of the failure were unknown. 3D rigid elements 

with dry frictional contacts were applied in the NSCD model of the aqueduct. Starting from 

an assumed undamaged initial geometry of the structure, selfweight and then sinusoidal 

seismic excitations were applied. The dynamic effects produced a cracked state of the 

structure, whose similarities to the in situ state suggested that a seismic event could be the 

reason of the destruction of the structure around 150 AD.  

 

 Rafiee et al (2008b) prepared 2D and 3D models of the amphitheatre in Nimes, one of 

the most beautiful and best preserved Roman arenas. The elements were rigid and deformable 

in their 2D models, and rigid in the 3D model, with dry contacts in all cases. In addition to 

selfweight, an artificial seismic vibration was simulated. The most vulnerable parts of the 

structure could be identified this way, so that a future restoration can take this knowledge into 

consideration. The amphitheatre was analysed a few years later by Bagnéris et al (2013), also 

with LMGC90. Rigid 3D elements were applied to model a similar part of the arena as in 

Rafiee et al (2008b). In Bagnéris et al (2013) the results provided by the rigid-element model 

were then applied to an individual block at the bottom of a pillar, and the behaviour of this 

block was simulated by using deformable elements in a linearly elastic FEM model. The 

pressure acting on this block along its boundaries was made non-uniform in the FEM 

analysis, in different ways (a peripheral support and surface roughness was produced by 

randomly translating the position of the FEM nodes perpendicularly to the surface). The 

results show that at some locations the magnitude of principle stresses could increase with 1 

or even 2 orders of magnitude because of the contact surfaces being not perfectly planar. This 

phenomenon may lead to local damages that may modify the distribution of the internal forces 

in the structure provided by the NSCD calculation. (The authors also considered the effect f 

water infiltration, but that analysis is already out of the scope of an introduction to the NSCD 

method.)  

 

 Isfeld and Shrive (2015) modelled the cross-section of the wall of Prince of Wales Fort 

(built in the early 18
th

 century) in Canada. The external part of the wall is made of cut stones 

lying on each other on approximately planar faces, while the core of the wall consists of 

ribble-like uncut stone pieces. The old mortar between the stone blocks degraded, weakened 

and was washed out during the centuries. In the model the external stones were represented by 

rigid polygons and the core consisted of rigid circular elements. The contacts were cohesive: 

the normal and shear strength were set to several different values in the different tests, and for 

every case the walls were tried to be equilibrated under selfweight. It was decided this way 

whether for the different joint material parameters the walls were stable or unstable. (The 

typical failure modes were also determined.) The authors concluded that stability could be 

improved by injecting grout into the walls. 
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 Lancioni et al (2013) analysed a medieval Italian church, Santa Maria in Portuno. 

After its enlargement in the 11
th

 century, the building had a nave and two aisles. For today 

only the nave remained, and one of the aims of the numerical analysis was to verify whether 

the collapse of the aisles could be caused by a 13
th

-century earthquake in the region. The 

authors applied rigid 3D polyhedral elements with dry frictional contacts. The geometry of the 

structure was reconstructed from the ruins that were found on the site. The model consisted of 

four macro-elements, corresponding to the following four main components of the structure: 

(1) the façade, (2) a longitudinal wall of the nave, (3) and external wall, and (4) the three 

apses. The 2009 L’Aquila earthquake was simulated. The analysis pointed out the most 

dangerous collapse mechanisms, and conclusions could be drawn regarding the expedient 

reinforcement of the structure. 

 

 Though the above examples demonstrate that the Contact Dynamics technique is able 

to simulate practical problems in an apparently realistic way, most of the applications up to 

now are poor in (or completely lack) a quantitative validation of the applied numerical model. 

An industry-inspired attempt to improve this situation can be found in the recent publications 

Ceh et al (2015a, 2015b). The authors conducted laboratory experiments and SOLFEC 

simulations on the same problem: multiple-block stacks subjected to base accelerations were 

analysed in both ways. Well-documented experimental and numerical tests like this would be 

very valuable for engineers who plan to apply a Contact Dynamics software for practical 

problems. With more validation studies, and with sufficiently increasing hardware capacities 

in the forthcoming years, the Contact Dynamics method may become a powerful tool in the 

everyday engineering practice. 

 

 

Questions 
 

8.1. Write the equations of motion of a pair in CD, and explain the meaning of the quantities 

in it! How to reduce the contact force vector to the reference points of the two elements? 

How to express the relative velocity of the contact in terms of the velocity vectors of the 

two elements? 

8.2. Describe the mechanics of the contacts in CD!  

8.3. Explain the analysis of a time step in CD! How the “iterative solver” works? 

8.4. Explain the main idea of using deformable elements in CD! 

8.5. Why is the solution given by CD non-unique? 

 


