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9. INTERPRETATION OF THE RESULTS I.:  

GEOMETRY OF DISCRETE SYSTEMS  
 

 

9.1 Introductory remarks 
 

In the DEM models which apply perfectly rigid elements the output is rather difficult to 

interpret for an engineer who is used to the usual continuum-mechanical variables. These 

models provide a huge amount of discrete data like the displacements of each individual 

element, the contact forces in all contacts etc. In a system of several thousands of elements 

such a collection of data are practically meaningless in most cases. This is the reason why 

different microstructural state variables are often applied: these variables give an “averaged” 

impression on the geometrical, statical and kinematical state of the system.   

 

 This section will introduce the most important geometrical state variables, and gives 

the necessary geometrical background (i.e. the definition of the material and space cell 

system) for the statical and kinematical state variables to be introduced in Section 10.  

 

 

9.2 Microstructural variables for the geometry 
 

The geometrical state variables below can be calculated from data like the topological 

characteristics, positions of the reference points and the contacts, direction of contact normals 

etc. With the help of these variables phenomena like the densification of the system, the 

increasing degree of anisotropy etc. can be reflected. 

 

9.2.1. Porosity 

 Porosity means the relation of the volume of voids in the system (Vvoids) versus the 

total volume surrounded by the boundaries (Vtotal): 

voids total elements

total total

V V V

V V



   

Porosity in the commercial softwares can usually be calculated by using a built-in routine, so 

that the user could follow its value throughout the whole simulation of the analysed process. 

Before applying such a routine, the user has to check how the overlapped domains are taken 

into consideration. In reality the contacting grains, stone blocks etc. change their shape, and 

these contacting units share a part of their boundary which separates the two material 

domains. For perfectly rigid DEM elements, however, the contact is formed by two elements 

partially occupying the same part of the space. One possibility is to calculate the void volume 

as shown above: i.e. gross volume minus the sum of the volume of all elements. It means that 

the overlapping material domains are taken into consideration twice. PFC, for instance, is a 

counter-example: it considers the volume of these domains only once, and calculates the void 

volume in the following way: 
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where V
p
 is the volume of the p-th element, V

c
 is the volume of the overlapping domain at 

contact c, N and M are the number of elements and contacts respectively. 
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9.2.2. Coordination number 
 

 Coordination number is the average number of contacts per element. Let M
 p

 denote 

the number of contacts of element p; the coordination number is calculated like this: 

1

1 N
p

p

C M
N 

    . 

Note that in this summation the contacts formed by two elements in the analysed system are 

counted twice, while those between an element and the boundary (e.g. a wall supporting the 

system or another element outside the analysed collection of elements) is taken into 

consideration only once. Let  M
int

 denote the number of element-to-element contacts while 

M
ext

 is the number of element-to-boundary contacts. Using these notations, the coordination 

number is: 

2 int extM M
C

N


   . 

 

9.2.3. Fabric tensor 
 

A Satake-féle váztenzor 

 Consider a collection of M unit vectors in the 2D or 3D space. (Their position is 

indifferent; only their direction will have an importance.) Figure 1a. shows such a set. 

 

 

 

 

 

 

 

 

 

        Figure 1b. 

        Directional distribution of the  

Figure 1a.       contact normal in a gravitationally 

Unit normals in the space     equilibrated 2D granular assembly 

 

 The aim of the fabric tensor is to characterize the directional distribution of this set; in 

particular, to show whether there is a special direction about which a significant portion of the 

given vectors can be found. (If, for instance, a gravitationally deposited sand sample is 

analysed, there are more contact normals close to the vertical direction than to the horizontal 

direction; the aim of the fabric tensor is to point out this difference. Figure 1b. shows the 

directional distribution of the contact normals in a 2D granular assembly prepared by 

gravitational deposition.) 

 

 The definition of the fabric tensor is based on the dyadic product of every unit vector 

with itself:  

v v
c c c   

and the average of these dyads has to be determined: 
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1
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This average is the second order fabric tensor introduced by Satake (1978). Its most important 

characteristics are: 

 the tensor is symmetric; 

 the tensor is positive definite, i.e. all of its eigenvalues are positive; 

 as a consequence of the symmetry, its eigenvectors are perpendicular to each other; 

 its trace is equal to 1 which means that the sum of the eigenvalues is also 1; 

 if any of the vector is turned into the opposite direction, the fabric tensor will not change. 

In the special case of all of the vectors being parallel to each other, one of the eigenvalues is 1 

and the others are zero; the eigenvector belonging to the unit eigenvalue has the same 

direction as all the vectors. If all vectors are perpendicular to a common plane, then there is an 

eigenvector perpendicular to the plane and the corresponding eigenvalue is zero; the other two 

eigenvectors are parallel to the common plane and the sum of the corresponding two 

eigenvalues is equal to 1.  

 

 The fabric tensor can be visualized with the help of the fabric ellipsoid (fabric ellipse 

in 2D). The axes of the ellipsoid are parallel to the eigenvectors, and their length is equal to 

the corresponding eigenvalues. 

  

 If the set of vectors is biased in a direction (e.g. vertically in the above example in 

Figure 1b), then the eigenvector belonging to the larges eigenvalue shows this direction. The 

difference between the eigenvalues reflects the strength of the anisotropy.  

 

 In discrete element analysis the fabric tensor is mostly applied for the characterisation 

of the distribution of contact normals. Fabric tensors can be built on any other type of unit 

vectors, like e.g. the long axis of non-spherical elements, or the direction of the voids in a 

system etc. The interested reader is advised to consult the papers Oda (1982), Satake (1982), 

and Konishi and Naruse (1988). 

 

Weighted fabric tensors 

 The dyads belonging to the individual vectors can receive a weight which expresses 

some mechanical characteristic assigned to the vector. By using, for instance, the magnitude 

of compression force (N
c
) to weight the contact normals, a fabric tensor is received which 

particularly emphasizes the contact directions being important in carrying the compression in 

the system: 

1

1
v v

M
N c c c

c

N
M




    . 

The trace of this tensor is not 1, but equals to the average magnitude of contact compression, 

so this characteristic can also be followed during a simulation of loading processes. The l
c
 

distance between the centres of the two contacting elements ca also be applied as a weight: 

1

1
v v

M
l c c c

c

l
M




    ,  

and this way the resulting fabric tensor will emphasize the contacts of the large elements.  

 

Higher-order fabric tensors 

 Already in the 1980ies, researchers like e.g. Mehrabadi et al (1988) pointed out that 

the second-order fabric tensors are insufficient in some cases (e.g. if there are two 

characteristic directions of a system, in which case the second-order fabric tensor finds the 

“average” of the two directions). This was why higher-order fabric tensors were suggested. 

The fourth-order version is, for instance, defined as  
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4
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These versions can also be weighted. However, their application did not become widespread. 

 

 

9.3 The material cell system and the space cell system 
 

Now two cell systems (dual to each other) will be introduced; they will serve as the 

geometrical basis for the interpretation of stress and strain for discrete systems.  

 

 Consider N elements in the 2D or 3D space. Their shape is strictly convex, smooth, 

and they have point-like contacts with each other without overlaps. 

 

 

 

 

 

 

 

 

Figure 2. 

Distance of point P from element L  

 

 First the distance between a point P and an element L has to be defined. Find that pint 

on the boundary of the element which is closest to P. If P is outside the element, then this 

distance is understood as the distance between P and L. If P is on the boundary, then this 

distance is zero. Finally, if P is inside the element, then the opposite of the distance of P from 

the closest point of the boundary is understood as the distance between P and L; in this case 

the distance is negative.  

 

 The two cell systems will now be defined for 2D first, and then the 3D version will be 

shown. More details can be found in Bagi (1995), (1996).  

 

9.3.1. Two-dimensional analysis 
 

The material cell system 

 Consider all the points of the 2D plane of the analysis. Assign every point in the plane 

to that element from which the point has the smallest distance. The points belonging to the 

same element form the material cell of that element. Those points which have equally small 

distance from two or more elements are assigned to all of these nearest elements. 

 

 The common face of two material cells is a line consisting of those points which have 

equal distance from the two elements, but do not have a smaller distance from any other 

element. The points of the common face belong to both cells. These faces are, in general, 

curved lines. The intersection point of two faces necessarily belongs to the third face going 

through the same point: it is a point with equal distance from the three elements. (In special 

cases four or even more faces can have a common intersection point, which means that the 

intersection point has equal distance from these four or more elements.) The intersection point 

belongs to all the corresponding elements. These intersection points are the nodes of the 

material cell system.  

L 
P 
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Figure 3a. 

Points of the plane having     Figure 3b. 

equal distance from two elements:   The material cell system 

blue line 

 

 Add now an “element in the infinity” to the system: it is, by definition, the neighbour 

of all those elements which have an infinite material cell (so the “element in the infinity” can 

be thought of as the neighbour of the boundary elements). To visualize its meaning, imagine 

that the plane of the analysis is the surface of a sphere with an infinitely large radius; and the 

“element in the infinity” is on the back side of this sphere, opposite to the analysed assembly. 

At an infinite distance from the analysed assembly (on the “back side” of the very large 

sphere), the cells of the boundary elements have a common face with the cell of the “element 

in the infinity”, and there are common nodes defined in the usual way. Let the size of the 

“element in the infinity” be zero (point-like element is assumed), and its position coincides 

with the centre of gravity of the analysed assembly of elements.  

 

 Apart from the nodes and faces (i.e. a set with zero area), every point of the plane can 

uniquely be assigned to one element. So the plane is covered once by the material cell system.  

 

 In special cases a node may exist which belongs to four or more elements: four or 

more faces intersect in the same point. These coincidences have to be eliminated in the 

following way. Modify the geometry with an infinitesimally small disturbance, so that the 

speciality of the geometry would disappear. The multiple node splits up: new faces and nodes 

will appear, like those shown in Figure 4. Assign this new topology to the system.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 

Multiple nodes are split up 

 

 Depending on the applied disturbance, the multiple nodes can be split up in different 

ways, leading to different equally possible topologies. Any of them can arbitrarily be chosen.   
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The space cell system 

 The space cell system is dual to the system of material cells. To define it, consider 

now an assembly together with its material cell system (cells, faces and nodes, together with 

the “element in the infinity”, multiple nodes already split up). The nodes of the space cell 

system are, by definition, the centres of the elements. (Note that there is an exact one-to-one 

correspondence between the material cells and the space nodes.) Where two material cells 

have a common face, connect the corresponding two element centres with a straight section; 

these will be the edges in the space cell system. (Care has to be taken on not to forget about 

those material faces which exist only because the multiple nodes were split up; space edges 

do belong to these infinitesimal material faces too.) Finally, a node in the material cell system 

was formed by the intersection of three faces; the corresponding three space edges determine 

a cell in the space cell system. The space cells are triangles, and an exact oneto-one 

correspondence exists between the material nodes and space cells. 

 

 A positive or negative sign is also assigned to the space cells. Consider a material node 

and the corresponding space cell. In clockwise direction, go around the material node, and 

register the elements (i.e. the material cells) in the order they were visited. Do the same with 

the space cell: go around through its nodes in clockwise direction, and again, register the 

elements (i.e. space nodes) in the order they were visited. The space cell is positive if the 

elements were found in the same order; and negative if they were found in the opposite order. 

Figure 5a. shows a system with positive space cells only, while in Figure 5b. a system 

containing a negative space cell can be seen.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5a.      Figure 5b. 

Space cell system containing     Space cell system containing a negative cell: 

positive cells only     marked area is covered by the positive cell ABC,  

      the negative cell CBD, and the positive cell CDB. 

 

 The sign of the space cell will have two roles: the sign is assigned to the calculation of 

the area of the cells in 2D (negative space cell has a negative area), and to the analysis of how 

many time a point of the plane is covered by the space cells (a point is covered by (1)-times 

by a negative cell).  

 

 With these steps a space cell system can be prepared for any collection of strictly 

convex, non-intersecting elements. An important characteristic of this cell system is that the 

space cells cover every point of the 2D plane of the analysis exactly once, apart from a zero-

measure (i.e. zero area in 2D) domain.  
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 For elements of not very different size and not very elongated shape, every edge in the 

space cell system usually belongs to exactly two cells, both of them being positive, which 

means that they are on the two different side of the edge. In this case it is trivial that the space 

cell system covers the space exactly once (apart from the zero-measure set given by the edges 

and nodes). However, there are situations e.g. if there are significant differences in the 

element size (e.g. at least an order of magnitude), that some of the edges can be found in the 

system which belong to cells more than two, or two cells being on the same side of the edge. 

In this case some of the cells are negative. It can be proved (Bagi, 1997) that the points of the 

plane are covered by one more positive than negative cells (again apart from the set of the 

points of the edges and nodes). In this generalized sense we may say again that the space cell 

system covers the plane exactly once. 

 

9.3.2. Three-dimensional analysis 
 

The material cell system 

 The above definitions can be generalized for three dimensions. To prepare the 

material cell system, assign every point of the 3D space to the nearest element. The material 

cells uniquely correspond to the elements; the common face of two neighbouring cells consist 

of those points which have equal distance from the two elements being not larger than from 

any other element. The common faces are curved surfaces usually. The intersection of two 

faces (a curved line) consists of those points being at the same distance from three elements, 

so such an edge necessarily belongs to a third face also. (In special cases an edge may be 

formed by more than three faces; these special cases are treated by splitting up with the help 

of a random disturbance, similarly to the 2D case.) The nodes being formed by the 

intersection of four edges are at the same distance from four elements. 

 

 Add an “element in the infinity” to the system, similarly to the 2D case. This fictitious 

element has common faces, edges and nodes with those elements whose material cells are 

infinite, i.e. they are on the boundary.  

 

 

The space cell system 

 The space cell system is, again, based on the material cell system. The centres of the 

elements are the nodes, so exactly one space node belongs to every element (to every material 

cell). A common face of two material cells determine an edge in the space cell system: the 

corresponding two nodes are connected with a straight section. In the material system three 

faces meet on an edge; the corresponding three space edges determine a triangle, a face in the 

space cell system. Finally, four material edges meet in a material node; the corresponding four 

space faces form a space cell. The space cells are tetrahedral.  

 

 A positive or negative sign can also be assigned to the 3D space cells, and it can be 

proved that every point of the 3D space (apart from the zero-volume set of space edges and 

faces) are covered exactly once in the general sense applied above. The details will not be 

introduced here: they can be found in e.g. Bagi, 1997. 

 

9.3.3. The finite sub-assembly 
 

 A finite sub-assembly is a collection of elements all of them having a finite material 

cell (see Figure 6).  
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Figure 6.  

The material cell system and a finite sub-assembly in it 

 

 There are several different ways to construct a finite sub-assembly from a general 

collection of elements. It may consist, for instance, of one single element; or or it may be 

formed by two groups of elements completely separated from each other etc. The material cell 

system of the finite sub-assembly is the collection of those (obviously finite) material cells 

which belong to the elements of the finite sub-assembly. Its boundary is illustrated in red in 

Figure 6. The space cell system of the finite sub-assembly is formed by those space cells 

whose nodes all belong to the elements in the finite sub-assembly. On the right in Figure 6. 

such a space cell system is shown; it consists of only one space cell, in spite of containing one 

more space edge which does not take part in forming the only cell.  

 

 

 

Questions 
 

9.1. Explain the meaning of porosity and coordination number!  

9.2. Introduce the second-order fabric tensor of Satake, and explain its most important 

features! 

9.3. What other fabric tensors do you know? What can they be applied for?  

9.4. Define the distance between a point and an element! Introduce the material cell system!  

9.5. Introduce the space cell system!  

9.6. Explain the meaning of the negative space cells! What does it mean that the space cell 

system covers the space exactly once in generalized sense?  

9.7. Explain the meaning of the finite sub-assembly, and the definition of its material and 

space cell system!  

 


