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ABSTRACT 

This chapter presents a general overview of the combined finite-discrete element method (FEM/DEM) 

which is considered as a state-of-the-art technique for the mechanical analysis of masonry structures. 

In a FEM/DEM simulation each discrete element representing a stone block is discretised into finite 

elements in order to describe the deformability of the blocks. This chapter deals with the main steps of 

the FEM/DEM including contact detection, contact interaction, fracture and fragmentation 

algorithms, calculation of deformations and the time integration of the equation of motion. The 

FEM/DEM is advantageously used to simulate transition from continua to discontinua processes 

which may lead to the collapse of the structure. Some examples for practical applications found in the 

literature are mentioned. 
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INTRODUCTION 

The two basic types of mechanical models are the classical models of continuum mechanics and the 

models of discrete elements. The finite element method (FEM) is the most widely used technique to 

model continuum mechanical problems. On the other hand, the discrete element method (DEM) is able 

to describe discontinuum-based phenomena including the motion and interaction of individual 

particles. However in certain situations the two different phenomena arise at the same time, thus the 

development of a coupled numerical tool was required. Therefore, in the early 1990s the two above 

mentioned methods have been combined and the resulting method was termed the combined finite-

discrete element method (FEM/DEM). A typical combined finite-discrete element simulation 

comprises large number – thousands or even millions – of particles which are represented by a single 

discrete element. In FEM/DEM each discrete element is discretized into finite elements in order to 

describe the deformations of the blocks. Furthermore, the classical steps of discrete element method, 

including contact detection, contact interaction and time integration are applied to follow the motion 

and interaction of the individual particles. This method was implemented mainly to simulate so-called 

transition from continua to discontinua problems, including failure, fracture and fragmentation 

processes. Thus, detailed structural collapse simulations can be performed with the help of the 

FEM/DEM. These simulations can play a vital role in the design of structures against hazardous 

loading conditions. In this case the load bearing capacity of the structure can be determined, and the 

progressive collapse modes can be identified as well. Some examples for modelling transition from 

continua to discontinua problems can be found in (Munjiza, 2004, pp. 30-32). 
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The combined finite discrete element method can be an advantageous tool for modelling of masonry 

structures. Masonry is a heterogeneous structural material consisting of bricks joined by mortar layers. 

The numerical modelling of masonry structures - especially in the nonlinear range - represents an 

interesting challenge due to the extremely complex behaviour deriving from their semi-discrete, 

composite nature. Two different approaches exist for mechanical modelling of masonry structures, 

these are the micro modelling and macro modelling of masonry structures. In case of macro modelling 

approach, the structure is handled as an orthotropic continuum and the constitutive relations are 

described with the help of experiments and homogenization techniques. The serious disadvantage of 

this continuum-based approach is its inability to describe large discontinuities which occur during the 

collapse process. In order to ease this restriction contact elements may be implemented into the finite 

element mesh. This approach enables to consider the material nonlinearity where the constitutive 

behaviour of the contact elements are prescribed according to the theory of plasticity or damage 

mechanics. Unfortunately, even with the application of contact elements, the finite element method is 

unable to handle the mechanical interaction of several blocks. Due to this fact reliable collapse 

simulations including progressive failure modes cannot be carried out with the application of the FEM. 

However numerical models based on the combined finite-discrete element method have been 

developed for the analysis of such problems where the mechanical interaction between several 

deformable bodies must be followed. The FEM/DEM uses this previously mentioned joint element 

approach to describe the fracturing behaviour of an initially continuum-like solid block represented by 

a single discrete element. Therefore, in combined finite-discrete element simulations the number of 

discrete elements may vary during the collapse process. Since FEM/DEM includes contact detection 

and contact interaction algorithms, this technique is capable of modelling the mechanical interaction of 

several bodies.  

The appropriate computational modelling of the response of masonry structures must involve all of the 

fundamental mechanisms which affect the failure process, like the sliding and splitting of the blocks 

along the mortar joints and cracking of the individual units under certain stress conditions. The 

combined finite-discrete element method proved to be a very effective tool for the analyses of the non-

linear behaviour of masonry structures. The advantage of this method derives from the possibility to 

model the whole process of the structural response starting from the linear-elastic phase, followed by 

the non-linear range comprises crack initiation, crack propagation, and sliding effects. The motion and 

interaction of the particles are followed considering inertia effects until the final, state of rest situation 

is reached due to the energy dissipation of the structure. The FEM/DEM can be a very advantageous 

technique, particularly in case of cyclic loading situations, where the appropriate modelling of the 

creation of new contacts due to the redistribution of the system topology is a fundamental demand. At 

the end of this chapter several examples for analyses of structural response under cyclic loading 

conditions are mentioned. 

In the following sub-chapters the main processes of the combined finite-discrete element method are 

mentioned including contact detection, contact interaction, fracture and fragmentation algorithms, 

calculation of deformations, parallelization and the time integration of the equations of motion. 

Different modelling approaches and examples connected to the structural analysis of masonry 

structures are mentioned found in the literature.  

BASIC CHARACTERISTICS OF THE MECHANICAL MODEL 

This sub-chapter focuses on the basic characteristics of the mechanical model considered in a 

combined finite-discrete element simulation. In general, a FEM/DEM simulation may comprise a large 

number of arbitrary shaped deformable discrete elements. Each discrete element represents a 
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continuum, thus the deformations of the solid blocks are followed by classical continuum mechanical 

description (i.e. each material point has translational freedoms). Since the finite element method is 

applied to follow the continuum-like behaviour, each discrete element is discretised into finite 

elements (mentioning that usually constant strain triangle or tetrahedron elements are used). Therefore, 

the shape of discrete elements and their position in space at any time instance are given by the current 

coordinates of the finite element nodes: 

 

where  is the total number of degrees of freedom for a particular element. It means that n (i.e. the 

total number of the components of vector x equals the product of the number of finite element nodes 

and the number of translational freedoms corresponding to the nodes. Stresses can be calculated in a 

typical continuum mechanical approach, by using strain tensor and some kind of constitutive equation. 

During the calculation of the strains, usually small strains but large displacements and large rotations 

must be considered. After evaluating the stress field, the  vector of internal forces can be compiled 

by reducing the distributed internal forces to the finite element nodes following the finite element 

discretization. The velocity and acceleration fields over the discrete elements are described by nodal 

velocities  and nodal accelerations  given by: 

 

The interaction of neighbouring discrete elements is described by the contact detection and contact 

interaction algorithms. As a result of the mechanical interaction contact forces are evaluated between 

discrete elements. These contact forces can be assembled in  vector of external forces, which also 

includes the external forces acting on discrete elements directly. Again, the number of components of 

this vector equals n, therefore concentrated forces may act at finite element nodes in the direction of 

each degree of freedom. Additionally, the combined finite-discrete element method has the speciality 

that discrete elements can fracture and fragment, thus the number of discrete elements comprising 

problem may vary during the analysis. This fracturing behaviour is described by joint elements 

implemented into the finite element mesh. The mechanical behaviour of these joint elements is defined 

by the fracture and fragmentation algorithm. The forces transmitted through joint elements can be 

assembled in  vector.  

The applied mechanical model may include any kind of external or internal damping effects 

considering in damping matrix . Additionally, since the transient dynamic motion of discrete 

elements are analyzed, the equation of motion must include the inertia forces as well. Due to the finite 

element discretization the mass is also discretized. To reduce the computational challenge the most 

convenient way to discretize the mass is the so-called lumped mass approach. Here it is assumed the 



4 
 

mass is lumped into the nodes of the finite element mesh. Thus, the mass associated with each degree 

of freedom is given by: 

  

When combined finite-discrete element simulations comprise thousands or millions of discrete 

elements, then thousands or millions of separate finite element meshes are included as well. Referring 

to the computational challenge associated with large scale FEM/DEM problems, no stiffness matrices 

are calculated, and an explicit time integration scheme is applied on element-by-element, node-by-

node and degree of freedom by degree of freedom.  

Therefore, the equation of motion resulted in the following form - Eq. (4) - is solved for each element 

separately: 

 

Then, at each time step the following calculation steps are performed: 

(1) Evaluation of internal forces based on deformation of particles, 

(2) Evaluation of joint forces based on the deformation of joint elements, 

(3) Fracture of joints, 

(4) Contact detection, 

(5) Contact interaction (i.e. evaluation of contact forces), 

(6) Application of external forces, 

(7) Solution of the equation of motion for each discrete element separately. 

After the discussion of the basic characteristics of the applied mechanical model, the further sub-

chapters deal with most important steps of a FEM/DEM simulation in a more detailed way. Firstly, the 

main aspects of the applied contact detection algorithms are considered. 

CONTACT DETECTION ALGORITHM 

In case of a combined finite-discrete element analysis, the transient dynamics of a large number of 

deformable discrete elements are simulated. One of the key issues in the development of a FEM/DEM 

code is the realistic and efficient handling of mechanical contacts formed between the discrete 

elements. The treatment how the mechanical behaviour of contacts are simulated is based on the 

contact detection and contact interaction algorithms. 

In general, processing contact interaction of all possible contacts would involve a total number of 

computational operations proportional to the squared of the total number of discrete elements 

comprising the problem. In case of large-scale FEM/DEM simulations this would represent a huge - 

probably unsolvable - computational challenge, and would limit the application possibilities of 

FEM/DEM to the simulation of relatively small problems. Therefore, the main goal of contact 

detection algorithms is to reduce the CPU requirements of processing contact interaction, while 

contact detection itself must demand as small RAM and CPU requirements as possible. Contact 

detection algorithms reduce CPU requirements via two main steps, namely these have to eliminate 
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those couples that are far from each other and are surely not in contact and these have to detect all 

couples of discrete elements that are actually in contact. In case of a contact detection algorithm the 

CPU-, RAM efficiency and its easy implementation are the most important requirements beside its 

robustness.  

Emphasizing the importance of CPU efficiency, contact detection algorithms can be classified 

according to the proportion how the CPU time depends on the size of the problem. Generally 

speaking, classical contact detection algorithms of discrete element method (for instance the body-

based search technique) belong to the group of Hyper-linear contact detection algorithms meaning 

that the necessary CPU time increase faster than the size of the problem (i.e. number of discrete 

elements). Nowadays linear contact detection algorithms are used in combined finite discrete element 

simulations meaning that the CPU time is a linear function of the number of discrete elements 

comprising the problem. The first such an algorithm was implemented in (Munjiza, Owen, & Bicanic, 

1995) and called Munjiza-NBS contact detection algorithm.   

The NBS contact detection algorithm is based on space decomposition, where the space is subdivided 

into identical square cells as it is shown in Figure (1). 

 
    Figure 1. Space decomposition in Munjiza-NBS contact detection algorithm. Source: Munjiza, 2004 

Discrete elements are assigned an integer identification number and similarly each cell is assigned an 

identification couple of integer numbers. Afterwards each discrete element is mapped onto cells, 

meaning each element is assigned to one and only one cell. Additionally, mapping of discrete elements 

onto columns and rows are performed. A discrete element is said to be mapped to a particular 

row/column of cells if it is mapped to any cell from that row/column. The CPU and RAM efficiency 

of Munjiza-NBS contact detection algorithm derives mainly from the way how it represents the 

mapping between discrete elements and cells, namely singly connected linked lists are used here. The 

representation of mapping is performed in two stages, starting with mapping of all discrete elements 

onto the rows of cells, and a singly connected list is formed for each row as it is shown in Figure (2). 
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    Figure 2. Singly connected lists for rows of cells. Source: Munjiza, 2004 

We note that the digital representation of each list are achieved through two integer arrays. Further 

details can be found in (Munjiza, 2004, pp. 73-129). In the second stage, the mapping of discrete 

elements to individual cells are performed. After the elements were mapped onto cells, the contact 

detection is accomplished by checking all the discrete elements mapped to a particular cell against all 

discrete elements in neighbouring cells. It is important that only discrete elements from neighbouring 

cells can touch each other, thus for each element it is enough to check against discrete elements 

belonging to neighbouring - non-empty - cells. The contact detection is performed by employing a 

loop over discrete elements. Number of operations carried out inside the loops do not depend upon the 

number of discrete elements, therefore the total CPU time taken to detect all the contact is proportional 

to the total number of discrete elements. In the Munjiza-NBS contact detection algorithm no loop over 

cells is involved, which causes that the total CPU time is independent of the total number of cells. It 

means that the necessary CPU time does not depend either on the size of the finite space where the 

discrete elements are distributed or on the packing density. We mention that Munjiza-NBS contact 

detection algorithm can be generalized to 3D space as well. This step requires the mapping of all 

discrete elements onto layers of cells in z-direction too.    

It should be mentioned that even though the contact detection operations could be done in each time 

step, it would be very expensive for CPU time point of view. Therefore, a so-called buffer can be 

introduced. The frequency of contact detection analyses can be controlled through the size of the 

buffer, since the contact detection process is performed only if the maximum travelled distance 

exceeds the size of this buffer. 

Nowadays a whole range of contact detection algorithms is available for large scale combined finite-

discrete element simulation. In general, there is not an exact answer to which is the best contact 

detection algorithms, hence further consideration about the selection of the applied contact detection 

algorithm may be necessary. The screening array based contact detection algorithm is one of the most 

efficient algorithm from CPU time point of view, however it demands enormous RAM requirements. 

The sorting contact detection algorithm is very efficient in terms of RAM requirements, but this 

algorithm belongs to the group of hyper-linear contact detection algorithms, meaning that for very 

large scale problems CPU times may be prohibitive. In terms of CPU requirements, the Munjiza-NBS 
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contact detection algorithm is more efficient than the binary search based contact detection 

algorithms or the sorting contact detection algorithms. Although, it uses less RAM space than the 

binary search based algorithm, the sorting contact detection algorithms are a little bit more efficient 

in terms of RAM requirements. We note that the Munjiza-NBS contact detection algorithm and the 

sorting contact detection algorithms have RAM requirements proportional to the number of discrete 

elements. Eventually, the author mention that some further effective and new contact detection 

algorithm can be found in the literature, referring to papers (Munjiza, Rougier, & John, 2006) and 

(Schiava D'Albano, Munjiza, & Lukas, 2013). 

CONTACT INTERACTION ALGORITHMS 

As it has been mentioned earlier, in case of combined finite-discrete element simulations it is 

absolutely essential to have an efficient and robust algorithm for handling mechanical contacts. Once 

elements in contact are detected due to the applied contact detection algorithm, a contact interaction 

algorithm is employed to evaluate the contact forces. Therefore, contact interaction is the 

mathematical model to compute the penetration of a discrete element into another discrete element. 

After calculating the penetration, contact forces are evaluated using certain constitutive relations. In 

case of FEM/DEM applications the treatment of contact interaction has a special importance. Since a 

combined finite-discrete element simulation may contain millions of deformable separate bodies which 

can fracture and fragment, the topology and even the size of the problem change continuously, thus 

handling of contacts defines the constitutive behaviour of the system. Therefore, special attention must 

be paid on contact kinematics and robustness in order to obtain realistic distribution of contact forces 

and energy balance.  

In case of algorithms based on so-called concept of the contact element described in (Munjiza, Owen, 

& Bicanic, 1995) these requirements are not satisfied entirely. When the overlap of discrete elements 

in contact exceeds the contact layer, the energy balance is not preserved and the same is true when 

new surfaces are created due to fracture and fragmentation processes. Furthermore, in this concept 

concentrated contact forces are considered, which causes stress and strain concentrations near the 

boundary of elements. These stress concentrations may result in significantly unrealistic fracture and 

fragmentation behaviour especially in case of brittle materials.    

Recognizing these phenomena the so-called potential field-based penalty function method was 

introduced (Munjiza & Andrews, 2000). Here the basic assumption is that when two bodies in contact 

penetrate each other, this penetration results in a contact force. For further calculations, a standard 

contact functional was implemented in the following way: 

 

where  is the penalty term while  and  are position vectors of the points on the  overlapping 

boundaries of the target and contactor bodies, respectively. In case of infinite penalty terms no 

penetration would occur, however large penalty term may cause numerical problems, thus in practical 

applications the penalty function method usually works with overlaps between discrete elements in 

contact. In this potential contact force concept distributed contact forces are considered which are 

evaluated from the shape and the size of overlap between the so-called contactor and target elements 

which form the contact. It is assumed that in the situation of elementary penetration where the 

overlapping area is , an infinitesimal contact force arises given by: 
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where df is the infinitesimal contact force, due to the overlap  defined by overlapping points  - 

belonging to the contactor - and  - belonging to the target. As it is shown in Eq. (6), the contact can 

be viewed firstly as the elemental area of the contactor penetrating the target and then the elemental 

area of the target penetrating the contactor. The previous formula also shows that the contact force can 

be calculated as the gradient of the corresponding potential function, thus contact forces form a 

conservative vector field. Due to this fact, if point  of the contactor element penetrates the target 

through any path defined by end point  and , the total work of the contact force does not depend on 

path but on the end points only and it is given as . 

 
Figure 3 Contact force due to an infinitesimal overlap around points  and  

Source: Munjiza, 2004 

An important aspect is that when point  and  are placed on the boundary of the target discrete 

element, a contact-contact release situation arises, when the energy preservation law requires that no 

work is done by the contact force, ie.: 

 

Therefore, if Eq. (7) is valid for every arbitrary boundary points of the contactor and target elements, 

then the contact force given by Eq. (6) preserves the energy balance regardless of the geometry or the 

shape of the contacting elements, the size of the overlap or the value of the penalty term. Afterwards 

the total contact force is obtained by integrating the elementary forces defined in Eq. (6) over the 

overlapping area  as it is shown in Eq. (8). 

   

This integral can be transformed into a line integral over the boundary of the overlapping area : 

 

where  is the outward unit normal to the boundary of the overlapping area. 
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Since in the FEM/DEM individual discrete elements are discretized into finite elements, the previous 

integrals can be represented by the summation over finite elements as it is shown in Eq. (10) and Eq. 

(11). 

 

 

Hence, the contact force between overlapping discrete elements can be calculated by a summation 

over the edges of corresponding finite elements that overlap. 

We mention, that in 3D the integral over the overlapping volume must be performed as it is shown in 

Eq. (12). 

 

By replacing integration over finite elements by equivalent integration over finite element boundaries, 

the following equation for contact fore is obtained: 

 

Thus, the contact force between overlapping discrete elements is calculated by summation over the 

surfaces of corresponding finite elements that overlap, where  is the outward unit normal to the 

surface of the overlapping volume. 

As a summary, it was shown that using contact interaction algorithm based on the potential field-based 

penalty function method has several advantages. It works with distributed contact forces, thus no 

artificial stress concentrations arises due to the contact, which would cause unrealistic  fracturing  

behaviour. Furthermore, these algorithms satisfy the energy preservation which is an essential 

requirement in simulating physical behaviour properly. Due to this fact, the application of any kind of 

artificial damping is unnecessary. This potential force concept allows easy sliding between contact 

surfaces, and accurate representation of the physical contact conditions onto which friction, sliding, 

plasticity, surface roughness, wet-dry conditions, etc. can be incorporated following relatively simple 

rules of potential distribution over the finite element. This technique uses only the data supplied in the 

in-core database for contact free finite element analysis and it is easily linked to contact detection 

algorithm such as Munjiza-NBS contact detection algorithm. The algorithm does not require detection 

of boundary surfaces and the contact force is discretised with the same algorithm and the same piece 

of code, regardless of the shape of discrete elements thus, algorithmic complexities are greatly 

reduced. All of these reasons lead to fact that this type  of contact processing is in general faster than 

alternative solutions. For further details we refer to the book (Munjiza, 2004, pp. 35-72). 

DEFORMABILITY OF ELEMENTS 
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As from the basic idea of the combined finite-discrete element method follows, the continuum 

behaviour (i.e. the deformability) of discrete elements are described with the means of the finite 

element method. Each discrete element has its own finite element mesh which is able to follow the 

deformations of the discrete element. Furthermore, as it was shown earlier, the finite element 

discretization of individual discrete elements describes the contact conditions between discrete 

elements due to the discretization of the distributed contact forces.  

To describe the deformations of discrete elements, the classical equations and tensors of the 

continuum mechanics are used. Therefore, the current coordinates x of material points having 

reference position vector p can be written as: 

 

where  is the displacement of material point. Deformations are described with the help of a strain 

tensor calculated from the deformation gradient tensor : 

 

Typically, in a FEM/DEM simulation the well known strain measures of continuum mechanics for 

instance, the right- and left Cauchy-Green, Green-St. Venant, Almansi-Hamel strain tensors, etc. are 

used. Although in most cases it is enough to consider small strains, it is very important to note that in 

FEM/DEM simulations large displacements must be followed. In such a case when the stretches are 

small but the rotations and displacements are large it is practical to decompose the deformation 

gradient tensor in the following way: 

 

where  is the right stretch tensor,  is the left stretch tensor and  is the orthogonal rotation tensor. 

Following the polar decomposition of the deformation gradient tensor, the right Green-St. Venant 

strain tensor  can be expressed as: 

 

The application of  right stretch tensor physically means that the material is first stretched in the 

principal directions and it is followed by the rotation. The reverse procedure can be performed by 

using the left stretch tensor . Here the left Green-St. Venant strain tensor is applied as: 

 

In this case, the rotation occurs first, then the stretches already occur in the principal directions of the 

rotated configuration. 

In order to measure the stress variables the Cauchy, First- or Second Piola-Kirchhoff stress tensors 

can be applied. In the calculations some kinds of constitutive relations are applied which make 

connection between stresses and strains and contain failure criteria. Discussion of further details about 

the typical steps of continuum mechanics is out of the scope of this chapter. Additional details can be 

found for instance, in (Munjiza, 2004, pp. 131-177) and (Belytschko, Liu, & Moran, 2000, pp. 75-

137).  
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Since the finite element discretization is also used to process contact interaction, in general, it is 

important to employ as simple geometry of finite elements as possible in order to obtain efficient 

contact interaction algorithm. Due to this fact, mainly constant strain triangle finite elements are used 

in 2D and constant strain tetrahedron elements are used in case of 3D analyses. However in case of 

relatively incompressible solids, locking problems are associated with these linear finite elements 

which can seriously degrade the accuracy of  the simulations. Therefore, in the paper (Xiang, Munjiza, 

& Latham, 2009), finite strain, finite rotation quadratic tetrahedral elements were implemented into the 

FEM/DEM.  

FRACTURE AND FRAGMENTATION ALGORITHMS 

The appropriate modelling of transition from continua to discontinua processes including fracture and 

fragmentation plays an essential role in a FEM/DEM analysis. In order to describe these phenomena 

so-called fracture and fragmentation algorithms are used which handle the creation of new boundaries 

and new discrete elements under certain loading conditions.  

A fracture and fragmentation algorithm is responsible to solve several tasks. Namely, it has to describe 

the conditions under crack initiation appears, and the way how it propagates. During the crack 

propagation remeshing is necessary, thus variables must be transformed from the old mesh to the new 

one. Additionally, released internal forces must be replaced with equivalent contact forces. 

Several different approaches exist how to perform the analysis of cracks. The global approach is based 

on the representation of the stress singularity at the crack tip. This singularity can be characterized by 

the energy release rate . However local approaches usually apply a smeared crack approach, where 

the crack is replaced by a blunt crack band and the crack propagation processes are described with the 

help of constitutive laws or formulations of damage mechanics. Furthermore, the single crack 

approach considers a plastic zone at the crack tip, and the plastically strained material is replaced by a 

zone of weakened bonds between the crack walls. In the combined finite-discrete element method a 

fracture based softening plasticity framework is applied, where the energy dissipation is considered 

through a mesh size dependent softening modulus as it is detailed in (Munjiza, Owen, & Bicanic, 

1995). After further research (Munjiza, Andrews, & White, 1999) the combination of smeared and 

single crack approaches was implemented. The aim of this coupling was to model multiple-crack, and 

progressive fracture situations. In this combined single and smeared crack model the strain-hardening 

part of the stress-strain curve is considered through constitutive laws, while the strain-softening part is 

treated by the softening stress-displacement relationship being implemented through the single crack 

model as it can be seen in Figure (4). In this approach, the plastic zone is represented by bonding 

stress being the function of crack opening. 
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Figure 4 Plastic zone represented by bonding stress being a function of crack opening 

Source: Munjiza & John, 2002 

The separation begins when bonding stress  is equal to the tensile strength . With increasing 

separation  the bonding stress decreases and at separation  the bonding stress drops to 

zero. The value of bonding stress for separation  is given by 

 

where  is the scaling (softening) function given by 

 

where the variable  is given by 

 

Using Eq. (20) for the determination of scaling (softening) function , the bonding stress will 

approximate the experimental stress-displacement curve, while the parameters ,  and  are obtained 

by curve fitting (Munjiza, Andrews, & White, 1999). In FDEM the joint element acts as a bond 

between edges of two triangular finite elements. These bond represents the fracture mechanism termed 

as a combined single and smeared crack model (Munjiza, Andrews, & White, 1999).  

Due to the finite element discretization of the governing equations, an approximated stress and strain 

field near the crack tip can be obtained. It was shown in (Munjiza, Andrews, & White, 1999), that in 

order the get accurate results a very fine mesh is required near the crack tip, namely the size of the 

finite elements must be much smaller than the actual size of the plastic zone. It is important to note, 

that the combined single and smeared fracture algorithm is sensitive to the size of the finite elements 

situated in vicinity of the crack tip. In case of a very fine mesh, accurate results can be obtained, but if 

a very coarse mesh is applied, then the calculated failure load tends to the failure load belonging to the 

uniform stress distribution, and even in case of applying intermediate size of elements, the obtained 
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critical load will be overestimated. Beside the enormous computational challenge caused by contact 

detection, contact interaction algorithms, and time integration, the fracture and fragmentation 

algorithms provides a huge computational task additionally, which – at least nowadays - may restrict 

the application of the combined finite-discrete element method in case of large-scale engineering 

problems.     

TIME INTEGRATION 

In order to reduce the CPU time, explicit time integration schemes may be applied. As it was 

mentioned earlier, the so-called lumped mass matrix approach is used, thus diagonal mass matrix is 

considered during the analysis. Furthermore, the assembling of stiffness matrix can also be avoided by 

using an explicit time  integration scheme. Traditionally, the central difference method has been 

employed to solve the equation of motion.  Since it is a conditionally stable technique, the stability and 

the required accuracy are achieved through reducing the size of the time step. As an alternative 

technique the Gear's predictor-corrector time integration schemes should be mentioned. These 

schemes always includes three stages, namely: 

- Prediction stage, where the positions of the elements are calculated at  using Taylor  

series based on positions and their time derivatives.  

- Evaluation stage, where the forces  are evaluated based on the position of the elements 

calculated in the prediction stage. From this force, the accelerations at  can be calculated, 

and difference can be determined between the predicted and the calculated accelerations.  

- Correction stage, where the predicted positions and its time derivatives are corrected using the 

discrepancy between accelerations calculated in the evaluation stage.  

It should be mentioned that in the book (Munjiza, 2004, pp. 203-208) further alternative explicit time 

integration techniques, for  instance CHIN,OMF30 and OMF32 integration schemes are detailed. All 

of these techniques can be used in a FEM/DEM simulation. The decision about which scheme should 

be used depends on their efficiency in terms of stability, accuracy and CPU time. In the book 

(Munjiza, 2004, pp. 208-211), a comparison analysis can be found for a single degree of freedom 

system. It was shown that although in some cases the higher order methods work with larger values of 

critical time steps, still the higher order methods not necessarily faster than lower order schemes. This 

conclusion is especially true in case of large scale systems, where contact detection, contact 

interaction, fracture and fragmentation may be involved, and higher order schemes require multiple 

force evaluation which is much less efficient than lower order methods.  

PARALLELIZATION 

As it has been mentioned, the limitation of FEM/DEM is that it is CPU-intensive, thus it is difficult to 

analyze large scale problems on sequential CPU hardware. Therefore, researches (Owen, Feng, Han, 

& Peric, 2000), (Owen & Feng, 2001), (Wang, Feng, & Owen, 2004)] were carried out in order to 

implement the possibility to use high-performance parallel computers. In all those studies, a 

master/slave approach was adopted meaning that one master processor was performing domain 

decomposition and load balancing tasks, then distributing work to slave processors. Some general 

strategies for parallelization of FEM/DEM are described in (Munjiza, Knight, & Rougier, 2012). Later, 

other versions appeared as static domain decomposition (Schiava D'Albano, 2014), hardware 

independent FEM/DEM parallelization framework by using virtual parallel machine (Lei, Rougier, 

Knight, & Munjiza, 2014), and dynamic domain decomposition based parallelization where all tasks 

(domain decomposition, load balancing) are performed concurrently on all processors (Lukas, Schiava 



14 
 

D'Albano, & Munjiza, 2014). Parallelization strategies usually attempt to divide the large problem 

(computational domain) into a number of smaller sub-problems (sub-domains). A good parallel 

implementation has to fulfil two - often  competing - requirements, namely each processor must be 

kept busy doing useful work and the communication between processors must be kept to a minimum. 

Today, parallelization algorithms are available in FEM/DEM codes, thus - at least in many cases - the 

solution of large scale problems became possible.  

EXAMPLES FOR COMBINED FINITE-DISCRETE ELEMENT SIMULATIONS 

In the following, some examples are mentioned for the application of the combined finite-discrete 

element method. This part focuses on the modelling of masonry structures, however other applications 

are shortly mentioned as well.  

Firstly, referring to the paper (Nikolic, Smoljanovic, & Zivaljic, 2013), seismic analysis of dry stone 

masonry structures were performed with the help of the FEM/DEM. In this work each stone block was 

modelled as a discrete element which was discretized by constant strain triangular finite elements. The 

fracture and fragmentation processes were considered through contact elements which were 

implemented within the finite element mesh. In the applied FEM/DEM code the Munjiza-NBS contact 

detection algorithm was implemented. In the contact interaction algorithm the potential contact force 

concept was applied and the Coulomb-type condition was used to analyze the friction between discrete 

elements. The cracks were assumed to coincide with the finite element edges and the separation of 

these edges induced a bonding stress which was taken to be a function of the size of the separation. At 

first, numerical calculations for the analysis of shear behaviour of stone masonry joints were 

performed. Two different pre-compression stresses were applied and after shear tests were carried out 

under displacement control and the numerical results showed a great correspondence with the 

experimental results. Afterwards the behaviour of existing structures were analysed under seismic 

effects. The dynamic response of the structure of the Prothyron - which is a certain part of Diocletian's 

Palace in Split - was simulated with the combined finite-discrete element method. The FEM/DEM 

model of the structure can be seen in Figure (5). 

  
Figure 5 FEM/DEM model of Prothyron including discrete elements (left) and FEM mesh (right) 

Source: Nikolic, Smoljanovic, & Zivaljic, 2013 

The structure was subjected to gradually increasing horizontal ground acceleration until the collapse 

occurred. The collapse process of the structure can be seen in Figure (6). 
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Figure 6 Collapse simulation of Prothyron due to seismic effect using FEM/DEM 

Source: Nikolic, Smoljanovic, & Zivaljic, 2013 

This research (Nikolic, Smoljanovic, & Zivaljic, 2013) showed the advantage of using the combined 

finite-discrete element method - which derives from the possibility of modelling the fragmentation of 

blocks - for analysis of failure modes of structures under hazardous loads. The results of the performed 

analyses showed good agreement with the experiments, thus this paper demonstrates the potential of 

the FEM/DEM for realistic modelling of the response of dry masonry structures. Further details can be 

found in the original paper (Nikolic, Smoljanovic, & Zivaljic, 2013). 

In paper (Smoljanovic, Zivaljic, & Nikolic, 2013) the authors analyzed the behaviour of a dry stone 

masonry bell tower exposed to impact and seismic load. Again the whole structural failure (transition 

from continua to discontinua) process due to impact load was simulated as it is shown in Figure (7). 

 
Figure 7 Collapse simulation of dry stone masonry bell tower exposed to projectile impact using 

FEM/DEM. Source: Smoljanovic, Zivaljic, & Nikolic, 2013 

Using the combined finite-discrete element method the detailed analysis of failure was carried out 

including energy dissipation during the impact, initiation and propagation of cracks and the inertia 

effect of the individual parts of the structure. The seismic analysis of the structure was also performed 
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which enables the determination of the load bearing capacity and the behaviour factor of the structure. 

The collapse simulation under seismic effects can be seen in Figure (8). 

 
Figure 8 Collapse simulation of dry stone masonry bell tower exposed to seismic effects using 

FEM/DEM. Source: Smoljanovic, Zivaljic, & Nikolic, 2013 

In the paper (Smoljanovic, Zivaljic, & Nikolic, 2013) the advantage of the combined finite-discrete 

element method in performing collapse simulations were shown. The applied numerical model was 

able to simulate the whole structural failure process including large displacements and rotations of 

stone blocks subjected to friction force acting between them. Further details of the analyses can be 

found in the original paper (Smoljanovic, Zivaljic, & Nikolic, 2013) including numerical analyses of 

reinforced concrete structures as well.    

In the paper (Baraldi, Reccia, Cazzani, & Cecchi, 2013) a comparative study is discussed. Discrete 

models and FEM/DEM models were used to investigate the in-plane behaviour of periodic brickwork. 

In the FEM/DEM simulations elastic blocks were considered by means of finite elements, but on the 

other hand, rigid discrete elements were applied in the discrete model. In the FEM/DEM model the 

mortar joints were idealized as elastic or elasto-plastic zero-thickness Mohr-Coulomb interfaces. Two 

different joint types were applied in the FEM/DEM simulations. One of these was implemented inside 

the block and this worked with a high cohesion value in order to avoid the breaking of blocks, 

however a much smaller cohesion value was applied for joints placed between the blocks in order to 

model the separation of blocks along the mortar joints. In this paper (Baraldi, Reccia, Cazzani, & 
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Cecchi, 2013) masonry panels were subjected to in plane actions, like compression and shear forces in 

horizontal and vertical directions. Some deformed shapes of the FEM/DEM and discrete models due to 

horizontal shear effects can be seen in Figure (9). 

 
Figure 9 Horizontal shear deformed mesh: (a) FEM/DEM model; (b) Discrete  model 

Source: Baraldi, Reccia, Cazzani, & Cecchi, 2013 

The authors of paper (Baraldi, Reccia, Cazzani, & Cecchi, 2013) found that in case of vertical and 

horizontal compressive forces applied, models show a very good agreement in terms of displacements 

and reactions. In case of compression, the influence of the texture pattern in the FEM/DEM model is 

less evident than in the discrete model due to the elastic behaviour of mortar joints. Even in case of 

horizontal shear force the two models were in very good agreement for the running bond pattern, 

however significant differences occurred for the head bond pattern. In case of vertical shear force the 

two models were in excellent agreement for both the texture patterns considered. Further details can be 

found in the paper (Baraldi, Reccia, Cazzani, & Cecchi, 2013). 

In the paper (Owen, Peric, Petrinic, Smokes, & James, ?) masonry arch bridge with backfill and 

masonry arch bridge with anchor stitching system were analysed with the combined finite-discrete 

element method. The complex problem including masonry units, granular back-fill and geotechnical 

foundation material was considered. Here the masonry blocks were represented by deformable discrete 

elements in frictional contact. The fill material was modelled by spherical discrete elements, however 

the foundation medium was considered as a Mohr-Coulomb material. In case of the strengthened 

bridge the anchor system was modelled as an elasto-plastic steel bar, and the grouted bond with the 

masonry was simulated by prescribing a nonlinear shear stress/strain relation, whose parameters were 

determined from laboratory anchor pull-out tests. The FEM/DEM discretization and the deformations 

of the strengthened bridge just before the bottom ring fell away can be seen in Figure (10). Further 

information about the performed analyses can be found in the paper (Owen, Peric, Petrinic, Smokes, & 

James, ?). 
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Figure 10 FEM/DEM discretization of masonry arch bridge (a); Deformations just before  the 

collapse. Source: (Owen, Peric, Petrinic, Smokes, & James, ?) 

Apart from the numerical simulations of structures the combined finite-discrete element method 

proved to be a very effective tool in case of biomechanical applications as well. We refer for instance, 

to the paper (Xu et al., 2013), where large scale simulations of red blood cell aggregation in shear 

flows were performed with the help of FEM/DEM. 

 

CONCLUSION 

In this chapter the main characteristics and steps of the combined finite-discrete element method were 

discussed. The specific contact detection, contact interaction, fracture and fragmentation algorithms 

were mentioned, which are typically used in FDEM simulations. Furthermore, the huge computational 

challenge in case of large scale problems were pointed out, and the time stepping process with certain 

parallelization techniques were shortly mentioned. Examples were collected from the literature, where 

the authors proved the efficiency of the combined finite-discrete element method in the appropriate 

modelling of masonry structures. 

ADDITIONAL READINGS  

As a final remark, for the interested readers, the presence of open source combined finite-discrete 

element codes, Y2D and Y3D should be mentioned. These codes include the above mentioned 

algorithms and have already served as a basic tool in case of several FEM/DEM researches. 

Additionally, Y-GUI graphical user interface is available (Mahabadi, Grasselli, & Munjiza, 2010), 

which provides the possibility to set up models graphically, instead typing the entire input file in 

ASCII text editor, significantly reducing the time needed to create the geometry of the model. Further 

information can be found on the following website: http://vgest.net/.  
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