

THE EQUATIONS OF MOTION AND THE SOLUTION METHODS

- →The Equations of Motion for the three basic types of element
- → Numerical techniques for time integration (Repetition of previous studies)

Three main types of the elements:

(1) perfectly rigid elements

→ reference point

(2) elements being deformable because of an internal FEM mesh

 \rightarrow nodes

(3) elements being deformable because of a simple strain field

 \rightarrow a reference point + a simple strain function

$$,f = ma$$

a) Perfectly rigid elements

Reference point to every element the displacement vector of the p-th element:

$$\mathbf{u}^{p}(t) = \begin{bmatrix} u_{x}^{p}(t) \\ u_{y}^{p}(t) \\ u_{z}^{p}(t) \\ \varphi_{x}^{p}(t) \\ \varphi_{y}^{p}(t) \\ \varphi_{z}^{p}(t) \end{bmatrix}$$
total displacement vectors
$$\mathbf{u}(t) = \begin{bmatrix} \mathbf{u}^{1}(t) \\ \mathbf{u}^{2}(t) \\ \vdots \\ \mathbf{u}^{N}(t) \end{bmatrix}$$

total displacement vector:

$$\mathbf{u}(t) = \begin{vmatrix} \mathbf{u}^{1}(t) \\ \mathbf{u}^{2}(t) \\ \vdots \\ \mathbf{u}^{N}(t) \end{vmatrix}$$

summed up of small increments!

$$,f = ma$$
"

a) Perfectly rigid elements

velocity vector:
$$\mathbf{v}(t) = \frac{d\mathbf{u}(t)}{dt}$$

pl.
$$\mathbf{v}^{p}(t) = \begin{bmatrix} v_{x}^{p}(t) \\ v_{y}^{p}(t) \\ v_{z}^{p}(t) \\ \omega_{x}^{p}(t) \\ \omega_{y}^{p}(t) \end{bmatrix} = \begin{bmatrix} \frac{du_{y}^{p}(t)}{dt} \\ \frac{du_{z}^{p}(t)}{dt} \\ \frac{d\varphi_{x}^{p}(t)}{dt} \\ \frac{d\varphi_{x}^{p}(t)}{dt} \\ \frac{d\varphi_{y}^{p}(t)}{dt} \\ \frac{d\varphi_{z}^{p}(t)}{dt} \end{bmatrix}$$

$$\frac{du_{x}^{p}(t)}{dt}$$

$$\frac{du_{y}^{p}(t)}{dt}$$

$$\frac{du_{y}^{p}(t)}{dt}$$

$$\frac{d\varphi_{x}^{p}(t)}{dt}$$

$$\frac{d\varphi_{y}^{p}(t)}{dt}$$

$$\frac{d\varphi_{z}^{p}(t)}{dt}$$

$$\frac{d\varphi_{z}^{p}(t)}{dt}$$

$$,f = ma$$
"

a) Perfectly rigid elements

velocity vector:
$$\mathbf{v}(t) = \frac{d\mathbf{u}(t)}{dt}$$
acceleration vector:
$$\mathbf{a}(t) = \frac{d^2\mathbf{u}(t)}{dt^2}$$

$$\mathbf{pl.} \quad \mathbf{a}^p(t) = \begin{bmatrix} a_x^p(t) \\ a_y^p(t) \\ a_z^p(t) \\ \beta_x^p(t) \\ \beta_z^p(t) \end{bmatrix} = \begin{bmatrix} \frac{d^2u_x^p(t)}{dt^2} \\ \frac{d^2u_y^p(t)}{dt^2} \\ \frac{d^2u_z^p(t)}{dt^2} \\ \frac{d^2\varphi_x^p(t)}{dt^2} \\ \frac{d^2\varphi_y^p(t)}{dt^2} \\ \frac{d^2\varphi_y^p(t)}{dt^2} \\ \frac{d^2\varphi_y^p(t)}{dt^2} \\ \frac{d^2\varphi_z^p(t)}{dt^2} \\ \frac$$

$$\begin{bmatrix} \frac{d^2 u_x^p(t)}{dt^2} \\ \frac{d^2 u_y^p(t)}{dt^2} \\ \frac{d^2 u_z^p(t)}{dt^2} \\ \frac{d^2 \varphi_x^p(t)}{dt^2} \\ \frac{d^2 \varphi_y^p(t)}{dt^2} \\ \frac{d^2 \varphi_z^p(t)}{dt^2} \\ \frac{d^2 \varphi_z^p(t)}{dt^2} \end{bmatrix}$$

a) Perfectly rigid elements

Equations of motion of the *p*-th element:

$$m^{p} a_{x}^{p} = f_{x}^{p}$$

$$m^{p} a_{y}^{p} = f_{y}^{p}$$

$$m^{p} a_{z}^{p} = f_{z}^{p}$$

$$\begin{bmatrix} f_x^p(t) \\ f_y^p(t) \\ f_z^p(t) \end{bmatrix}; \begin{bmatrix} m_x^p(t) \\ m_y^p(t) \\ m_z^p(t) \end{bmatrix}$$

$$I_{xx}^{p}\beta_{x} - I_{xy}^{p}\beta_{y} - I_{xz}^{p}\beta_{z} + \omega_{y}^{p}\left(\omega_{z}^{p}I_{zz}^{p} - \omega_{x}^{p}I_{zx}^{p} - \omega_{y}^{p}I_{zy}^{p}\right) - \omega_{z}^{p}\left(\omega_{y}^{p}I_{yy}^{p} - \omega_{x}^{p}I_{yx}^{p} - \omega_{z}^{p}I_{yz}^{p}\right) = m_{x}^{p}$$

$$I_{yy}^{p}\beta_{y} - I_{yx}^{p}\beta_{x} - I_{yz}^{p}\beta_{z} - \omega_{x}^{p}\left(\omega_{z}^{p}I_{zz}^{p} - \omega_{x}^{p}I_{zx}^{p} - \omega_{y}^{p}I_{zy}^{p}\right) + \omega_{z}^{p}\left(\omega_{x}^{p}I_{xx}^{p} - \omega_{y}^{p}I_{xy}^{p} - \omega_{z}^{p}I_{xz}^{p}\right) = m_{y}^{p}$$

$$I_{zz}^{p}\beta_{z} - I_{zx}^{p}\beta_{x} - I_{zy}^{p}\beta_{y} + \omega_{x}^{p}\left(\omega_{y}^{p}I_{yy}^{p} - \omega_{x}^{p}I_{yx}^{p} - \omega_{z}^{p}I_{yz}^{p}\right) - \omega_{y}^{p}\left(\omega_{x}^{p}I_{xx}^{p} - \omega_{y}^{p}I_{xy}^{p} - \omega_{z}^{p}I_{xz}^{p}\right) = m_{z}^{p}$$

$$I_{xy}^{p} = \int_{V^{p}} (x - x^{p}) \cdot (y - y^{p}) \cdot \mu(x, y, z) \cdot dV \quad ;$$

$$I_{zy}^{p} = \int_{V^{p}} (z - z^{p}) \cdot (y - y^{p}) \cdot \mu(x, y, z) \cdot dV \quad \text{etc.} \qquad 5/33$$

a) Perfectly rigid elements

Equations of motion of the *p*-th element:

the load vector: forces reduced to the reference point

- → partly from the external forces

 acting on the elements (e.g. weight)

 depend on position and velocity
- → partly from the contact forces
 expressed by the neighbouring elements
 depend on position and velocity

a) Perfectly rigid elements

Equations of motion of the *p*-th element:

$$m^{p}a_{x}^{p} = f_{x}^{p}$$

$$m^{p}a_{y}^{p} = f_{y}^{p}$$

$$m^{p}a_{z}^{p} = f_{z}^{p}$$

$$I_{xx}^{p}\beta_{x} - I_{xy}^{p}\beta_{y} - I_{xz}^{p}\beta_{z} = m_{x}^{p} - \omega_{y}^{p}\left(\omega_{z}^{p}I_{zz}^{p} - \omega_{x}^{p}I_{zx}^{p} - \omega_{y}^{p}I_{zy}^{p}\right) + \omega_{z}^{p}\left(\omega_{y}^{p}I_{yy}^{p} - \omega_{x}^{p}I_{yx}^{p} - \omega_{z}^{p}I_{yz}^{p}\right)$$

$$I_{yy}^{p}\beta_{y} - I_{yx}^{p}\beta_{x} - I_{yz}^{p}\beta_{z} = m_{y}^{p} + \omega_{x}^{p}\left(\omega_{z}^{p}I_{zz}^{p} - \omega_{x}^{p}I_{zx}^{p} - \omega_{y}^{p}I_{zy}^{p}\right) - \omega_{z}^{p}\left(\omega_{x}^{p}I_{xx}^{p} - \omega_{y}^{p}I_{xy}^{p} - \omega_{z}^{p}I_{xz}^{p}\right)$$

$$I_{zz}^{p}\beta_{z} - I_{zx}^{p}\beta_{x} - I_{zy}^{p}\beta_{y} = m_{z}^{p} - \omega_{x}^{p}\left(\omega_{y}^{p}I_{yy}^{p} - \omega_{x}^{p}I_{yx}^{p} - \omega_{z}^{p}I_{yz}^{p}\right) + \omega_{y}^{p}\left(\omega_{x}^{p}I_{xx}^{p} - \omega_{y}^{p}I_{xy}^{p} - \omega_{z}^{p}I_{xz}^{p}\right)$$

$$\mathbf{M}^{p}(t)\mathbf{a}^{p}(t) = \mathbf{f}^{p}(t,\mathbf{u}(t),\mathbf{v}(t))$$

 m^p

 m^p

a) Perfectly rigid elements

 $\mathbf{M}^p =$

Equations of motion of the *p*-th element:

$$m^{p}a_{x}^{p} = f_{x}^{p}$$
 $m^{p}a_{y}^{p} = f_{y}^{p}$
 $m^{p}a_{z}^{p} = f_{z}^{p}$

$$I_{xx}^{p}\beta_{x} - I_{xy}^{p}\beta_{y} - I_{xz}^{p}\beta_{z} = m_{x}^{p} - \omega_{y}^{p}\left(\omega_{z}^{p}I_{zz}^{p} - \omega_{x}^{p}I_{zx}^{p} - \omega_{y}^{p}I_{zy}^{p}\right) + \omega_{z}^{p}\left(\omega_{y}^{p}I_{yy}^{p} - \omega_{x}^{p}I_{yx}^{p} - \omega_{z}^{p}I_{yz}^{p}\right)$$

$$I_{yy}^{p}\beta_{y} - I_{yx}^{p}\beta_{x} - I_{yz}^{p}\beta_{z} = m_{y}^{p} + \omega_{x}^{p}\left(\omega_{z}^{p}I_{zz}^{p} - \omega_{x}^{p}I_{zx}^{p} - \omega_{y}^{p}I_{zy}^{p}\right) - \omega_{z}^{p}\left(\omega_{x}^{p}I_{xx}^{p} - \omega_{y}^{p}I_{xy}^{p} - \omega_{z}^{p}I_{xz}^{p}\right)$$

$$I_{zz}^{p}\beta_{z} - I_{zx}^{p}\beta_{x} - I_{zy}^{p}\beta_{y} = m_{z}^{p} - \omega_{x}^{p}\left(\omega_{y}^{p}I_{yy}^{p} - \omega_{x}^{p}I_{yx}^{p} - \omega_{z}^{p}I_{yz}^{p}\right) + \omega_{y}^{p}\left(\omega_{x}^{p}I_{xx}^{p} - \omega_{y}^{p}I_{xy}^{p} - \omega_{z}^{p}I_{xz}^{p}\right)$$

$$\mathbf{M}^p(t)\mathbf{a}^p(t) = \mathbf{f}^p(t,\mathbf{u}(t),\mathbf{v}(t))$$

a) Perfectly rigid elements

Special case: e.g. Spheres:

$$I_{xy}^{p} = 0$$
; $I_{zy}^{p} = 0$; etc.; $I_{xx}^{p} = I_{yy}^{p} = I_{zz}^{p} = I^{p}$

$$m^{p} a_{x}^{p} = f_{x}^{p}$$

$$m^{p} a_{y}^{p} = f_{y}^{p}$$

$$m^{p} a_{z}^{p} = f_{z}^{p}$$

$$I^{p} \beta_{x} = m_{x}^{p}$$

$$I^{p} \beta_{y} = m_{y}^{p}$$

$$I^{p} \beta_{z} = m_{z}^{p}$$

a) Perfectly rigid elements

Equations of motion of the p-th element: (6 scalar equations)

$$\mathbf{M}^{p}(t)\mathbf{a}^{p}(t) = \mathbf{f}^{p}(t,\mathbf{u}(t),\mathbf{v}(t))$$

for the complete system (*N* elements):

$$\mathbf{M}(t)\mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{M}^1 & & & & \\ & \mathbf{M}^2 & & & \\ & & \ddots & & \\ & & \mathbf{M}^N \end{bmatrix}$$

$$\mathbf{f}(t,\mathbf{u}(t),\mathbf{v}(t)) = \begin{bmatrix} \mathbf{f}^{1}(t,\mathbf{u}(t),\mathbf{v}(t)) \\ \mathbf{f}^{2}(t,\mathbf{u}(t),\mathbf{v}(t)) \\ \vdots \\ \mathbf{f}^{N}(t,\mathbf{u}(t),\mathbf{v}(t)) \end{bmatrix}$$

$$,f = ma$$
"

b) Elements made deformable by being subdivided

as an example: SIMPLEX subdivision

displacement vector of the *p*-th node:

$$\mathbf{u}^p(t) = \begin{bmatrix} u_x^p(t) \\ u_y^p(t) \\ u_z^p(t) \end{bmatrix}$$

displacement vector of the whole system:

$$\mathbf{u}(t) = \begin{bmatrix} \mathbf{u}^{1}(t) \\ \mathbf{u}^{2}(t) \\ \vdots \\ \mathbf{u}^{N}(t) \end{bmatrix}$$

b) Elements made deformable by being subdivided

the equations of motion of the p-th node:

$$m^p(t)\mathbf{a}^p(t) = \mathbf{f}^p(t,\mathbf{u}(t),\mathbf{v}(t))$$

mass assigned to the p-th node: m^p

Voronoi tessellation:

<u>in 2D:</u>

bisecting lines \Rightarrow 2D domains assigned to the nodes

<u>in 3D:</u>

bisecting planes \Rightarrow 3D domains assigned to the nodes

b) Elements made deformable by being subdivided

the equations of motion of the *p*-th node:

$$m^p(t)\mathbf{a}^p(t) = \mathbf{f}^p(t,\mathbf{u}(t),\mathbf{v}(t))$$

mass assigned to the p-th node: m^p

the force acting on the *p*-th node: $\mathbf{f}^{p}(t,\mathbf{u}(t),\mathbf{v}(t))$ (3 components)

- ← from the stresses inside the simplexes
- ← from the neighbouring element
- ← from external forces (e.g. self weight, drag force)

ASSUMED TO ACT ON THE NODE!!!

b) Elements made deformable by being subdivided

the equations of motion of the whole system:

$$\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$$

 $(N \times 3 \text{ scalar equations})$

the complete inertial matrix consists of:

$$\mathbf{M}^p = \begin{bmatrix} m^p & & & \\ & m^p & & \\ & & m^p \end{bmatrix}$$

the complete inertial matrix consists of :
$$\mathbf{M}^{p} = \begin{bmatrix} \mathbf{M}^{1} & & & \\ \mathbf{M}^{2} & & & \\ & \ddots & & \\ & & \mathbf{M}^{N} \end{bmatrix}$$
the load vector: nodal forces
$$\mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t)) = \begin{bmatrix} \mathbf{f}^{1}(t, \mathbf{u}(t), \mathbf{v}(t)) \\ \mathbf{f}^{2}(t, \mathbf{u}(t), \mathbf{v}(t)) \\ \vdots \\ \mathbf{f}^{N}(t, \mathbf{u}(t), \mathbf{v}(t)) \end{bmatrix}$$

$$\mathbf{f}(t,\mathbf{u}(t),\mathbf{v}(t)) = \begin{vmatrix} \mathbf{f}^{2}(t,\mathbf{u}(t),\mathbf{v}(t)) \\ \mathbf{f}^{2}(t,\mathbf{u}(t),\mathbf{v}(t)) \\ \vdots \\ \mathbf{f}^{N}(t,\mathbf{u}(t),\mathbf{v}(t)) \end{vmatrix}$$

$$,f = ma$$

c) Uniform-strain deformable elements without subdivision

displacement vector of the *p*-th element:

(reference point:

rigid-body translation and rotation;

the *uniform* strain of the element)

e.g. in 2D:

translation of another point in the element:

$$\mathbf{u} = \begin{bmatrix} u_x(x, y) \\ u_y(x, y) \end{bmatrix}$$

$$\mathbf{u}_{x}^{p} \begin{vmatrix} \mathbf{u}_{x}^{p} \\ \mathbf{v}_{x}^{p} \\ \mathbf{v}_{y}^{p} \\ \mathbf{\varphi}_{z}^{p} \\ \mathbf{\varepsilon}_{x}^{p} \\ \mathbf{\varepsilon}_{y}^{p} \\ \mathbf{\gamma}_{xy}^{p} \end{vmatrix} = \begin{vmatrix} \boldsymbol{\varphi}_{z}^{p} \\ \boldsymbol{\varepsilon}_{x}^{p} \\ \boldsymbol{\varepsilon}_{z}^{p} \\ \boldsymbol{\gamma}_{yz}^{p} \\ \boldsymbol{\gamma}_{xy}^{p} \end{vmatrix}$$

$$,f = ma$$

c) Uniform-strain deformable elements without subdivision

HOME:

translation of another point in the element: with the help of superposition $u_x(x,y) = u_x^p$ with the help of superposition $u_x(x,y) = (x-x^p)\varepsilon_x^p$

$$u_x(x, y) = u_x^p - (y - y^p)\varphi_z^p + (x - x^p)\varepsilon_x^p + (y - y^p)\frac{\gamma_{xy}^p}{2}$$

$$,,f = ma''$$

c) Uniform-strain deformable elements without subdivision translation of another point in the element:

similarly in 3D!

$$u_{x}(x,y) = u_{x}^{p} - (y - y^{p})\varphi_{z}^{p} + (x - x^{p})\varepsilon_{x}^{p} + \frac{(y - y^{p})}{2}\gamma_{xy}^{p}$$

$$u_{y}(x,y) = u_{y}^{p} + (x - x^{p})\varphi_{z}^{p} + (y - y^{p})\varepsilon_{y}^{p} + \frac{(x - x^{p})}{2}\gamma_{xy}^{p}$$

$$\begin{bmatrix} u_x(x,y) \\ u_y(x,y) \end{bmatrix} = \begin{bmatrix} 1 & 0 & -(y-y^p) & (x-x^p) & 0 & \frac{(y-y^p)}{2} \\ 0 & 1 & (x-x^p) & 0 & (y-y^p) & \frac{(x-x^p)}{2} \end{bmatrix} \begin{bmatrix} u_x^p \\ u_y^p \\ \varphi_z^p \\ \varepsilon_y^p \\ \gamma_{xy}^p \end{bmatrix}$$
tive translations in the contacts:

 \Rightarrow relative translations in the contacts:

can be expressed from \mathbf{u}^p

$$,f = ma$$

c) Uniform-strain deformable elements without subdivision

remember:

displacement vector of the *p*-th element:

(reference point:rigid-body translation and rotation;the *uniform* strain of the element)

c) Uniform-strain deformable elements without subdivision f_x^p

load vector beloning to element *p*:

- from the contacts with neighbouring elements
- from the external forces directly acting on $\mathbf{f}^p =$ the element

the equations of motion of the *p*-th element:

$$\mathbf{M}^p \cdot \mathbf{a}^p(t) = \mathbf{f}^p(t, \mathbf{u}(t), \mathbf{v}(t))$$

the equations of motion of the whole system:

$$\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$$

Numerical solutions only!

$$\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$$

The aim:

starting from a known $\mathbf{u}(t_0) = \mathbf{u}_0$ and $\mathbf{v}(t_0) = \mathbf{v}_0$ state at a t_0 time instant, the aim is to determine the approximative solutions $(\mathbf{u}_1, \mathbf{v}_1), (\mathbf{u}_2, \mathbf{v}_2), \ldots, (\mathbf{u}_i, \mathbf{v}_i), (\mathbf{u}_{i+1}, \mathbf{v}_{i+1}), \ldots$ belonging to the $t_1, t_2, \ldots, t_i, t_{i+1}, \ldots$ time instants.

Initial remarks:

- 1. Explicit vs. implicit time integration methods
- 2. How to transform the equations of motion into first-order differential equations

1. Explicit vs. implicit methods:

→ <u>explicit methods</u>:

in the state at t_i : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{f}_i) \Rightarrow \text{equations of motion} \Rightarrow \text{approximate } (\mathbf{u}_{i+1}, \mathbf{v}_{i+1}, \mathbf{f}_{i+1}) \text{ belonging to the state at } t_{i+1}$

NO checking of whether $(\mathbf{u}_{i+1}, \mathbf{v}_{i+1}, \mathbf{f}_{i+1})$ satisfy the eqs of motion, accept them and use them for the calculations of the next timestep \Rightarrow fast, but less reliable; numerical stability problems!

1. Explicit vs. implicit methods:

→ <u>implicit methods</u>:

in the state at t_i : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{f}_i) \Rightarrow$ equations of motion \Rightarrow approximate $(\mathbf{u}_{i+1}, \mathbf{v}_{i+1}, \mathbf{f}_{i+1})$ belonging to the state at t_{i+1} ; then iterations, to improve this approximation belonging to t_{i+1} , so that the eqs of motion be satisfied at t_{i+1} \Rightarrow slow, but longer timesteps, more reliable, better numerical stability

2. How to transform the equations of motion into <u>first-order DE</u>

The DE:
$$\mathbf{M} \cdot \frac{d^2 \mathbf{u}(t)}{dt^2} = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$$
 where $\mathbf{v}(t) = \frac{d\mathbf{u}(t)}{dt}$

Notation:

new unknowns:
$$\mathbf{y}(t) \coloneqq \begin{bmatrix} \mathbf{u}(t) \\ \mathbf{v}(t) \end{bmatrix}$$
 new right-hand side:

$$\overline{\mathbf{a}}(t,\mathbf{u}(t),\mathbf{v}(t)) := \mathbf{M}^{-1} \cdot \mathbf{f}(t,\mathbf{u}(t),\mathbf{v}(t))$$
 or: $\overline{\mathbf{a}}(t,\mathbf{y}(t)) := \mathbf{M}^{-1} \cdot \mathbf{f}(t,\mathbf{y}(t))$

$$\hat{\mathbf{a}}(t,\mathbf{u}(t),\mathbf{v}(t)) := \begin{bmatrix} \mathbf{v}(t) \\ \overline{\mathbf{a}}(t,\mathbf{u}(t),\mathbf{v}(t)) \end{bmatrix}$$

so the equations become:

$$\frac{d\mathbf{y}(t)}{dt} = \hat{\mathbf{a}}(t, \mathbf{y}(t))$$

REPETITON: NUMERICAL METHODS

Numerical time integration of initial value problems:

- → Euler-method
- → Method of central differences
- \rightarrow Newmark's β -method

The problem to solve, in mathematical sense:

to find that $\mathbf{y}(t)$ function for which the eqs. $\frac{d\mathbf{y}(t)}{dt} = \hat{\mathbf{a}}(t, \mathbf{y}(t))$ are satisfied at every t, and whose initial value is known: $\mathbf{y}(t_0) = \mathbf{y}_0$

Numerical solution:

Instead of trying to determine the explicit form of the function $\mathbf{y}(t)$, the values $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_i, \mathbf{y}_{i+1}, ...$, belonging to $t_1, t_2, ..., t_i, t_{i+1}, ...$ are to be approximated.

EULER-METHOD

For the DEM eqs of motion:

The problem:
$$\begin{bmatrix} \frac{d\mathbf{u}(t)}{dt} \\ \frac{d\mathbf{v}(t)}{dt} \end{bmatrix} = \begin{bmatrix} \mathbf{v}(t) \\ \overline{\mathbf{a}}(t,\mathbf{u}(t),\mathbf{v}(t)) \end{bmatrix} ; \begin{bmatrix} \mathbf{u}(t_0) \\ \mathbf{v}(t_0) \end{bmatrix} = \begin{bmatrix} \mathbf{u}_0 \\ \mathbf{v}_0 \end{bmatrix}$$
 at t_i : known \mathbf{v}_i and \mathbf{f} ;

at t_i : known \mathbf{v}_i and \mathbf{f} ;

$$\mathbf{h}_i = \begin{bmatrix} \mathbf{v}_i \\ \overline{\mathbf{a}}(t_i, \mathbf{u}_i, \mathbf{v}_i) \end{bmatrix}$$

Let $\mathbf{h}_i = \begin{bmatrix} \mathbf{v}_i \\ \overline{\mathbf{a}}(t_{-1}\mathbf{1}_{-1}\mathbf{v}_{-1}) \end{bmatrix}$ meaning: the velocity and the acceleration keep their starting value along the time interval

from this, the new position and velocity:

$$\begin{bmatrix} \mathbf{u}_{i+1} \\ \mathbf{v}_{i+1} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} + \Delta t \cdot \mathbf{h}_{i} = \begin{bmatrix} \mathbf{u}_{i} \\ \mathbf{v}_{i} \end{bmatrix} + \Delta t \cdot \begin{bmatrix} \mathbf{v}_{i} \\ \overline{\mathbf{a}}(t_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}) \end{bmatrix}$$

or:

$$\mathbf{u}_{i+1} = \mathbf{u}_i + \Delta t \cdot \mathbf{v}_i$$

$$\mathbf{v}_{i+1} = \mathbf{v}_i + \Delta t \cdot \overline{\mathbf{a}}(t_i, \mathbf{u}_i, \mathbf{v}_i)$$

DEM: contact dynamics methods

disadvantage: oscillations

REPETITON: NUMERICAL METHODS

Numerical time integration of initial value problems:

- → Euler-method
- → Method of central differences
- \rightarrow Newmark's β -method

The problem to solve:

to find that $\mathbf{y}(t)$ function for which the eqs. $\frac{d\mathbf{y}(t)}{dt} = \hat{\mathbf{a}}(t, \mathbf{y}(t))$ are satisfied at every t, and whose initial value is known: $\mathbf{y}(t_0) = \mathbf{y}_0$

Numerical solution:

Instead of trying to determine the explicit form of the function $\mathbf{y}(t)$, the values $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_i, \mathbf{y}_{i+1}, ...$, belonging to $t_1, t_2, ..., t_i, t_{i+1}, ...$ are to be approximated.

METHOD OF CENTRAL DIFFERENCES

For the DEM eqs of motion:

The problem:
$$\frac{d\mathbf{u}(t)}{dt} = \mathbf{v}(t); \qquad \mathbf{u}(t_0) = \mathbf{u}_0;$$
$$\frac{d\mathbf{v}(t)}{dt} = \overline{\mathbf{a}}(t, \mathbf{u}(t), \mathbf{v}(t))$$
$$\mathbf{v}(t_0) = \mathbf{v}_0$$

positions forces accelerations velocities

known:
$$\mathbf{v}_{i-1/2}$$
; $\overline{\mathbf{a}}(t_i, \mathbf{u}_i, \mathbf{v}_{i-1/2})$

(initially: e.g.
$$\mathbf{v}_{1-1/2} \coloneqq \mathbf{v}_0$$
)

Let
$$\mathbf{v}_{i+1/2} := \mathbf{v}_{i-1/2} + \Delta t \cdot \overline{\mathbf{a}}(t_i, \mathbf{u}_i, \mathbf{v}_{i-1/2})$$
;

then from this:
$$\mathbf{u}_{i+1} := \mathbf{u}_i + \Delta t \cdot \mathbf{v}_{i+1/2}$$

METHOD OF CENTRAL DIFFERENCES

For the DEM eqs of motion:

The problem:

$$\frac{d\mathbf{u}(t)}{dt} = \mathbf{v}(t); \qquad \mathbf{u}(t_0) = \mathbf{u}_0;
\frac{d\mathbf{v}(t)}{dt} = \overline{\mathbf{a}}(t, \mathbf{u}(t), \mathbf{v}(t))$$

$$\mathbf{v}(t_0) = \mathbf{v}_0$$

known: $\mathbf{v}_{i-1/2}$; $\overline{\mathbf{a}}(t_i, \mathbf{u}_i, \mathbf{v}_{i-1/2})$

Let
$$\mathbf{v}_{i+1/2} := \mathbf{v}_{i-1/2} + \Delta t \cdot \overline{\mathbf{a}}(t_i, \mathbf{u}_i, \mathbf{v}_{i-1/2})$$
;

then from this: $\mathbf{u}_{i+1} := \mathbf{u}_i + \Delta t \cdot \mathbf{v}_{i+1/2}$

DEM: e.g. UDEC, PFC (most of the explicit timestepping methods)

28 / 33

REPETITON: NUMERICAL METHODS

Numerical time integration of initial value problems:

- → Euler-method
- → Method of central differences
- \rightarrow Newmark's β -method

The problem to solve:

to find that $\mathbf{y}(t)$ function for which the eqs. $\frac{d\mathbf{y}(t)}{dt} = \hat{\mathbf{a}}(t, \mathbf{y}(t))$ are satisfied at every t, and whose initial value is known: $\mathbf{y}(t_0) = \mathbf{y}_0$

Numerical solution:

Instead of trying to determine the explicit form of the function $\mathbf{y}(t)$, the values $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_i, \mathbf{y}_{i+1}, ...$, belonging to $t_1, t_2, ..., t_i, t_{i+1}, ...$ are to be approximated.

NEWMARK'S β-METHOD

For the DEM eqs of motion:

The problem: Find the $\mathbf{u}(t)$, $\mathbf{v}(t)$, $\mathbf{a}(t)$ functions which satisfy the eqs.

$$\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$$

in which
$$\mathbf{v}(t) = \frac{d\mathbf{u}(t)}{dt}$$
, $\mathbf{a}(t) = \frac{d^2\mathbf{u}(t)}{dt^2}$.

Notation: ,,residual": $\mathbf{r}(t,\mathbf{u}(t),\mathbf{v}(t),\mathbf{a}(t)) = \mathbf{f}(t,\mathbf{u}(t),\mathbf{v}(t)) - \mathbf{M} \cdot \mathbf{a}(t)$

The $\mathbf{u}(t)$, $\mathbf{v}(t)$, $\mathbf{a}(t)$ functions are the solutions of the differential eqs if and only if: $\mathbf{r}(t, \mathbf{u}(t), \mathbf{v}(t), \mathbf{a}(t)) = \mathbf{0}$

- \rightarrow Assume that the \mathbf{u}_i , \mathbf{v}_i and \mathbf{a}_i numerical solutions belonging to t_i satisfied this.
- \rightarrow We would like to find \mathbf{u}_{i+1} , \mathbf{v}_{i+1} and \mathbf{a}_{i+1} belonging to t_{i+1} so that:

$$\mathbf{r}(t_{i+1}, \mathbf{u}_{i+1}, \mathbf{v}_{i+1}, \mathbf{a}_{i+1}) = 0$$

NEWMARK'S β-METHOD

For the DEM eqs of motion:

Approximation of the position and velocity at the end of the timestep:

$$\mathbf{u}_{i+1} = \mathbf{u}_i + \Delta t \cdot \mathbf{v}_i + \frac{\Delta t^2}{2} \left[(1 - 2\beta) \mathbf{a}_i + 2\beta \cdot \mathbf{a}_{i+1} \right]$$

$$\mathbf{v}_{i+1} := \mathbf{v}_i + (1 - \gamma) \cdot \Delta t \cdot \mathbf{a}_i + \gamma \cdot \Delta t \cdot \mathbf{a}_{i+1}$$

Expression for the unknown values \mathbf{v}_{i+1} and \mathbf{a}_{i+1} in terms of the unknown \mathbf{u}_{i+1} :

$$\mathbf{a}_{i+1} := \frac{1}{\boldsymbol{\beta} \cdot \Delta t^2} \left[\mathbf{u}_{i+1} - \left(\mathbf{u}_i + \Delta t \cdot \mathbf{v}_i + \frac{\Delta t^2}{2} (1 - 2\boldsymbol{\beta}) \mathbf{a}_i \right) \right]$$

$$\mathbf{v}_{i+1} \coloneqq \mathbf{v}_i + (1 - \boldsymbol{\gamma}) \cdot \Delta t \cdot \mathbf{a}_i + \boldsymbol{\gamma} \cdot \Delta t \cdot \mathbf{a}_{i+1}$$

here β and γ are constants controlling the behaviour of the method

The core of the method: Determine that \mathbf{u}_{i+1} , for which: $\mathbf{r}(t_{i+1}, \mathbf{u}_{i+1}, \mathbf{v}_{i+1}, \mathbf{a}_{i+1}) = 0$ \rightarrow e.g. Newton-Raphson iteration to find \mathbf{u}_{i+1} , then express \mathbf{v}_{i+1} and \mathbf{a}_{i+1}

DEM: e.g. DDA models

NEWMARK'S β-METHOD

For the DEM eqs of motion:

Approximation of the position and velocity at the end of the timestep:

$$\mathbf{u}_{i+1} = \mathbf{u}_i + \Delta t \cdot \mathbf{v}_i + \frac{\Delta t^2}{2} \left[(1 - 2\beta) \mathbf{a}_i + 2\beta \cdot \mathbf{a}_{i+1} \right]$$

$$\mathbf{v}_{i+1} := \mathbf{v}_i + (1 - \gamma) \cdot \Delta t \cdot \mathbf{a}_i + \gamma \cdot \Delta t \cdot \mathbf{a}_{i+1}$$

Expression for the unknown values \mathbf{v}_{i+1} and \mathbf{a}_{i+1} in terms of the unknown \mathbf{u}_{i+1} :

$$\mathbf{a}_{i+1} := \frac{1}{\boldsymbol{\beta} \cdot \Delta t^2} \left[\mathbf{u}_{i+1} - \left(\mathbf{u}_i + \Delta t \cdot \mathbf{v}_i + \frac{\Delta t^2}{2} (1 - 2\boldsymbol{\beta}) \mathbf{a}_i \right) \right]$$

$$\mathbf{v}_{i+1} := \mathbf{v}_i + (1 - \gamma) \cdot \Delta t \cdot \mathbf{a}_i + \gamma \cdot \Delta t \cdot \mathbf{a}_{i+1}$$

here β and γ are constants controlling the behaviour of the method specific β and γ values \rightarrow several other methods

UNCONDITIONALLY STABLE IF: $2\beta \ge \gamma \ge \frac{1}{2}$

e.g. $\gamma = \frac{1}{2}$, $\beta = 0$: method of central differences, which is

QUESTIONS

- 1. Explain the meaning of the quantities in the equations of motion in the case of perfectly rigid elements!
- 2. Explain the meaning of the quantities in the equations of motion in the case of elements subdivided into uniform-strain simplexes!
- 3. Explain the meaning of the quantities in the equations of motion in the case of uniform-strain deformable elements without subdivision!
- 4. What is the difference between time-stepping and quasi-static methods?
- 5. What is the difference between explicit and implicit methods?
- 6. Introduce the Euler-method!
- 7. Introduce the method of central differences!
- 8. Introduce Newmark's β -method!