THE EQUATIONS OF MOTION
AND THE SOLUTION METHODS

—The Equations of Motion for the
three basic types of element

—> Numerical techniques for time integration
u (Repetition of previous studies)




THE EQUATIONS OF MOTION ﬁ

Three main types of the elements:

(1) perfectly rigid elements @ @
— reference point @

(2) elements being deformable because of an internal FEM mesh
— nodes

(3) elements being deformable because of a simple strain field

—> a reference point + a simple strain function Q
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THE EQUATIONS OF MOTION Cg‘

29

,,f =ma
a) Perfectly rigid elements

@ @/y the displacement vector of the p-th element:

uP (t) total displacement vector:
@ up (1 ui(t) ]
2
Reference point uP(t) = ;Z;Eg u(t) = - E(t)
to every element goyp (t) _uN t) |
@ (1)

summed up of small increments!
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THE EQUATIONS OF MOTION %

29

,,f =ma
a) Perfectly rigid elements

du(t) duP(t)

@ velocity vector: V(t) = S "
@/ du; (t)

@ V(1) | dt
GO | | )

oy | Vo) | | dt

V0= 0 7| s

w; (t) dt

@l (t)] | dep ()

dt

de; ()

| dt
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THE EQUATIONS OF MOTION

a) Perfectly rigid elements

@ E - velocity vector: V(t) =

S

,,f =ma

acceleration vector: a(t) =

pl. a°(t) =

29

du(t)

dt

d?u(t)
dt®
a, (t)
ay (t)
a, (t)
B (1)
By (t)

B (1)

dt?
d?u/ (t)
dt?
d°uf (t)
dt?
d*e? (t)
dt?
d’e] (t)
dt®
d*@? (t)
dt?

duP(t) |

4
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THE EQUATIONS OF MOTION %

a) Perfectly rigid elements
Equations of motion of the p-th element: > @]

mPa) = f 2na P | (i)
AP _ pr f,o(t) |5 | my(t)

mE = | | me

mPaP = £ - 4L |

p p p Pl APIP _ PP _, PP )\_ P PP _ PP _ PP p
128, — 128, — 108, + @ (01} — 1) —af 1] )~ o (@1}, —P1 ], — 1) ) =,
p
XX

p p p p ppp ppp _ PP p p PP _ PP p
128, — 128, ~108,—af (1) —af1 ] — 1) )+ f (@01} — 1) — o1 ) =

125, ~ 15 X_IZF;/'BY+wxp(a)3?|>2/_a)xplx?x_wzplxg)_wy(wxplxg_a);lng_a)zp xg):mzp
15 = | (x=x")-(y=yP)- uu(x,y,2)-dV
\VAS
1y =](2-2")-(y-y") - p(x,y,2)-dV etc. 5133
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THE EQUATIONS OF MOTION ﬂ

a) Perfectly rigid elements
Equations of motion of the p-th element: g m— @]

/o1

the load vector: forces reduced to the reference point
— partly from the external forces
acting on the elements (e.g. weight)
depend on position and velocity
— partly from the contact forces
expressed by the neighbouring elements
depend on position and velocity
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THE EQUATIONS OF MOTION ﬂ

a) Perfectly rigid elements
Equations of motion of the p-th element: > @]

mPay = f.” / f )

PAP 1§D
mPa) = f,
mpazp:fzp
p p p — p p p ppop p ppp ppoe ppe
128, =158, ~ 128, ={mP — &) (P12 -1} -1} )+ @f (P15 -1} —af 1))
p p p —] p p p p p p PP _ PP PP
128, — 158,128, M) +af (P12 - af 1} —af 1} ) - f (a1}~ 1) — o1 )

PR _IPAR PR —IMmP —_ P P _ PP _ P Pl PIP _, PP _ PP
128, =128~ 158, =P - (@1}, - 1), a1} )+ of (1], — ol 1}, — 0?12 )|

|

MP(t)aPf (t) =fP"(t,u(t),v(t))

7133



nwp
- Mp:
a) Perfectly rigid elements TS LT
Equations of motion of the p-th element: IXX o ) prz
oD ) I y oy
m ax ::fx __Ip __Ip Ip
B X zy z
mPa) = f 7
mpazp:fzp
p p Y —ImP Y PP PP Y p PP pyp _ PP
128, =128, — 108, =M -l (015 -1} —af 1} )+ af (1) — ol 1) — o1 )
p p p —AmP Y pppP PP Y p PP _ 3PP _, PP
128, — 158,128, M) +af (P12 - af 1} —af 1} ) - f (a1}~ 1) — o1 )
p P p —ImP Y Y Py P PP p PP _ 3PP _, PP
128, ~ 128128, =M} —af (015, — a1} — 1) )+ f (1} 1) P 1))

|

MP(t)aPf (t) =fP"(t,u(t),v(t))
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THE EQUATIONS OF MOTION

a) Perfectly rigid elements
Special case: e.g. Spheres:

P _ () P _ () . P _ P _ PP
I, =0, 1,=0; etc; |l ,=1,=I;=I

mPay = f°
mfa) = fp
mpazp _ fzp
1, =my
1°B, =m;

1", =m;
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THE EQUATIONS OF MOTION ﬂ

a) Perfectly rigid elements
Equations of motion of the p-th element: (6 scalar equations)

@ @/ MP(t)a”(t) =" (t,u(t), v(t))
@ for the complete system (N elements):

)'M (t)a(t)f(w
M ] L, u(t), v(t)) |

M= ) fu.vy=| - HUOVO)

M 1A (t,u(t),v(t))_
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THE EQUATIONS OF MOTION

,,f =ma

b) Elements made deformable by being subdivided

\ uP(t) =

displacement vector of the whole system:

u(t) =

U’ (1)
u’ (t)
_uZp (t)

u(t)
U2 (t)

()

as an example: SIMPLEX subdivision
displacement vector of the p-th node:

29
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THE EQUATIONS OF MOTION ﬂ

b) Elements made deformable by being subdivided

the equations of motion of the p-th node:

m* (t)a”(t) =1 (t,u(t), v(t))

mass assigned to the p-th node: m®
Voronoi tessellation:

R . in 2D:
/ . bisecting lines = 2D domains assigned to the nodes

in 3D:
bisecting planes = 3D domains assigned to the nodes

12/33




THE EQUATIONS OF MOTION ﬂ

b) Elements made deformable by being subdivided

the equations of motion of the p-th node:

m* (t)a”(t) =1 (t,u(t), v(t))

mass assigned to the p-th node: m®

the force acting on the p-th node: P (t,u(t),v(t)) (3 components)
<« from the stresses inside the simplexes
<« from the neighbouring element
<« from external forces (e.g. self weight, drag force)

ASSUMED TO ACT ON THE NODE !
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THE EQUATIONS OF MOTION CQ‘

b) Elements made deformable by being subdivided

O the equations of motion of the whole system:
M-a(t) =f(t, u(t), v(t))
(N x 3 scalar equations)
o _
the complete inertial matrix consists of : MP = mP
_Ml ] mp
2 l i
M = M
M f(tuct), Vi)
the load vector: nodal forces f(t,u(t),v(t) =

f2(t,u(t), v(t))

" (t,u(.t),v(t))_ 14133
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THE EQUATIONS OF MOTION

L f=ma”
¢) Uniform-strain deformable elements without subdivision

displacement vector of the p-th element:

(reference point:
rigid-body translation and rotation;

the uniform strain of the element) _

e.g.in 2D :

translation of another point in the element: ud =

.

u (X, y)
u,(x,y)

|

(y—y®)




THE EQUATIONS OF MOTION C%‘

,,f=ma”
c) Uniform-strain deformable elements without subdivision HOME:
translation of another point in the element: with the heI;)) of supegoospition
| u s y)=u U (%, ) = (x=x")&;




THE EQUATIONS OF MOTION CQ‘

L f=ma”
¢) Uniform-strain deformable elements without subdivision
translation of another point in the element:

Y/ p
1,00Y) =U2 —(y=y")? + (x—x)ep + YYD

Io

U, (6) =Up + (= x)g? +(y-y)al +C
_uf_
B ] p
(y=y") || Y

(v — yP __yP
; {ux((x,y)}= 1O ~y=y) (x=x) 0 2 | @
u, (XY (x=x") || &
01 —xP 0 _yP

similarly in 3D! i (x=x%) (y=y7) 2 &
= relative translations in the contacts: _7/@_

can be expressed from uP



THE EQUATIONS OF MOTION

L f=ma”
¢) Uniform-strain deformable elements without subdivision

remember:
v/ displacement vector of the p-th element:

(reference point:
rigid-body translation and rotation;
the uniform strain of the element)




THE EQUATIONS OF MOTION

¢) Uniform-strain deformable elements without subdivisi

load vector beloning to element p:
— from the contacts with
neighbouring elements
— from the external forces
directly actingon fP =
the element
the equations of motion of the p-th element:

MP -aP (t) =P (t, u(t), v(t))

the equations of motion of the whole system:
M-a(t) =f(t,u(t), v(t))

an D <_
X




SOLUTION OF THE EQUATIONS OF I\/IOTIOI\ICa

Numerical solutions only! M-a(t) =f(t,u(t), v(t))

The aim:
starting from a known u(t,) = u, and v(t,) = v, state at a t, time instant,
the aim Is to determine the approximative solutions (u,, v,), (u,, v,), ...,

(U;, vi), (Uiyq, Viyq), ... belonging to the t, t,, ..., t, t.,,, ... time instants.
I | | | | >
I | I I ~ t
ItO t1 t2 tl E+1

Initial remarks:
1. Explicit vs. implicit time integration methods
2. How to transform the equations of motion into
first-order differential equations
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SOLUTION OF THE EQUATIONS OF I\/IOTIOI\ﬂ

1. Explicit vs. implicit methods:

— explicit methods:

In the state at t.: (u, v;, f;) = equations of motion =
approximate (u.,,, v.,, , f.,,) belonging to the state at t,,,

NO checking of whether (u,,,, vi,,, f.,,) satisfy the egs of motion,
accept them and use them for the calculations of the next timestep

= fast, but less reliable; numerical stability problems! 2133




SOLUTION OF THE EQUATIONS OF I\/IOTIOI\ﬂ

1. Explicit vs. implicit methods:

Up

— implicit methods:

In the state at t.: (u,, v;, f.) = equations of motion =
approximate (u.,,, Vi, , f.,;) belonging to the state at t, ;;
then iterations, to improve this approximation belonging to t
so that the egs of motion be satisfied at t._,
= slow, but longer timesteps,

more reliable, better numerical stability 22133
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SOLUTION OF THE EQUATIONS OF I\/IOTIOI\IC%‘

2. How to transform the equations of motion into first-order DE

thede:  M-IYO _fqumv) where  vy=2U0
dt dt
Notation:
new unknowns: Yy(t) == Rgﬂ

new right-hand side:
at,u(t),v(t)) =M=-f(t,ut),v(t)) or: a(t,y)=M"-f(t,y(t))

v(t) }

a(t,u(t), v(t) = |:§(t u(t), v(t))

so the equations become:

dy(t) .
at a(t, y(t))
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REPETITON: NUMERICAL METHODS ﬁ

Numerical time integration of initial value problems:

— Euler-method

— Method of central differences

— Newmark’s 3-method

The problem to solve, in mathematical sense:

dy()
dt

to find that Y(t) function for which the egs. =a(t, y(t)) are satisfied at every t,

and whose initial value is known: y(to) =Y

Numerical solution:

Instead of trying to determine the explicit form of the function y(t) ,
the valuesy,, y,, ..., ¥; Yisqy ---, DelOnging to t,, t,, ..., t, t.,,, ... are to be approximated.
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EULER-METHOD |

For the DEM eqgs of motion:

du(t)”

The problem: ” :{ v(t) } | u(to) [y,
dvt) | [atu®.ve)] T [vit)] [V

| dt N A u) v) = M u), V)

at t;: known v; and f ;

Let Vv
|
h‘ L?\(t. u. V)} meaning: the velocity and the acceleration keep
1P 7
their starting value along the time interval

from this, the new position and velocity:

Ui, U u. V.
= ' |+At-h = ' |+At:|
{Vm} |:Vi | |:Vi } Ll(ti Ui, Vi )}

or:
Ui, =U; + ALY, DEM: contact dynamics methods

Via =V, +At-a,u;, v;) disadvantage: oscillations
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REPETITON: NUMERICAL METHODS ﬁ

Numerical time integration of initial value problems:

— Euler-method

— Method of central differences

— Newmark’s 3-method

The problem to solve:

dy(t)
dt

to find that Y(t) function for which the egs. =a(t, y(t)) are satisfied at every t,

and whose initial value is known: Y(t,) =Y,

Numerical solution:

Instead of trying to determine the explicit form of the function y(t) ,
the valuesy,, y,, ..., ¥; Yisqy ---, DelOnging to t,, t,, ..., t, t.,,, ... are to be approximated.
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METHOD OF CENTRAL DIFFERENCES CQ‘

For the DEM eqgs of motion:

The problem: du(t)

dt v(D); u(ty) = U;
V(t,)=V
d‘(;(t) _a(t,u(t), V() )=V,
At At positions
t, t @ t., forces
| | | |n | >t accelerations
! ! ! ’5 . ! velocities
known: Vi y,; @, u;, Vi) (initially: e.9. V4, == V)
Let Vi = Vigp +AL-A(G, U,V y),)

then from this: U.

1+1

=U ALV,
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METHOD OF CENTRAL DIFFERENCES

For the DEM eqgs of motion:

The problem: du(t)

dt v(v) u(ty) = U;
YO _a(u0.v0) V(t) =V, ?

- ——
Yin

known: V,_,; at,u.,v. ) 41

Let Visz = Vi, TAG-A(G UL Vi)

then from this: U, =U. +At-V, 34

DEM: e.g. UDEC, PFC (most of the explicit timestepping methods) e




REPETITON: NUMERICAL METHODS ﬁ

Numerical time integration of initial value problems:

— Euler-method

— Method of central differences

— Newmark’s 3-method

The problem to solve:

dy(t)
dt

to find that Y(t) function for which the egs. =a(t, y(t)) are satisfied at every t,

and whose initial value is known: y(t,) =y,

Numerical solution:

Instead of trying to determine the explicit form of the function y(t) ,
the valuesy,, y,, ..., ¥; Yisqy ---, DelOnging to t,, t,, ..., t, t.,,, ... are to be approximated.
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NEWMARK’S #METHOD |

For the DEM eqs of motion :

The problem: Find the u(t), v(t), a(t) functions which satisfy the egs.
M-a(t) =f(t,u(t), v(t))
du(t) d2u(t)

in which v(t) = o a(t) = i

Notation:  ,residual”s  F(t,u(t), v(t),a(t)) = (t, u(t), v(t)) = M-a(t)

The u(t), v(t), a(t) functions are the solutions of the differential egs
if and only if:  r(t,u(t), v(t),a(t)) =0

— Assume that the u;, v; and a; numerical solutions belonging to t; satisfied this.

[ L
— We would like to find u,,,, v;,, and a;,, belonging to t;,, so that:

1+1 Y+l i+1

(6,1 Ui Vi @) =0

i+1?
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NEWMARK’S #METHOD |

For the DEM eqgs of motion:

Approximation of the position and velocity at the end of the timestep:
At?
U, =U +At-v, +7[(1—2[3)ai +2B-a;,,]

Vig =V +(1-7y)-At-a +y-At-a,,
Expression for the unknown values v;,, and a,,, in terms of the unknown u,_,:
1 At?
Qi = U,, —| U +At-v, +—(1-2B)a,
1+1 BAt2|: 1+1 ( I I 2 ( B) |j:|
Vi =V, +(L-7)-At-g +v-At-a;,

here B and y are constants controlling the behaviour of the method

The core of the method: Determine that u,,,, for which:  r(t,,,,U..;,V,.;,& ) =0

— e.g. Newton-Raphson iteration to find u,,,, thenexpress v,,, anda,, v’

R

DEM: e.g. DDA models { " ‘

%
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NEWMARK’S #METHOD |

For the DEM eqgs of motion:

Approximation of the position and velocity at the end of the timestep:
At?
U, =U +At-v, +7[(1—2[3)ai +2B-a;,,]

.1 and a;,, In terms of the unknown u._,:

Expression for the unknown values v
1 At?
., = u.,—| u +At-v. +——(1-2B)a,
1+1 BAt2|: 1+1 [ I I 2 ( B) |j:|

Via =YV, +(1_'Y)'At’ai +'Y'At'ai+1

here B and y are constants controlling the behaviour of the method
specific B and y values — several other methods

UNCONDITIONALLY STABLE IF: 2B=y>%
e.g.y =", B = 0: method of central differences, which is

ONLY CONDITIONALLY STABLE 3233



QUESTIONS |

1. Explain the meaning of the quantities in the equations of motion in
the case of perfectly rigid elements!

2. Explain the meaning of the quantities in the equations of motion in
the case of elements subdivided into uniform-strain simplexes!

3. Explain the meaning of the quantities in the equations of motion in
the case of uniform-strain deformable elements without subdivision!

4. What is the difference between time-stepping and guasi-static
methods?

5. What is the difference between explicit and implicit methods?
6. Introduce the Euler-method!

7. Introduce the method of central differences!

8. Introduce Newmark’s f-method!



