
BALL-TYPE MODELS 

 Overview 

 PFC: fundamentals and applications 

OVAL, EDEM, YADE 

 other applications   

  



OVERVIEW  OF  DEM  SOFTWARES  
 

Quasi-static metods 

 From an initial approximation of the equilibrium state searched for, 

  the displacements u are to be determined taking the system to the equilibrium 

 (assumption: time-independent behaviour, zero accelerations!!!) 

  
 

   Kishino, 1988 

   Bagi-Bojtár, 1991 
 

Time-stepping methods  
 

 simulate the motion of the system along small, but finite t timesteps 
 

      Explicit timestepping methods: 

  UDEC 

  BALL-type models, e.g. PFC 

      Implicit timestepping methods: 

  DDA („Discontinuous Deformation Analysis”) 

  contact dynamics models 
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  an equilibrium state is searched for 

  a process in time is searched for 

circular, perfectly rigid elemets,  

deformable contacts 

deformable polyhedral elements, deformable contacts 

rigid elements, deformable contacts 

deformable polyhedral elements 

rigid elements, non-deformable contacts   



BALL-TYPE  MODELS 
 
BALL:    P.A. Cundall, 1979 
 
 elements:         2D, perfectly rigid; 
 
 
 contacts:     point-like; 
      Coulomb friction 
 
 
 eqs of motion: 
 
 
 
 
 
 numerical solution:  
 method of central differences 
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BALL-TYPE  MODELS 
 
BALL:    P.A. Cundall, 1979 
 
 elements:         2D, perfectly rigid; 
 
 
 contacts:     point-like; 
      Coulomb friction 
 
 
 eqs of motion: 
 
 numerical solution:  
 method of central differences 
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BALL-TYPE  MODELS 
 
BALL:    P.A. Cundall, 1979 
 
3D version: 1983, TRUBAL 
 NSF grant, free for anyone who asks for 
  huge effect on granular mechanics researches !!! 
 
 
„BALL-type” models: 
 
 perfectly rigid elements 
 

 shape: to have point-like contacts 
 
 
 eqs of motion:  
 
 numerical solution of the eqs of motion: explicit time integration,  
          (mostly: central difference scheme) 
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BALL-TYPE  MODELS 
 
most important codes: 
 
PFC-2D, PFC-3D,  P.A. Cundall, Itasca Consulting 
 
 
OVAL, M.R. Kuhn, Portland Catholic University 
 
 
EDEM, J. Favier, Edinburgh 
 
 
YADE (some versions), French origin, very active international community 
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PFC BASIC PRINCIPLES 
 

Elements:      

 

 

   perfectly rigid cylinders (2D) or spheres (3D) 

      m: mass, I: inertia 

 

   „clump”: rigid group of elements, fixed together 

      m: sum of masses,   I: sum of inertia about 

       the „centre” 

 Degrees of freedom: 

   translation of the „centre” (i.e. reference point); 

   rotation about the „centre” 
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PFC BASIC PRINCIPLES – THE CONTACTS 
 

Contact types:    

 frictional 

 
 

          linear: 
 

          Hertz-Mindlin: 

 
 

 

 

 cemented   point-like: 

 

 

               extended: 

 
 

 Viscoelastic contacts, Softening models, other possibilities , C/C++ 
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PFC BASIC PRINCIPLES – TIME INTEGRATION 
 

Displacement calculations  Newton II.: „ m a = f ”  
 

 forces acting on the spherical elements: 
 

    from the contacts of the element 

    from the external loads (weight, drag force) 

    from damping 

 

 

 forces acting on the clumps: 
 

    from the contacts of the element   

    from the external loads (weight, drag force) 

    from damping 
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PFC BASIC PRINCIPLES – TIME INTEGRATION 
 

Displacement calculations  Newton II.: „ m a = f ”  

Method of Central Differences 

 the eqs of motion, discretized: 
 

 from this: 

 

 

 

 

 

 
 

 to ensure numerical stability,  and to help fast convergence: 

 1.   estimation for the longest allowed t  :  

 2.   density scaling:    to  modify masses/inertia    

   for time-dependent problems:  never use it!  

 3.   damping 9 / 28 
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PFC BASIC PRINCIPLES – TIME INTEGRATION 
 

3. Damping: 
 

        the eqs. of motion including velocity-proportional damping: 

         

 

 

 

   1. Local damping 
 

   2. Contact viscous damping 
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PFC BASIC PRINCIPLES – TIME INTEGRATION 
 

3. Damping: 
 

a. Local damping:     e.g. for a sphere: 

 

 

 

 

 

 - unequilibrated  motions  are  damped  only;  

 - does not depend  on the magnitude  of the velocities; 

 - very good  for systems in which: 

    parts are  already in equilibrium, while parts are still far from the eq.  

 

 b. Contact viscous damping: 

 viscous force added to the contact force: 

 its direction: opposite to the relative motion 
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PFC BASIC PRINCIPLES 
 

Further details: 
 

        e.g. application results, publications, courses, conferences, … 

 

 

 

 

    Software     Downloads    Demonstration versions 
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www.itascacg.com 



PFC PRACTICAL APPLICATIONS 
 

Usual applications: 
 

 loose and cemented granular materials 

 

 

 

 

 

 

 1. Weathering of cemented granular rock under buildings 

 2. Railway ballast modelling 
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PFC PRACTICAL APPLICATIONS 
 

Weathering of cemented granular rock 

        Nova et al, 2004 

        PFC-3D 

 

 

 

 

 

 

 triaxial loading 

 3500 elements 

 size distribution:  1:2 

 

analyzed problem: 

      weathering of rock under buildings 

sand 1.  

sand 2.  

cemented 
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PFC PRACTICAL APPLICATIONS 
 

Railway ballast modelling    
 

e.g. effect of stone shape: Lu & McDowell, 2007, PFC-3D 
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PFC PRACTICAL APPLICATIONS 
 

Railway ballast modelling    
 

e.g. effect of stone shape:  

Lu & McDowell, 2007 
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OVERVIEW  OF  DEM  SOFTWARES  
 

Quasi-static metods 

 From an initial approximation of the equilibrium state searched for, 

  the displacements u are to be determined taking the system to the equilibrium 

 (assumption: time-independent behaviour, zero accelerations!!!) 

  
 

   Kishino, 1988 

   Bagi-Bojtár, 1991 
 

Time-stepping methods  
 

 simulate the motion of the system along small, but finite t timesteps 
 

      Explicit timestepping methods: 

  UDEC 
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      Implicit timestepping methods: 
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deformable contacts 

deformable polyhedral elements, deformable contacts 

rigid elements, deformable contacts 

deformable polyhedral elements 

rigid elements, non-deformable contacts   



BALL-TYPE  MODELS 
 
most important codes: 
 
PFC-2D, PFC-3D,  P.A. Cundall, Itasca Consulting 
 
 
OVAL, M.R. Kuhn, Portland Catholic University 
 
 
EDEM, J. Favier, Edinburgh 
 
 
YADE (some versions), French origin, very active international community 
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OVAL 
 
Matthew R. Kuhn, USA,    Research code! 
 
 elements:  surface composed of cylindical/spherical/toroidal etc. surfaces 
 
 
 
 
 
 
 
 contacts: 
      frictional 
 
 
 boundaries: walls; or: 
 
      periodic boundaries  
 
 input: command files,  
     output: data files, (figures) 
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BALL-TYPE MODELS 
 
 
PFC-2D, PFC-3D,  P.A. Cundall, Itasca Consulting 
 
 
OVAL, M.R. Kuhn, Portland Catholic University 
 
 
EDEM, J. Favier, Edinburgh 
 
 
YADE (some versions), French origin, very active international community 
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EDEM 
 
J. Favier, Edinburgh 
 
 elements: spheres / composed of spheres 
 
 contacts: frictional, linearly elastic 
  Hertz-Mindlin 
  cohesional 
  cemented 
  individually coded 
 
 boundaries: several types!  
 
 special features of the 
 displacement calcultions: 
  easy to connect to  
  FEM or CFD 
  (solids, fluids) 
  fast, \\ 
 
 output: rich (videos, pictures, etc.) 
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EDEM 
 
applications:   
 
e.g. J. Boac, 2010:  
      assemblies of soy bean & corn 
 
        result: 
 well-calibrated model 
 for machine design 
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www.dem-solutions.com 



EDEM 
 
applications:   
 
e.g. J. Helgesson, 2010:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        result:  
 optimize the geometry of the spoon 
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BALL-TYPE MODELS 
 
 
PFC-2D, PFC-3D,  P.A. Cundall, Itasca Consulting 
 
 
OVAL, M.R. Kuhn, Portland Catholic University 
 
 
EDEM, J. Favier, Edinburgh 
 
 
YADE (some versions), French origin, very active international community 
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YADE 
 
elements:   spheres; 
    complex shapes consisting of spheres; 
    polyhedra; 
    [anything personal can be coded]  
 
contacts: 
    [several models, individual codes shared] 
 
applications:   
 researchers! 
 e.g. simulation of lunar regolith:   Modenese (2013) 
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BALL-TYPE MODELS:  

 OTHER APPLICATIONS 
 

Floating ice blocks:  effect on military vessels and structures  

 

US Army Research Institute, 

Cold Regions Department: 
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BALL-TYPE MODELS:  

 OTHER APPLICATIONS 
 

Architectural design:   Simulation of a crowd in panic   
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QUESTIONS 
 

 

1. Under what conditions does a discrete element model belong to 

 the family of BALL-type models? 

2. What types of contact models are applied in the BALL-type 

 models? Shortly describe them! 

3. Explain the calculation of a single time step in PFC! Why is it 

 important to set a limit to the length of the time step,  and 

 how can this limit be estimated? 

4. Why should damping be used in BALL-type models? Introduce 

 local damping and contact viscous damping! 

 


