

 \rightarrow Overview

- \rightarrow PFC: fundamentals and applications
- \rightarrow OVAL, EDEM, YADE
- \rightarrow other applications

OVERVIEW OF DEM SOFTWARES

Quasi-static metods \leftarrow an <u>equilibrium state</u> is searched for From an initial approximation of the equilibrium state searched for, the displacements \mathbf{u} are to be determined taking the system to the equilibrium (assumption: time-independent behaviour, zero accelerations!!!)

$$\mathbf{K} \cdot \Delta \mathbf{u} + \mathbf{f} = \mathbf{0}$$

→ Kishino, 1988
 → Bagi-Bojtár, 1991
 circular, perfectly rigid elemets, deformable contacts

<u>Time-stepping methods</u> " $\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$ " $\leftarrow a \text{ process in time}$ is searched for

simulate the motion of the system along small, but finite Δt timesteps

Explicit timestepping methods:

 \rightarrow UDEC deformable polyhedral elements, deformable contacts

 \rightarrow BALL-type models, e.g. PFC rigid elements, deformable contacts

Implicit timestepping methods:

 \rightarrow DDA (,,Discontinuous Deformation Analysis") deformable polyhedral elements

→ contact dynamics models rigid elements, non-deformable contacts

BALL: P.A. Cundall, 1979

3D version: 1983, <u>TRUBAL</u> NSF grant, free for anyone who asks for ⇒ huge effect on granular mechanics researches !!!

"BALL-type" models:

- \rightarrow perfectly rigid elements
- \rightarrow shape: to have point-like contacts

 \rightarrow eqs of motion: $\mathbf{M}^{p}(t)\mathbf{a}^{p}(t) = \mathbf{f}^{p}(t, \mathbf{u}(t), \dot{\mathbf{u}}(t))$

→ numerical solution of the eqs of motion: explicit time integration, (mostly: central difference scheme)

most important codes:

PFC-2D, PFC-3D, P.A. Cundall, Itasca Consulting

OVAL, M.R. Kuhn, Portland Catholic University

EDEM, J. Favier, Edinburgh

YADE (some versions), French origin, very active international community

PFC BASIC PRINCIPLES

Elements:

perfectly rigid cylinders (2D) or spheres (3D) *m*: mass, *I*: inertia

"clump": rigid group of elements, fixed together *m*: sum of masses, *I*: sum of inertia about the "centre"

Degrees of freedom:

translation of the "centre" (i.e. reference point); rotation about the "centre"

Displacement calculations

Newton II.: ,, ma = f"

- forces acting on the spherical elements:

← from the contacts of the element
← from the external loads (weight, drag force)
← from damping

- forces acting on the clumps:

- \leftarrow from the contacts of the element
- \leftarrow from the external loads (weight, drag force)
- \leftarrow from damping

 $\Big\} \rightarrow f, M$

8 / 28

Newton II.: ,, ma = f"

Displacement calculations Method of Central Differences

- the eqs of motion, discretized: $\mathbf{v}^{p}(t_{i} + \Delta t/2) = \mathbf{v}^{p}(t_{i} - \Delta t/2) + (\mathbf{M}^{p})^{-1} \mathbf{f}^{p}(t_{i}) \Delta t$

- from this: $\mathbf{u}^{p}(t_{i} + \Delta t) = \mathbf{u}^{p}(t_{i}) + \mathbf{v}^{p}(t_{i} + \Delta t/2)\Delta t$

- to ensure numerical stability, and to help fast convergence:

- 1. estimation for the longest allowed Δt : $\Delta t_{crit} = \min \langle dt \rangle$
- 2. density scaling: to modify masses/inertia

for time-dependent problems: never use it!

3. damping

 $\sqrt{m/k^{transl}}$

3. Damping:

the eqs. of motion including velocity-proportional damping:

$$\mathbf{v}(t_i + \Delta t/2) = \mathbf{v}(t_i - \Delta t/2) = \mathbf{M}^{-1} \left(\mathbf{f}(t_i) - c_u \mathbf{v}(t_i - \Delta t/2) \right) \cdot \Delta t$$

 \rightarrow 1. Local damping \leftarrow *default*

 \rightarrow 2. Contact viscous damping

3. Damping:

a. *Local damping*: e.g. for a sphere:

$$v_{x}(t_{i} + \Delta t/2) = v_{x}(t_{i} - \Delta t/2) + \left(f_{x}(t_{i}) - \alpha \cdot |f_{x}(t_{i})| \operatorname{sign}(v_{x}(t_{i} - \Delta t/2))\right) \frac{\Delta t}{m}$$

$$\omega_{z}(t_{i} + \Delta t/2) = \omega_{z}(t_{i} - \Delta t/2) + \left(M_{z}(t_{i}) - \alpha \cdot |M_{z}(t_{i})| \operatorname{sign}(\omega_{z}(t_{i} - \Delta t/2))\right) \frac{\Delta t}{I_{z}}$$

default: $\alpha := 0.70$

- unequilibrated motions are damped only;
- does not depend on the magnitude of the velocities;
- very good for systems in which: parts are already in equilibrium, while parts are still far from the eq.

b. Contact viscous damping:

viscous force added to the contact force: its direction: opposite to the relative motion

$$|D_N| = c_N \left| \frac{\Delta u_N}{\Delta t} \right|$$
$$|D_T| = c_T \left| \frac{\Delta u_T}{\Delta t} \right|$$

PFC BASIC PRINCIPLES

Further details:

e.g. application results, publications, courses, conferences, ...

www.itascacg.com

 \rightarrow Software \rightarrow Downloads \rightarrow Demonstration versions

Usual applications:

loose and cemented granular materials

Weathering of cemented granular rock under buildings
 Railway ballast modelling

(d) DEM parameters

Railway ballast modelling

e.g. effect of stone shape: Lu & McDowell, 2007, PFC-3D

Railway ballast modelling

e.g. effect of stone shape: Lu & McDowell, 2007

OVERVIEW OF DEM SOFTWARES

Quasi-static metods \leftarrow an <u>equilibrium state</u> is searched for From an initial approximation of the equilibrium state searched for, the displacements \mathbf{u} are to be determined taking the system to the equilibrium (assumption: time-independent behaviour, zero accelerations!!!)

$$\mathbf{K} \cdot \Delta \mathbf{u} + \mathbf{f} = \mathbf{0}$$

→ Kishino, 1988
 → Bagi-Bojtár, 1991
 circular, perfectly rigid elemets, deformable contacts

<u>Time-stepping methods</u> " $\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$ " $\leftarrow a \text{ process in time}$ is searched for

simulate the motion of the system along small, but finite Δt timesteps

Explicit timestepping methods:

 \rightarrow UDEC deformable polyhedral elements, deformable contacts

 \rightarrow BALL-type models, e.g. PFC rigid elements, deformable contacts

Implicit timestepping methods:

 \rightarrow DDA (,,Discontinuous Deformation Analysis") deformable polyhedral elements

→ contact dynamics models rigid elements, non-deformable contacts

most important codes:

PFC-2D, PFC-3D, P.A. Cundall, Itasca Consulting

OVAL, M.R. Kuhn, Portland Catholic University

EDEM, J. Favier, Edinburgh

YADE (some versions), French origin, very active international community

OVAL

Matthew R. Kuhn, USA, Research code!

 \rightarrow elements: surface composed of cylindical/spherical/toroidal etc. surfaces

YADE (some versions), French origin, very active international community

EDEM *www.dem-solutions.com*

- J. Favier, Edinburgh
- \rightarrow elements: spheres / composed of spheres
- → contacts: frictional, linearly elastic Hertz-Mindlin cohesional cemented individually coded
- \rightarrow boundaries: several types!
- → special features of the displacement calcultions:
 - easy to connect to FEM or CFD (solids, fluids)
 - fast, \setminus
- \rightarrow output: rich (videos, pictures, etc.)

EDEM

www.dem-solutions.com

applications:

e.g. J. Boac, 2010: assemblies of soy bean & corn

result: well-calibrated model for machine design

optimize the geometry of the spoon

YADE (some versions), French origin, very active international community

YADE

<u>elements:</u> spheres; complex shapes consisting of spheres; polyhedra; [anything personal can be coded]

contacts:

[several models, individual codes shared]

researchers! e.g. simulation of lunar regolith: Modenese (2013)

https://yade-dem.org

BALL-TYPE MODELS: OTHER APPLICATIONS

Floating ice blocks: effect on military vessels and structures

US Army Research Institute, Cold Regions Department:

BALL-TYPE MODELS: OTHER APPLICATIONS

Architectural design: Simulation of a crowd in panic

QUESTIONS

- 1. Under what conditions does a discrete element model belong to the family of BALL-type models?
- 2. What types of contact models are applied in the BALL-type models? Shortly describe them!
- 3. Explain the calculation of a single time step in PFC! Why is it important to set a limit to the length of the time step, and how can this limit be estimated?
- 4. Why should damping be used in BALL-type models? Introduce local damping and contact viscous damping!