1 A GÖMB VALÓDI SÍKVETÜLETEI

A síkvetületek lehetnek ún. valós (valódi), és lehetnek ún. képzetes (módosított, ál, konvencionális) vetületek. A valódi síkvetületeket az jellemzi, hogy normális elhelyezésben a meridiánok (más elhelyezésben a segédmeridiánok) képei egyenesek, és ezek egy pontba futnak össze (ez a pont a végtelenben is lehet), a paralelkörök (segédparalelkörök) képe pedig olyan koncentrikus körök vagy körívek, melyeknek középpontja az a pont, amelyben a meridiánok találkoznak. Ha ez a pont a végtelenben van, akkor a paralelkör képek, mint végtelen sugarú koncentrikus körök, párhuzamos egyenesekké válnak. A fokhálózat képe derékszögű rendszert alkot. Minden olyan síkvetület, amelyen a fokhálózat (segédfokhálózat) képe másképp alakul, a képzetes vetületek csoportjába tartozik. Ezek lehetnek képzetes kúp, képzetes hengervetületek, vagy pedig ezekbe az osztályokba nem sorolható egyéb képzetes vetületek.

Kúp, henger és közvetlen síkvetület (azimutális vetület)

1.1 NÉHÁNY AZIMUTÁLIS VETÜLET

A gömb közvetlen síkvetületeit nevezzük azimutális vetületeknek. A következőkben csak a nevezetesebb vetületekkel foglalkozunk, a perspektív vetületek közül a szeterografikus, gnomonikus és ortografikus vetületekkel illetve a nem perspektív vetületek közül a területtartó és meridiánokon hossztartó vetületekkel. A perspektív vetületek egyenletei geometriai úton is levezethetőek és a vetületek szerkeszthetőek. Vannak olyan azimutális vetületek melyeknek a vetületi egyenleteit matematikai úton tudjuk levezetni a vetületi főirányokban meghatározott lineármodulusok alapján, mint a szögtartó, területtartó és meridiánon hossztartó vetületek.

Ferdetengelyű azimutális vetület

Azimutális vetületeken a sugárhajlás (γ) megegyezik a földrajzi hosszúsággal (λ) normális elrendezésben (ferde elrendezésben pedig a segéd földrajzi hosszúsággal).

$$\gamma = \lambda$$

A derékszögű koordináták a síkon a sugárhossz és a sugárhajlás ismeretében számíthatóak:

$$x = p \cdot \cos \gamma = p \cdot \cos \lambda$$
$$y = p \cdot \sin \gamma = p \cdot \sin \lambda$$

Mivel a sugárhajlás (γ) minden azimutális vetületen megegyezik a földrajzi hosszúsággal, ezért a különböző azimutális vetületek között csak a sugárfüggvényben van eltérés, ami megadja a sugárhosszt (p).

1.1.1 Lineármodulusok a vetületi főirányokban

Azimutális valódi vetületeken normális elhelyezésben a meridiánok és a paralelkörök merőlegesek egymásra az alapfelületen, és képük merőleges egymásra a képfelületen, ezért ezek az irányok a vetületi főirányok. A lineármodulust a meridián és a paralelkör irányában kell tehát meghatározni, lásd az alábbi ábrán:

$$I_m = \frac{\text{meridiánké p elemi ívdarabja}}{\text{meridián elemi ívdarabja}} = \frac{dp}{R d\beta},$$

$$lp = \frac{\text{paralekör képének elemi ívdarabja}}{\text{paralekör elemi ívdarabja}} = \frac{p \, d\lambda}{R \sin \beta \, d\lambda} = \frac{p}{R \sin \beta}$$

A kettő közül a nagyobbik a torzulási ellipszis a fél nagytengelye, a kisebbik a b fél kistengelye.

1.1.2 Sztereografikus vetület

A gömbnek igen gyakran alkalmazott perspektív azimutális vetülete a *sztereografikus vetület*. A perspektív vetületeknél a vetítés egy megadott *Q* vetítési középpontból történik. A sík és a gömb érintési pontja a *K* vetületi kezdőpont. A *Q* vetítési központ a kezdőponthoz tartozó átmérő másik végpontja. Lásd a következő ábrát, aminek alsó része a vetítés módját, felső része pedig a segédfokhálózati vonalak képének alakulását mutatja.

A ferdetengelyű sztereografikus vetület sugárfüggvénye az ábráról, a QKA' háromszögből:

Sztereografikus fokhálózati kép szerkesztése

Vezessük le matematikailag a szögtartó azimutális vetületek egyenleteit, kiindulva abból, hogy szögtartó vetületen a lineármodulusok a vetületi főirányokban egyenlőek egymással:

$$l_m = l_p$$
$$\frac{dp}{R \cdot d\beta} = \frac{p}{R \cdot \sin \beta}$$

Átrendezve, hogy *p* és *dp* egy oldalon legyen:

$$\frac{dp}{p} = \frac{d\beta}{\sin\beta}$$

Mindkét oldalt kiintegrálva

$$\ln p = \ln \tan \frac{\beta}{2} + \ln c$$

ahol In c az integrálási állandó. Áttérve a numerusokra:

$$p = c \cdot \tan \frac{\beta}{2}$$

A *c*-t abból a feltételből határozhatjuk meg, hogy $\beta' = 0^{\circ}$ helyen (a kezdőpontban) a lineármodulus az egységgel egyenlő, ebből az adódik, hogy c = 2R, vagyis az *érintő sztereografikus vetület sugárfüggvénye*:

$$p = 2 R \tan \frac{\beta}{2}$$

Ez a sugárfüggvény megegyezik a perspektív sztereografikus vetület geometriai úton megadott sugárfüggvényével, vagyis a szeterografikus vetület egy szögtartó perspektív azimutális vetület.

Geodéziai hálózatok és vetületek (Varga József, Laky Piroska)

1.1.3 Gnomonikus vetület

A gnomonikus (gömbközépponti) vetület szerkesztését Thalésznek (i.e. 624-546 körül) tulajdonítják. A vetület vetítési központja a gömb középpontja, vagyis *D* = 0 (ábra). A vetítési központ (*Q*) tehát benne van valamennyi legnagyobb gömbi kör síkjában. Ebből következik, hogy minden gömbi kör képe egyenes, ami azt jelenti, hogy a gnomonikus vetületen két pontot egyenessel összekötve a két pont közötti ortodroma képét kapjuk. Mivel a legnagyobb gömbi körök képe egyenes a gnomonikus vetületen nincs második irányredukció. Az első irányredukcióval viszont számolni kell, mivel a vetület általános torzulású.

A gnomonikus vetület szerkesztése

A sugárfüggvény az ábrából:

$$p' = R \tan \beta'$$

A sugárhajlás, mint minden azimutális vetületen:

$$\gamma = \lambda'$$

1.1.4 Ortografikus vetület

Az ortografikus vetületen a vetítési központ (Q) a végtelenben van, vagyis $D = \infty$. Az ábráról felírható a sugárfüggvény ferdetengelyű elhelyezésben:

$$p' = R \sin \beta'$$

Geodéziai hálózatok és vetületek (Varga József, Laky Piroska)

Az ortografikus vetület szerkesztése

A sugárhajlás, mint minden azimutális vetületen:

$$\gamma = \lambda'$$

Az ábrán is látható, hogy ferde elhelyezésben a segédparalelkörök, normális elhelyezésben a paralelkörök torzulásmentesek. A vetületet általában a Hold ábrázolására szolgál, de használják földi ábrázoláshoz is.

1.1.5 Területtartó azimutális vetület

Most nézzünk néhány nem perspektív azimutális vetületet. Területtartó vetületen a vetületi főirányokban vett lineármodulusok egymásnak reciprok értékei, vagyis *ferdetengelyű vetületen*:

1

$$l_m = \frac{1}{l_p}$$
$$\frac{dp'}{Rd\beta'} = \frac{R\sin\beta}{p'}$$

Rendezzük az egyenletet, majd végezzük el mindkét oldalon az integrálást:

$$p dp = R^{2} \sin \beta \ d\beta$$
$$p^{2} = -2R^{2} \cos \beta + c$$

A *c* integrálási állandót meghatározhatjuk a vetületi kezdőpontnak megfelelő $\beta' = 0^{\circ}$ értéket behelyettesítve. Így végül a sugárfüggvény a következő lesz:

$$p'=2R\sin\frac{\beta'}{2}$$

A sugárhajlás, mint minden azimutális vetületen:

Különleges vetületek

(Varga József, Laky Piroska)

 $\gamma = \lambda'$

Ez a vetület is szerkeszthető, csak nem egy vetítési középpontból húzott sugarakkal, hanem a lenti ábra alapján, a vetítendő pontot a kezdőponttal összekötő húr hosszát felmérve a megfelelő segédmeridián képére.

Területtartó azimutális vetület szerkesztése

1.1.6 Azimutális vetület hossztartó központi irányokkal

Ezen a vetületen általános elhelyezésben a segédmeridiánok, normális elhelyezésben pedig a meridiánok hossztartók. A vetületet *Postel-féle vetületnek* is nevezik. G. Postel francia matematikus (1510-1581).

A Postel-féle vetület szerkesztése

(Varga József, Laky Piroska)

Mivel a segédmeridiánok hossztartók, nyilvánvaló, hogy az irányukba eső lineármodulus az egységgel egyenlő:

$$I_{sm} = \frac{dp'}{R d\beta'} = 1.$$

Az egyenlet rendezése után az integrálást elvégezve:

$$dp' = R d\beta'$$

A sugárfüggvény:

 $p' = R \beta'$

A sugárhajlás, mint minden azimutális vetületen:

 $\gamma = \lambda'$

1.2 NÉHÁNY VALÓDI HENGERVETÜLET

A hengervetületek (cilindrikus vetületek) jellemzője, hogy normális elhelyezésben az egyenlítő és a paralelkörök képei párhuzamos egyenesek. A valós hengervetületnek jellemzője még, hogy normális elhelyezésben a meridiánképek a henger alkotóival esnek egybe, tehát a hengerpalást síkba fejtése után a meridiánképek egymással párhuzamos és az egyenlítő képére merőleges egyenesek. A normálistól eltérő (transzverzális vagy ferdetengelyű) elhelyezésben mindezek a segédfokhálózati vonalakra vonatkoznak. A továbbiakban, ha röviden hengervetületet említünk, mindig valós hengervetületre gondolunk.

Normális elhelyezésű érintő és metsző hengervetület

1.2.1 Lineármodulus a vetületi főirányokban

Normális elhelyezésű hengervetületen, minthogy a meridiánok és a paralelkörök a gömbön, valamint képeik a henger palástján, illetve a síkon merőlegesek egymásra, a vetületi főirányok: a meridián és a paralelkör iránya.

A lineármodulusok kifejezését az érintő helyzethez az *ábra* alapján vezetjük le. A síkkoordináta-rendszer *y* tengelye az egyenlítő képe, az *x* tengely pedig a kezdőponton átmenő meridiánnak a képe.

Fokhálózati vonalak elemi ívdarabjai és képük érintő hengervetületen

Érintő elhelyezésben az egyenlítő hossztartóságából, valamint abból, hogy a meridiánképek az egyenlítő képére merőleges egyenesek, következik, hogy valamennyi paralelkör képe ugyanolyan hosszú, mint az egyenlítő, és valamely pont y koordinátája – attól függetlenül, hogy a pont melyik paralelkörön van – lineárisan arányos a földrajzi hosszúsággal:

$$y = R \lambda$$
 és d $y = R d\lambda = dt_p$.

Valamely φ földrajzi szélességű paralelkör elemi ívdarabjának hossza a gömbön:

$$ds_p = R \cos \varphi \ d\lambda .$$

Az ívdarab képének hossza:

$$dt_p = R d\lambda$$
.

A paralelkör irányú lineármodulus tehát:

$$I_{p} = \frac{dt_{P}}{ds_{P}} = \frac{R \, d\lambda}{R \cos \varphi \, d\lambda} = \frac{1}{\cos \varphi}.$$

A meridián elemi ívdarabjának hossza:

 $ds_m = R d\varphi$.

(Varga József, Laky Piroska)

Az ívdarab képének hossza:

 $dt_m = dx$.

A meridián irányú lineármodulus tehát:

$$I_m = \frac{dt_m}{ds_m} = \frac{dx}{R \, d\varphi} \, .$$

1.2.2 Normális elhelyezésű érintő szögtartó hengervetület

A szögtartó hengervetület vetületi egyenletei levezetésének legegyszerűbb módja az, ha a Tissot-féle torzulási ellipszis féltengelyeinek a szögtartó vetületekre vonatkozó a = b, vagyis $I_m = I_p$ egyenlőségéből indulunk ki:

$$\frac{dx}{R\,d\varphi} = \frac{1}{\cos\varphi}\,,$$

átrendezés után:

$$d\mathbf{x} = R \frac{d\varphi}{\cos\varphi}$$

és a két oldal integrálása után:

$$x = R \ln \tan \left(45^\circ + \frac{\varphi}{2} \right) + c$$

A *c* integrálási állandó abból a feltételből, hogy $\varphi = 0^{\circ}$ -nál (az egyenlítőnél) x = 0, tehát:

 $0 = R \ln \tan 45^{\circ} + c$,

amiből c is egyenlő zérussal. Az y egyenletét már korábban felírtuk. A vetületi egyenletek tehát:

$$x = R \ln \tan \left(45^\circ + \frac{\varphi}{2} \right), \qquad y = R \ \lambda$$

A szögtartó hengervetületet *Mercator* (1512-1594) alkalmazta először tengerészeti célokra. A normális elhelyezésű szögtartó hengervetületet első alkalmazója után Mercator vetületnek is nevezik. A vetület nagy előnye a tengeri hajózásban és a repülésben jelentkezik, ugyanis két térképi pontot egyenessel összekötve a loxodróma képét kapjuk (lásd a következő ábrát). Normális elhelyezésben ugyanis a meridiánképek egymással párhuzamos egyenesek, és mivel a vetület szögtartó, a loxodróma képének mindegyik meridiánképet ugyanolyan szög alatt kell metszenie.

(Varga József, Laky Piroska)

Loxodrómák képe normális elhelyezésű szögtartó hengervetületen

A normális elhelyezésű szögtartó hengervetület fokhálózati képét a *következő ábra* mutatja. Az ábrán az is látható, hogy a vetület geodézia célra csak az egyenlítő menti területek ábrázolására alkalmas, de a földrajzban is legfeljebb a 60^o szélességig használható. A paralelkörök képei a pólus felé egyre távolabb kerülnek egymástól. A pólus már nem ábrázolható, mert képe a végtelenbe távolodik.

Normális elhelyezésű szögtartó hengervetület

Különleges vetületek

(Varga József, Laky Piroska)

1.2.3 Területtartó hengervetületek

Területtartó vetületen a vetületi főirányok lineármodulusai egymásnak reciprok értékei, tehát:

$$\frac{dx}{R \, d\varphi} = \cos \varphi$$

Rendezés, majd integrálás után:

$$dx = R\cos\varphi \, d\varphi$$
$$x = R\sin\varphi + c$$

A c integrálási állandó zérus, mert $\varphi = 0^{\circ}$ -nál x = 0. A vetületi egyenletek tehát:

$$x = R \sin \varphi$$

$$y = R \lambda$$
.

Mivel a pólus felé haladva az egymástól azonos távolságra levő paralelkörök közötti területek egyre kisebbek lesznek, a paralelkörök képei a pólus felé sűrűsödnek (*ábra*).

A fokhálózat képe és a paralelkörképek szerkesztése területtartó hengervetületen

1.2.4 Hengervetület hossztartó meridiánokkal

Az egyenlítő és a meridiánok hossztartóságából közvetlenül adódnak a vetületi egyenletek:

$$x = R \varphi$$
,

$$y = R \lambda$$
.

Ha az ábrázolandó meridiánok között annyi a földrajzi hosszúságkülönbség, mint amennyi a földrajzi szélességkülönbség az ábrázolandó paralelkörök között, akkor a fokhálózat idomai négyzetek (*ábra*). Ezért a vetületet *négyzetes hengervetületnek is nevezik*.

(Varga József, Laky Piroska)

A fokhálózat képe normális elhelyezésű, hossztartó meridiánú hengervetületen

1.3 A GÖMB VALÓS KÚPVETÜLETEI

6.1. ábra. Gömbfelületi pont képe normális elhelyezésű kúpvetületen

Az alapfelületen az A pont meridiánja a kezdőmeridiánnal zárjon be γ szöget, és a képfelületen az A pont meridiánjának képe a kezdőmeridián képével γ szöget. Normális elhelyezésű valódi kúpvetületen

Különleges vetületek

(Varga József, Laky Piroska)

 $\gamma = n \lambda$,

ahol *n* arányszám. A γ szöget *sugárhajlásnak* nevezzük. Az ábra jobb oldali részén az *u* és *v* egyenesek által bezárt Γ nyílásszög eszerint λ = 360°-nak felel meg, vagyis

$$\Gamma = n \cdot 360^{\circ}$$

A Γ mindig kisebb 360°-nál, ezért kúpvetületen

$$0 < n < 1$$
.

1.3.2 A valós kúpvetületek általános tulajdonságai

A valós kúpvetületek (konikus vetületek) jellemzője, hogy normális elhelyezésben a meridiánképek egyenesek, és a kúp alkotóival esnek egybe, tehát a kúppalást síkba fejtése után egy pontban a kúp csúcspontjában futnak össze, továbbá a paralelkörök képei a kúp csúcspontja körül rajzolt koncentrikus körívek. A normálistól eltérő elhelyezésben mindezek természetesen a segédparalelkörökre és a segédmeridiánokra vonatkoznak.

A továbbiakban, ha csak kúpvetületet említünk, mindig valós kúpvetületre gondolunk.

Kúpvetület keletkezése

kúpvetület keletkezhet úgy, hogy az egyenes körkúp palástját érintő vagy metsző helyzetbe állítjuk a gömbhöz, vagy pedig a kúpfelületet a gömbön kívül, ahhoz hozzá nem érintve helyezzük el, és a gömbi pontokat perspektív módon vetítjük a kúp palástjára, majd a kúpot egy alkotója mentén felvágva, a palástot kiterítjük a síkba.

Gyakoribb azonban, hogy a kúpvetület nem perspektív módon keletkezik, hanem kizárólag matematikai úton felállított vetületi törvények szerint. Ilyenkor a kúp csak szimbólum, éppen úgy, mint a henger a matematikai úton létesített hengervetületekre vonatkozóan.

Normális helyzetben, ha a kúppalást érinti a gömböt, az érintés egy paralelkör mentén történik. Érintő elhelyezésben az érintési paralelkör a gömbnek és a kúpnak közös vonala, ennélfogva ezen hossztorzulás nincsen, és így a meridiánképek az érintési paralelkör képét egymástól pontosan ugyanolyan távolságban metszik, mint a megfelelő meridiánok az érintési paralelkört a gömbön.

Ha a kúppalást normális elhelyezésben metszi a gömböt, akkor a két metszet egy-egy hossztartó paralelkör, mivel a gömbnek és a kúpnak most ezek a közös vonalai. *Ennélfogva a*

meridiánképek a metszési paralelkörök képét egymástól pontosan olyan távolságban metszik, mint a megfelelő meridiánok a metszési paralelköröket a gömbön.

Ha a kúppalást a gömbfelületen kívül helyezkedik el, akkor is lehet olyan paralelkör, amely torzulásmentes.

Azt a paralelkört, amelyen a lineármodulus minimumot ér el, *normálparalekörnek* nevezzük. Érintő elhelyezésben a normálparalelkör azonos az érintési paralelkörrel. Metsző elhelyezésben a normálparalelkör a két metszési paralelkör között fekszik; helye számítással határozható meg. Ha a kúppalást a gömbfelületen kívül helyezkedik el, akkor is számítással meghatározható helyen van a normálparalelkör.

Miként már korábban ismertettük, ha a kúppalástot egy alkotója mentén felvágjuk, és kiterítjük a síkba, akkor a felhasított palást két széle 360°-nál kisebb szöget zár be egymással. A nyílásszög:

Kúpvetületi derékszögű koordináta-rendszer elhelyezése

Valamely gömbi pont képét a síkba fejtett kúppaláston (a vetületi síkon), abban a poláris koordináta-rendszerben, amelynek kezdőpontja a kúp csúcsa, kezdőiránya pedig a kezdőmeridánnak a kúp csúcspontján átmenő képe, meghatározza a ponton átmenő paralelkör képének a *sugárfüggvényből* számított *p* sugara és a kúp csúcspontját a pont képével összekötő egyenesnek (meridiánképnek) a kezdőmeridián képével bezárt γ szöge, a *sugárhajlás* (*ábra*).

Valós kúpvetületen normális elhelyezésben a *sugárfüggvény kizárólag a földrajzi szélesség, illetve a pólustávolság függvénye*:

$$p = f_1(\varphi) = f_2(\beta),$$

a sugárhajlás pedig kizárólag a földrajzi hosszúságtól függ:

Kúpvetületi derékszögű és poláris koordináta-rendszer összefüggése

Az egyenlő torzulású vonalak a paralelkörök és képeik. A kúpvetületi *derékszögű koordinátarendszer y* tengelye a normálparalelkör képéhez a kezdőmeridián egyenesként jelentkező képével alkotott metszéspontjában húzott érintő, *x* tengelye pedig a kezdőmeridián képe (*ábra*). A kétféle koordináta-rendszerben értelmezett koordináták közötti összefüggés az ábráról olvasható le:

$$x = p_{o} - p \cos \gamma,$$
$$y = p \sin \gamma,$$

ahol *p*_o a normálparalelkör képének sugara.

Ha síkkoordinátákból gömbi földrajzi koordinátákat kívánunk számítani:

$$p = \sqrt{(p_0 - x)^2 + y^2}$$
$$\gamma = \arcsin \frac{y}{p} = \arccos \frac{p_0 - x}{p}$$
$$\lambda = \frac{\gamma}{p}$$

A normálistól eltérő minden más elhelyezésben mindaz, amit a fokhálózati vonalakra mondtunk, a segéd fokhálózatra vonatkozik. A valódi fokhálózati vonalak képe ilyenkor általában valamilyen görbe vonalként jelentkezik.

1.3.3 Torzulási modulusok és sugárhajlás az érintő kúpvetületeken

Normális elhelyezésű kúpvetületen – mivel a fokhálózati vonalak a gömbön, valamint képeik a síkon is merőlegesek egymásra – a vetületi főirányok a meridián és a paralelkör iránya.

(Varga József, Laky Piroska)

Gömbi meridián és paralelkör elemi ívdarabja és képük kúpvetületen

Valamely meridián elemi ívdarabjának hossza a gömbön (ábra):

$$ds_m = R d\beta = R d\varphi$$

Képének hossza a síkon:

 $dt_m = dp$

A meridián irányú lineármodulus ezek szerint:

$$I_m = \frac{dt_m}{ds_m} = \frac{dp}{R \ d\beta} = -\frac{dp}{R \ d\varphi}$$

A negatív előjel abból adódik, hogy a φ növekedésének a *p* rövidülése felel meg. A paralelkör elemi ívdarabjának hossza a gömbön:

$$ds_{p} = R \sin \beta \, d\lambda = R \cos \varphi \, d\lambda$$

Képének hossza a síkon:

 $dt_{\rm p} = p \, d\gamma$

A paralelkör irányú lineármodulus tehát:

$$I_{p} = \frac{dt_{p}}{ds_{p}} = \frac{p \, d\gamma}{R \sin \beta \, d\lambda}$$

A sugárhajlás képlete alapján:

Különleges vetületek

(Varga József, Laky Piroska)

$$\gamma = \boldsymbol{n} \cdot \boldsymbol{\lambda}$$
, tehát d $\gamma = \boldsymbol{n} \, \mathrm{d} \boldsymbol{\lambda}$

és így a paralelkör irányú lineármodulus:

$$I_{p} = \frac{n p d\lambda}{R \sin \beta d\lambda} = \frac{n p}{R \sin \beta} = \frac{n p}{R \cos \varphi}$$

Ha a kúppalást érinti a gömböt, akkor a β_0 pólustávolságú normálparalelkör távolsága a kúp C csúcspontjától (és egyben a normálparalelkör képének sugara is), (lásd következő ábra):

A normálparalelkör elemi ívdarabja és távolsága a kúp csúcspontjától

A normálparalelkör elemi ívdarabjának hossza kétféleképpen is kifejezhető, egyrészt a paralelkör sugarát és $d\lambda$ -t felhasználva:

$$ds = R \sin \beta_0 d\lambda$$

Másrészt a kúp C csúcsából p_0 sugár és $d\gamma$ segítségével

$$ds = p_0 d\gamma = R \operatorname{tg} \beta_0 n d\lambda$$

Tegyük egyenlővé a kettőt:

$$R \sin \beta_0 d\lambda = R \log \beta_0 n d\lambda$$

Majd fejezzük ki belőle n-t! A normális elhelyezésű érintő kúpvetületen tehát az arányossági tényező:

$$n = \cos \beta_0 = \sin \varphi_0$$

ahol β_0 és φ_0 az érintési (normál-) paralelkör pólustávolsága, illetve földrajzi szélessége.

Különleges vetületek

(Varga József, Laky Piroska)

A sugárhajlás (6.42) általános képletéből:

$$\gamma = \mathbf{n} \cdot \boldsymbol{\lambda} = \boldsymbol{\lambda} \cos \beta_{\rm o} = \boldsymbol{\lambda} \sin \varphi_{\rm o}$$

Az n-re és γ -ra felírt képletek nem érintő kúpvetületen is érvényes azzal, hogy β_0 és φ_0 a normálparalelkörhöz tartozó értékek.

A különböző torzulású kúpvetületek vetületi egyenletei a vetületi főirányok lineármodulusaiból levezethetők. A továbbiakban csak a geodéziai célokra használatos szögtartó kúpvetületekkel foglalkozunk.

1.4 SZÖGTARTÓ KÚPVETÜLETEK

1.4.1 Érintő elhelyezésű szögtartó kúpvetület

Szögtartó kúpvetületen a vetületi főirányok lineármodulusai egymással egyenlők:

$$\frac{dp}{R \, d\beta} = \frac{n \, p}{R \sin \beta}$$

Rendezve az egyenletet:

$$\frac{dp}{p} = n \frac{d\beta}{\sin\beta}$$

Integráljuk az egyenlőség mindkét oldalát:

$$\ln p = n \ln tg \frac{\beta}{2} + \ln c$$

Ahol In c az integrálási állandó. Visszatérve a numerusokra:

$$p = c t g^n \frac{\beta}{2}$$

Írjuk fel *p*-t a normálparalelkörre:

$$p_0 = c t g^n \frac{\beta_0}{2}$$

A c tényező abból a feltételből határozható meg, hogy érintő elhelyezésben az érintési paralelkörön a lineármodulus 1-gyel egyenlő. Írjuk fel a paralelkör irányú lineármodulust a normálparalelkörre:

$$l_{p_0} = \frac{n \, p_0}{R \sin \beta_0} = \frac{n \, c \, \mathrm{tg}^n \frac{\beta_0}{2}}{R \sin \beta_0} = 1 \tag{6.55}$$

Különleges vetületek

(Varga József, Laky Piroska)

és ebből fejezzük ki c-t:

$$c = \frac{R\sin\beta_0}{n\,\mathrm{tg}^n\frac{\beta_0}{2}}$$

A sugárfüggvény képletébe behelyettesítve c-t és n-t:

$$p = R tg\beta_0 \left(\frac{tg\frac{\beta}{2}}{tg\frac{\beta_0}{2}}\right)^n$$

Írjuk fel p-t a normálparalelkörre:

$$p_0 = R tg\beta_0$$

A kúpvetületi derékszögű koordinátarendszer egyenleteibe helyettesítsük be a kapott összefüggést p_0 -ra és p-re, ezzel megkapjuk az érintő szögtartó kúpvetület vetületi egyenleteit!

$$x = p_0 - p \cos \gamma = R \operatorname{tg} \beta_0 - R \operatorname{tg} \beta_0 \left(\frac{\operatorname{tg} \frac{\beta}{2}}{\operatorname{tg} \frac{\beta_0}{2}}\right)^n \cos(n \lambda)$$
$$y = p \sin \gamma = R \operatorname{tg} \beta_0 \left(\frac{\operatorname{tg} \frac{\beta}{2}}{\operatorname{tg} \frac{\beta_0}{2}}\right)^n \sin(n \lambda)$$

ahol $n = \cos \beta_0$.

A fokhálózat képe normális elhelyezésű szögtartó kúpvetületen

(Varga József, Laky Piroska)

Az inverz vetületi egyenletek, amikor síkkoordinátákból gömbi földrajzi koordinátákat kívánunk számítani:

$$p = \sqrt{(p_0 - x)^2 + y^2}$$
$$\gamma = \arcsin \frac{y}{p} = \arccos \frac{p_0 - x}{p}$$
$$\lambda = \frac{\gamma}{n}$$

A sugárfüggvény képletéből:

$$\tan^{n} \frac{\beta}{2} = \frac{p}{c} \rightarrow \tan \frac{\beta}{2} = \sqrt[n]{\frac{p}{c}}$$
$$\beta = 2 \arctan \sqrt[n]{\frac{p}{c}}; \ \varphi = 90^{\circ} - \beta$$

1.4.2 Süllyesztett elhelyezésű szögtartó kúpvetület

A süllyesztett szögtartó kúpvetület vetületi egyenleteinek levezetése céljából írjuk fel a lineármodulust a β_1 és β_2 pólustávolságú hossztartó paralelkörökre, és abból fejezzük ki a *c*-t, vagyis

$$I_{1} = \frac{n p_{1}}{R \sin \beta_{1}} = \frac{n c \tan^{n} \frac{\beta_{1}}{2}}{R \sin \beta_{1}} = I_{2} = \frac{n p_{2}}{R \sin \beta_{2}} = \frac{n c \tan^{n} \frac{\beta_{2}}{2}}{R \sin \beta_{2}} = 1$$

és ebből

$$c = \frac{R\sin\beta_1}{n\tan^n\frac{\beta_1}{2}} = \frac{R\sin\beta_2}{n\tan^n\frac{\beta_2}{2}}$$

Rendezés után:

$$\frac{\sin\beta_1}{\sin\beta_2} = \left(\frac{\tan\frac{\beta_1}{2}}{\tan\frac{\beta_2}{2}}\right)^n$$

Az $n = \cos\beta_0$ meghatározása céljából vegyük mindkét oldal természetes logaritmusát és fejezzük ki az elhelyezéstől függő *n* állandót:

Különleges vetületek

(Varga József, Laky Piroska)

$$n = \frac{\ln \sin \beta_1 - \ln \sin \beta_2}{\ln \tan \frac{\beta_1}{2} - \ln \tan \frac{\beta_2}{2}} = \cos \beta_0$$

Az így meghatározott *n* értéket az érintő kúpvetület sugárfüggvényének képletébe helyettesítés után a továbbiakban úgy végezhetjük a számítást, mintha érintő lenne a kúpvetület. Normális elhelyezésű érintő kúpvetületen a torzulásmentes érintési paralelkört nem tekintve, *a hossztorzulás mindenhol hossznövekedésben*, és ennek megfelelően *a területtorzulás területnövekedésben jelentkezik*.

A normális elhelyezésű süllyesztett kúpvetületen a hossztorzulás a két hossztartó paralelkör között hosszrövidülésben, azokon kívül pedig hossznövekedésben jelentkezik. A területtorzulás is ennek megfelelően alakul.

Ha olyan terület ábrázolására kívánjuk a normális elhelyezésű szögtartó kúpvetületet felhasználni, amelynek legészakibb pontja β_1 , legdélibb pontja β_2 pólustávolságú paralelkörön fekszik, akkor a normálparalelkört úgy célszerű megválasztani, hogy a két paralelkörön a lineármodulus azonos legyen. Ilyenkor a normálparalelkör pólustávolsága érintő vagy süllyesztett kúpvetület esetében is számítható.

A normális elhelyezéstől eltérő minden más esetben a valódi földrajzi koordináták helyébe a segéd földrajzi koordinátákat kell behelyettesíteni. A segédparalakör (gömbi kiskör) mentén hosszan elnyúló Csehszlovákiában a Bessel-féle ellipszoid simulógömbjének ferde elhelyezésű süllyesztett szögtartó kúpvetületét alkalmazták (*Krovák-féle* vetület).

A Krovák-féle kúpvetület elhelyezése

A szögtartó kúpvetület vetületi egyenletei a szögtartóság alapegyenletéből is levezethetők.

2 TORZULÁSOK ELLIPSZOIDI, GÖMBI VETÜLETEKEN

2.1 TÉRBELI DERÉKSZÖGŰ KOORDINÁTA-RENDSZER

A gömbhöz rendelt térbeli derékszögű koordináta-rendszer kezdőpontját a gömb középpontjában jelöljük ki, z tengelyül a pólusokat összekötő átmérőjét, x tengelyül az egyenlítő és egy tetszőlegesen választott kezdőmeridián síkjának metszésvonalát, y tengelyül pedig az egyenlítő síkjában fekvő – a gömb középpontján átmenő – és az x tengelyre merőleges átmérőt választjuk (1. *ábra*).

2.1. ábra Gömbi térbeli derékszögű koordináta-rendszer

A gömbfelületi A pont térbeli derékszögű koordinátái (a gömb *Gauss-féle paraméteres egyenletei*) az ábráról leolvashatóan:

$$x = R \cos \varphi \cos \lambda$$

$$y = R \cos \varphi \sin \lambda$$
 (1.1)

$$z = R \sin \varphi$$

A derékszögű koordinátákból a földrajzi koordinátákat az alábbi inverz képletekből számíthatjuk:

$$\sin \varphi = \frac{z}{R}; \qquad \operatorname{tg} \lambda = \frac{y}{z}$$
 (1.2)

2.2 FOKHÁLÓZATI VONALAK ÍVHOSSZA ÉS VONALRENDSZERÉNEK MERŐLEGESSÉGE A GÖMBÖN

A meridián és a paralelkör (a fokhálózati vonalak) ívhossza, valamint a fokhálózat vonalrendszerének merőlegessége szemléletből is megállapítható. A továbbiakban ezek azonban olyan fontos szerepet játszanak, hogy matematikai levezetésük is indokolt.

Az elemi ívhosszra vonatkozó általános érvényű matematikai összefüggést a meridiánra alkalmazva:

$$\left| ds_{m} \right| = \left[\left(\frac{\partial x}{\partial \varphi} \right)^{2} + \left(\frac{\partial y}{\partial \varphi} \right)^{2} + \left(\frac{\partial z}{\partial \varphi} \right)^{2} \right]^{\frac{1}{2}} d\varphi.$$
(2.1)

 $|ds_m|$ a meridián elemi ívdarabjának hossza. Az (1.1) alatt felírt koordinátákat helyettesítsük a (2.1)-ba:

$$|ds_{m}| = (R^{2} \sin^{2} \varphi \cos^{2} \lambda + R^{2} \sin^{2} \varphi \sin^{2} \lambda + R^{2} \cos^{2} \varphi)^{\frac{1}{2}} d\varphi =$$

$$= (R^{2} \sin^{2} \varphi (\cos^{2} \lambda + \sin^{2} \lambda) + R^{2} \cos^{2} \varphi)^{\frac{1}{2}} d\varphi =$$

$$= R (\sin^{2} \varphi + \cos^{2} \varphi)^{\frac{1}{2}} d\varphi = R d\varphi$$

(2.2)

A (2.2)-ből a meridián ívének hossza az egyenlítőtől a φ szélességű paralelkörig, illetve a φ_1 szélességű paralelkörtől a φ_2 szélességű paralelkörig:

$$[s_m]_0^{\varphi} = R \int_0^{\varphi} d\varphi = R\varphi; \quad [s_m]_{\varphi_1}^{\varphi_2} = R \int_{\varphi_1}^{\varphi_2} d\varphi = R(\varphi_2 - \varphi_1)$$
(2.3)

Az elemi ívhosszra vonatkozó általános érvényű matematikai összefüggést most a *paralelkörre* vonatkoztatva:

$$\left| ds_{p} \right| = \left[\left(\frac{\partial x}{\partial \lambda} \right)^{2} + \left(\frac{\partial y}{\partial \lambda} \right)^{2} + \left(\frac{\partial z}{\partial \lambda} \right)^{2} \right]^{\frac{1}{2}} d\lambda =$$

$$= \left(R^{2} \cos^{2} \varphi \sin^{2} \lambda + R^{2} \cos^{2} \varphi \cos^{2} \lambda \right)^{\frac{1}{2}} d\lambda = R \cos \varphi \, d\lambda$$
(2.4)

A (2.4)-ből a paralelkör ívének hossza a kezdőmeridiántól a λ hosszúságú meridiánig, illetve a λ_1 hosszúságú meridiántól a λ_2 hosszúságú meridiánig:

$$\begin{bmatrix} s_p \end{bmatrix}_0^{\lambda_1} = R \cos \varphi \int_0^{\lambda_2} d\lambda = R \lambda \cos \varphi$$

$$\begin{bmatrix} s_p \end{bmatrix}_{\lambda_1}^{\lambda_2} = R \cos \varphi \int_{\lambda_1}^{\lambda_2} d\lambda = R (\lambda_2 - \lambda_1) \cos \varphi$$
(2.5)

Jelöljük Θ -val azt a szöget, amellyel a meridián és a paralelkör metszési szöge esetleg eltérne 90°-tól. A metszési szög (90 – Θ) koszinuszát kiszámolhatjuk a szöget közrefogó két vektor (most ds_m és ds_p)

Különleges vetületek

(Varga József, Laky Piroska)

skaláris szorzatából: $ds_m \cdot ds_p = |ds_m| \cdot |ds_p| \cdot \cos(90 - \Theta)$. Trigonometriai azonosságok alapján $sin\Theta = \cos(90 - \Theta)$. Tehát a Θ szög szinusza az általános érvényű matematikai összefüggés szerint:

$$\sin(\Theta) = \frac{ds_m \cdot ds_p}{|ds_m| \cdot |ds_p|} =$$

$$= \frac{\frac{\partial x}{\partial \varphi} \frac{\partial x}{\partial \lambda} + \frac{\partial y}{\partial \varphi} \frac{\partial y}{\partial \lambda} + \frac{\partial z}{\partial \varphi} \frac{\partial z}{\partial \lambda}}{\left[\left(\frac{\partial x}{\partial \varphi} \right)^2 + \left(\frac{\partial z}{\partial \varphi} \right)^2 \right]^{\frac{1}{2}} \cdot \left[\left(\frac{\partial x}{\partial \lambda} \right)^2 + \left(\frac{\partial y}{\partial \lambda} \right)^2 + \left(\frac{\partial z}{\partial \lambda} \right)^2 \right]^{\frac{1}{2}}}$$
(2.6)

A számláló a parciális differenciálhányadosok behelyettesítése után:

$$(-R\sin\varphi\cos\lambda)(-R\cos\varphi\sin\lambda) + (-R\sin\varphi\sin\lambda)(R\cos\varphi\cos\lambda) = 0, \qquad (2.7)$$

tehát sin Θ = 0 és így Θ = 0°, vagyis a metszési szög nem tér el 90°-tól. Ezzel igazoltuk, hogy a *gömbi fokhálózat derékszögű vonalrendszert képez.*

2.3 GÖMBFELÜLETI IDOMOK TERÜLETE

Egymástól elemi távolságra fekvő két meridián és egymástól ugyancsak elemi távolságra levő két paralelkör által határolt felületdarab területe (*3.1 ábra*):

2.2. ábra Fokhálózati vonalak elemi ívdarabjai és elemi nagyságú gömbi trapéz

$$dF = \left| ds_m \right| \left| ds_p \right| = R^2 \cos \varphi \, d\varphi \, d\lambda \tag{3.1}$$

A számunkra fontos gömbfelületi idomok területének képletét a (3.1) φ és λ szerint különböző határok között végzett integrálásával nyerjük.

A gömb felszínének területe (kétszer a félgömb felszínének területe):

$$F = 2R^2 \int_{0}^{2\pi} \int_{0}^{\pi/2} \cos\varphi \, d\varphi \, d\lambda = 2R^2 \int_{0}^{2\pi} \left[\sin\varphi\right]_{0}^{\pi/2} \, d\lambda = 2R^2 \int_{0}^{2\pi} 1 \, d\lambda = 4R^2\pi$$
(3.2)

Különleges vetületek

(Varga József, Laky Piroska)

A gömböv területe:

$$F = R^2 \int_{0}^{2\pi\varphi_2} \cos\varphi \, d\varphi \, d\lambda = 2R^2 \pi \left(\sin\varphi_2 - \sin\varphi_1\right) =$$

= $2R^2 \pi \left(\cos\beta_2 - \cos\beta_1\right)$ (3.3)

Gömböv

A gömbsüveg területe:

$$F = R^2 \int_{0}^{2\pi \frac{\pi}{2}} \int_{0}^{2\pi} \cos \varphi \, d\varphi d\lambda = 2R^2 \pi \left(1 - \sin \varphi\right) =$$

$$= 2R^2 \pi \left(1 - \cos \beta\right)$$
(3.4)

Különleges vetületek

Geodéziai hálózatok és vetületek

(Varga József, Laky Piroska)

A gömbi kétszög területe:

$$F = 2R^2 \int_{\lambda_1}^{\lambda_2} \int_{0}^{\frac{\pi}{2}} \cos\varphi \, d\varphi \, d\lambda = 2R^2 (\lambda_2 - \lambda_1)$$
(3.5)

Gömbi kétszög

Gömbi trapéz (gömbi kétszög két paralelkör által határolt részének) területe:

$$F = R^{2} \int_{\lambda_{1} \phi_{1}}^{\lambda_{2} \phi_{2}} \cos \varphi \, d\varphi \, d\lambda = R^{2} \left(\sin \phi_{2} - \sin \phi_{1} \right) (\lambda_{2} - \lambda_{1}) =$$

$$= R^{2} \left(\cos \beta_{2} - \cos \beta_{1} \right) (\lambda_{2} - \lambda_{1})$$
(3.6)

Gömbi trapéz

A gömbháromszög területe, ha gömbi szögfeleslege E.

$$F = R^2 \varepsilon \tag{3.7}$$

Segéd földrajzi fokhálózat esetén a (3.1)-(3.6) képletekben a φ , β és λ helyett a φ' , β' , illetve λ' segéd földrajzi koordináták értendők.

2.4 TORZULÁSOK MEGHATÁROZÁSA A VETÜLETI EGYENLETEKBŐL ELLIPSZOIDI VETÜLETEN

2.3. ábra Elemi felületdarab az alapfelületen és képe a vetületi síkon

Vezessük be a következő jelöléseket (most az általánosítás végett ellipszoidi koordinátákat használunk, gömb esetében Φ , Λ helyett φ , λ szükséges és *N*,*M* helyett *R*):

$$E = \left(\frac{\partial x}{\partial \Phi}\right)^2 + \left(\frac{\partial y}{\partial \Phi}\right)^2; \ G = \left(\frac{\partial x}{\partial \Lambda}\right)^2 + \left(\frac{\partial y}{\partial \Lambda}\right)^2$$
(4.1)

Az elemi hosszak a képfelületen (az ábra alapján):

$$dt_{m} = \sqrt{\left(\frac{\partial x}{\partial \Phi}\right)^{2} d\Phi^{2} + \left(\frac{\partial y}{\partial \Phi}\right)^{2} d\Phi^{2}} = \sqrt{E} d\Phi$$

$$dt_{p} = \sqrt{\left(\frac{\partial x}{\partial \Lambda}\right)^{2} d\Lambda^{2} + \left(\frac{\partial y}{\partial \Lambda}\right)^{2} d\Lambda^{2}} = \sqrt{G} d\Lambda$$
(4.2)

Az elemi hosszak az alapfelületen:

$$ds_m = M \ d\Phi$$

$$ds_p = N \cos \Phi \ d\Lambda$$
(4.3)

2.4.1 Lineármodulusok meridián és paralelkör irányban:

$$l_{m} = \frac{dt_{m}}{ds_{m}} = \frac{\sqrt{E} \ d\Phi}{M \ d\Phi} = \frac{\sqrt{E}}{M}$$

$$l_{p} = \frac{dt_{p}}{ds_{p}} = \frac{\sqrt{G} \ d\Lambda}{N \cos \Phi \ d\Lambda} = \frac{\sqrt{G}}{N \cos \Phi}$$
(4.4)

2.4.2 A területi modulus levezetése

Az alapfelületen a terület (dF) könnyen számítható, mivel a gömbi fokhálózat derékszögű vonalrendszert képez.

$$dF = ds_m ds_p = M N \cos \Phi \, d\Phi \, d\Lambda \tag{4.5}$$

A képfelületi terület (dT) számításánál használhatjuk a vektoriális szorzást, ami a paralelogramma területét adja meg:

$$T_{par.} = |a \times b| = |a| \cdot |b| \cdot \sin \alpha \tag{4.6}$$

Ha a és b az xy síkban van, akkor a vektoriális szorzat eredménye:

$$a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & 0 \\ b_1 & b_2 & 0 \end{vmatrix} = (a_1 b_2 - a_2 b_1) \cdot k$$

$$T = |a \times b| = a_1 b_2 - a_2 b_1$$
(4.7)

A fentieket alkalmazva a 4.1 ábra alapján, ha Θ -val jelöljük azt a szöget, amellyel fokhálózati vonalak képének a metszési szöge (90 – Θ) esetleg eltérne 90°-tól:

$$dT = |dt_m| \cdot |dt_p| \cdot \sin(90 - \Theta) = \left(\frac{\partial x}{\partial \Phi} \cdot \frac{\partial y}{\partial \Lambda} - \frac{\partial x}{\partial \Lambda} \cdot \frac{\partial y}{\partial \Phi}\right) \cdot d\Phi \cdot d\Lambda$$
(4.8)

A területi modulus:

$$\tau = \frac{dT}{dF} = \frac{1}{M N \cos \Phi} \left(\frac{\partial x}{\partial \Phi} \frac{\partial y}{\partial \Lambda} - \frac{\partial y}{\partial \Phi} \frac{\partial x}{\partial \Lambda} \right)$$
(4.8)

2.4.3 A fokhálózat vetületi torzulása

Rendezzük át Θ -ra a dT-re levezetett összefüggést (4.8) és használjuk, fel hogy $\sin(90 - \Theta) = \cos \Theta$:

$$\cos\Theta = \frac{\left(\frac{\partial x}{\partial \Phi} \cdot \frac{\partial y}{\partial \Lambda} - \frac{\partial x}{\partial \Lambda} \cdot \frac{\partial y}{\partial \Phi}\right) \cdot d\Phi \cdot d\Lambda}{\sqrt{\left(\frac{\partial x}{\partial \Phi} d\Phi\right)^2 + \left(\frac{\partial y}{\partial \Phi} d\Phi\right)^2} \cdot \sqrt{\left(\frac{\partial x}{\partial \Lambda} d\Lambda\right)^2 + \left(\frac{\partial y}{\partial \Lambda} d\Lambda\right)^2}} = \frac{\frac{\partial x}{\partial \Phi} \cdot \frac{\partial y}{\partial \Lambda} - \frac{\partial x}{\partial \Lambda} \cdot \frac{\partial y}{\partial \Phi}}{\sqrt{E \cdot G}}$$
(4.9)

2.4.4 A torzulási ellipszis tengelyeinek meghatározása

Tissot-féle torzulási ellipszis alapján meg lehet határozni a torzulási viszonyokat.

Különleges vetületek

(Varga József, Laky Piroska)

Az ellipszist a kör affin képének felfogva a kör átmérőjének képe az ellipszis átmérője. Az ellipszis azon átmérőpárjait, amelyek egy kör merőleges átmérőinek affin képei, konjugált átmérőknek nevezzük. Apollóniosz két tétele szerint a konjugált átmérők négyzetösszege független az átmérőpár megválasztásától, mint ahogy a konjugált félátmérők által kifeszített paralelogramma területe sem függ attól, hogy melyik konjugált átmérőpárról van szó.

Apollóniusz 1. tétele alapján:

$$a^2 + b^2 = l_m^2 + l_p^2 \tag{4.10}$$

Apollóniusz 2. tétele alapján (Θ -val jelölve azt a szöget, amellyel a meridián és a paralelkör metszési szöge esetleg eltérne 90°-tól):

$$a \cdot b = l_m \cdot l_p \cdot \sin(90 - \Theta) \tag{4.11}$$

Az első egyenlethez adjuk hozzá, illetve vonjuk ki a második egyenlet kétszeresét és használjuk fel, hogy $sin(90 - \Theta) = cos \Theta!$

$$a^{2} + 2ab + b^{2} = (a + b)^{2} = l_{m}^{2} + l_{p}^{2} + 2 \cdot l_{m} \cdot l_{p} \cdot \cos \Theta$$

$$a^{2} - 2ab + b^{2} = (a - b)^{2} = l_{m}^{2} + l_{p}^{2} - 2 \cdot l_{m} \cdot l_{p} \cdot \cos \Theta$$
(4.12)

Behelyettesítve az alábbiakat (4.12)-be:

$$l_m = \frac{\sqrt{E}}{M}; l_p = \frac{\sqrt{G}}{N \cdot \cos \Phi}; \cos \Theta = \frac{\frac{\partial x}{\partial \Phi} \cdot \frac{\partial y}{\partial \Lambda} - \frac{\partial x}{\partial \Lambda} \cdot \frac{\partial y}{\partial \Phi}}{\sqrt{E \cdot G}}; E = \frac{\partial x^2}{\partial \Phi} + \frac{\partial y^2}{\partial \Phi}; G = \frac{\partial x^2}{\partial \Lambda} + \frac{\partial y^2}{\partial \Lambda}$$

 $(a+b)^2 = l_m^2 + l_p^2 + 2 \cdot l_m \cdot l_p \cdot \cos \Theta$ -re a következőket kapjuk:

$$(a+b)^{2} = \left(\frac{\sqrt{E}}{M}\right)^{2} + \left(\frac{\sqrt{G}}{N\cdot\cos\Phi}\right)^{2} + 2\cdot\frac{\sqrt{E}}{M}\cdot\frac{\sqrt{G}}{N\cdot\cos\Phi}\cdot\frac{\frac{\partial x}{\partial\Phi}\cdot\frac{\partial y}{\partial\Lambda} - \frac{\partial x}{\partial\Lambda}\cdot\frac{\partial y}{\partial\Phi}}{\sqrt{E\cdot G}} =$$

(Varga József, Laky Piroska)

$$= \left(\frac{1}{M} \cdot \frac{\partial x}{\partial \Phi}\right)^2 + \left(\frac{1}{M} \cdot \frac{\partial y}{\partial \Phi}\right)^2 + \left(\frac{1}{N \cdot \cos \Phi} \cdot \frac{\partial x}{\partial \Lambda}\right)^2 + \left(\frac{1}{N \cdot \cos \Phi} \cdot \frac{\partial y}{\partial \Lambda}\right)^2 + \left(\frac{1}{N \cdot \cos \Phi} \cdot \frac{\partial y}{\partial \Lambda}\right)^2 + 2 \cdot \frac{1}{M \cdot N \cdot \cos \Phi} \cdot \frac{\partial x}{\partial \Phi} \cdot \frac{\partial y}{\partial \Lambda} - 2 \cdot \frac{1}{M \cdot N \cdot \cos \Phi} \cdot \frac{\partial x}{\partial \Lambda} \cdot \frac{\partial y}{\partial \Phi} = \\= \left(\frac{1}{M} \cdot \frac{\partial x}{\partial \Phi} + \frac{1}{N \cdot \cos \Phi} \cdot \frac{\partial y}{\partial \Lambda}\right)^2 + \left(\frac{1}{M} \cdot \frac{\partial y}{\partial \Phi} - \frac{1}{N \cdot \cos \Phi} \cdot \frac{\partial x}{\partial \Lambda}\right)^2$$

Hasonlóképpen levezethető a vetületi egyenletek egyenleteivel az $(a - b)^2$ összefüggés is. Vezessük be az A = a + b és a B = a - b jelölést:

$$A^{2} = (a+b)^{2} = \left(\frac{1}{M}\frac{\partial x}{\partial \Phi} + \frac{1}{N\cos\Phi}\frac{\partial y}{\partial A}\right)^{2} + \left(\frac{1}{M}\frac{\partial y}{\partial \Phi} - \frac{1}{N\cos\Phi}\frac{\partial x}{\partial A}\right)^{2}$$

$$B^{2} = (a-b)^{2} = \left(\frac{1}{M}\frac{\partial x}{\partial \Phi} - \frac{1}{N\cos\Phi}\frac{\partial y}{\partial A}\right)^{2} + \left(\frac{1}{M}\frac{\partial y}{\partial \Phi} + \frac{1}{N\cos\Phi}\frac{\partial x}{\partial A}\right)^{2}$$
(4.13)

Ahonnan megkaphatjuk az ellipszis fél nagy és kis tengelyét *a*-t és *b*-t:

$$a = \frac{A+B}{2}; b = \frac{A-B}{2}$$
 (4.14)

2.5 TORZULÁSOK MEGHATÁROZÁSA A VETÜLETI EGYENLETEKBŐL GÖMBI VETÜLETEN

Gömbi alapfelület esetén az egyenletekbe N és M helyett R-et, Φ és Λ helyett φ -t és λ -t kell behelyettesíteni.

$$E = \left(\frac{\partial x}{\partial \varphi}\right)^2 + \left(\frac{\partial y}{\partial \varphi}\right)^2; \ G = \left(\frac{\partial x}{\partial \lambda}\right)^2 + \left(\frac{\partial y}{\partial \lambda}\right)^2$$
(5.1)

Lineármodulus a meridián irányában

$$l_m = \frac{\sqrt{E}}{R} \tag{5.2}$$

Lineármodulus a paralelkör irányában

$$l_p = \frac{\sqrt{G}}{R\cos\varphi} \tag{5.3}$$

A fokhálózat vetületi torzulása

$$\cos\Theta = \frac{\frac{\partial x}{\partial \varphi} \frac{\partial y}{\partial \lambda} - \frac{\partial y}{\partial \varphi} \frac{\partial x}{\partial \lambda}}{\sqrt{EG}}$$
(5.4)

(Varga József, Laky Piroska)

A torzulási ellipszis féltengelyei:

$$A^{2} = (a+b)^{2} = \left(\frac{1}{R}\frac{\partial x}{\partial \varphi} + \frac{1}{R\cos\varphi}\frac{\partial y}{\partial \lambda}\right)^{2} + \left(\frac{1}{R}\frac{\partial y}{\partial \varphi} - \frac{1}{R\cos\varphi}\frac{\partial x}{\partial \lambda}\right)^{2}$$
(5.5)

$$B^{2} = (a-b)^{2} = \left(\frac{1}{R}\frac{\partial x}{\partial \varphi} - \frac{1}{R\cos\varphi}\frac{\partial y}{\partial \lambda}\right)^{2} + \left(\frac{1}{R}\frac{\partial y}{\partial \varphi} + \frac{1}{R\cos\varphi}\frac{\partial x}{\partial \lambda}\right)^{2}$$
(5.6)

$$a = \frac{A+B}{2}; b = \frac{A-B}{2}$$
 (5.7)

A vetület *szögtartó*, ha a = b, ha a = 1/b, akkor a vetület *területtartó*. Minden más esetben *általános torzulású* a vetület.

2.5.1 Számítási példa

Vetületi egyenletek:

$$x = R \ln \tan \left(45^{\circ} + \frac{\varphi}{2} \right) \qquad y = R \lambda$$
$$\frac{\partial x}{\partial \varphi} = \frac{R}{2 \tan \left(45^{\circ} + \frac{\varphi}{2} \right) \cos^2 \left(45^{\circ} + \frac{\varphi}{2} \right)} =$$

$$=\frac{R}{2\sin\left(45^{\circ}+\frac{\varphi}{2}\right)\cos\left(45^{\circ}+\frac{\varphi}{2}\right)}=\frac{R}{\sin\left(90^{\circ}+\varphi\right)}=\frac{R}{\cos\varphi}$$

Itt a $2\sin\alpha\cos\alpha = \sin 2\alpha$ goniometriai összefüggést használtuk fel.

$$\frac{\partial x}{\partial \lambda} = 0, \quad \frac{\partial y}{\partial \varphi} = 0, \quad \frac{\partial y}{\partial \lambda} = R$$
$$E = \left(\frac{\partial x}{\partial \varphi}\right)^2 + \left(\frac{\partial y}{\partial \varphi}\right)^2 = \left(\frac{R}{\cos\varphi}\right)^2; \quad G = \left(\frac{\partial x}{\partial \lambda}\right)^2 + \left(\frac{\partial y}{\partial \lambda}\right)^2 = R^2$$
$$l_m = \frac{\sqrt{E}}{R} = \frac{R}{R\cos\varphi} = \frac{1}{\cos\varphi}; \quad l_p = \frac{\sqrt{G}}{R\cos\varphi} = \frac{R}{R\cos\varphi} = \frac{1}{\cos\varphi}$$
$$l_m = l_p$$

Különleges vetületek

Geodéziai hálózatok és vetületek

(Varga József, Laky Piroska)

$$\cos \Theta = \frac{\frac{\partial x}{\partial \varphi} \frac{\partial y}{\partial \lambda} - \frac{\partial y}{\partial \varphi} \frac{\partial x}{\partial \lambda}}{\sqrt{EG}} = \frac{\frac{R^2}{\cos \varphi}}{\frac{R^2}{\cos \varphi}} = 1$$
$$\Theta = 0^\circ$$

Ez azt jelenti, hogy a *fokhálózat nem torzul*, vagyis a fokhálózat metszésszögének eltérése a derékszögtől zérus.

$$(a+b)^{2} = \left(\frac{1}{R}\frac{R}{\cos\varphi} + \frac{R}{R\cos\varphi}\right)^{2}; (a-b)^{2} = \left(\frac{1}{R}\frac{R}{\cos\varphi} - \frac{R}{R\cos\varphi}\right)^{2}$$
$$a+b = \frac{1}{\cos\varphi} + \frac{1}{\cos\varphi}; a-b = \frac{1}{\cos\varphi} - \frac{1}{\cos\varphi} = 0$$
$$2a = \frac{2}{\cos\varphi} \qquad a=b = \frac{1}{\cos\varphi}$$

A vetület *szögtartó*, mert *a* = *b*.

2.5.2 Számítási példa megoldása Matlab segítségével

```
%% Torzulási viszonyok megállapítása a vetületi egyenletek alapján
clear all; clc;
%% Vetületi egyenletek
x = Q(R, fi, lambda) R*log(tan(pi/4+fi/2))
y = @(R,fi,lambda) R*lambda
% Parciális deriváltak számítása szimbolikusan
syms R fi lambda
dxdf = diff(x,fi) % (R*(tan(fi/2 + pi/4)^2/2 + 1/2))/tan(fi/2 + pi/4)
dxdl = diff(x,lambda) % 0
dydf = diff(y, fi) % 0
dydl = diff(y,lambda) % R
% Egyszerűsítés (ahol szükséges és lehet)
dxdf = simplify(dxdf, 'IgnoreAnalyticConstraints',true) % R/cos(fi)
% Az 'IgnoreAnalyticConstraints'=true nélkül nem egyszerűsítené le pl. az
% sqrt(x^2)-t x-re, mivel nem egyértelmű, lehetne +x és -x is a megoldás
% Ebben a példában már nincs lehetőség további egyszerűsítésre, de ha
% nagyon bonyolult kifejezést kapunk a végeredményre, meg lehet próbálni
% több egyszerűsítést végrehajtatni a Matlab-bal, például 1 egyszerűsítő
lépés helyett 10-et, 20-at, 100-at stb.
dxdf = simplify(dxdf, 'IgnoreAnalyticConstraints',true,'Steps',20) %
R/cos(fi)
% E és G állandó kiszámítása
E = dxdf^2 + dydf^2
% R^2/cos(fi)^2
G = dxdl^2 + dydl^2
% R^2
```

(Varga József, Laky Piroska)

```
%% Lineármodulus a meridián irányában
lm = sqrt(E)/R
% (R^2/cos(fi)^2)^(1/2)/R
lm = simplify(lm, 'IgnoreAnalyticConstraints',true)
% 1/cos(fi)
%% Lineármodulus a paralelkör irányában
lp = sqrt(G) / (R*cos(fi))
% (R^2)^(1/2)/(R*cos(fi))
lp = simplify(lp, 'IgnoreAnalyticConstraints',true)
% 1/cos(fi)
%% A fokhálózat vetületi torzulása
costeta = (dxdf*dydl-dydf*dxdl)/sqrt(E*G)
% R^2/(cos(fi)*(R^4/cos(fi)^2)^(1/2))
costeta = simplify(costeta, 'IgnoreAnalyticConstraints',true) % 1
teta = acos(costeta) % 0
% Ez azt jelenti, hogy a fokhálózat nem torzul, vagyis a fokhálózat
% metszésszögének eltérése a derékszögtől zérus.
%% A torzulási ellipszis tengelyei
A2 = (1/R*dxdf+1/(R*cos(fi))*dydl)^2+(1/R*dydf-1/(R*cos(fi))*dxdl)^2
% 4/cos(fi)^2
B2 = (1/R*dxdf-1/(R*cos(fi))*dydl)^2+(1/R*dydf+1/(R*cos(fi))*dxdl)^2
80
A = simplify(sqrt(A2), 'IgnoreAnalyticConstraints',true) % 2/cos(fi)
B = simplify(sqrt(B2), 'IgnoreAnalyticConstraints',true) % 0
% fél nagytengely
a = (A+B)/2
% 1/cos(fi)
% fél kistengely
b = (A-B)/2
% 1/cos(fi)
% A vetület szögtartó, mert a=b.
```

3 KÉPZETES VETÜLETEK

3.1 A GÖMB KÉPZETES HENGERVETÜLETEI

3.1.1 A képzetes hengervetületek általános jellemzése

A *képzetes hengervetületek* csoportjába azokat a vetületeket soroljuk, amelyeken a paralelkörök képei úgy alakulnak, mint a normális elhelyezésű valós hengervetületeken, vagyis amelyeken a paralelkörképek egymással párhuzamos egyenesek, de a kezdőmeridián kivételével – amely ezekre merőleges egyenes – a meridiánképek vagy görbe vonalak (kör, ellipszis, fél szinusz, illetve fél koszinusz görbék), vagy pedig, ha egyenesek is, nem párhuzamosak a kezdőmeridián képével. A fokhálózat képére vonatkozóan mondottakból következik, hogy az a képzetes hengervetületek csoportjában nem alkothat derékszögű, hanem csak ferdeszögű rendszert. Így tehát nem létezik szögtartó képzetes hengervetület; területtartó azonban végtelen sokféleképpen alakítható.

A síkkoordináta-rendszer *y* tengelye az egyenlítőnek, *x* tengelye pedig a kezdőmeridiánnak a képe. Az *x* koordináta csupán a földrajzi szélesség (vagy pólustávolság), az *y* koordináta pedig a földrajzi szélesség (vagy pólustávolság) és a földrajzi hosszúság függvénye:

$$\mathbf{x} = f_1(\varphi) = f'_1(\beta), \qquad \mathbf{y} = f_2(\varphi, \lambda) = f'_2(\beta, \lambda),$$

Az egyenlő torzulású vonalak általában nem esnek egybe a fokhálózati vonalakkal, és a Tissotféle torzulási ellipszis tengelyei sem esnek egybe a meridián és a paralelkör irányával; illetve, ha az egyik tengely esetleg az egyik fokhálózati irányba esik, a másik nem eshet ilyenbe. Mivel a képzetes hengervetületeket geodéziai célra nem alkalmazzák; a továbbiakban csak a fontosabbakkal foglalkozunk.

Most nézzünk meg néhány képzetes hengervetületet!

3.1.2 A Sanson-féle területtartó vetület és a vetületi transzformáció

A fokhálózat képe Sanson-féle vetületen

A Sanson-féle vetületen a meridiánképek fél szinusz, illetve fél koszinusz görbék. A vetület fokhálózati képét az alábbi ábra szemlélteti. Vetületi egyenletei:

$$x = R \varphi$$
 $y = R \cos \varphi \lambda$.

Az egyenletekből megállapítható, hogy a kezdőmeridián és minden paralelkör – az egyenlítőt is beleértve – hossztartó. A pólusok pontként jelentkeznek; a vetület szerkesztésénél fogva területtartó és az egész Föld ábrázolására alkalmas.

A vetületet *Mercator* (1512-1594) már megszerkesztette, általánosan azonban *N. Sanson* francia geográfus (1600-1667) vezette be 1650-ben. *J. Flamsteed* angol csillagász (1646-1719) később csillagászati atlaszban használta.

A Sanson-féle vetületnek és több más képzetes vetületnek is hátránya, hogy a meridiánképek a paralelkörök képét, különösen a nagyobb földrajzi szélességeken, *igen hegyes szögben metszik*. Ezen a hátrányon vetületi transzformációval lehet segíteni. A vetületi transzformáció egy több lépésből álló matematikai művelet, amelynek során a fokhálózati vonalak helyzete megváltozik, továbbá a pólus képe egy előre meghatározott vonaldarab lesz, de mindez úgy, hogy a vetület területtartó marad. *Pólusvonalas Sanson-féle vetület* látható az alábbi ábrán.

Pólusvonalas Sanson-féle vetület vetületi egyenlete:

$$y = R \frac{n\lambda}{\sqrt{mn}} \cos(m\varphi),$$
 $x = R \frac{m\varphi}{\sqrt{mn}}$

Az *m* és *n arányossági tényezők* értékét a gyakorlati célszerűség szabja meg

A fokhálózat képe pólusvonalas Sanson-féle vetületen

3.1.3 Apianus első vetülete

Azok között a képzetes hengervetületek között, amelyeken a meridiánképek körívek, a legismertebb *Apianus* (eredeti nevén *P. Bienewitz*: 1495-1552) német csillagász és geográfus első vetülete. A kezdőmeridián és az egyenlítő hossztartó. Az egyenlítővel párhuzamosan húzott paralelkörképek az egyenlítő képétől $R \varphi$ távolságban metszik a kezdőmeridián képét. A meridiánképek pedig a kezdőmeridiántól $R \lambda$ távolságra metszik az egyenlítő képétő. A meridánokat ábrázoló körívek három ismert pontjukból (a két póluskép és az egyenlítőképpel való metszéspont) megszerkeszthetők. A vetület általános torzulású. A félgömb fokhálózatának képét az alábbi ábra mutatja.

Különleges vetületek

Geodéziai hálózatok és vetületek

(Varga József, Laky Piroska)

A fokhálózat képe Apianus vetületén

3.1.4 Mollweide-féle vetület

A *Mollweide-féle* vetületen a paralelkörök képei az egyenlítő képével párhuzamos egyenesek, a meridiánok képei pedig *ellipszisívek*. A *területtartó* vetület egyenletei:

$$x = \sqrt{2} R \sin \varphi'$$
 $y = \frac{2\sqrt{2}}{\pi} R \lambda \cos \varphi'$.

A φ módosított földrajzi szélesség a φ földrajzi szélesség függvénye:

$$2 \varphi' + \sin 2 \varphi' = \pi \sin \varphi$$
.

A φ adott φ -hez fokozatos közelítéssel számítható.

A fokhálózat képe Molleide-féle vetületen

A *Mollweide* vetület kedvezőbb torzulási viszonyokat mutat, mint a *Sanson-féle* vetület. A fokhálózati vonalak képének metszésszöge ugyanis jobban megközelíti a derékszöget, mint amannál. Az egész gömbre kiterjedő fokhálózat képét az alábbi ábra mutatja. *Vetületi transzformációval* a *Mollweide-féle* vetület is *pólusvonalassá* alakítható.
Különleges vetületek

(Varga József, Laky Piroska)

3.1.5 Collignon vetülete

A rombuszos képzetes hengervetületeken, ha a pólusokat pontként ábrázoljuk, a félgömb határmeridiájának képe rombusz, és a kezdőmeridiánhoz szimmetrikusan elhelyezkedő meridiánok képei is rombuszokat alkotnak. Ilyen területtartó vetület fokhálózatát mutatja félgömbre vonatkozóan az alábbi ábra. A vetületi egyenletek:

$$x = n R \left(1 - \sqrt{2} \sin \frac{\beta}{2} \right),$$
 $y = \frac{2 \sqrt{2} \sin \frac{\beta}{2}}{n},$

ahol β a pólustávolság, *n* pedig a célszerűség határán belül tetszés szerint felvehető arányszám. *R. E. Collignon* francia mérnök az $n = \pi$ arányszámot ajánlotta. Ebben az esetben a félgömböt határoló meridián képe négyzet lesz.

A fokhálózat képe Collignon-féle vetületen

3.2 KÉPZETES KÚPVETÜLETEK

3.2.1 A képzetes kúpvetületek általános jellemzése

A *képzetes kúpvetületek* csoportjába tartozó vetületeken a paralelkörök képei körívek (de nem teljes körök), a meridiánok képei pedig a kezdőmeridián egyenes képét nem tekintve általában görbe vonalak, vagy ha esetleg egyenesek, azok nem futnak össze egy pontba.

a) A normálparalelkör elemi ívdarabja és távolsága a kúp csúcspontjától
 b) A képzetes kúpvetületek derékszögű és poláris koordináta-rendszerének kapcsolata

A paralelkörök képének *p* sugara csupán a földrajzi szélességnek, illetve a pólustávolságnak, sugárhajlás pedig a földrajzi szélességnek (illetve a pólustávolságnak) és a földrajzi hosszúságnak a függvénye:

$$\boldsymbol{\rho} = f_1(\boldsymbol{\varphi}) = f_1'(\boldsymbol{\beta}), \qquad \boldsymbol{\gamma} = f_2(\boldsymbol{\varphi}, \boldsymbol{\lambda}) = f_2'(\boldsymbol{\beta}, \boldsymbol{\lambda}),$$

Az azonos torzulású vonalak általában nem esnek egybe a fokhálózati vonalakkal.

A derékszögű síkkoordináták általában a mellékelt ábra szerint alakulnak; *p* valamelyik paralelkör képének a sugara, *C* a kör középpontja, *c* ennek távolsága a felvett *y* tengelytől. A derékszögű koordináták:

 $x = c - p \cos \gamma$, $y = p \sin \gamma$.

Mivel a képzetes kúpvetületeket geodéziai célra nem alkalmazzák; a továbbiakban csak a fontosabbakkal foglalkozunk.

3.2.2 Képzetes kúpvetületek hossztartó központi irányokkal és hossztartó paralelkörökkel

Az ide tartozó vetületek közül legismertebb és régebben leggyakrabban használt vetület a *Bonne-féle* területtartó vetület. (*R. Bonne* francia matematikus és kartográfus; 1727-1795). A vetület fokhálózatának szerkesztése egyszerű. A kezdőmeridián egyenes képén egy pontot felvéve, valamely kiválasztott β_0 pólustávolságú paralelkör képét ebből a pontból, mint centrumból húzott

Különleges vetületek

(Varga József, Laky Piroska)

$$p_0 = R \operatorname{tg} \beta_0$$

sugarú körívvel rajzoljuk meg. A kezdőmeridiánt hossztartóan ábrázolva, a többi paralelkör képét a kezdőparalelkör centrumából

$$p = p_0 + R\left(\beta - \beta_0\right)$$

sugárral húzzuk meg. A paralelkörképek tehát koncentrikus körívek. A pólus képe nem esik egybe a centrummal, hanem attól

$$p_{polus} = p_0 - R \beta_0$$

távolságra van.

A paralelkörképekre a kezdőmeridián képétől felmérjük a meridiánok paralelkörön mért valódi távolságait. A megfelelő pontokat folytonos görbe vonallal összekötve kapjuk a meridiánok képét. A vetület, amelyet *Carte de France*-nak is neveznek, *területtartó*.

Az északi félgömb fokhálózati képét mutatja a *Bonne-féle* vetületen az alábbi ábra. A *Sanson-féle* vetület a *Bonne-féle* vetületnek egyik szélső esete, amikor a kezdőparalelkör az egyenlítő, és ennélfogva a paralelkör képének sugara végtelen. A Bonne-féle vetületet – topográfiai térképek áttekintő térképeként – az Osztrák–Magyar Monarchia katonai térképészete is alkalmazta.

A fokhálózat képe Bonne-féle vetületen

A másik szélső eset az, amikor a kezdőparalelkör az egyik pólus, tehát a paralelkörképek centruma egybeesik a pólus képével, és így a sugárfüggvény

$$p = R \beta$$
.

A vetületet *J. Werner* német geográfus (1468-1528) szerkesztette. A fokhálózat képét az egész gömbre kiterjedően az alábbi ábra szemlélteti.

(Varga József, Laky Piroska)

A fokhálózat képe Werner-féle vetületen

3.2.3 Polikonikus vetületek

A gömböt vagy az ellipszoidot paralelkörökkel gömbi-, illetve ellipszoidi övekre osztjuk, és mindenegyes öv középső paralelköre mentén egy – egy kúp palástját érintjük az alapfelülethez. A kúpok csúcspontjai a forgástengely meghosszabbításán helyezkednek el. Az ábrázolás a változó földrajzi szélességnek megfelelően más és más kúppalást síkba terített képén történik, tehát nem összefüggő. A kezdőmeridiántól távolodva a kúpszalagok közötti rés is növekszik. Ha azonban az öveket igen keskenyre vesszük, pl. 1"-re, akkor a szomszédos szalagok közötti rés már jelentéktelenné válik, és a kép a kezdőmeriántól bizonyos távolságig összefüggőnek tekinthető.

Polikonikus vetületen a paralelkörök képei nem koncentrikus körívek, középpontjaik sorozója: a kezdőmeridián képe. A meridiánképek a kezdőmeridián képe felé homorú oldalukat mutató görbe vonalak.

A polikonikus vetületek elve

Az Amerikai Egyesül Államokban alkalmazott *egyszerű polikonikus vetületen* a kezdőmeridián és a paralelkörök hossztartók, minden más irányban a hosszak növekednek. Ez a vetület észak-déli irányban hosszan elnyúló, kelet-nyugati irányban ki kiterjedésű területek ábrázolására alkalmas. Az egyszerű polikonikus vetület fokhálózati képét az alábbi ábra mutatja.

(Varga József, Laky Piroska)

A fokhálózat képe egyszerű amerikai polikonikus vetületen

Mint valamennyi kúpvetületen:

$$\gamma = n\lambda = \lambda \sin \varphi = \lambda \cos \beta$$

Mindegyik pontban másik kúp érinti a gömböt. Az A ponthoz tartozó sugárhossz (az A pont paralelkör-képének sugara):

$$p = R \tan \beta$$
.

A polikonikus vetületek derékszögű koordináta-rendszere

4 FÖLDRAJZI VETÜLETEK

4.1 A FÖLDRAJZI VETÜLETEK MEGVÁLASZTÁSÁNAK SZEMPONTJAI

A vetület megválasztásának több szempontja van. Itt a legfontosabbakat említjük meg. Az egyik fő szempont az ábrázolandó terület nagysága. Kérdés, hogy a térkép az egész gömbfelületet (Földet) ábrázolja-e, vagy csak félgömböt, avagy annál is kisebb területet ölel fel, továbbá, hogy a félgömbnél kisebb terület alakja milyen és hol helyezkedik el a Föld felszínén. Egy másik fő szempont a térkép célja. Atlaszok szerkesztésénél az is szempont lehet, hogy az ábrázolandó terület azonos méretarányban melyik vetületen ad kisebb vagy nagyobb kiterjedésű képet.

A földrajzi vetület megválasztásához az is a fő szempontok közé tartozik, hogy az alap- és a képfelületi idomok minél jobban egyezzenek meg egymással. Az eddigiekben láthattuk, hogy a szögtartóság kisebb környezetben biztosítja az alakhűséget, de ugyanakkor nagy területtorzulást okoz, viszont a területtartás nagy szögtorzulást eredményez. Keresni kell tehát azt a vetületet, amely az ábrázolandó területen, ha alakhűséget kívánunk, a szögtartóság mellett minél kisebb területtorzulást, vagy ha területtartást kívánunk, minél kisebb szögtorzulást okoz. Az ilyen irányú vizsgálatokhoz célszerű, ha az ábrázolandó területnek azokra a helyeire, amelyeken valamely torzulás kritikussá válhat, megszerkesztjük a *Tissot-féle* torzulási ellipsziseket. A 7.17. ábra a Werner-féle vetület torzulási ellipsziseit mutatja be a gömb negyedrészére vonatkozóan.

Fokhálózati kép és Tissot-féle torzulási ellipszisek a Werner-féle vetületen

A *torzulási ellipszis* – mint tudjuk – közvetlen adatokat szolgáltat a hossztorzulásokra; minél közelebb áll a körhöz, annál kisebb a szögtorzulás, minél kisebb a féltengelyek szorzatának eltérése az egységtől, annál kisebb a területtorzulás.

Az egész gömbfelületet zárt kontúrban ábrázoló térképekhez elsősorban a képzetes vetületek jöhetnek számításba. A félgömbre kiterjedő ábrázoláshoz egyes azimutális vetületek is célszerűen alkalmazhatók.

A *félgömbnél kisebb területek* ábrázolásához, ha a területek alakja megközelíti a kört, akkor az azimutális vetületek, ha gömbi főkör mentén elnyúlt, akkor a *valós hengervetületek*, ha pedig a terület súlyvonala paralelkör (gömbi kiskör) irányú, akkor a *valós kúpvetületek* előnyösek.

Gazdasági és statisztikai célú (pl. termőterületek nagyságát vagy a népsűrűséget mutató) térképekhez, valamint az egyes területek nagyságának összehasonlítását igénylő *oktatási térképek* készítéséhez *területtartó vetületeket* kell alkalmazni.

A *meteorológiai* és *geofizikai térképekhez*, (ha pl. a tengeri áramlatok, szelek irányát stb. akarjuk bemutatni) *szögtartó vetületekre* van szükség.

A *légi* és *tengeri navigáció* számára a *kikötői* vagy *repülőtéri térképekhez* bármelyik szögtartó vetület alkalmas, mert kis területet ábrázolnak, és így a hossztorzulás elhanyagolható. A rövidebb útvonalak szerkesztésére szolgáló térképekhez normális elhelyezésű szögtartó hengervetületet kell alkalmazni, mert azon a *loxodroma* képe egyenes. Hosszú útvonalakon hajózás és repülés az *ortodromát* követi, ezért az ahhoz szolgáló térképeken az ortodromát egyenesként ábrázoló *gnomonikus vetületet* célszerű használni.

A *légi navigációnál* mindinkább előtérbe kerül a *redukált szögtartó kúpvetület*, mert a metszési paralelkörök célszerű megválasztásával a térképen két pontot összekötő egyenes mintegy 3000 kilométeres hosszig olyan kissé tér el az ortodroma képétől, hogy az eltérés gyakorlatilag elhanyagolható.

A megfelelő vetületet valamennyi szempont együttes mérlegelésével kell keresni. A vetület helyes megválasztása a térkép használatát nagymértékben megkönnyíti, helytelen megválasztása viszont a térképet teljesen értéktelenné teheti.

4.2 VETÜLETANALÍZIS

A vetületanalízis célja ismeretlen vagy csak részben ismert vetületű térkép vetületének meghatározása. Részletesebben: Rakk Gyula (Térképvetületek fokhálózati képei): <u>http://rakkgyu.atw.hu/</u>

Érdi-Krausz György a vetületeket a fokhálózat alapján a következő főcsoportokba sorolta:

- 1) A parallelkörök képei párhuzamos egyenesek; a meridiánok képei párhuzamos egyenesek
- 2) A parallelkörök képei párhuzamos egyenesek; a meridiánok képei egyéb vonalak
- 3) A parallelkörök képei koncentrikus zárt körök; a meridiánok képei egy pontba összetartó egyenesek
- 4) A parallelkörök képei koncentrikus zárt körök; a meridiánok képei egy pontba összefutó görbék
- 5) A parallelkörök képei koncentrikus nyílt körívek; a meridiánok képei egy pontba összetartó egyenesek
- 6) A parallelkörök képei körívek, a meridiánok képei egyéb vonalak
- 7) A parallelkörök képei hiperbolák, a meridiánok párhuzamos egyenesek
- 8) A parallelkörök képei kúpszeletek (ellipszisek, parabola és hiperbolák), a meridiánok összetartó egyenesek
- 9) A parallelkörök képei hiperbolák; a meridiánok képei ellipszisek
- 10) A paralelkörök képei ellipszisívek, a meridiánok képei ellipszisívek
- 11) A parallelkörök képei görbe vonalak; a meridiánok képei görbe vonalak

Nézzük át azokat a vetületeket, amelyekkel mi is találkoztunk az órákon:

1) NORMÁLIS VALÓDI HENGERVETÜLET:

• A meridiánok párhuzamos egyenesek. A paralelkörök párhuzamos egyenesek. A fokhálózat derékszögben metsződik.

A paralelkörök távolsága vetületenként változik:

- a) Parallelkörök egyenletesen meridiánokban hossztartó vetület (négyzetes vetületplate carrée)
- b) Parallelkörök sűrűsödnek a pólusok felé pl. területtartó vetület
- c) Ritkulnak a paralelkörök a pólusok felé pl. szögtartó (mercator). A pólus képe a végtelenben.

Négyzetes hengervetület (Plate Carrée)

(Varga József, Laky Piroska)

Gall Orthographic (or Gall-Peters); a modified Cylindrical Equal-area; Standard Parallels = 45 Deg. N/S; James Gall; 1855

Területtartó hengervetület

Szögtartó hengervetület (Mercator)

2) NORMÁLIS KÉPZETES HENGERVETÜLET

- A parallelkörök képei párhuzamos egyenesek; a meridiánok képei egyéb vonalak, a fokhálózat változó szögben metsződik,
 - A pólus képe lehet póluspont vagy pólusvonal, paralelkörök távolsága is változó lehet vetületenként.
- a) A meridiánok képei körívek. (Pl. Apianus I. vetülete: a középmeridián és az egyenlítő hossztartó)
- b) A meridiánok képei ellipszisívek. (Pl. Mollweide féle vetületet: területtartó, sűrűsödő parallelkörök a sarkok felé, póluspontos, a teljes Föld képe ellipszis kontúrban jelenítik meg)
- c) A meridiánok képei szinuszívek (PI. Sanson vetület: területtartó, póluspontos)
- d) A meridiánok képei az egyenlítőnél megtörő egyenesek (PI. Collignon féle vetület: területtartó, Eckert I. és II. vetülete: területtartó, pólusvonalas)

(Varga József, Laky Piroska)

(Varga József, Laky Piroska)

3) NORMÁLIS VALÓDI AZIMUTÁLIS VETÜLET

- A paralelkörök zárt körívek. A meridiánok egy pontba összefutó egyenesek. A fokhálózati vonalak derékszögben metsződnek.
 - A paralelkörök távolsága vetületenként változhat.

A meridiánok mentén fellépő osztásközök nagyságának változása utal a konkrét síkvetületre.

- a) A meridiánok hossztartók: Postel-féle vetület
- b) A parallelkörök a pólustól távolodva ritkulnak pl. szögtartó (sztereografikus) síkvetület, gnomonikus síkvetület (a paralelkörök erősen ritkulnak és már félgömbnyi terület sem ábrázolható)
- c) A parallelkörök pólustól távolodva sűrűsödnek pl. területtartó Lambert-féle vetület, ortografikus síkvetület (paralelkörök hossztartóak, erősen sűrűsödnek a paralelkörök)

Postel-féle meridiánon hossztartó vetület

(Varga József, Laky Piroska)

Ortografikus vetület

Gnomonikus vetület

4) NORMÁLIS KÉPZETES AZIMUTÁLIS VETÜLET

a) A parallelkörök képei koncentrikus zárt körök; a meridiánok képei egy pontba összefutó görbék

5) NORMÁLIS VALÓDI KÚPVETÜLET

• A meridiánok egy pontba futnak össze. A paralelkörök nem záródó körívek. A fokhálózati vonalak derékszögben metsződnek.

A paralelkörök távolsága vetületenként változó.

- a) Paralelkörök egyenletesen meridiánokban hossztartó kúpvetület (pl. Ptolemaios vetülete)
- b) A parallelkörök hossztartó parallelkör(ök)től távolodva sűrűsödnek feltehetőleg területtartó kúpvetület.(Pl. Lambert-féle kúpvetület, Albers féle vetület)
- c) A parallelkörök a hossztartó parallelkör(ök)től távolodva ritkulnak feltehetőleg szögtartó, esetleg perspektív kúpvetület. (Pl. Lambert-Gauss féle vetület.)

6) KÉPZETES KÚPVETÜLET

- A parallelkörök képei körívek, a meridiánok képei egyéb vonalak:
- a) A parallelkörök képei koncentrikus körívek, a meridiánok egyéb vonalak (nem összetartó egyenesek) - pl. Bonne féle vetület (területtartó, a középmeridián és a parallelkörök hossztartók), Werner-féle (v. Stabius) vetület (a Bonne egyik szélső esete)
- b) A parallelkörök képei nem-koncentrikus körívek, melyek sugarát az r=ctgφ képlet adja meg; a meridiánok képei egyéb vonalak (nem körívek): Polikónikus vetület

Bonne-féle vetület

Werner (Stabius) vetülete

Különleges vetületek

Geodéziai hálózatok és vetületek

(Varga József, Laky Piroska)

Polikonikus vetület

7) TRANSZVERZÁLIS GNOMONIKUS VETÜLET

• A parallelkörök képei hiperbolák, a meridiánok párhuzamos egyenesek

8) FERDETENGELYŰ GNOMONIKUS VETÜLET

• A parallelkörök képei kúpszeletek (ellipszisek, parabola és hiperbolák), a meridiánok összetartó egyenesek.

Transzverzális gnomonikus

Ferde elhelyezésű gnomonikus

(Varga József, Laky Piroska)

9) FERDETENGELYŰ ORTOGRAFIKUS VETÜLET

A meridiánok és az egyenlítő képét alkotó ellipszisívek centruma megegyezik, legfeljebb félgömbnyi területet ábrázol.

5 AZ ELLIPSZOID SÍKVETÜLETEI

5.1 FÖLDRAJZI FOKHÁLÓZAT ÉS EGYÉB ELLIPSZOIDI FOGALMAK

Az ellipszoidnak a Föld forgástengelyét képviselő kistengelye az ellipszoid felszínét az északi és a déli *pólusban* metszi. A forgástengelyre merőleges és az ellipszoid középpontján átmenő sík az *egyenlítő síkja*, amely a felszínből a kör alakú és a sugarú (*a = fél nagytengely*) *egyenlítőt* metszi ki. Az egyenlítővel párhuzamos síkok kör alakú metszetei a *paralelkörök* (szélességi körök, szélességi vonalak). A forgástengelyt tartalmazó és az egyenlítő síkjára merőleges síkok az ellipszis alakú *meridiánokat* (hosszúsági vonalakat) metszik ki.

Ellipszoidi fogalmak

Az ellipszoid méretére és alakjára az alábbi adatok jellemzők:

fél nagytengely: a,fél kistengely: b, lapultság: f

$$f=\frac{a-b}{a},$$

első (\mathcal{E}) és a második numerikus excentricitás (\mathcal{E}'):

$$\varepsilon = \sqrt{\frac{a^2 - b^2}{a^2}}, \quad \varepsilon' = \sqrt{\frac{a^2 - b^2}{b^2}},$$

E három utóbbi mennyiség között fennállnak az

$$\varepsilon'^{2} = \frac{\varepsilon^{2}}{1 - \varepsilon^{2}}, \qquad \varepsilon^{2} = \frac{\varepsilon'^{2}}{1 + \varepsilon'^{2}}, \qquad (1 - \varepsilon^{2})(1 + \varepsilon'^{2}) = 1,$$

$$f = 1 - \sqrt{1 - \varepsilon^{2}}, \qquad \varepsilon^{2} = 2f - f^{2}$$

összefüggések.

Ellipszoidi számításokban gyakran előfordulnak a következő jelölések is:

(Varga József, Laky Piroska)

$$c = \frac{a^2}{b},$$
 $\eta^2 = {\varepsilon'}^2 \cos^2 \Phi,$ $V = \sqrt{1 + \eta^2}.$

Az ellipszoid felszínén levő pontok meghatározása ugyanolyan rendszerű koordinátákkal történik, mint amilyeneket a gömbnél megismertünk. Mivel a vetülettani összefüggésekben a gömbi és ellipszoidi koordináták vegyesen fordulnak elő, az ellipszoidi koordinátákat megkülönböztetésül a görög ábécé nagybetűivel jelöljük. A földrajzi szélesség (Φ), a földrajzi hosszúság (Λ) és az azimut definíciója megegyezik a gömbre adottakkal. A felületi pont normálisa azonban csak az egyenlítőn és a pólusokban megy át az ellipszoid középpontján (*fenti ábra*). Valamely földrajzi hosszúság a megfelelő meridiánsík által kimetszett ellipszisnek csak pólustól pólusig terjedő fél ívét határozza meg.

A földi pontok földrajzi meghatározásához *kezdőmeridiánul* általában a *greenwichi meridiánt* alkalmazzák. Nálunk korábban a *ferroi meridiántól* mérték a földrajzi hosszúságot. (A fiktív ferroi meridiánt nyugatra, kereken 20°-ra vették fel a *párizsi meridiántól*, ami mintegy 17° 40′- cel esik nyugatra a *greenwichi meridiántól*. A szakirodalomban ettől az értéktől több másodpercre eltérő adatokat is találunk.)

Az ellipszoid meridiánjának görbületi sugarát az

$$M = \frac{a(1-\varepsilon^2)}{(1-\varepsilon^2 \sin^2 \Phi)^{3/2}} \qquad \text{és az} \quad M = \frac{c}{V^3}$$

képletek határozzák meg. A meridián-ellipszis görbületi sugara csak a földrajzi szélesség függvénye, tehát valamely paralelkör minden pontjában állandó.

A meridián síkjára merőleges kelet-nyugati főirányban a metszési görbe sugara, amelyet harántgörbületi sugárnak nevezünk, szintén csak a földrajzi szélességtől függ (lásd ábra):

$$N = \frac{a}{\left(1 - \varepsilon^2 \sin^2 \Phi\right)^{\frac{1}{2}}} \quad \text{illetve} \quad N = \frac{c}{V} \quad .$$

A pólusban $\Phi = 90^\circ$, ezért $\eta=0$.

$$V_{plus}=\sqrt{1+\eta^2}=1,$$

tehát az előző összefüggések alapján:

$$M_{\rm pólus} = N_{\rm pólus} = c$$

vagyis a *c* érték az egymással egyenlő meridián irányú és a harántgörbületi sugár a pólusokban.

A közepessugarú gömb sugara:

$$R = \sqrt{MN} = \frac{c}{V^2} = \frac{a\sqrt{1-\varepsilon^2}}{\left(1-\varepsilon^2\sin^2\Phi\right)}.$$

A fenti képletből kitűnik, hogy az *R* is csak a földrajzi szélesség függvénye, vagyis valamely paralelkör minden pontjához ugyanolyan sugarú közepes-sugarú gömb tartozik.

A paralelkör sugara (lásd ábra):

$$r = N \cos \Phi$$

5.2 ELLIPSZOIDI TÉRBELI DERÉKSZÖGŰ KOORDINÁTA-RENDSZER

A térbeli derékszögű (ortogonális) koordináta-rendszer kezdőpontját az ellipszoid középpontjába helyezzük, z tengelyül az ellipszoid kistengelyét, x tengelyül pedig az egyenlítő és a kezdőmeridián síkjának metszésvonalát választjuk. A középponton átmenő y tengelyt az egyenlítő síkjában az egyenlítőre merőlegesen vesszük fel.

Ellipszoidi derékszögű koordináta-rendszer

Valamely A felületi pont paraméteres egyenletei:

$$\mathbf{x} = \mathbf{N} \cos \Phi \cos \Lambda, \tag{5.2.1}$$

$$y = N \cos \Phi \sin \Lambda, \qquad (5.2.2)$$

$$z = \frac{b^2}{a^2} N \sin \Phi = N(1 - \varepsilon^2) \sin \Phi.$$
 (5.2.3)

Az *x* és az *y* egyenlete az ábráról közvetlenül leolvasható. A *z* (5.2.3) egyenletének hosszabb levezetése van. A síkkoordináták ismeretében a földrajzi hosszúság egyszerűen számítható:

$$\tan \Lambda = \frac{y}{x}$$

A földrajzi szélesség inverz képletének levezetéséhez (5.2.1) és (5.2.2)-ből, majd a (5.2.3)ból:

$$x^2 + y^2 = N^2 \cos^2 \Phi$$

Különleges vetületek

(Varga József, Laky Piroska)

$$\frac{a^4}{b^4}z^2 = N^2\sin^2\Phi$$

A két egyenlet összeadása után:

$$x^2 + y^2 + \frac{a^4}{b^4}z^2 = N^2.$$

Majd a (5.2.1) és (5.2.2) egyenletekből:

$$\cos \Phi = \frac{x}{N \cos \Lambda}$$
 vagy ellenőrzéssel $\cos \Phi = \frac{y}{N \sin \Lambda}$.

A Φ (5.2.3)-ből is meghatározható:

$$\sin \Phi = \frac{a^2 z}{b^2 N}.$$

5.3 ELLIPSZOIDI KÚPVETÜLETEK

Kúpvetületi poláris és derékszögű koordináta-rendszerek összefüggése

A vetületi egyenletek a következők lesznek:

$$y = p \cdot \sin \gamma = p \cdot \sin(n \cdot \Lambda)$$

$$x = p_0 - p \cdot \cos \gamma = p_0 - p \cdot \cos(n \cdot \Lambda)$$

Különleges vetületek

Geodéziai hálózatok és vetületek (Varga József, Laky Piroska)

A normálparalelkör elemi ívdarabja és távolsága a kúp csúcspontjától

A fenti ábra alapján p₀:

$$p_0 = N_0 ctg\Phi_0$$

A fenti ábra alapján ds kétféleképpen is felírható:

$$ds = p_0 d\gamma = p_0 n d\Lambda = N_0 ctg\Phi_0 n d\Lambda$$

 $ds = N_0 \cos\Phi_0 d\Lambda$,
Ebből az *n* értéke:

$$n N_0 ctg \Phi_0 d\Lambda = N_0 \cos \Phi_0 d\Lambda,$$

$$n = \sin \Phi_0,$$

ahol Φ_0 a *normálparalelkör* földrajzi szélessége.

5.3.1 Lineármodulusok és területi modulus levezetése az ellipszoid kúpvetületén A meridián és a paralelkör elemi ívdarabjai az alapfelületen:

$$ds_m = M d\Phi$$
,
 $ds_p = N \cos \Phi \, d\Lambda$.

Ellipszoidi fokhálózati vonalak elemi ívdarabjai és képük kúpvetületen Képfelületi megfelelőik:

$$\begin{split} dt_{m} &= dp \,, \\ dt_{p} &= p \, d\gamma \,, \\ \gamma &= n \, \Lambda \,, \, \text{ezért} \, d \, \gamma = n \, d\Lambda \, \, \text{és } \, \text{így} \\ dt_{p} &= n \, p \, d\Lambda \,. \end{split}$$

Az egyenletekben n-nel a szögváltozás arányszámát jelöltük.

Lineármodulus a meridián irányában:

$$l_m = \frac{dt_m}{ds_m} = -\frac{dp}{M \ d\Phi}.$$

Lineármodulus a paralelkör irányában:

$$l_p = \frac{dt_p}{ds_p} = \frac{n \ p \ d\Lambda}{N \cos \Phi \ d\Lambda} = n \frac{p}{N \cos \Phi} \,.$$

Területi modulus:

$$\tau = l_m l_p = -n \frac{p \, dp}{M \, N \cos \Phi d\Phi}$$

5.3.2 Az ellipszoid szögtartó kúpvetülete (Lambert-féle szögtartó kúpvetület)

Szögtartó vetületen a lineármodulus nem függ az iránytól, csak a helytől, a meridián és a paralelkör irányú lineármodulus egyenlő egymással: $l_m = l_m$

$$-\frac{dp}{M \ d\Phi} = n\frac{p}{N\cos\Phi}$$

Különleges vetületek

(Varga József, Laky Piroska)

$$-\frac{dp}{p} = n\frac{M \, d\Phi}{N\cos\Phi} = n \, d\Psi$$

ahol Ψ az izometrikus szélesség nevű segédmennyiség. Az izometrikus szélesség arányos az ellipszoid szögtartó Mercator vetületének paralelköreinek a távolságával (ahol paralelkörök az egyenlítőtől távolodva egyre ritkulnak, és a pólusok képe a végtelenbe kerül). Azért hívják izometrikusnak, mert az ellipszoid bármely pontján ugyanakkora $d\Psi$ és $d\Lambda$ változás ugyanolyan hosszú elmozdulást eredményez a meridiánon ill. paralelkörön. Ebből lehet

levezetni is. Tegyük egyenlővé a meridián és a paralelkör irányú elmozdulásokat: $ds_m = ds_m$

$$Md\Phi = N\cos\Phi \, d\Lambda$$

Fejezzük ki belőle $d\Lambda$, és ez a csak Φ -től függő mennyiség legyen $d\Psi$, az izometrikus szélesség elemi megváltozása, így ugyanakkora $d\Psi$ és $d\Lambda$ változás ugyanolyan hosszú elmozdulást fog eredményezni a meridiánon ill. paralelkörön.

$$d\Lambda = \frac{M}{N\cos\Phi} \, d\Phi = d\Psi$$

A fenti egyenletből elliptikus integrállal meghatározható Ψ értéke is:

$$\Psi = \ln \left[\tan \left(45^\circ + \frac{\Phi}{2} \right) \left(\frac{1 - \varepsilon \sin \Phi}{1 + \varepsilon \sin \Phi} \right)^{\varepsilon/2} \right]$$

Térjünk vissza a sugárfüggvény (p) meghatározásához, bevezetve az izometrikus szélességet és integrálva dp egyenletét a következőket kapjuk:

$$-\ln p = n \Psi + \ln c$$
, ahol *ln c* az integrálási állandó.
 $\ln c + \ln p = -n \Psi$
 $\ln (c p) = -n \Psi$

A sugárfüggvény ellipszoid szögtartó kúpvetületén tehát:

$$p = \frac{e^{-n\Psi}}{c} = K e^{-n\Psi}$$
$$K = 1/c$$

A normálparalelkör sugara:

$$p_0 = N_0 \cot \Phi_0 = K e^{-n \Psi_0}$$
,

ahonnan az elhelyezéstől függő

$$K = N_0 \cot \Phi_0 e^{n \Psi_0}.$$

Szögtartó vetítésnél a lineármodulus csak a hely függvénye:

$$l_m = l_p = n \frac{p}{N \cos \Phi} = n \frac{K e^{-n\Psi}}{N \cos \Phi},$$

Különleges vetületek

(Varga József, Laky Piroska)

$$\tau = l_m^2 = l_p^2 = n^2 \frac{p^2}{N^2 \cos^2 \Phi}$$
,

Kúpvetületi poláris és derékszögű koordináta-rendszerek összefüggése alapján a vetületi egyenletek a következők lesznek:

$$y = p \sin \gamma = K e^{-n\Psi} \sin(n \Lambda),$$

$$x = p_0 - p \cos \gamma = p_0 - K e^{-n\Psi} \cos(n \Lambda).$$

Egy adott vetülethez az érintési normál paralelkör Φ_0 ismeretében meghatározhatók az adott vetülethez tartozó állandók: *n*, *p*₀, *K*.

Vetületi meridiánkonvergencia szögtartó kúpvetületen

Vetületi meridiánkonvergencia

Mivel a meridiánok valódi képei a kúp csúcspontjának képében összefutó egyenesek a vetületi meridánkonvergencia abszolút értékben és előjelben is megegyezik a sugárhajlással:

$$\mu = \gamma$$
.

Földrajzi koordináták számítása a síkkoordinátákból

$$\gamma = \arctan \frac{y}{p_0 - x}, \qquad \Lambda = \frac{\gamma}{n}.$$

$$p = \sqrt{y^2 + (p_0 - x)^2}$$

$$e^{-n\Psi} = \frac{p}{K} \qquad e^{\Psi} = \left(\frac{K}{p}\right)^{1/n}$$

$$e^{\Psi} = \tan\left(45^\circ + \frac{\Phi}{2}\right) \left(\frac{1 - \varepsilon \sin \Phi}{1 + \varepsilon \sin \Phi}\right)^{\varepsilon/2}$$

Különleges vetületek

(Varga József, Laky Piroska)

$$\tan\left(45^{\circ} + \frac{\Phi}{2}\right) = \frac{e^{\Psi}}{\left(\frac{1 - \varepsilon \sin \Phi}{1 + \varepsilon \sin \Phi}\right)^{\varepsilon/2}}$$
$$\left(\Phi\right) = 2\arctan\frac{e^{\Psi}}{\left(\frac{1 - \varepsilon \sin \Phi}{1 + \varepsilon \sin \Phi}\right)^{\varepsilon/2}} - 90^{\circ}$$

Első közelítésben a nevezőt 1-nek vehetjük.

5.3.3 Redukált szögtartó kúpvetület

A hossztartó (metszési) paralelkörökön:

Redukált (metsző) kúpvetület

 $l_1 = l_2 = 1$

$$l_{1} = l_{2} = n \frac{Ke^{-n\Psi_{1}}}{N_{1}\cos\Phi_{1}} = n \frac{Ke^{-n\Psi_{2}}}{N_{1}\cos\Phi_{2}}$$
$$e^{n(\Psi_{2}-\Psi_{1})} = \frac{N_{1}\cos\Phi_{1}}{N_{2}\cos\Phi_{2}}$$
$$n(\Psi_{2}-\Psi_{1}) = \ln\frac{N_{1}\cos\Phi_{1}}{N_{2}\cos\Phi_{2}}$$
$$n = \sin\Phi_{0} = \frac{1}{\Psi_{2}-\Psi_{1}}\ln\frac{N_{1}\cos\Phi_{1}}{N_{2}\cos\Phi_{2}}$$
$$p = K e^{-n\Psi}$$

Különleges vetületek

(Varga József, Laky Piroska)

$$n\frac{Ke^{-n\Psi_1}}{N_1\cos\Phi_1} = 1$$
$$K = \frac{N_1\cos\Phi_1}{n\,e^{-n\Psi_1}} = \frac{N_2\cos\Phi_2}{n\,e^{-n\Psi_2}}$$

Az ellipszoid redukált elhelyezésű szögtartó kúpvetületét a nagyméretarányú felmérésben alkalmazzák – többek között – Franciaországban és az Amerikai Egyesült Államok több államában. Kaliforniát pl. hét kúpvetületi sávon ábrázolják.

5.4 AZ ELLIPSZOID AZIMUTÁLIS VETÜLETEI

5.4.1 Lineármodulusok és területi modulus levezetése az ellipszoid azimutális vetületein

A meridián és a paralelkör elemi ívdarabjai az alapfelületen:

$$ds_m = M \ d\Phi$$
, $ds_n = N \cos \Phi \ dA$.

Képfelületi megfelelőik:

$$dt_m = dp$$
, $dt_p = p dA$

Ellipszoidi fokhálózati vonalak elemi ívdarabjai és képük azimutális vetületen Lineármodulus a meridián irányában:

$$I_m = \frac{dt_m}{ds_m} = -\frac{dp}{M \, d\Phi} \, .$$

Lineármodulus a paralelkör irányában:

$$I_{p} = \frac{dt_{p}}{ds_{p}} = -\frac{p \, d\Lambda}{N \cos \Phi \, d\Lambda} = \frac{p}{N \cos \Phi}.$$

A sugárhajlás valamennyi azimutális vetületen:

(Varga József, Laky Piroska)

 $\gamma = \Lambda$

Területi modulus:

$$\tau = I_m I_p = -\frac{p \, dp}{M N \cos \Phi \, d\Phi}.$$

Mivel azimutális vetületen a szögváltozás arányszáma n = 1, az azimutális vetület lineármodulusait levezetés nélkül is megkaptuk volna az n = 1-nek a kúpvetület összefüggéseibe történő behelyettesítésével.

5.4.2 Az ellipszoid normális elhelyezésű sztereografikus vetülete

Szögtartó vetületen a lineármodulus nem függ az iránytól, csak a helytől, a meridián és a paralelkör irányú lineármodulus egyenlő egymással: $l_m = l_m$.

A sugárfüggvény levezetése hasonló a szögtartó kúpvetülethez:

$$-\frac{dp}{M \ d\Phi} = \frac{p}{N \cos \Phi}$$
$$-\frac{dp}{p} = \frac{M \ d\Phi}{N \cos \Phi} = d\Psi$$
$$-\ln \ p = \Psi + \ln C$$
$$\ln \ p + \ln C = -\Psi$$
$$\ln \ (p \ C) = -\Psi$$
$$p = \frac{e^{-\Psi}}{C} = K \ e^{-\Psi}$$

5.4.3 Universal Polar Stereographic (UPS) vetület

Lineármodulus a torzulásmentes (érintési) paralelkörön:

$$l = 1 = \frac{p}{N\cos\Phi} = \frac{K e^{-\Psi}}{N\cos\Phi}$$
$$K = N\cos\Phi e^{\Psi}$$
$$e^{\Psi} = \tan\left(45^{\circ} + \frac{\Phi}{2}\right) \left(\frac{1 - \varepsilon\sin\Phi}{1 + \varepsilon\sin\Phi}\right)^{\varepsilon/2}$$
$$N = \frac{a}{\sqrt{1 - \varepsilon^2\sin^2\Phi}}$$
$$\tan\left(45^{\circ} + \frac{\Phi}{2}\right) = \frac{\cos\Phi}{1 - \sin\Phi} = \frac{1 + \sin\Phi}{\cos\Phi}$$

A következő goniometriai összefüggést figyelembe vétele után a helyettesítést elvégezve:

Különleges vetületek

(Varga József, Laky Piroska)

$$\tan\frac{\alpha}{2} = \frac{1-\cos\alpha}{\sin\alpha} \qquad \qquad \alpha = 90^{\circ} + \Phi$$
$$K = N\left(1+\sin\Phi\right) \left(\frac{1-\varepsilon\sin\Phi}{1+\varepsilon\sin\Phi}\right)^{\varepsilon/2} = \frac{a\left(1+\sin\Phi\right)}{\sqrt{1+\varepsilon^2\sin^2\Phi}} \left(\frac{1-\varepsilon\sin\Phi}{1+\varepsilon\sin\Phi}\right)^{\varepsilon/2}$$

Érintsen a sík a pólusban! $\Phi = 90^{\circ}$

$$\begin{split} & \mathcal{K} = \frac{2 a}{\sqrt{1 - \varepsilon^2}} \left(\frac{1 - \varepsilon}{1 + \varepsilon}\right)^{\varepsilon/2} \\ & \varepsilon^2 = \frac{a^2 - b^2}{a^2} = 1 - \frac{b^2}{a^2}, \text{ tehát } \sqrt{1 - \varepsilon^2} = \sqrt{1 - 1 + \frac{b^2}{a^2}} = \frac{b}{a} \\ & c = \frac{a^2}{b}, \\ & \mathcal{K} = \frac{2 a^2}{b} \left(\frac{1 - \varepsilon}{1 + \varepsilon}\right)^{\varepsilon/2} = 2 c \left(\frac{1 - \varepsilon}{1 + \varepsilon}\right)^{\varepsilon/2}, \\ & p = \mathcal{K} e^{-\Psi} = 2 c \left(\frac{1 - \varepsilon}{1 + \varepsilon}\right)^{\varepsilon/2} e^{-\Psi}. \end{split}$$

Az UPS vetületnél $m_0 = 0,994$ vetületi méretarány-tényezőt alkalmaznak (a vetületi kezdőpontban 6 m-es kilométerenkénti hosszrövidülés!):

A vetületi egyenletek:

$$p = K m_0 e^{-\Psi} = 2 c m_0 \left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{\varepsilon/2} e^{-\Psi}.$$

$$y = p \sin \Lambda = \Delta E, \qquad x = p \cos \Lambda = \Delta N,$$

 $N = FN - \Delta N$ az északi pólushoz rendelt koordináta-rendszernél,

 $N = FN + \Delta N$ a déli pólushoz rendelt koordináta-rendszernél,

 $E = FE + \Delta E$ mindkét koordináta rendszernél.

 $FN = FE = 2\ 000\ 000\ m.$

Az UPS vetület északi és déli koordináta-rendszere

Az UTM és az UPS vetület alkalmazási területei

Síkkoordinátákból ellipszoidi koordináták számítása

 $\Lambda = \arctan \frac{y}{x},$ $p = \sqrt{y^2 + x^2},$ $e^{-\Psi} = \frac{p}{K} \qquad e^{\Psi} = \frac{K}{p}$

A földrajzi szélességet itt is fokozatos közelítéssel számítjuk, mint a szögtartó kúpvetületnél.

$$(\Phi) = 2 \arctan \frac{e^{\Psi}}{\left(\frac{1 - \varepsilon \sin \Phi}{1 + \varepsilon \sin \Phi}\right)^{\varepsilon/2}} - 90^{\circ}$$

5.5 AZ ELLIPSZOID HENGERVETÜLETEI

5.5.1 Normális elhelyezésű érintő hengervetület lineármodulusainak levezetése

Fokhálózati vonalak elemi hosszúságú ívdarabjai és képük

Az alapfelületen:

$$ds_m = M d\Phi,$$

 $ds_p = N\cos\Phi d\Lambda,$

 $ds = a d\Lambda$.

A képfelületen:

$$dt_m = dx$$

Normális érintő elhelyezésben az egyenlítő hossztartó:

$$dt_p = dy = ds = a d\Lambda$$

$$y = a \Lambda + c$$
, ahol $c = 0$.

$$I_m = \frac{dt_m}{ds_m} = \frac{dx}{M \, d\Phi}$$
$$I_p = \frac{dt_p}{ds_p} = \frac{a \, d\Lambda}{N \cos \Phi \, d\Lambda} = \frac{a}{N \cos \Phi}$$

Különleges vetületek

(Varga József, Laky Piroska)

$$\tau = I_m \ I_p = \frac{a \ dx}{M \ N \cos \Phi \ d\Phi}$$

Normális elhelyezésű hengervetületen a vetületi meridiánkonvergencia (γ) mindig zérus, mert a meridiánok képei az *x* tengellyel párhuzamos egyenesek.

Metsző elhelyezésnél

Az alapfelületen:

$$ds_m = M \, d\Phi \,,$$
$$ds_p = N \cos \Phi \, d\Lambda \,,$$

A képfelületen:

$$dt_m = dx$$
,

Normális metsző elhelyezésben a metszési paralelkörök a hossztartók:

$$dt_{p} = dy = N_{m} \cos \Phi_{m} \, d\Lambda,$$
$$y = N_{m} \cos \Phi_{m} \, \Lambda = a \, m_{0} \, \Lambda,$$
$$m_{0} = \frac{N_{m} \cos \Phi_{m}}{a} = \frac{r_{m}}{a}.$$

Az *m* index a metszési paralelkörre utal.

5.5.2 Normális elhelyezésű érintő szögtartó hengervetület (Mercator)

$$I_{m} = I_{p}$$

$$\frac{dx}{M d\Phi} = \frac{a}{N \cos \Phi}$$

$$dx = a \frac{M}{N} \frac{d\Phi}{\cos \Phi} = a d\Psi$$

$$x = a \Psi + c$$

 $\Psi = 0^{\circ}$ -nál x = 0, és így c = 0.

A vetületi egyenletek:

$$x = a \Psi = a \ln \left[\tan \left(45^\circ + \frac{\Phi}{2} \right) \left(\frac{1 - \varepsilon \sin \Phi}{1 + \varepsilon \sin \Phi} \right)^{\varepsilon/2} \right]$$

$$y = a \Lambda$$
.

(Varga József, Laky Piroska)

Normális elhelyezésű szögtartó hengervetület (Mercator)

Ha Mercator vetületén két pontot egyenessel kötünk össze, közvetlenül a loxodroma képét kapjuk, mert az egyenes minden pontjában azonos szöget zár be a helyi meridián egyenesként jelentkező képével. Az egyenes irányszöge megegyezik a loxodroma azimutjával:

 $\delta_{AB} = \alpha$.

Loxodroma képe Mercator vetületén

5.5.3 Normális elhelyezésű redukált szögtartó hengervetület

$$x = a m_0 \Psi$$
 $y = a m_0 \Lambda$

A lineármodulus minden irányban:

$$I = \frac{a m_0}{N \cos \Phi}$$

5.6 TRANSZVERZÁLIS ELHELYEZÉSŰ SZÖGTARTÓ HENGERVETÜLET (GAUSS–KRÜGER (UTM) VETÜLET)

A *Gauss–Krüger-féle ábrázolási mód (vetület)* a Gauss-féle szögtartó síkvetület elveit alkalmazza az ellipszoidra, mint alapfelületre. A Gauss–Krüger-vetületen az *x* koordináta megegyezik az ellipszoid *Soldner-féle koordináta-rendszerének x* koordinátájával, az *y* pedig a Soldner-féle koordinátához képest úgy változik, hogy a vetület szögtartó legyen. Végeredményben tehát a Gauss–Krüger-vetület nem más, mint az ellipszoid egyenlítői elhelyezésű érintő szögtartó hengervetülete.

Gauss-Krüger-vetület keletkezése

A Gauss–Krüger-vetület úgy keletkezik, hogy az ellipszoidhoz olyan hengert rendelünk, amelynek az egyenlítő síkjában fekvő tengelye átmegy az ellipszoid középpontján (transzverzális elhelyezés) és a képzeletbeli hengernek a tengelyére merőleges síkmetszete olyan ellipszis, amely teljesen, tehát alakra és méretre is megegyezik az ellipszoid meridiánellipszisével (*fenti ábra*). Ebben az esetben a henger és az ellipszoid közös vonala az érintési meridián a torzulásmentes vonal, tehát az m_0 vetületi méretarány-tényező az egységgel egyenlő.

Miután a hossz- és területtorzulás az előbbi meridiántól távolodva nő, a torzulásokra az ábrázolás kívánalmai szerint megszabott határnak megfelelően egy vetületi rendszer az érintési meridiántól csak egy bizonyos földrajzi hosszúságkülönbségig használható. Az fenti ábrán feltüntetett két ún. szegélymeridián a vetületi rendszer – illetve, ahogy ennél a vetületnél nevezik – vetületi sáv határait jelöli ki. Az egyes vetületi sávokhoz tartozó képzeletbeli hengerek palástja természetesen mindig az illető sáv középmeridiánja mentén érinti az ellipszoidot (*következő ábra*).

Az érintési vonal képe az x tengely, pozitív ága észak felé mutat, és ennek megfelelően az y tengely (az egyenlítő képe) pozitív ága kelet felé irányul. A síkkoordináta-rendszer kezdőpontját általában alkalmasan megválasztott X_0 és Y_0 értékkel úgy tolják el, hogy egy

adott területen minden koordináta pozitív előjelű legyen, és ne kelljen túl nagy abszolút értékű síkkoordinátákkal számolni.

a középmeridiánok képei

12.2. ábra. Gauss-Krüger-vetületi sávok

A vetületi egyenletek levezetésekor a szögtartóság alapegyenletéből lehet kiindulni:

$$\mathbf{x} + \mathbf{i} \mathbf{y} = \mathbf{F}(\boldsymbol{\Psi} + \mathbf{i} \boldsymbol{\Lambda})$$

Az x tengelyen és a kezdőmeridiánon egyidejűleg y = 0 és Λ = 0.

A kezdőmeridiánon levő pontokban a szögtartóság alapegyenletéből kiindulva:

$$\boldsymbol{x}=\mathsf{F}(\boldsymbol{\Psi})=\boldsymbol{B},$$

ahol *B* a meridián ívhossza az egyenlítőtől Φ a szélességű paralelkörig.

Egy pont helyzete a középmeridiánhoz viszonyítva

A *B* a meridián ívhosszát jelenti az egyenlítőtől mérve a kérdéses ponton átmenő paralelkörig. $\Delta\Lambda$ -val a pont középmeridiánra vonatkozó hosszúságkülönbségét jelöltük (*ábra*):

$$\Delta \Lambda = \Lambda - \Lambda_K,$$

Ahol Λ_K a sáv középmeridiánjának földrajzi hosszúsága.

5.6.1 Ellipszoidi földrajzi koordinátákból Gauss–Krüger és UTM koordináták számítása.

(Vetületi egyenletek levezetés nélkül)

Első lépésben a (Φ , Λ) koordinátákból a következő zárt összefüggésekkel gömbi (φ , λ) koordinátákat számítunk:

$$\varphi = 2 \arctan \left[k \tan^n \left(45^\circ + \frac{\Phi}{2} \right) \left(\frac{1 - \varepsilon \sin \Phi}{1 + \varepsilon \sin \Phi} \right)^{\frac{n\varepsilon}{2}} \right] - 90^\circ =$$
$$= 2 \arctan \left(k \Psi^n \right) - 90^\circ,$$
$$\lambda = n \left(\Lambda - \Lambda_0 \right).$$

Ahol Λ_o a középmeridián ellipszoidi földrajzi hosszúsága, Ψ az ellipszoidi izometrikus szélesség, k és n a gömb elhelyezésétől függő állandók. Az ellipszoidnak olyan szögtartó gömbi vetületét alkalmazzuk, ahol a gömbi egyenlítő az ellipszoidi egyenlítőn simul (földrajzi célú ábrázolás). Ebben az esetben: k = n = 1.

A továbbiakban:

$$\xi = \arctan \frac{\tan \varphi}{\cos \lambda}, \qquad \eta = \frac{1}{2} \ln \frac{1 + \cos \varphi \sin \lambda}{1 - \cos \varphi \sin \lambda},$$
$$x + iy = R m_0 \begin{bmatrix} \xi + i\eta + \alpha_2 \sin 2(\xi + i\eta) + \alpha_4 \sin 4(\xi + i\eta) + \\ + \alpha_6 \sin 6(\xi + i\eta) + \alpha_8 \sin 8(\xi + i\eta) + \dots \end{bmatrix}$$

vagy a valós és képzetes rész szétválasztása után:

$$x = R m_0 \begin{bmatrix} \xi + \alpha_2 \sin 2\xi \operatorname{ch} 2\eta + \alpha_4 \sin 4\xi \operatorname{ch} 4\eta + \\ + \alpha_6 \sin 6\xi \operatorname{ch} 6\eta + \alpha_8 \sin 8\xi \operatorname{ch} 8\eta + \dots \end{bmatrix}$$
$$y = R m_0 \begin{bmatrix} \eta + \alpha_2 \cos 2\xi \operatorname{sh} 2\eta + \alpha_4 \cos 4\xi \operatorname{sh} 4\eta + \\ + \alpha_6 \cos 6\xi \operatorname{sh} 6\eta + \alpha_8 \cos 8\xi \operatorname{sh} 8\eta + \dots \end{bmatrix}$$

Ahol

$$\mathbf{i} = \sqrt{-1}$$

$$R = \frac{a}{1+m} \left(1 + \frac{m^2}{4} + \frac{m^4}{64} + \frac{m^6}{256} + \dots \right)$$

$$\alpha_2 = \frac{1}{2}m - \frac{2}{3}m^2 + \frac{5}{16}m^3 + \frac{41}{180}m^4 + \dots$$
Geodéziai hálózatok és vetületek

Különleges vetületek

(Varga József, Laky Piroska)

$$\alpha_4 = \frac{13}{48}m^2 - \frac{3}{5}m^3 + \frac{557}{1440}m^4 + \dots$$
$$\alpha_6 = \frac{61}{240}m^3 - \frac{103}{140}m^4 + \dots$$
$$\alpha_8 = \frac{49561}{161280}m^4 + \dots$$
$$m = \frac{a-b}{a+b}.$$

A kapott x koordináta megegyezik a Gauss- Krüger X-szel (UTM vetületnél N-nel), az y -hoz viszont a negatív előjelű koordináták elkerülése céljából $Y_o = 500\ 000\ m$ -t hozzá kell adni.

,

5.6.2 Földrajzi koordináták számítása Gauss–Krüger (UTM) síkkoordinátákból

$$x = X \qquad y = Y - Y_{0}$$

$$u = \frac{x}{R m_{0}}, \qquad v = \frac{y}{R m_{0}},$$

$$\xi = u - \beta_{2} \sin 2u \operatorname{ch} 2v - \beta_{4} \sin 4u \operatorname{ch} 4v - \beta_{6} \sin 6u \operatorname{ch} 6v - \beta_{8} \sin 8u \operatorname{ch} 8v - \dots,$$

$$\eta = v - \beta_{2} \cos 2u \operatorname{sh} 2v - \beta_{4} \cos 4u \operatorname{sh} 4v - \beta_{6} \cos 6u \operatorname{sh} 6v - \beta_{8} \cos 8u \operatorname{sh} 8v - \dots,$$

ahol

$$\beta_{2} = \frac{1}{2}m - \frac{2}{3}m^{2} + \frac{37}{96}m^{3} - \frac{1}{360}m^{4}...,$$

$$\beta_{4} = \frac{1}{48}m^{2} + \frac{1}{15}m^{3} + \frac{437}{1440}m^{4} + ...,$$

$$\beta_{6} = \frac{17}{480}m^{3} - \frac{37}{840}m^{4} + ...,$$

$$\beta_{8} = \frac{4397}{161\,280}m^{4} +$$

Az állandóknak a hazai vetületi rendszerekre kiszámított értékei a fejezet végén találhatók.

Továbbá földrajzi koordináták számítása a simulógömbön:

Geodéziai hálózatok és vetületek

Különleges vetületek

(Varga József, Laky Piroska)

$$\varphi = \arcsin \frac{\sin \xi}{\operatorname{ch} \eta}, \qquad \lambda = \arctan \frac{\operatorname{sh} \eta}{\cos \xi}.$$

Kraszovszkij -ellipszoid alapfelületű Gauss-Krüger vetülethez az alábbi együtthatókat használhatjuk:

 $R = 6 \ 367 \ 558,500 \text{ m}$ $\alpha_2 = 8,376 \ 117 \ \text{E-}04$ $\alpha_4 = 7,606 \ 3 \ \text{E-}07$ $\alpha_6 = 1,2 \ \text{E-}09$ $\alpha_8 = 0$ $\beta_2 = 8,376 \ 121 \ \text{E-}04$ $\beta_4 = 5,9 \ \text{E-}08$ $\beta_6 = 2 \ \text{E-}10$ $\beta_8 = 0$

A fenti állandóknak a gyakorlati követelményeknek megfelelő pontossággal kiszámított értékei a *WGS84* ellipszoid alapfelületű *UTM* vetületre:

$$R = 6 \ 367 \ 449,149 \text{ m}$$

$$\alpha_2 = 8,377 \ 318 \ \text{E-04}$$

$$\alpha_4 = 7,608 \ 5 \ \text{E-07}$$

$$\alpha_6 = 1,2 \ \text{E-09}$$

$$\alpha_8 = 0$$

$$\beta_2 = 8,377 \ 322 \ \text{E-04}$$

$$\beta_4 = 5,9 \ \text{E-08}$$

$$\beta_6 = 2 \ \text{E-10}$$

$$\beta_8 = 0.$$

5.6.3 A Gauss–Krüger vetület alkalmazása

Gauss–Krüger-vetületen csak kelet-nyugati irányban korlátozott kiterjedésű terület ábrázolható egybefüggően. A sávbeosztás – legyen az *S* sávszélesség akár 2° vagy 3°, akár 6° – az ellipszoidot egymással *S* nagyságú szöget bezáró meridiánokkal határolt kétszögekre, vetületi sávokra osztja. Ezeket a meridiánokat szegélymeridiánoknak nevezzük. Minden egyes vetületi sávhoz a síkon egy-egy koordináta-rendszer tartozik. A kétszög középmeridiánjának egyenesként jelentkező képe a vetületi sáv koordináta-rendszerének *x* tengelye. Ennek pozitív ága észak felé mutat. Az egyenlítő képe a középmeridián képére merőleges egyenes: ez az *y* tengely, amely észak-keleti tájékozású koordináta-rendszerben kelet felé irányul.

A koordináta-rendszereket az kapcsolja egybe, hogy az *y* tengelyek egy egyenesbe esnek. A koordináta rendszer kezdőpontja a középmeridián és az egyenlítő metszéspontjának képe. A szomszédos sávok szegélymeridiánjai az egyenlítőnél érintik egymást (*12.2. ábra*).

A nemzetközi 6°-os sávrendszer kialakításához átvették az 1 : 1 000 000 méretarányú világtérkép meridián irányú beosztását. Az ellipszoid felületét a $\Lambda = 180^{\circ}$ -os meridiántól kezdve, nyugatról kelet felé haladva 60 darab 6°-os sávra osztották, és ezeket a sávokat arab számokkal (zónaszám) jelölték. Így a greenwichi meridián a 30. sávot zárja. Magyarország, amelynek területe nyugat-keleti irányban 16° földrajzi hosszúságtól a 23° földrajzi hosszúságig terjed a 33. és 34. sávba esik. Ezeknek a sávoknak a középmeridiánja a 15° és 21° földrajzi hosszúságú meridián, a szegélymeridiánok földrajzi hosszúsága pedig 12° és 18°, illetve 18° és 24°.

A sávok számozása a Gauss–Krüger vetületnél és az UTM-vetületnél is megegyezik. Zónaszám a sáv középmeridiánjának földrajzi hosszúágából:

$$Z=\frac{\left(A_{\kappa}+3\right)}{6}+30\,.$$

A középmeridián földrajzi hosszúsága a zónaszámból:

$$\Lambda_K = 6 \cdot (Z - 30) - 3.$$

A Gauss-Krüger ábrázolási módot a Föld országainak többsége bevezette és alkalmazza geodéziai és topográfiai munkálataihoz. Gauss-Krüger-vetületet vezetett be katonai célokra a volt Varsói Szerződés tagállamaival együtt Magyarország is. Az összekapcsolt és közösen kiegyenlített háromszögelési hálózatot a *Kraszovszkij ellipszoidon*, mint alapfelületen helyezték el.

Segéd koordináta-rendszer Gauss-Krüger-vetületen

A negatív előjelű síkkoordináták kiküszöbölésére az y vetületi koordinátákhoz mindegyik sávban.

Y₀ = 500 000 m-t adtak hozzá:

$$Y = y + Y_0.$$

Az x koordináta mindig pozitív, ezért nem kell eltolást alkalmazni:

 $X = x + X_0.$

Az X₀ zérus is lehet.

A vetületi egyenletekből nem tűnik ki, hogy egy kérdéses pont melyik 6°-os sávban van, hiszen $Y_0 = 500\ 000\ m$ mindegyik sávban, ezért a zónaszám második számjegyét (a 33. sávban 3-at, a 34. sávban 4-et) a Y koordináta elé írják.

A Gauss–Krüger vetületet katonai célokra vezették be. A polgári szervek nehezen jutottak hozzá a koordinátákhoz és a térképekhez, ezért az új korszerű háromszögelés által nyújtott előnyöket sem lehetett érvényesíteni. Ideiglenesen a koordinátákat átszámították a korábbi vetületi rendszerekbe, hogy a terepen megtalálható új háromszögelési pontokat a polgári szervek is fel tudják használni. Ezzel a korszerű háromszögelési hálózatot a régi hálózatokba transzformálták, miáltal a pontossága is elveszett. Így születtek a "Tr" (transzformált) jelű St (sztereografikus), HÉR, HKR és HDR koordináták. Később a polgári térképezést függetlenítették a nemzetközi jellegű koordináta-rendszertől és számára új vetületi rendszert vezettek be (EOV).

5.6.4 Universal Transverse Mercator (UTM) vetület

A vetület egyenlítői elhelyezésű (transzverzális) univerzális hengervetület angol nyelvű elnevezésének (Universal Transverse Mercator projection) kezdőbetűiből kapta a nevét. Ezt a vetületfajtát – különböző alapfelületekhez - a világ számos országában alkalmazzák topográfiai célokra.

A képfelület egyenlítői elhelyezésű hengerpalást sorozat. Mindegyik hengerpalást az adott sáv középmeridiánjára szimmetrikusan elhelyezkedő két normálellipszis mentén metszi az

ellipszoidot. E két ellipszis torzulásmentes; a közöttük levő területen a hosszak rövidülnek, a normálellipszisek és a szegélymeridiánok közötti területen pedig növekednek.

Az ellipszoid egyenlítői elhelyezésű redukált hengervetülete (UTM vetület)

Az UTM vetület tehát az előbb felsorolt ellipszoidokhoz alkalmazott redukált Gauss–Krügervetület. Ennek értelmében vetületi összefüggései megegyeznek a Gauss–Krüger-vetület általános (redukált elhelyezésre is érvényes) egyenleteivel, csak más betűjelzéseket használnak. A sáv középmeridiájának képe pl. a ΔN , az egyenlítő képe pedig a ΔE tengely.

UTM vetületi sáv torzulási viszonyai

A vetületi méretarány-tényező:

$$m_0 = \cos \Delta A_n = 0,9996,$$

ahol ΔA_n a normálellipszis és az egyenlítő metszéspontjának a középmeridiántól mért földrajzi hosszúsága. UTM számítások esetén ezt az m_0 számot kell a Gauss–Krüger–vetület megismert összefüggéseibe behelyettesíteni. A vetületi sorok együtthatói az alapfelületet adó ellipszoidhoz készített táblázatokból interpolálhatók. A vetületi számítások megkönnyítésére számítógépi programokat is készítettek. Programok készítésére alkalmas összefüggések

találhatók. Vegyük figyelembe, hogy a földrajzi koordináták is előjeles mennyiségek (a Φ az egyenlítőtől északra, a Λ Greenwichtől keletre pozitív).

A negatív előjelű síkkoordináták kiküszöbölésére az UTM vetületnél is segéd koordinátarendszert alkalmaznak (*12.6. ábra*). Észak-dél irányban *FN* (False Northing), kelet-nyugati irányban *FE* (False Easting) az eltolás jelölése:

 $N = \Delta N + FN$,

$$E = \Delta E + FE$$
,

ahol

FN = 0,000 m az északi féltekén,

FN = 10 000 000 m a déli féltekén,

FE = 500 000 m mindegyik sávban.

Segéd koordináta-rendszer UTM vetületen

Az eddigiek alapján egy adott pont (*N*, *E*) bármelyik vetületi sávban lehetne, ezért a pontot tartalmazó 6° x 8° kiterjedésű ellipszoidi azonosítóját az *E* koordináta elé írják (Magyarország területén 33*T*, *33U*, 34*T*, 34*U*). A *12.7. ábrán* sötétített 100x100 km-es négyzet azonosítója: 34TDT.

12.7. ábra. A 6º x 8º kiterjedésű ellipszoidi trapézok és a 100x100 km-es négyzetek azonosítása

Az UTM vetületet a földrajzi szélesség -80° < Φ < +84° tartományában alkalmazzák, a pólusok körüli területek ábrázolására az ellipszoid két normális elhelyezésű redukált sztereografikus vetülete (UPS, Universal Polar Stereographic) szolgál (*12.8. ábra*).

12.8. ábra. Az UTM és az UPS felhasználási területei

Az UTM vetület a 6°-os sávszélesség miatt csak topográfiai célokra alkalmas, hiszen a sáv középmeridiánján végig 40 cm-rel rövidülnek a hosszak kilométerenként ($I = m_0 = 0.9996$). Nagyméretarányú felmérésre 6°-os sávszélességet alkalmaznak, pl. $m_0 = 0.9999$ vetületi méretarány-tényezővel. A 3°-os sávokat itt is úgy alakítják ki, hogy közülük minél több essen

egybe a 6°-os sávok középmeridiánjaival. Ilyenkor a sávok között nem kell vetületi átszámítást végezni, mert közös a síkkoordináta-rendszerük.

Az UTM vetület alapfelülete Németországban pl. a Hayford ellipszoid, Nagy Britanniában az Airy ellipszoid, az Amerikai Egyesült Államokban és a kelet európai új NATO tagállamokban – így Magyarországon is – a WGS84 ellipszoid. A sávbeosztás megegyezik a Gauss–Krüger-vetületnél megismerttel, az ellipszoid teljes felületének ábrázolásra itt is 60 db 6°–os sávra van szükség.

Magyarországon az UTM vetület kilométer hálózati vonalait (koordináta-tengelyekkel párhuzamos egyenesek) a korábbi Gauss–Krüger szelvényekre valamilyen eltérő színnel rányomtatják. Az új felmérésű UTM lapok is a Gauss–Krüger szelvényezésnek megfelelően készülnek.

Az ellipszoid egyenlítői elhelyezésű hengervetületeinek jelentősége

Az ellipszoid egyenlítői elhelyezésű hengervetületei (Gauss–Krüger, UTM) a Föld teljes felszínének ábrázolásához viszonylag kevés koordináta-rendszert igényelnek (60 db 6°-os sáv és két sztereografikus vetület). A sávok egymással egybevágóak, azaz csak egyetlen sávra kellett a vetületi számításokhoz szükséges táblázatokat elkészíteni, mert azok valamennyinél használhatók. A táblázatok elkészítését az is megkönnyítette, hogy a sávok egyenlítővel határolt két fele szimmetrikus egymással, és ugyancsak szimmetrikusak a középmeridiánnal határolt fél sávok is. Ennek megfelelően a táblázat adatait csak egy negyed sávra kellett kiszámítani, a többi negyedre az adatok abszolút értéke ugyanaz, csupán egyes adatok előjele különbözik.

További előnye a vetületeknek, hogy a sávok csatlakoztatása egyszerű, mert az azonos szélességű sávok szegélymeridiánjain a hossztorzulás egyformán alakul.

Míg az egyéb geodéziai vetületek elhelyezésük következtében csupán helyi rendszereknek tekinthetők, addig az ellipszoid egyenlítői elhelyezésű hengervetületei nemzetközi jellegűek. A Gauss–Krüger (UTM) ábrázolási módot a világ országainak többsége bevezette és alkalmazza geodéziai és topográfiai munkálataihoz.

6	TAF	RTALOM			
1	Torzulások ellipszoidi, gömbi vetületeken 22				
	1.1	Térbeli derékszögű koordináta-rendszer			
	1.2	Fokhálózati vonalak ívhossza és vonalrendsz	erének merőlegessége a gömbön 23		
	1.3	Gömbfelületi idomok területe			
	1.4	Torzulások meghatározása a vetületi egyenl	etekből ellipszoidi vetületen 27		
	1.4	1.1 Lineármodulusok meridián és paralelkö	ör irányban:		
	1.4	1.2 A területi modulus levezetése			
	1.4	1.3 A fokhálózat vetületi torzulása			
	1.4	1.4 A torzulási ellipszis tengelyeinek megh	atározása		
	1.5	Torzulások meghatározása a vetületi egyenl	etekből gömbi vetületen 30		
	1.5	5.1 Számítási példa			
	1.5	5.2 Számítási példa megoldása Matlab seg	tségével 32		
2	Ag	gömb valódi síkvetületei			
	2.1	Néhány azimutális vetület			
	2.1	I.1 Gnomonikus vetület			
	2.1	I.2 Ortografikus vetület			
	2.1	L.3 Területtartó azimutális vetület	5		
	2.1	I.4 Azimutális vetület hossztartó központi	irányokkal6		
	2.2	Néhány hengervetület	7		
	2.2	2.1 Területtartó hengervetületek			
	2.2	2.2 Hengervetület hossztartó meridiánokk	al		
	2.3	A gömb valós kúpvetületei			
	2.3	3.1 A kúpvetület, mint a valós síkvetületek	alapja12		
	2.3	3.2 A valós kúpvetületek általános tulajdor	ıságai 13		
	2.3	3.3 Torzulási modulusok és sugárhajlás az	érintő kúpvetületeken 15		
	2.4	Szögtartó kúpvetületek			
	2.4	4.1 Érintő elhelyezésű szögtartó kúpvetüle	t18		
	2.4	1.2 Süllyesztett elhelyezésű szögtartó kúpv	etület 20		
3	Kép	pzetes vetületek			
	3.1	A gömb képzetes hengervetületei			
	3.1	I.1 A képzetes hengervetületek általános j	ellemzése 34		
	3.1	L.2 A Sanson-féle területtartó vetület és a	vetületi transzformáció 34		

	3.1.3		Apianus első vetülete
3.1.4		1.4	Mollweide-féle vetület
	3.	1.5	Collignon vetülete
	3.2	Kép	zetes kúpvetületek
	3.	.2.1	A képzetes kúpvetületek általános jellemzése 38
3.2		.2.2	Képzetes kúpvetületek hossztartó központi irányokkal és hossztartó paralelkörökkel 38
	3.	.2.3	Polikonikus vetületek
4	Fċ	öldrajzi	vetületek
	4.1	A fờ	ildrajzi vetületek megválasztásának szempontjai 42
	4.2	Vet	ületanalízis
5	Az ellipszoid síkvetületei		zoid síkvetületei
	5.1	Föld	drajzi fokhálózat és egyéb ellipszoidi fogalmak54
	5.2 Kúpvetületek		
	5.	.2.1	Lineármodulusok és területi modulus levezetése az ellipszoid kúpvetületén
	5.	.2.2	Az ellipszoid szögtartó kúpvetülete (Lambert-féle szögtartó kúpvetület)
	5.2.3		Redukált szögtartó kúpvetület
	5.3	Az e	ellipszoid azimutális vetületei
	5.3.1		Lineármodulusok és területi modulus levezetése az ellipszoid azimutális vetületein 63
	5.3.2		Az ellipszoid normális elhelyezésű sztereografikus vetülete
	5.	.3.3	Universal Polar Stereographic (UPS) vetület
	5.4	Az e	ellipszoid hengervetületei
	5.	.4.1	Normális elhelyezésű érintő hengervetület lineármodulusainak levezetése
	5.	.4.2	Normális elhelyezésű érintő szögtartó hengervetület (Mercator)68
	5.	.4.3	Normális elhelyezésű redukált szögtartó hengervetület69
	5.5	Tra	nszverzális elhelyezésű szögtartó hengervetület (Gauss–Krüger (UTM) vetület)70
	5.	.5.1	Ellipszoidi földrajzi koordinátákból Gauss–Krüger és UTM koordináták számítása72
	5.	.5.2	Földrajzi koordináták számítása Gauss–Krüger (UTM) síkkoordinátákból
	5.5.3		A Gauss–Krüger vetület alkalmazása75
	5.	.5.4	Universal Transverse Mercator (UTM) vetület