SHELL THEORIES

Citation:

K. Bagi (2024): Mechanics of Masonry Structures. Course handouts, Department of Structural Mechanics, Budapest University of Technology and Economics

The images in this file may be subjected to copyright.

In case of any question or problem, do not hesitate to contact Prof. K. Bagi, kbagi.bme@gmail.com.

Definition of shells and the shell element

The most important shell theories

Membranes; soap films

Kirchhoff-Love shells (,,classical shells", ,,shell bending")

Reissner-Mindlin shells (,,linear shear deformation theory")

Third-order shear deformation theory

Membrane solution: Examples

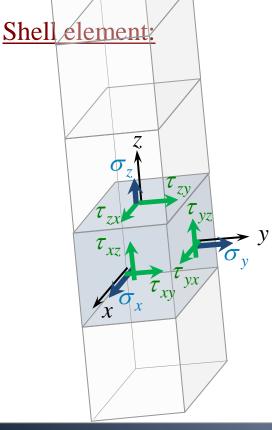
Repetition from Maths: Principal curvatures at a surface point Membrane solution for spherical domes

Membrane solution for fan vaults

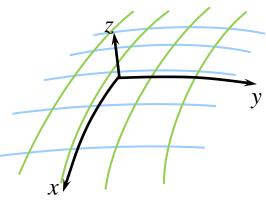
Definition of shells

 \rightarrow given reference surface;

 \rightarrow the points of the structure are within a small distance from it, compared to the overall sizes of the structure



h h h h



<u>Note:</u> top and bottom elementary volume:

 $\tau_{zx} = 0$; $\tau_{zy} = 0$ (free surface)

 \Rightarrow at the intrados and extrados:

$$au_{xz} = 0 ; \ au_{yz} = 0 \ 4/40$$

Definition of shells

- \rightarrow given reference surface;
- → the points of the structure are within a small distance from it, compared to the overall sizes of the structure

Shell element:

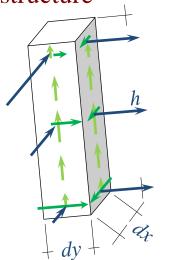
The most common models depending on the thickness:

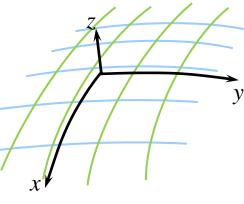
- \rightarrow membrane
- \rightarrow Kirchhoff Love shell ("classical" shell theory)
- \rightarrow Mindlin Reissner shell

("linear shear deformation theory")

 \rightarrow third-order shear deformation model

 \rightarrow thick shells: 3D continuum or DEM





ncreasin

Definition of shells and the shell element

The most important shell theories

Membranes; soap films

Kirchhoff-Love shells ("classical shells", "shell bending") Reissner-Mindlin shells ("linear shear deformation theory") Third-order shear deformation theory

Membrane solution: Examples

Repetition from Maths: Principal curvatures at a surface point

Membrane solution for spherical domes

Membrane solution for fan vaults

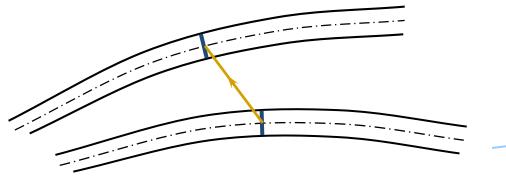
Membranes:

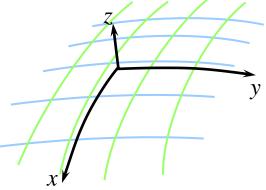
 \rightarrow stresses:

along h: σ_x , σ_y and τ_{xy} are constant σ_z , τ_{xz} and τ_{yz} are zero \rightarrow displacements: translations of the points of the reference surface: u(x,y), v(x,y), w(x,y)translations of the other points:

 $u_1(x,y,z) = u(x,y), u_2(x,y,z) = v(x,y), u_3(x,y,z) = w(x,y)$

Membranes:





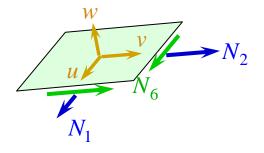
 \rightarrow displacements :

translations of the points of the reference surface :

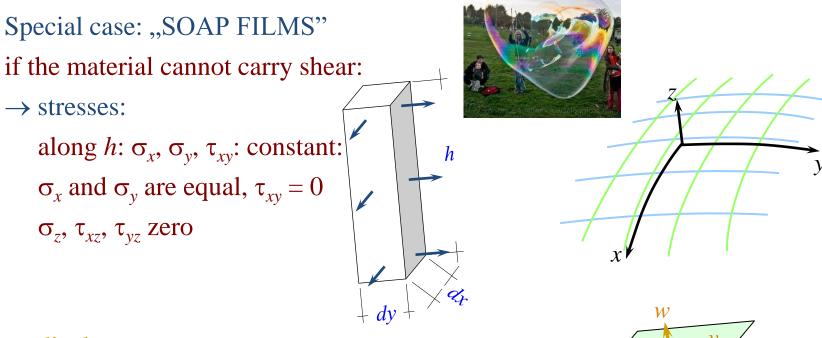
u(x,y), v(x,y), w(x,y)

translations of the other points:

 $u_1(x,y,z) = u(x,y), u_2(x,y,z) = v(x,y), u_3(x,y,z) = w(x,y)$



Membranes:



 \rightarrow displacements:

translations of the points of the reference surface:

u(x,y), v(x,y), w(x,y)

translations of the other points :

 $u_1(x,y,z) = u(x,y), u_2(x,y,z) = v(x,y), u_3(x,y,z) = w(x,y)$

N

Definition of shells and the shell element

The most important shell theories

Membranes; soap films

Kirchhoff-Love shells (,,classical shells", ,,shell bending")

Reissner-Mindlin shells (,,linear shear deformation theory")

Third-order shear deformation theory

Membrane solution: Examples

Repetition from Maths: Principal curvatures at a surface point

Membrane solution for spherical domes

Membrane solution for fan vaults

<u>Kirchhoff – Love – shells:</u> "classical shells", "shell bending"

Kirchhoff-hypothesis:

the planar cross sections being perpendicular to the reference surface

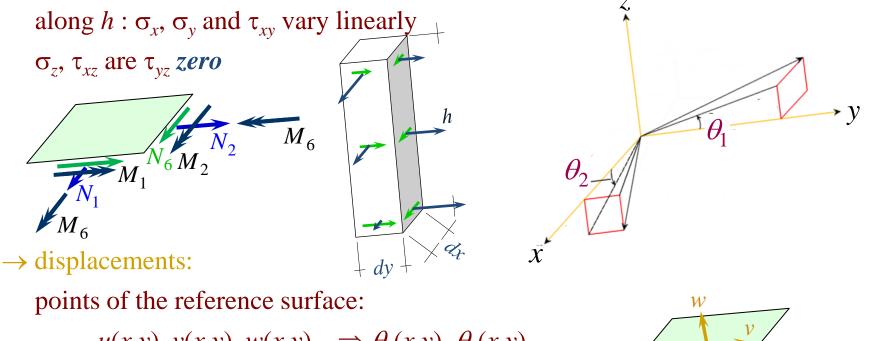
- will, after deformation, remain
- \rightarrow planar, and
- \rightarrow perpendicular to the (deformed) reference surface

Basic assumptions of Love:

- (1) the shell is thin
- (2) translations and rotations are small
- (3) straight material lines being orthogonal to the reference surface
 - will remain orthogonal also after deformation
- (4) crosswise shear stresses are negligible

<u>Kirchhoff – Love – shells:</u> "classical shells", "shell bending"

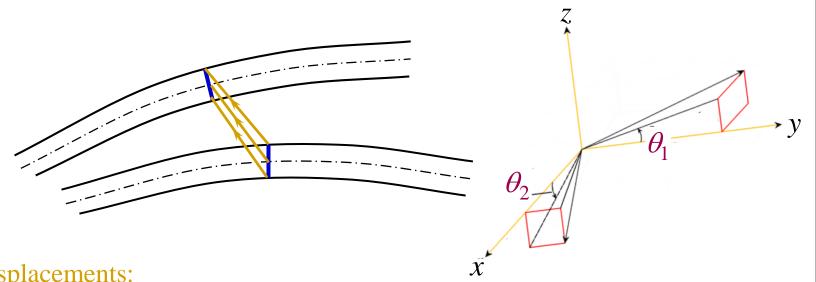
 \rightarrow stresses:



 $u(x,y), v(x,y), w(x,y), \Rightarrow \theta_1(x,y), \theta_2(x,y)$ translations of other points: $u_1(x, y, z) = u(x, y) + z \cdot \theta_2$

$$u_2(x, y, z) = v(x, y) - z \cdot \theta$$
$$u_3(x, y, z) = w(x, y)$$

<u>Kirchhoff – Love – shells:</u> "classical shells", "shell bending"

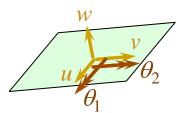


 \rightarrow displacements:

points of the reference surface:

 $u(x,y), v(x,y), w(x,y), \Rightarrow \theta_1(x,y), \theta_2(x,y)$ translations of other points: $u_1(x, y, z) = u(x, y) + z \cdot \theta_2$

$$u_2(x, y, z) = v(x, y) - z \cdot \theta_1$$
$$u_3(x, y, z) = w(x, y)$$



<u>Kirchhoff – Love – shells:</u> "classical shells", "shell bending" Remark:

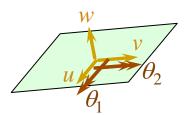
for planar reference surface: $\theta_1 = \frac{\partial w}{\partial y}; \quad \theta_2 = -\frac{\partial w}{\partial x}$ for curved reference surface: θ_1 and θ_2 can uniquely be determined from the curvatures and from $\frac{\partial w}{\partial x}; \frac{\partial w}{\partial x}$

 \rightarrow displacements:

points of the reference surface:

 $u(x,y), v(x,y), w(x,y), \Rightarrow \theta_1(x,y), \theta_2(x,y)$ translations of other points: $u_1(x, y, z) = u(x, y) + z \cdot \theta_2$

$$u_2(x, y, z) = v(x, y) - z \cdot \theta_1$$
$$u_3(x, y, z) = w(x, y)$$



Definition of shells and the shell element

The most important shell theories

Membranes; soap films

Kirchhoff-Love shells (,,classical shells", ,,shell bending")

Reissner-Mindlin shells (,,linear shear deformation theory")

Third-order shear deformation theory

Membrane solution: Examples

Repetition from Maths: Principal curvatures at a surface point

Membrane solution for spherical domes

Membrane solution for fan vaults

<u>Reissner – Mindlin – shells:</u> ,,linear shear deformation theory"

planar sections perpendicular to the reference surface will, after deformation,

 \rightarrow remain planar (linear wharping function), but

 \rightarrow not perpendicular to the (deformed) ref. surface

crosswise shear effects are taken into account!

- \rightarrow displacements:
 - points of the reference surface:

 $u(x,y), v(x,y), w(x,y), \Rightarrow \theta_1(x,y), \theta_2(x,y);$ translations of other points: $g(z) \coloneqq z$

$$u_1(x, y, z) = u(x, y) + z \cdot \theta_2 + g(z) \cdot \gamma_5$$
$$u_2(x, y, z) = v(x, y) - z \cdot \theta_1 + g(z) \cdot \gamma_4$$
$$u_2(x, y, z) = w(x, y)$$

 $\frac{u}{\theta_1 - \gamma_4}^{\psi} \theta_2 + \gamma_5$

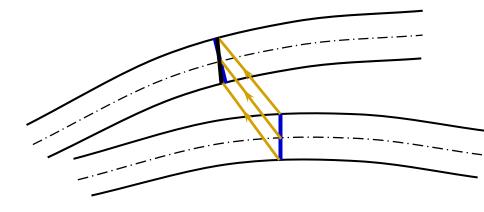
 $\gamma_4(x,y), \gamma_5(x,y)$

remember:

 $\theta_1 = \frac{\partial w}{\partial w} + \dots; \theta_2$

16 / 40

<u>Reissner – Mindlin – shells:</u> "linear shear deformation theory"



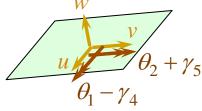
y x

 \rightarrow displacements:

points of the reference surface:

 $u(x,y), v(x,y), w(x,y), \Rightarrow \theta_1(x,y), \theta_2(x,y); \qquad \gamma_4(x,y), \gamma_5(x,y)$ translations of other points: $g(z) \coloneqq z$ $u_1(x, y, z) = u(x, y) + z \cdot \theta_2 + g(z) \cdot \gamma_5$

$$u_2(x, y, z) = v(x, y) - z \cdot \theta_1 + g(z) \cdot \gamma_4$$
$$u_3(x, y, z) = w(x, y)$$



17 / 40

<u>Reissner – Mindlin – shells:</u> ,,linear shear deformation theory"

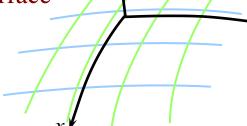
planar sections perpendicular to the reference surface will, after deformation

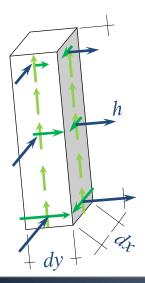
 \rightarrow remain planar (linear wharping function), but

 \rightarrow not perpendicular to the (deformed) ref. surface

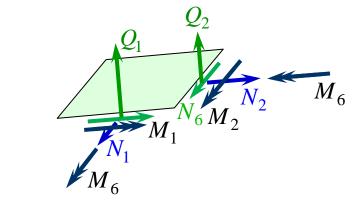
crosswise shear effects taken into account! \rightarrow stresses: along *h*: σ_x , σ_y and τ_{xy} vary linearly

 σ_z is zero





 τ_{xz} and τ_{yz} : linear for curved surface (constant for planar shell)



Definition of shells and the shell element

The most important shell theories

Membranes; soap films

Kirchhoff-Love shells (,,classical shells", ,,shell bending")

Reissner-Mindlin shells ("linear shear deformation theory")

Third-order shear deformation theory

Membrane solution: Examples

Repetition from Maths: Principal curvatures at a surface point

Membrane solution for spherical domes

Membrane solution for fan vaults

Third-order shear deformation theory:

 \rightarrow stresses:

 τ_{xz} and τ_{yz} : able to be zero on the free surfaces \bigcirc

 $g(z) \coloneqq z - \frac{4z^3}{3h^2}$

 \rightarrow displacements:

like before, only g(z) is modified

 $\Rightarrow \text{ planar sections do not remain planar}$ $u_1(x, y, z) = u(x, y) + z \cdot \theta_2 + g(z) \cdot \gamma_5$ $u_2(x, y, z) = v(x, y) - z \cdot \theta_1 + g(z) \cdot \gamma_4$ $u_3(x, y, z) = w(x, y)$

Remark: Thick shells:

most often: continuum models, e.g. FEM: 3D elements (one layer or multi-layered) masonry vaults: Discrete Element Method

Definition of shells and the shell element

The most important shell theories

Membranes; soap films

Kirchhoff-Love shells (,,classical shells", ,,shell bending")

Reissner-Mindlin shells (,,linear shear deformation theory")

Third-order shear deformation theory

Membrane solution: Examples

Repetition from Maths: Principal curvatures at a surface point Membrane solution for spherical domes Membrane solution for fan vaults

Repetition from Maths: Principal curvatures

Principal curvatures at a point of a surface:

- \rightarrow draw a straight axis;
- \rightarrow lay a plane along this axis \Rightarrow intersection along a curve;
- \rightarrow rotate the plane and produce these curves:

https://www.youtube.com/watch?v=HUzOPbZk8Pg

 \rightarrow take that two curves having largest / smallest curvature:

radii of curvature at the point:

 R_{min} and R_{max} are received

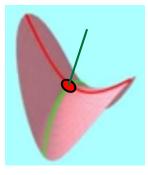
for any point on a sphere:

 $R_{min} = R_{max} = R$

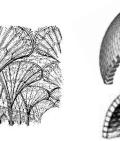
https://slideplayer.com/slide/8958879/

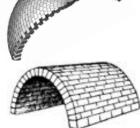
Repetition from Maths: Principal curvatures

Product of the two principal curvatures: "Gaussian curvature"



- \rightarrow if it is (+) : ,,elliptical point"
- \rightarrow if it is (-) : ,,hyperbolic point"
- \rightarrow if it is 0 : ", parabolic point"





Its importance in the mechanical behaviour:

"... shells of nonpositive Gaussian curvature are generally speaking weak structures, sensitive to disturbances at the boundary, which tend to penetrate deep into the structure. Also, they have no possibility of supporting concentrated forces in the membrane state, in contrast with shells of positive Gaussian curvature, where the membrane state will provide an approximately correct result at sufficient distance from the point where a concentrated force is applied." (Niordson, 1985)

"a local problem propagates to global collapse"

https://www.youtube.com/watch?v=vAavRx7uoeA Ph. Block, from 13:21 23/40

Definition of shells and the shell element

The most important shell theories

Membranes; soap films

Kirchhoff-Love shells (,,classical shells", ,,shell bending")

Reissner-Mindlin shells (,,linear shear deformation theory")

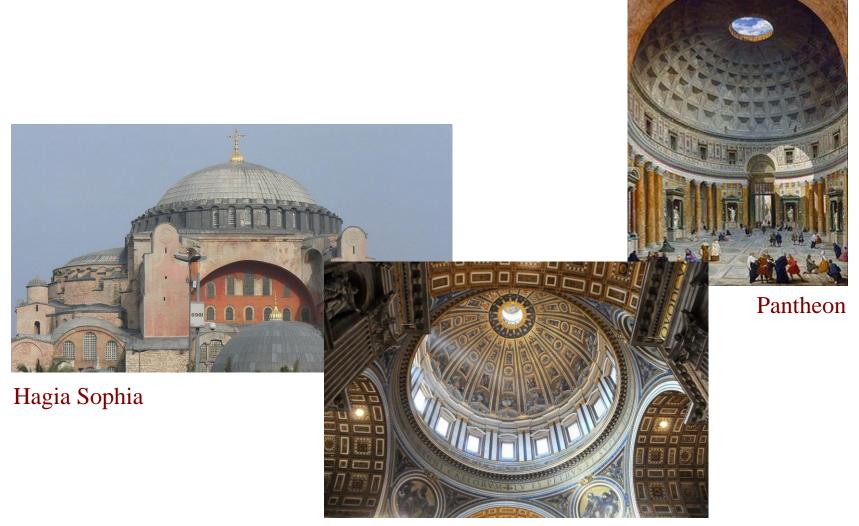
Third-order shear deformation theory

Membrane solution: Examples

Repetition from Maths: Principal curvatures at a surface point

Membrane solution for spherical domes

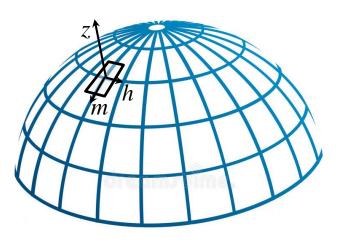
Membrane solution for fan vaults

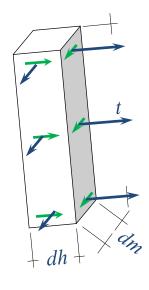


St Peter's Basilica

Notations:

- *m*: meridional direction
- *h*: hoop direction
- z: normal direction

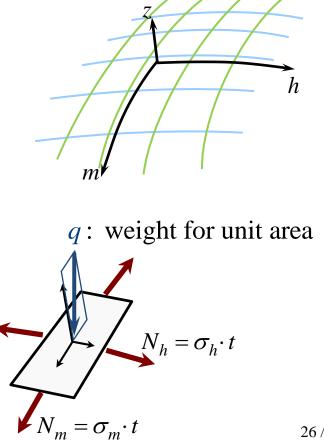




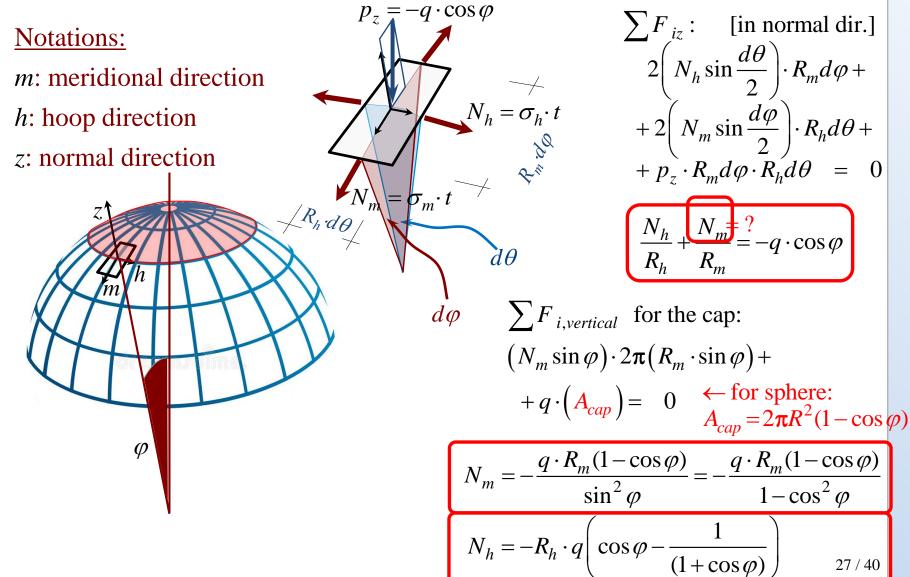
 \rightarrow load: selfweight, only in vertical direction

 \rightarrow stresses:

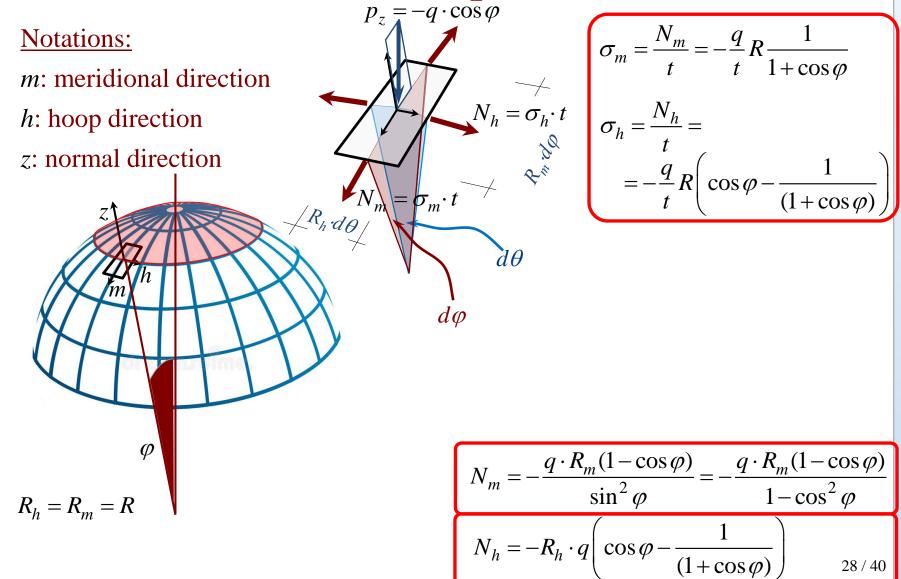
along *t*: σ_m , σ_h are constant σ_z , τ_{mh} , τ_{mz} and τ_{hz} are zero

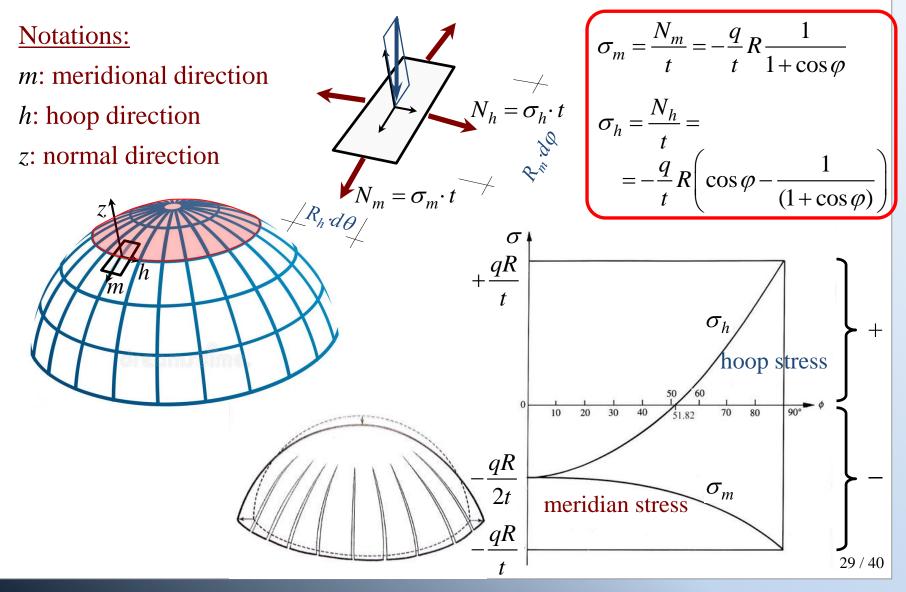


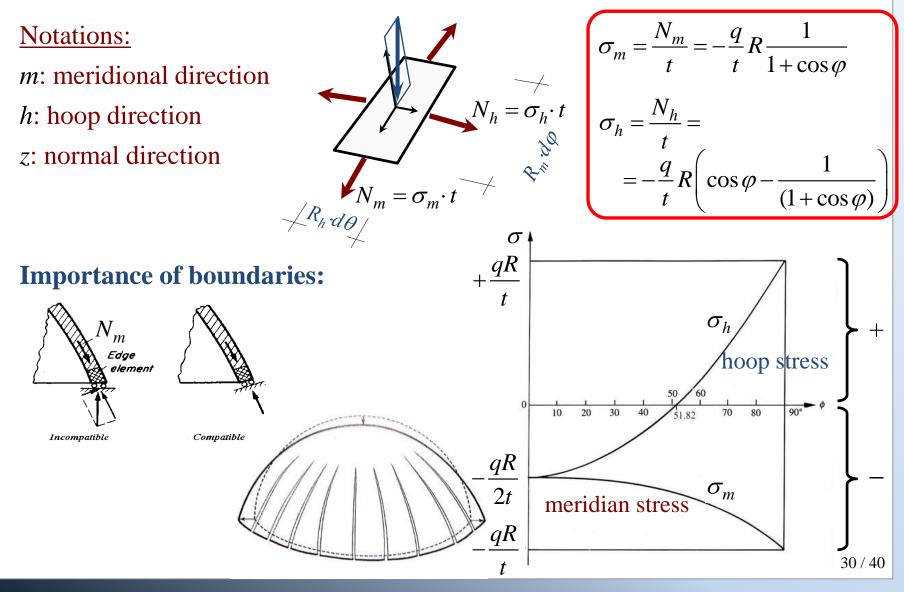
26/40



27/40







Definition of shells and the shell element

The most important shell theories

Membranes; soap films

Kirchhoff-Love shells (,,classical shells", ,,shell bending")

Reissner-Mindlin shells (,,linear shear deformation theory")

Third-order shear deformation theory

Membrane solution: Examples

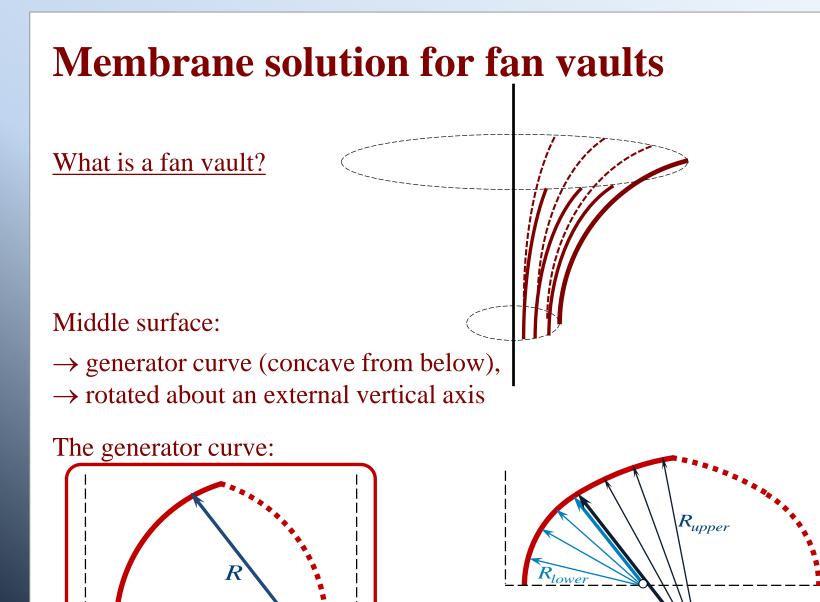
Repetition from Maths: Principal curvatures at a surface point Membrane solution for spherical domes Membrane solution for fan vaults

Membrane solution for fan vaults

Bath Abbey, quillcards.com/blog/bath-abbey/

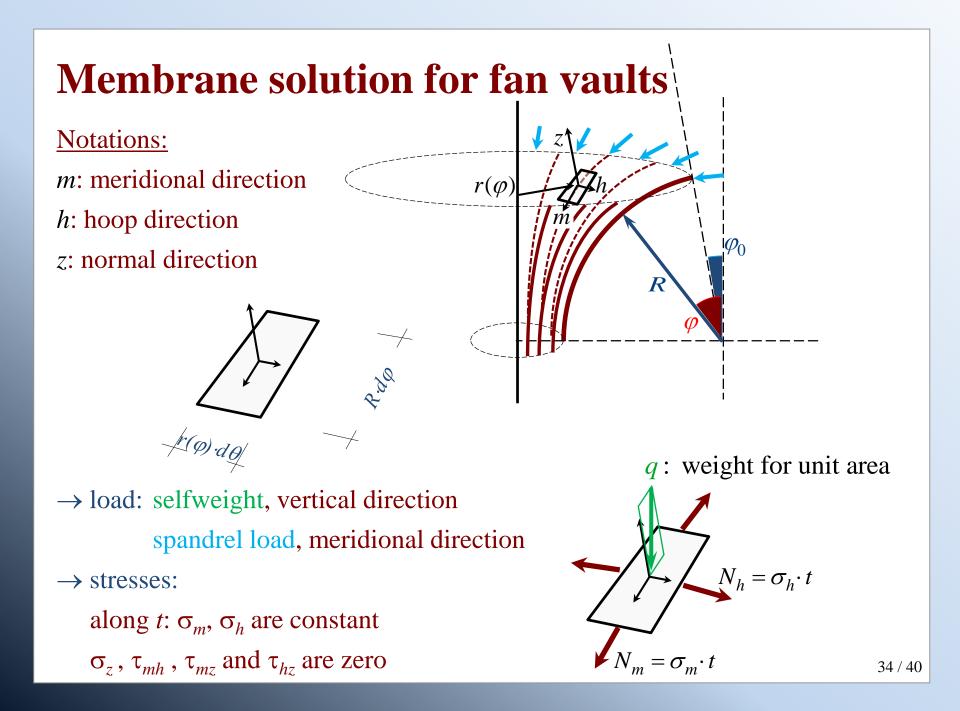
Gloucester Cathedral cloister walk, slideshare.net/michae lasanda/gloucestercathedral2

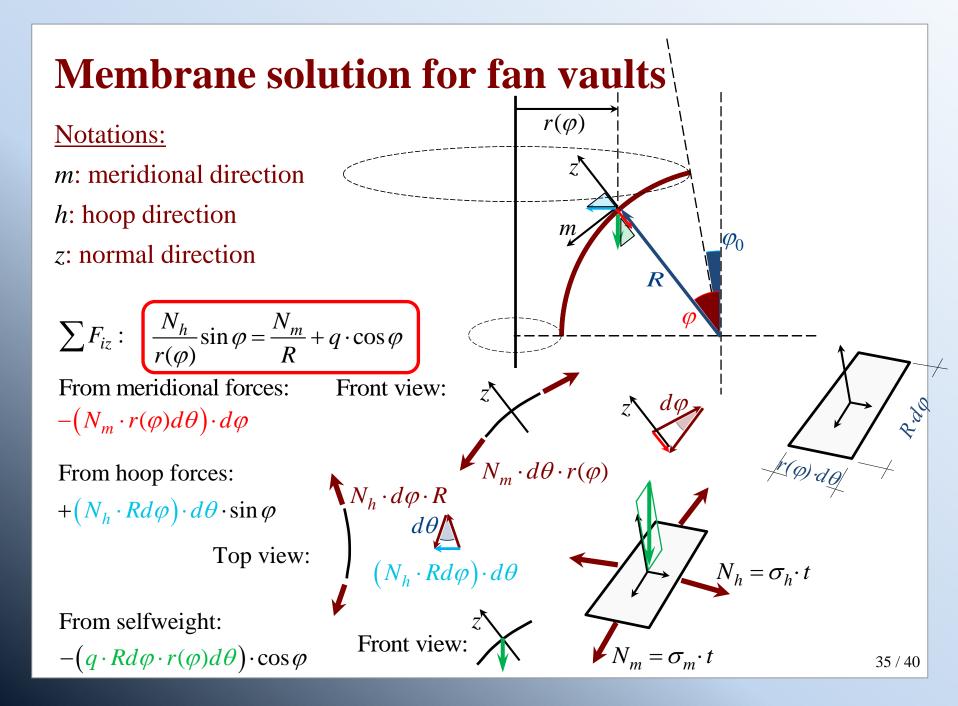
King's College Chapel, quora.com/Are-there-anybuildings-with-fanned-vaulting-outside-of-the-US-UK-and-Canada 32/40

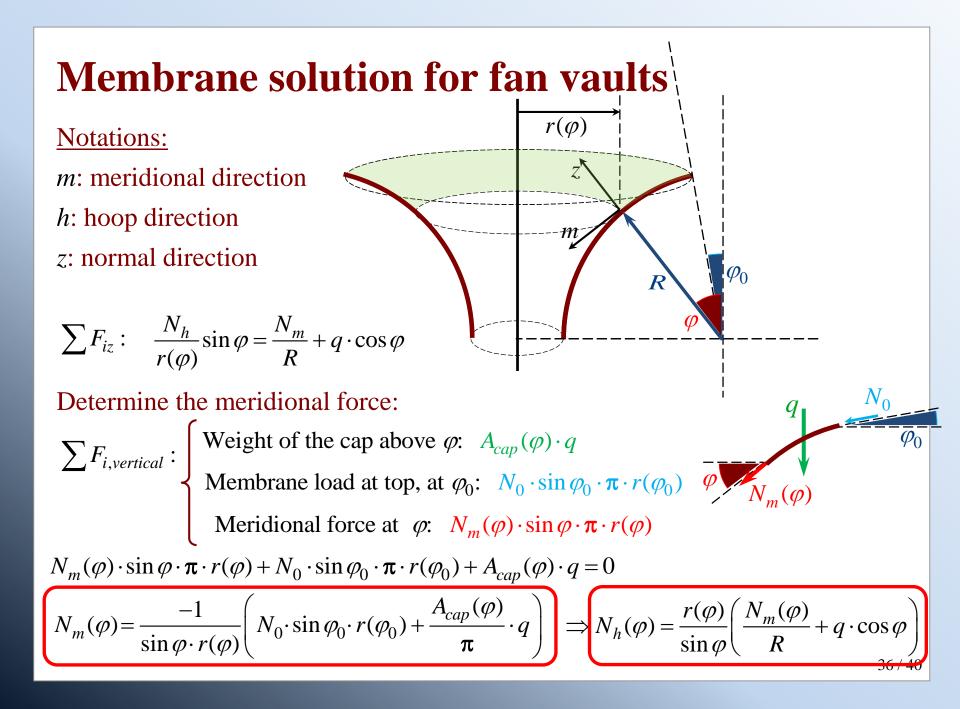


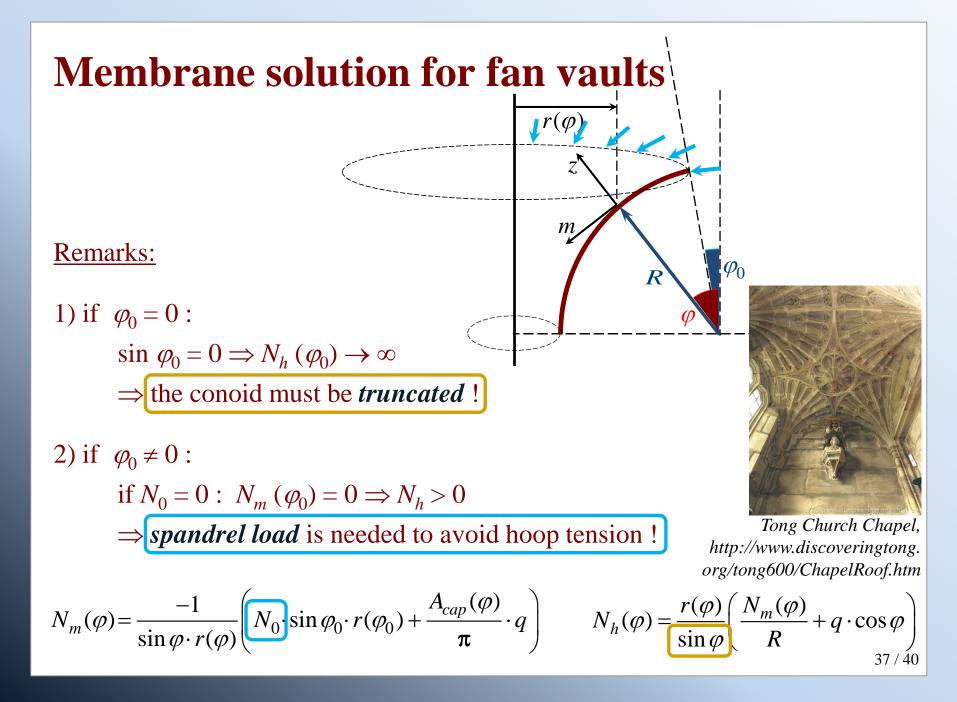
uniform curvature

two different curvatures ("Tudor arch")









SUGGESTED VIDEOS

https://www.youtube.com/watch?v=DI-leSI68dM (Jacques Heyman: The membrane analysis of thin masonry shells, 50:46)

https://www.youtube.com/watch?v=r-tG68WvNDM&t=185s (John Ochsendorf, MIT, "Form and Forces", 1:17:17)

Definition of shells and the shell element

The most important shell theories Membranes; soap films Kirchhoff-Love shells ("classical shells", "shell bending") Reissner-Mindlin shells ("linear shear deformation theory") Third-order shear deformation theory

Membrane solution:

Repetition from Maths: Principal curvatures at a surface point Membrane solution for spherical domes Membrane solution for fan vaults

- 1. Introduce the kinematics of
 - \rightarrow membranes,
 - \rightarrow Kirchhoff-Love shells,
 - \rightarrow Mindlin-Reissner-Hencky shells,
 - \rightarrow third-order shear deformation shells.
- 2. Show the distribution of the six stress components along the thickness for
 - \rightarrow membranes,
 - \rightarrow Kirchhoff-Love shells,
 - \rightarrow Mindlin-Reissner-Hencky shells,
 - \rightarrow third-order shear deformation shells.
- 3. Introduce the membrane solution for spherical domes under selfweight.
- 4. Introduce the membrane solution for constant-curvature fan vaults under selfweight.