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SHORTLY MENTIONED IN LECTURE 01:

THE DISCRETE ELEMENT METHOD

Definition: a numerical method belongs to DEM if

 it consists of separate, finite-sized elements and their contacts

 its elements have independent degrees of frredom, with large displs

 contact separation and sliding considered; new contacts can be born

Main steps:  define the elements (geometry);

automatically recognize their contacts

 specify the material parameters (elements; contacts)

 loading history: in small steps;

stepwise: upgrade geometry & topology & material

Detailed introduction to DEM: today in Lecture 05
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WHAT IS DEM?

The aim: to model materials or structures having discrete internal builtup

„what does it do if loads are put on it?”

The components of the model:

separate elements + their contacts

or

mechanical models for the material of the elements:  rigid

 deformable

contacts  recognition

 mechanical models for the contacts:

 non-deformable

 deformable: e.g.point-like, deformable e.g. frictional,

e.g. finite size, deformable e.g. cemented
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WHAT IS DEM?

History overview

 end of 1960ies: Peter A Cundall,

Imperial College:

UDEC

(„Uniform Distinct Element Code”)

model for fractured rocks

 1970ies: Molecular Dynamics methods, physics literature

not really DEM

5 / 53



WHAT IS DEM?

History overview

 end of 1970ies: Cundall & Strack, 1979:

BALL

 from the 1980ies:

 several new codes, already in 3D

 general element shapes

 different mathematical tools

 from the 1990ies: practical applications in engineering
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EXAMPLE

1. Define the geometry:
ball id 1 x 0.10 y 0.20 rad 0.10

ball id 2 x 0.55 y 0.20 rad 0.15

ball id 3 x 0.30 y 0.40 rad 0.15

wall id 1 nodes 0.0 0.0 0.7 0.0

wall id 2 nodes 0.7 0.0 0.7 0.5

wall id 3 nodes 0.0 0.5 0.0 0.0

2. Specify the material parameters:
property density 10.0

property kn 1.e4 ks 0.5e4 friction 0.2

wall id 1 kn 1.e12 ks 0. friction 0.

wall id 2 kn 1.e12 ks 0. friction 0.

wall id 3 kn 1.e12 ks 0. friction 0.

3. Specify the loads:
set gravity 0.0 -9.81

4. Calculate the displacements [series of small increments]
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WHAT IS DEM?

Main steps of the analysis of an engineering problem:

 the model: collection of separate elements  (’discrete elements’)

{1 body  1 element} or {several bodies  few elements}

Step 1.: define the initial geometry

 rigid or deformable elements; rigid or deformable contacts

Step 2.: specify the material characteristics

 the loading process:

( e.g. external forces acting on the elements; e.g. prescribed displacements)

 calculation of the state changing: series of small increments, based on „ f = ma ”

Step 3.: calculation of the actual displacement increments
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THE GEOMETRY

Element shapes:

polygon, polyhedron circle, sphere ellipse, ellipsoid complex shapes

e.g. Lemos (2007): e.g. Matsushima (2005):

masonry blocks & mortar layer: irregularly shaped sand particles

9 / 53



THE GEOMETRY

Element shapes:

polygon, polyhedron circle, sphere ellipse, ellipsoid complex shapes

e.g. Psycharis et al (2003): e.g. Bui et al (2017):

stone blocks: bricks of a house:
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THE GEOMETRY

How to get the geometry of a masonry structure:

 original plans (if still exist)

 survey the actual geometry, e.g. laser scanner & CAD:

e.g. McInerney et al (2012):

St John’s College, Cambridge, UK

Difficulty e.g.:

how to survey hidden/covered faces

King’s College, Cambridge, UK
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THE GEOMETRY

Contact recognition: several different algorithms exist;

its speed basically determines the computational

efficiency of the whole DEM code!

the time consuming part: to check the existence of a contact with exact calculations

Trick #1:
avoid checking every element with every other element:

 „body based search” technique:
consider only those others which are in the

vicinity of the analyzed element;
then take the next element to analyze, …

 „space based search”:

divide the domain into „windows” (overlapping);
collect which elements are in which windows;
analyze those pairs only where both elements
belong to the same window 12 / 53



THE GEOMETRY

Contact recognition: several different algorithms exist;

its speed basically determines the computational

efficiency of the whole DEM code!

the time consuming part: to check the existence of a contact with exact calculations

Trick #2:
Simple surrounding domains checked first
(instead of the elements having complicated shapes)

the idea: „surrounding domain” assigned to each element
(simple shape: brick; sphere)

 Phase 1.: intersection beween the surrounding domains? (fast)

 if necessary: Phase 2.: detailed, exact calculations (slow)
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MECHANICAL PROPERTIES

Mechanical behaviour of the elements:

role: to specify how to calculate the stresses from the deformations of the elements

 perfectly rigid elements: deformability concentrated into the contacts

 deformable elements:
stress-strain-relations have to be specified
[e.g. E, , …]

Mechanical behaviour of the contacts:

role: to specify how to calculate the contact forces from
the relative displacements at the contact

 usually: „deformable” contacts
(relative displ. at the contact regions)
concentrated  distributed

 sometimes:
infinitely rigid contacts: no overlap neither any other deformation
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CALCULATION OF DISPLACEMENTS

Quasi-static methods

From an initial equilibrium state, the incremental displacements u

are to be determined taking the system to the new equilibrium

(assumption: time-independent behaviour, zero accelerations!!!)

 Kishino (1988); Bagi-Bojtár (1991)

 Meng et al (2017); Baraldi et al (2018)

Time-stepping methods

simulate the motion of the system along small, but finite t timesteps

Explicit timestepping methods:

 UDEC

 Munjiza’s FEM/DEM

Implicit timestepping methods:

 DDA („Discontinuous Deformation Analysis”)

 Contact Dynamics models
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 an equilibrium state is searched for

 a process in time is searched for

circular, perfectly rigid elemets,

deformable contacts

 deformable polyhedral elements, deformable contacts

 deformable, breakable elements, deformable contacts

 deformable polyhedral elements

 rigid elements, non-deformable contacts

not really DEM yet:

small displs; no new contacts;



SOLUTION OF THE EQUATIONS OF MOTION

Numerical solutions only!

The aim:

starting from a known u(t0) = u0 and v(t0) = v0 state at a t0 time instant,

the aim is to determine the approximative solutions (u1, v1), (u2, v2), …,

(ui, vi), (ui+1, vi+1), … belonging to the t1, t2, …, ti, ti+1, … time instants.

The two basic approaches:

Explicit vs. implicit time integration methods
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SOLUTION OF THE EQUATIONS OF MOTION

Explicit vs. implicit methods:

 explicit methods:

in the state at ti: (ui, vi , fi)  equations of motion 

approximate (ui+1, vi+1 , fi+1) belonging to the state at ti+1

NOT checking whether (ui+1, vi+1 , fi+1) satisfy the eqs of motion:

accept them and use them for the calculations of the next timestep

 fast, but less reliable; numerical stability problems!
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SOLUTION OF THE EQUATIONS OF MOTION

Explicit vs. implicit methods:

 implicit methods:

in the state at ti: (ui, vi , fi)  equations of motion 

approximate (ui+1, vi+1 , fi+1) belonging to the state at ti+1;

then iterations, to improve this approximation belonging to ti+1,

so that the eqs of motion be satisfied at ti+1

 slow, but longer timesteps;

more reliable, better numerical stability 18 / 53
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UDEC / 3DEC

UDEC: „Universal Distinct Element Code”

P.A. Cundall, 1971;

development through decades

Itasca Consulting Group

www.itascacg.com

MOST WIDESPREAD IN

CIVIL ENGINEERING
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UDEC / 3DEC
Elements: polygons / polyhedra (planar faces!);

 rigid elements

degrees of freedom:

translation of and rotation about the centroid

 deformable elements (subdivided into simplex zones)

„uniform strain” tetrahedral zones

((10-node tetrahedra – not reliable))

degrees of freedom: translations of the nodes

Material models for the elements:

(rigid)  deformable:

 „null element” (no material in the element)

 linearly elastic, isotropic (e.g. intact rock; metal)

 lin. elast., with: Mohr-Coulomb / Prager-Drucker failure crit.

(e.g. soils, concrete) (e.g. clay)

+ tensile strengh + cohesion + dilation angle

 
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UDEC / 3DEC

Contacts:

consist of small „subcontacts”, over which:

uniformly distributed normal and

shear contact forces are transmitted

Material models for the contacts:

[calculate the increments of distrib. contact forces from the increments of rel. disps]

 if no material in the contacts:  kn, ks: numerical parameters, 

or express surface roughness ;

 friction: real value

 if material in the joints: (modelled as length or area, with zero thickness):

 linear behaviour for compression and shear, Coulomb-friction,

+ cohesion and tensile strength

 linear behaviour for compression and shear, Coulomb-friction,

+ cohesion & tensile strength + softening + dilation angle

Un(dil ) = Us tanψ

 others … 22 / 53
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UDEC / 3DEC

Calculation of nodal displacements Newton II.: „ ma = f ”

 mass assigned to the node:

Voronoi-cell

 force on the node: resultant of the forces acting on the Voronoi-cell of the node

 from the neighbouring element

 from external forces (e.g. self weight, drag force)

 from the stresses inside the simplexes

 force from the stress within a simplex:

--- nodal translations  simplex strain 

--- from this and material characteristics  uniform stress in the simplex 

--- stress vector acting on the face of the cell: ; resultant 
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UDEC / 3DEC

Calculation of nodal displacements Newton II.: „ ma = f ”

 discretized form of the eqs of motion:

or:

 at ti : the positions of the nodes and the forces and stresses are known;

at : the nodal velocities are known;

determine the nodal velocities at

and the positions of the nodes at
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UDEC / 3DEC

Calculation of nodal displacements Newton II.: „ ma = f ”

 series of small finite time steps:

 explicit time integration; no stiffness matrix!!!

 numerical instabilities, convergence problems

 to help numerical stability:

1. estimate the longest allowed t

2. artifical damping is introduced [different types can be used]

MAIN DISADVANTAGE:

strong oscillations around the exact solution

 may give unrealistic results [e.g. in case of history dependence]

 numerical instabilities may occur
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UDEC / 3DEC

Applications for masonry structures:

Quasi-static problems:

e.g. Sao Vicente de Fora Monastery, Portugal: Giordano et al, 2002

UDEC advantages: works well for large displs; realistic crack pattern

e.g. oval dome statics: Simon & Bagi, 2016

Dynamic problems (use with caution!):

 convergence of the solution with respect to t should be ensured

 damping type and damping parameters should carefully be selected & calibrated
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DDA: „DISCONTINUOUS

DEFORMATION ANALYSIS”

Gen-Hua Shi (1988), Berkeley
then many others applied or developed
research software!!!

The elements: polyhedral; with a reference point (e.g. centroid)

[ Deformable without subdivision ]

„displacement vector” of the p-th element: up

„reduced load” belonging to the p-th element: fp

The degrees of freedom:

rigid-body translation and rotation

of the reference point;

+ the uniform strain of the element
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DDA

The contacts: (material point) with (material point)

in 2D: Node – to – Edge contacts

in 3D: Node – to – Face contacts:

Edge – to – Edge contacts:

Mechanical model:

 originally: infinitely rigid contacts, Coulomb-friction

 recent codes: deformable contacts included

+ other friction conditions, cohesion etc.

Remark: infinitely rigid contact: „penalty function”:

 linearly elastic in normal and in tangential directions29 / 53
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 „first entrance position” 

 contact deformation: 

normal & tangential (perhaps sliding)

 direction of the contact:  

the normal vector of the face

???? for edge-to-edge contact
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DDA

The equations of motion: „Potential energy” stationarity principle

„Potential” of the system:

deformed springs

external pot.

strain energy

inertial forces

velocity-proportional damping

initial stress

prescribed displacement history

or: ( ) ( , ( ), ( ))M a f u vt t t t 

0 for all ,
p

i

p i
u





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 more exactly:  „ Hamilton principle ”



DDA

Numerical solution of the equations of motion:

(ti, ti+1) time interval:

at ti : known ui, vi, f(ti, ui, vi); satisfy the eqs. of motion

Find ui+1, vi+1, ai+1 so that the eqs of motion would be satisfied at ti+1

Remember: Newmark’s –method:

[stability: 2    ½ ]

DDA: Newmark’s –method, with :

let
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DDA

Numerical solution of the equations of motion :

Determine ui+1, so that the residual

would be sufficiently close to zero!

Newton-Raphson:
the Jacobian of the residual:

this matrix can be compiled from elementary calculations at ti:
 contains the stiffness matrix
 contains the inertia, contact forces,

geometric characteristics etc.

the residual can also be compiled from elementary calculations at ti:
 contains the external forces, inertia effects,

prescribed displacements, damping etc.
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DDA

Numerical solution of the equations of motion :

Analysis of a time interval:

initial estimation for ui+1 :

k+1-th estimation for ui+1 :

then continue until becomes sufficiently small

„Open – close iterations”: at the end of t: check the topology and the forces;

 modify the topology if necessary (e.g. new contacts, sliding, contact loss)

 with the new topology, repeat: Newton-Raphson to find another ui+1

if acceptable topology not found: decrease timestep t to 1/3 of its previous length

CONVERGENCE WITHIN A TIME STEP ??? 33 / 53
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DDA: „DISCONTINUOUS

DEFORMATION ANALYSIS”

Comparison to UDEC:

Main differences from UDEC:

→ basic unknowns: also the components of  ;

 uniform stress and strain field inside the elements;

→ numerical integration: implicit

→ stiffness matrix included  artificial damping not necessary

 advantages to UDEC:  implicit  numerical stability;

fast convergence if topology does not change

no artificial damping required

 disadvantages: no commercial software  inconvenient

(several research codes; e.g. ask from Gen-Hua Shi)

too simple mechanics of the elements and of the contacts

large storage requirements & longer computations

open-close iterations: convergence is not ensured if topology changes
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DDA: „DISCONTINUOUS

DEFORMATION ANALYSIS”

Comparison to UDEC:

M.S. Kahn (2010)

NOT EFFICIENT IN CASES IF

SIGNIFICANT TOPOLOGY MODIFICTIONS OCCUR !!!
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DDA: „DISCONTINUOUS

DEFORMATION ANALYSIS”

Applications:

e.g. Rizzi et al (2014): collapse modes of arches

e.g. Kamai and Hatzor (2005): back analysis of seismic events
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CONTACT DYNAMICS

Jean & Moreau (1992): (2D, 3D) [mostly in physics]

Unger, T. – Kertész, J. (2003): The contact dynamics method for granular media. In:

Modeling of Complex Systems, Melville, New York, American Institute of Physics, pp.

116-138

Software:

(1) LMGC91 (Dubois & Jean, 2006): OPEN!

rigid/deformable; spherical/polyhedral elements

(2) SOLFEC (Koziara & Bicanic, 2008):

rigid/deformable; polyhedral elements

The elements:

ORIGINALLY: rigid, spherical elements

for masonry structures:

deformable or rigid polyhedral elements
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CONTACT DYNAMICS

Contacts of polyhedral elements:

„common plane concept”

Mechanical conditions for the contact forces:

[ the same ]
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CONTACT DYNAMICS

Contacts of polyhedral elements:

Rigid polyhedral elements:

Degrees of freedom: translations & rotations of the reference points

Deformable polyhedral elements: constant strain  unfavourable experiences

uniform-strain tetrahedral subdivision

The point of action of the contact force:

 : middle point of the face

„approximated contact point”

contact: if  touches another face

Masses: distributed to the nodes

Equations of motion: for every node [no rotations considered];

Degrees of freedom: nodal translations [similar to 3DEC def]40 / 53



CONTACT DYNAMICS

How to find the solution at the end of a given time step:

implicit solution:

the positions and velocities are repeatedly (iteratively) adjusted,

until the equations of motion AND the contact conditions are satisfied

with the required accuracy at the end of the time step

[  Cross method for frames, but randomly sweeping along the pairs of elements]

history dependence! [order of sweeping along contacts makes difference in the results]

 engineers have doubts

Main advantage: extremely fast for dynamic phenomena
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CONTACT DYNAMICS

Civil engineering applications

e.g. Rafiee et al (2008):

CD numerical model with deformable elements:

Arles, aqueduct

Earthquake simulations:

 Experimental verification?
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CONTACT DYNAMICS

Civil engineering applications

e.g. Gelo & Mestrovic (2016):

dome of St Jacob Cathedral, Sibenik, Croatia

Earthquake simulations:

 Experimental verification?
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CONTACT DYNAMICS

Civil engineering applications

e.g. Clementini et al (2018):

San Benedetto Church, Ferrara

aim: analyse seismic behaviour

Model assumptions:

rigid blocks

Coulomb-frictional contacts

perfectly plastic impact (no bouncing)

Load: basement oscillations v(t) = C sin (2ft)

 earthquake simulations

Model validation: compare first frequency to reality

Outcome: vulnerable regions of the structure
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QUESTIONS

1. Under what conditions can a numerical technique be classified as a
discrete element model? What are the main steps of the discrete element
modelling of an engineering problem?

2. What is the difference between quasi-static and time-stepping
calculation methods of the displacement increments?

3. What is the difference between explicit and implicit time integration
techniques?

4. What are the degrees of freedom in UDEC/3DEC, in DDA, and in
Contact Dynamics? What kind of time integration technique is applied
in these models?

5. What are the main advantages and disadvantages of UDEC/3DEC,
DDA, and Contact Dynamics in comparison to each other?
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MUNJIZA’S FEM/DEM METHOD

Ante Munjiza (1999), (2004), …: (2D, 3D)

 to simulate fracture and fragmentation of discrete elements

Recent years:

 further development of several algorithmic details

 applications to historic masonry

Main features:

 deformable, polyhedral discrete elements ;

deformable contacts between them

 discrete elements are subdivided into:

uniform-strain FEM tetrahedra

 „joint elements”:

inside the discrete elements,

between the FEM tetrahedra:

able to soften and open up 48 / 53



THE ELEMENTS

Degrees of freedom:

translations of the nodes

 like in 3DEC def.

Strain in the finite element tetrahedra:

different possibilities available:

small strain tensor; right or left Cauchy-Green strain tensor;

Stress options: Cauchy stress tensor; Ist or IInd Piola-Kirchhoff stress tensor

 more options than in 3DEC

Constitutive model of the elements:

Hooke law, no plasticity of the finite elements [ very simple ]

 in 3DEC: plastic yield and user-defined constitutive relations can be used

masses in eqs of motion: masses of the Voronoi cells of the nodes  like in 3DEC

stress field inside the tetrahedra: reduced to the nodes  like in 3DEC

Time integration: central difference method  like in 3DEC
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CONTACT INTERACTION ALGORITHM

Advantageous features:

 distributed contact forces: no unrealistic stress concentrations

 complicated contact behaviour (sliding, plasticity,

cohesion etc): easy to incorporate

 energy conservation satisfied!

 computationally relatively efficient

Case of two overlapping discrete elements:

P scans over the total overlap

 distributed force along the overlap:

then reduced to the nodes
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FRACTURE & FRAGMENTATION ALGORITHM

aims:  to define crack initiation

 to describe how cracks propagate,

 to replace the released internal forces with new contact forces

„joint elements”: the surface between FE-s ! in the interior of DE-s !
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THE JOINT ELEMENTS

Mechanical behaviour of joints:

Disadvantage:

simulated fracture behaviour is very sensitive to mesh density & orientation

 very dense subdivision of the DE-s is needed
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APPLICATIONS

e.g. Rougier et al (2014):

Seismic analysis of the Dome of the Santa Maria del Fiore cathedral

stress vawe propagation cracked final state

e.g. Zivaljic et al (2014):

Impact loading of a concrete beam

unreinforced reinforced 53 / 53


