

THE DISCRETE ELEMENT METHOD

SHORTLY MENTIONED IN LECTURE 01: THE DISCRETE ELEMENT METHOD

Definition: a numerical method belongs to DEM if

- ← it consists of separate, *finite-sized* elements and their contacts
- ← its elements have *independent* degrees of frredom, with *large displs*
- ← contact separation and sliding considered; *new contacts* can be born

Main steps:

- → define the elements (geometry); automatically recognize their contacts
- → specify the material parameters (elements; contacts)
- → loading history: in small steps; stepwise: upgrade geometry & topology & material

Detailed introduction to DEM: today in Lecture 05

THIS LECTURE:

What is DEM?

The Geometry

Mechanical Properties

Calculation of the Displacements

DEM models

UDEC/3DEC

Discontinuous Deformation Analysis

Contact Dynamics

Questions

The aim: to model materials or structures having discrete internal builtup

"what does it do if loads are put on it?"

The components of the model:

separate elements)+ (their contacts)

or

• mechanical models for the <u>material of the elements</u>:

- \rightarrow rigid
- → deformable

- \rightarrow recognition contacts
 - → mechanical models for the contacts:
 - → non-deformable
 - → deformable: e.g.point-like, deformable \ e.g. frictional, e.g. finite size, deformable \int e.g. cemented

History overview

 \rightarrow end of 1960ies:

Peter A Cundall, Imperial College:

("Uniform Distinct Element Code")

model for fractured rocks

→ 1970ies: Molecular Dynamics methods, physics literature not really DEM

History overview

→ end of 1970ies: Cundall & Strack, 1979:

BALL

- \rightarrow from the 1980ies:
 - → several new codes, already in 3D
 - → general element shapes
 - → different mathematical tools

→ from the 1990ies: practical applications in engineering

EXAMPLE

1. Define the geometry:

ball id 1 x 0.10 y 0.20 rad 0.10

ball id 2 x 0.55 y 0.20 rad 0.15

ball id 3 x 0.30 y 0.40 rad 0.15

wall id 1 nodes 0.0 0.0 0.7 0.0

wall id 2 nodes 0.7 0.0 0.7 0.5

wall id 3 nodes 0.0 0.5 0.0 0.0

2. Specify the material parameters:

property density 10.0

property kn 1.e4 ks 0.5e4 friction 0.2

wall id 1 kn 1.e12 ks 0. friction 0.

wall id 2 kn 1.e12 ks 0, friction 0.

wall id 3 kn 1.e12 ks 0. friction 0.

3. Specify the loads:

set gravity 0.0 -9.81

4. Calculate the displacements [series of small increments]

Main steps of the analysis of an engineering problem:

the model: collection of separate elements ('discrete elements')
 {1 body ↔ 1 element} or {several bodies ↔ few elements}
 Step 1.: define the initial geometry

- rigid or deformable *elements*; rigid or deformable *contacts* Step 2.: specify the material characteristics
- the loading process:

(e.g. external forces acting on the elements; e.g. prescribed displacements)

• calculation of the state changing: series of small increments, based on ,, f = ma"

Element shapes:

polygon, polyhedron

circle, sphere

ellipse, ellipsoid

complex shapes

e.g. Lemos (2007): masonry blocks & mortar layer:

e.g. Matsushima (2005): irregularly shaped sand particles

(b) Ottawa sand model

Element shapes:

polygon, polyhedron

circle, sphere

ellipse, ellipsoid

complex shapes

e.g. Psycharis et al (2003): stone blocks:

e.g. Bui et al (2017): bricks of a house:

How to get the geometry of a masonry structure:

- → original plans (if still exist)
- → survey the actual geometry, e.g. laser scanner & CAD: e.g. McInerney et al (2012):

St John's College, Cambridge, UK

Difficulty e.g.:

how to survey hidden/covered faces

King's College, Cambridge, UK

<u>Contact recognition:</u> several different algorithms exist;

its speed basically determines the computational

efficiency of the whole DEM code!

the time consuming part: to check the existence of a contact with exact calculations

Trick #1:

avoid checking every element with every other element:

→ "body based search" technique:

consider only those others which are in the
vicinity of the analyzed element;
then take the next element to analyze, ...

divide the domain into "windows" (overlapping); collect which elements are in which windows; analyze those pairs only where both elements belong to the same window

<u>Contact recognition:</u> several different algorithms exist;

its speed basically determines the computational

efficiency of the whole DEM code!

the time consuming part: to check the existence of a contact with exact calculations

Trick #2:

Simple surrounding domains checked first (instead of the elements having complicated shapes)

the idea: "surrounding domain" assigned to each element (simple shape: brick; sphere)

- \rightarrow Phase 1.: intersection between the surrounding domains? (fast)
- \rightarrow if necessary: Phase 2.: detailed, exact calculations (slow)

MECHANICAL PROPERTIES

Mechanical behaviour of the elements:

role: to specify how to calculate the stresses from the deformations of the elements

- → perfectly rigid elements: deformability concentrated into the contacts
- \rightarrow deformable elements: <u>stress-strain</u>-relations have to be specified [e.g. $E, \mu, ...$]

Mechanical behaviour of the contacts:

role: to specify how to calculate the contact forces from the relative displacements at the contact

→ usually: ,,deformable" contacts
 (relative displ. at the contact regions)
 concentrated ↔ distributed

→ sometimes:

infinitely rigid contacts: no overlap neither any other deformation $\frac{1}{4/53}$

CALCULATION OF DISPLACEMENTS

Quasi-static methods

← an <u>equilibrium state</u> is searched for

From an initial equilibrium state, the incremental displacements **u** are to be determined taking the system to the new equilibrium (assumption: time-independent behaviour, zero accelerations!!!)

$$\mathbf{K} \cdot \Delta \mathbf{u} + \Delta \mathbf{f} = \mathbf{0}$$

- → Kishino (1988); Bagi-Bojtár (1991)
- circular, perfectly rigid elemets, deformable contacts
- \rightarrow Meng et al (2017); Baraldi et al (2018)

f not really DEM yet:
small displs; no new contacts;

Time-stepping methods $\| \mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t)) \| \leftarrow a \text{ process in time is searched for } \| \mathbf{M} \cdot \mathbf{a}(t) - \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t)) \|$

simulate the motion of the system along small, but finite Δt timesteps

Explicit timestepping methods:

- \rightarrow UDEC \leftarrow deformable polyhedral elements, deformable contacts
- → Munjiza's FEM/DEM ← deformable, breakable elements, deformable contacts Implicit timestepping methods:
 - \rightarrow DDA ("Discontinuous Deformation Analysis") \leftarrow deformable polyhedral elements
 - \rightarrow Contact Dynamics models \leftarrow rigid elements, non-deformable contacts

SOLUTION OF THE EQUATIONS OF MOTION

Numerical solutions only!

$$\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$$

The aim:

starting from a known $\mathbf{u}(t_0) = \mathbf{u}_0$ and $\mathbf{v}(t_0) = \mathbf{v}_0$ state at a t_0 time instant, the aim is to determine the approximative solutions $(\mathbf{u}_1, \mathbf{v}_1), (\mathbf{u}_2, \mathbf{v}_2), \ldots, (\mathbf{u}_i, \mathbf{v}_i), (\mathbf{u}_{i+1}, \mathbf{v}_{i+1}), \ldots$ belonging to the $t_1, t_2, \ldots, t_i, t_{i+1}, \ldots$ time instants.

The two basic approaches:

Explicit vs. implicit time integration methods

SOLUTION OF THE EQUATIONS OF MOTION

17 / 53

Explicit vs. implicit methods:

→ <u>explicit methods</u>:

in the state at t_i : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{f}_i) \Rightarrow \text{equations of motion} \Rightarrow$ approximate $(\mathbf{u}_{i+1}, \mathbf{v}_{i+1}, \mathbf{f}_{i+1})$ belonging to the state at t_{i+1}

NOT checking whether $(\mathbf{u}_{i+1}, \mathbf{v}_{i+1}, \mathbf{f}_{i+1})$ satisfy the eqs of motion: accept them and use them for the calculations of the next timestep ⇒ fast, but less reliable; numerical stability problems!

SOLUTION OF THE EQUATIONS OF MOTION

Explicit vs. implicit methods:

→ implicit methods:

in the state at t_i : $(\mathbf{u}_i, \mathbf{v}_i, \mathbf{f}_i) \Rightarrow$ equations of motion \Rightarrow approximate $(\mathbf{u}_{i+1}, \mathbf{v}_{i+1}, \mathbf{f}_{i+1})$ belonging to the state at t_{i+1} ; then iterations, to improve this approximation belonging to t_{i+1} , so that the eqs of motion be satisfied at t_{i+1} \Rightarrow slow, but longer timesteps; more reliable, better numerical stability

THIS LECTURE:

What is DEM?

The Geometry

Mechanical Properties

Calculation of the Displacements

DEM models

UDEC/3DEC

Discontinuous Deformation Analysis

Contact Dynamics

Questions

<u>UDEC:</u> "Universal Distinct Element Code"

P.A. Cundall, 1971;

development through decades

Itasca Consulting Group

www.itascacg.com

MOST WIDESPREAD IN CIVIL ENGINEERING

<u>Elements:</u> polygons / polyhedra (planar faces!);

- rigid elements

<u>degrees of freedom:</u>

translation of and rotation about the centroid

deformable elements (subdivided into simplex zones)

"uniform strain" tetrahedral zones ((10-node tetrahedra – not reliable)) degrees of freedom: translations of the nodes

Material models for the elements:

(rigid) \leftrightarrow deformable:

- ,,null element" (no material in the element)
- linearly elastic, isotropic (e.g. intact rock; metal)
- lin. elast., with: Mohr-Coulomb / Prager-Drucker failure crit.

(e.g. soils, concrete) (e.g. clay)

+ tensile strengh + cohesion + dilation angle

Contacts:

consist of small "subcontacts", over which: uniformly distributed normal and shear contact forces are transmitted

$$\Delta \sigma = k_N \Delta u_N$$
$$\Delta \tau = k_T \Delta u_T$$

Material models for the contacts:

[calculate the increments of distrib. contact forces from the increments of rel. disps]

- if no material in the contacts: $\rightarrow k_n, k_s$: numerical parameters, ∞ or express surface roughness; \rightarrow friction: real value
- if material in the joints: (modelled as length or area, with zero thickness):
 - linear behaviour for compression and shear, Coulomb-friction,+ cohesion and tensile strength
 - linear behaviour for compression and shear, Coulomb-friction,+ cohesion & tensile strength + softening + dilation angle

$$\Delta U_n(dil) = \Delta U_s tan\psi$$

Calculation of nodal displacements

Newton II.: ,, ma = f"

– mass assigned to the node:

Voronoi-cell

- force on the node: resultant of the forces acting on the Voronoi-cell of the node

- ← from the neighbouring element
- ← from external forces (e.g. self weight, drag force)
- ← from the stresses inside the simplexes
- force from the stress within a simplex:
 - --- nodal translations ⇒ simplex strain ✓
 - --- from this and material characteristics \Rightarrow uniform stress in the simplex \checkmark
 - --- stress vector acting on the face of the cell: $\sigma_{ij}n_j = p_i$; resultant

Calculation of nodal displacements

Newton II.: ,, ma = f"

– discretized form of the eqs of motion:

$$m\frac{\mathbf{v}(t_i + \Delta t/2) - \mathbf{v}(t_i - \Delta t/2)}{\Delta t} = \mathbf{f}(t_i)$$

or:

$$\mathbf{v}(t_i + \Delta t/2) = \mathbf{v}(t_i - \Delta t/2) + \frac{\mathbf{f}(t_i)}{m} \Delta t$$

- at t_i : the *positions of the nodes* and the *forces and stresses* are known; at $t_i - \Delta t/2$: the *nodal velocities* are known; determine the *nodal velocities* at $t_{i+1/2} = t_i + \Delta t/2$ and the *positions of the nodes* at $t_{i+1} = t_i + \Delta t$

positions
forces, stresses
accelerations
velocities

Calculation of nodal displacements

- series of small finite time steps:
- explicit time integration; no stiffness matrix!!!

Newton II.: ,, ma = f"

- to help numerical stability:
 - 1. estimate the longest allowed Δt
 - 2. artifical damping is introduced [different types can be used]

MAIN DISADVANTAGE:

- strong oscillations around the exact solution
- ⇒ may give unrealistic results [e.g. in case of history dependence]
- ⇒ numerical instabilities may occur

Applications for masonry structures:

Quasi-static problems:

e.g. Sao Vicente de Fora Monastery, Portugal: Giordano et al, 2002

<u>UDEC advantages:</u> works well for *large displs*; realistic *crack pattern*

e.g. oval dome statics: Simon & Bagi, 2016

Dynamic problems (use with caution!):

- \rightarrow convergence of the solution with respect to Δt should be ensured
- \rightarrow damping type and damping parameters should carefully be selected & calibrated

THIS LECTURE:

What is DEM?

The Geometry

Mechanical Properties

Calculation of the Displacements

DEM models

UDEC/3DEC

Discontinuous Deformation Analysis

Contact Dynamics

Questions

DDA: "DISCONTINUOUS DEFORMATION ANALYSIS"

Gen-Hua Shi (1988), Berkeley then many others applied or developed research software!!!

The elements: polyhedral; with a reference point (e.g. centroid)

[Deformable without subdivision]

,,displacement vector" of the p-th element: \mathbf{u}^p

",reduced load" belonging to the p-th element: \mathbf{f}^p

The degrees of freedom: rigid-body translation and rotation

of the reference point;

+ the *uniform* strain of the element

$\mathbf{f}^{p} =$	$egin{aligned} f_x^{\ p} \ f_y^{\ p} \ f_z^{\ p} \ m_x^p \ m_z^p \ V^p \sigma_x^p \ V^p \sigma_z^p \ V^p au_{yz}^p \ V^p au_{xy}^p \end{aligned}$
--------------------	---

 u_x^p

 $\boldsymbol{\varphi}_{\mathrm{y}}^{p}$

 \mathcal{E}_{x}^{p}

 \mathcal{E}_{y}^{p}

 $\boldsymbol{\mathcal{E}}_{z}^{p}$

 γ_{xy}^p

The contacts:

(material point) with (material point)

 $\underline{\text{in } 2D:}$ $\underline{\text{Node} - \text{to} - \text{Edge contacts}}$

<u>in 3D:</u> Node – to – Face contacts:

Edge - to - Edge contacts:

- \rightarrow "first entrance position"
 - \Rightarrow contact deformation: Δu_N ; Δu_T normal & tangential (perhaps sliding)
- → direction of the contact:
 the normal vector of the face
 ???? for edge-to-edge contact

Mechanical model:

→ originally: infinitely rigid contacts, Coulomb-friction

→ recent codes: deformable contacts included

+ other friction conditions, cohesion etc.

Remark: infinitely rigid contact: ,,penalty function": $F_N = k_N \Delta u_N$; $dF_T = k_T d(\Delta u_T)$

 \equiv linearly elastic in normal and in tangential directions_{29/53}

↓ more exactly: "Hamilton principle"

The equations of motion: "Potential energy" stationarity principle

"Potential" of the system:

$$\frac{\partial \Pi}{\partial u^p} = 0 \quad \text{for all } p, i$$

Π = Π^{blocks} + Π^{contacts}

deformed springs

external pot.

strain energy

inertial forces

velocity-proportional damping

initial stress

prescribed displacement history

Numerical solution of the equations of motion:

 $(\underline{t_i}, \underline{t_{i+1}})$ time interval:

at t_i : known \mathbf{u}_i , \mathbf{v}_i , $\mathbf{f}(t_i, \mathbf{u}_i, \mathbf{v}_i)$; satisfy the eqs. of motion

Find \mathbf{u}_{i+1} , \mathbf{v}_{i+1} , \mathbf{a}_{i+1} so that the eqs of motion would be satisfied at t_{i+1}

$$\mathbf{r}(t_{i+1}, \mathbf{u}_{i+1}, \mathbf{v}_{i+1}) = \mathbf{f}(t_{i+1}, \mathbf{u}_{i+1}, \mathbf{v}_{i+1}) - \mathbf{M} \cdot \mathbf{a}_{i+1} = 0$$

Remember:

Newmark's
$$\beta$$
-method:
$$\mathbf{u}_{i+1} = \mathbf{u}_i + \Delta t \cdot \mathbf{v}_i + \frac{\Delta t^2}{2} \left[(1 - 2\beta) \mathbf{a}_i + 2\beta \cdot \mathbf{a}_{i+1} \right]$$
$$\mathbf{v}_{i+1} \coloneqq \mathbf{v}_i + (1 - \gamma) \cdot \Delta t \cdot \mathbf{a}_i + \gamma \cdot \Delta t \cdot \mathbf{a}_{i+1}$$
$$\mathbf{v}_{i+1} \coloneqq \mathbf{v}_i + (1 - \gamma) \cdot \Delta t \cdot \mathbf{a}_i + \gamma \cdot \Delta t \cdot \mathbf{a}_{i+1}$$

DDA:

Newmark's
$$\beta$$
-method, with $\beta = 1/2$; $\gamma = 1$:
$$\mathbf{u}_{i+1} = \mathbf{u}_i + \Delta t \cdot \mathbf{v}_i + \frac{\Delta t^2}{2} \mathbf{a}_{i+1}$$

$$\mathbf{v}_{i+1} := \mathbf{v}_i + \Delta t \cdot \mathbf{a}_{i+1}$$

$$\mathbf{a}_{i+1} = \frac{1}{\Delta t^2 / 2} (\Delta \mathbf{u}_{i+1} - \Delta t \cdot \mathbf{v}_i)$$

$$\mathbf{v}_{i+1} = \mathbf{v}_i + \Delta t \cdot \mathbf{a}_{i+1} = \mathbf{v}_i + \frac{2}{\Delta t} (\Delta \mathbf{u}_{i+1} - \Delta t \cdot \mathbf{v}_i) = \frac{2}{\Delta t} \Delta \mathbf{u}_{i+1} - \mathbf{v}_i$$

$$31/53$$

Numerical solution of the equations of motion :

$$\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t)) \implies \mathbf{0} = \mathbf{f}(t_{i+1}, \mathbf{u}_{i+1}(\Delta \mathbf{u}_{i+1}, \mathbf{v}_{i+1}(\Delta \mathbf{u}_{i+1})) - \mathbf{M} \cdot \mathbf{a}_{i+1}(\Delta \mathbf{u}_{i+1})$$

Determine $\Delta \mathbf{u}_{i+1}$, so that the residual

$$\mathbf{r}(t_{i+1}, \Delta \mathbf{u}_{i+1}) = \mathbf{f}(t_{i+1}, \mathbf{u}_{i+1}(\Delta \mathbf{u}_{i+1}), \mathbf{v}_{i+1}(\Delta \mathbf{u}_{i+1})) - \mathbf{M} \cdot \mathbf{a}_{i+1}(\Delta \mathbf{u}_{i+1})$$

would be sufficiently close to zero!

Newton-Raphson:

the Jacobian of the residual:
$$\mathcal{K}(t, \Delta \mathbf{u}) = \frac{d\mathbf{r}(t, \Delta \mathbf{u})}{d\Delta \mathbf{u}}$$

this matrix can be compiled from elementary calculations at t_i :

← contains the stiffness matrix

← contains the inertia, contact forces, geometric characteristics etc.

the residual can also be compiled from elementary calculations at t_i : \leftarrow contains the external forces, inertia effects,
prescribed displacements, damping etc.

Numerical solution of the equations of motion :

$$\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t)) \implies \mathbf{0} = \mathbf{f}(t_{i+1}, \mathbf{u}_{i+1}(\Delta \mathbf{u}_{i+1}, \mathbf{v}_{i+1}(\Delta \mathbf{u}_{i+1})) - \mathbf{M} \cdot \mathbf{a}_{i+1}(\Delta \mathbf{u}_{i+1})$$

$$\mathbf{r}(t_{i+1}, \Delta \mathbf{u}_{i+1}) = \mathbf{f}(t_{i+1}, \mathbf{u}_{i+1}(\Delta \mathbf{u}_{i+1}), \mathbf{v}_{i+1}(\Delta \mathbf{u}_{i+1})) - \mathbf{M} \cdot \mathbf{a}_{i+1}(\Delta \mathbf{u}_{i+1})$$

$$\mathcal{K}(t, \Delta \mathbf{u}) = \frac{d\mathbf{r}(t, \Delta \mathbf{u})}{d\Delta \mathbf{u}}$$

Analysis of a time interval:

initial estimation for $\Delta \mathbf{u}_{i+1}$: $\Delta \mathbf{u}_{i+1}^{(0)} := \mathbf{0}$

k+1-th estimation for $\Delta \mathbf{u}_{i+1} : \Delta \mathbf{u}_{i+1}^{(k+1)} := \Delta \mathbf{u}_{i+1}^{(k)} - \mathcal{K}(t_{i+1}, \Delta \mathbf{u}_{i+1}^{(k)})^{-1} \cdot \mathbf{r}(t_{i+1}, \Delta \mathbf{u}_{i+1}^{(k)})$

then continue until $\left|\mathbf{r}(t_{i+1}, \Delta \mathbf{u}_{i+1}^{k+1})\right|$ becomes sufficiently small

"Open – close iterations": at the end of Δt : **check** the topology and the forces;

- → modify the topology if necessary (e.g. new contacts, sliding, contact loss)
- \rightarrow with the new topology, **repeat:** Newton-Raphson to find another $\Delta \mathbf{u}_{i+1}$

if acceptable topology not found: decrease timestep Δt to 1/3 of its previous length

Comparison to UDEC:

Main differences from UDEC:

- \rightarrow basic unknowns: also the components of ε ;
- → uniform stress and strain field inside the elements;
- → numerical integration: implicit
- \rightarrow stiffness matrix included \Rightarrow artificial damping not necessary
- <u>advantages to UDEC:</u> → implicit ⇒ numerical stability;
 fast convergence if topology does not change
 no artificial damping required
- disadvantages: no commercial software ⇒ inconvenient

 (several research codes; e.g. ask from Gen-Hua Shi)
 too simple mechanics of the elements and of the contacts
 large storage requirements & longer computations
 open-close iterations: convergence is not ensured if topology changes

Comparison to UDEC:

M.S. Kahn (2010)

NOT EFFICIENT IN CASES IF SIGNIFICANT TOPOLOGY MODIFICTIONS OCCUR !!!

DDA: "DISCONTINUOUS DEFORMATION ANALYSIS"

Applications:

e.g. Rizzi et al (2014): collapse modes of arches

e.g. Kamai and Hatzor (2005): back analysis of seismic events

THIS LECTURE:

What is DEM?

The Geometry

Mechanical Properties

Calculation of the Displacements

DEM models

UDEC/3DEC

Discontinuous Deformation Analysis

Contact Dynamics

Questions

Jean & Moreau (1992): (2D, 3D) [mostly in physics]

Unger, T. – Kertész, J. (2003): The contact dynamics method for granular media. In: Modeling of Complex Systems, Melville, New York, American Institute of Physics, pp. 116-138

Software:

- (1) LMGC91 (Dubois & Jean, 2006): **OPEN!** rigid/deformable; spherical/polyhedral elements
- (2) SOLFEC (Koziara & Bicanic, 2008): rigid/deformable; polyhedral elements

The elements:

ORIGINALLY: rigid, spherical elements for masonry structures:

deformable or rigid polyhedral elements

"common plane concept"

Contacts of polyhedral elements:

Rigid polyhedral elements:

Degrees of freedom: translations & rotations of the reference points

Deformable polyhedral elements:

constant strain → unfavourable experiences uniform-strain tetrahedral subdivision

The point of action of the contact force:

• : middle point of the face

"approximated contact point"

contact: if • touches another face

Masses: distributed to the **nodes**

Equations of motion: for every **node** [no rotations considered];

Degrees of freedom: nodal translations [similar to 3DEC def]40/53

How to find the solution at the end of a given time step:

implicit solution:

the positions and velocities are repeatedly (iteratively) adjusted, until the equations of motion AND the contact conditions are satisfied with the required accuracy at the end of the time step

[\approx Cross method for frames, but randomly sweeping along the pairs of elements]

history dependence! [order of sweeping along contacts makes difference in the results]

⇒ engineers have doubts

Main advantage: extremely fast for dynamic phenomena

Civil engineering applications

e.g. Rafiee et al (2008):

CD numerical model with deformable elements:

Arles, aqueduct

Earthquake simulations:

© Experimental verification?

Civil engineering applications

e.g. Gelo & Mestrovic (2016): dome of St Jacob Cathedral, Sibenik, Croatia

Earthquake simulations:

croatiatraveller.com/Heritage _Sites/CathedralSibenik.htm

Civil engineering applications

e.g. Clementini et al (2018):

San Benedetto Church, Ferrara

aim: analyse seismic behaviour

Model assumptions:

rigid blocks

Coulomb-frictional contacts

perfectly plastic impact (no bouncing)

Load: basement oscillations $v(t) = C \sin(2\pi \cdot f \cdot t)$ \equiv earthquake simulations

Model validation: compare first frequency to reality

Outcome: vulnerable regions of the structure

THIS LECTURE:

What is DEM?

The Geometry

Mechanical Properties

Calculation of the Displacements

DEM models

UDEC/3DEC

Discotninuous Deformation Analysis

Contact Dynamics

Questions

QUESTIONS

- 1. Under what conditions can a numerical technique be classified as a discrete element model? What are the main steps of the discrete element modelling of an engineering problem?
- 2. What is the difference between quasi-static and time-stepping calculation methods of the displacement increments?
- 3. What is the difference between explicit and implicit time integration techniques?
- 4. What are the degrees of freedom in UDEC/3DEC, in DDA, and in Contact Dynamics? What kind of time integration technique is applied in these models?
- 5. What are the main advantages and disadvantages of UDEC/3DEC, DDA, and Contact Dynamics in comparison to each other?

THIS LECTURE:

What is DEM?

The Geometry

Mechanical Properties

Calculation of the Displacements

DEM models

UDEC/3DEC

Discotninuous Deformation Analysis

Contact Dynamics

Munjiza's FEM/DEM

ADDITIONAL TOPIC OF INTEREST

Questions

MUNJIZA'S FEM/DEM METHOD

Ante Munjiza (1999), (2004), ...: (2D, 3D)

→ to simulate fracture and fragmentation of discrete elements

Recent years:

- → further development of several algorithmic details
- → applications to historic masonry

Main features:

- → deformable, polyhedral discrete elements; deformable contacts between them
- → discrete elements are subdivided into: uniform-strain FEM tetrahedra
- \rightarrow ,,joint elements":

THE ELEMENTS

<u>Degrees of freedom:</u>

translations of the nodes

 \rightarrow like in 3DEC def.

Strain in the finite element tetrahedra:

different possibilities available:

small strain tensor; right or left Cauchy-Green strain tensor;

Stress options: Cauchy stress tensor; Ist or IInd Piola-Kirchhoff stress tensor

 \rightarrow more options than in 3DEC

Constitutive model of the elements:

Hooke law, no plasticity of the finite elements [very simple]

→ in 3DEC: plastic yield and user-defined constitutive relations can be used

masses in eqs of motion: masses of the Voronoi cells of the nodes \rightarrow like in 3DEC stress field inside the tetrahedra: reduced to the nodes \rightarrow like in 3DEC Time integration: central difference method \rightarrow like in 3DEC

CONTACT INTERACTION ALGORITHM

Advantageous features:

- → distributed contact forces: no unrealistic stress concentrations
- → complicated contact behaviour (sliding, plasticity, cohesion etc): easy to incorporate
- → energy conservation satisfied!
- → computationally relatively efficient

P scans over the total overlap

Potential functions of the two FE-s
$$df = \left[\operatorname{grad}\varphi_1(P) - \operatorname{grad}\varphi_2(P)\right] dA$$

⇒ distributed force along the overlap: then reduced to the nodes

FRACTURE & FRAGMENTATION ALGORITHM

- aims: \rightarrow to define crack initiation
 - → to describe how cracks propagate,
 - → to replace the released internal forces with new contact forces

"joint elements": the surface between FE-s! in the <u>interior</u> of DE-s!

THE JOINT ELEMENTS

Mechanical behaviour of joints:

 $p_{\it fl}, p_{\it fl}, p_{\it fl}$: penalty parameters

o, s : crack opening and sliding Gi,

G_{IC}, G_{IIC}: fracture energy release rates

h: element size

φ_i, φ_r: friction angles

ft, c: cohesive strengths

Disadvantage:

simulated fracture behaviour is very sensitive to mesh density & orientation

⇒ very dense subdivision of the DE-s is needed

52 / 53

APPLICATIONS

e.g. Rougier et al (2014):

Seismic analysis of the Dome of the Santa Maria del Fiore cathedral

stress vawe propagation

cracked final state

e.g. Zivaljic et al (2014):

Impact loading of a concrete beam

unreinforced reinforced

53 / 53