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Abstract 

The most important computational programs available for the assessment of masonry 

arches are Archie-M, LimitState:RING and 3DEC. The first two programs based on 

limit state analysis are widely applied in the engineering practice and have a huge 

efficiency. 

The diploma work to be presented simulated single span masonry arches with the three 

programs, where 3DEC was used as virtual reality. In 3DEC, each voussoir of the arch 

was represented as a deformable block jointed by dry contacts. Rotation and sliding of 

the masonry blocks as well as their deformations are allowed. 3DEC uses Coulomb 

friction models, which was non-associated since the dilation degree was set to zero, but 

RIGN uses an associated friction model, and Archie-M completely excludes from the 

analysis the possibility of sliding. The importance of effects like sliding, material 

crushing and block deformability had to be assessed by comparing the results provided 

by 3DEC, Archie-M and RING. 

Arches with different geometries and different material properties behave differently. 

Three investigated variable parameters in this thesis are: i) number of blocks, ii) angle 

of embrace; iii) contact friction angle. In order to gain an understanding of the behavior 

of the arches themselves, no attempts were made to model the effects of fill, spandrel 

walls or any other construction details.  

Each model was equilibrated under gravity first, and then a full width vertical 

“concentrated load” was applied to the arch. Failure loads and failure modes were 

investigated and recorded, and critical loads and their critical positions were detected. 

Arch behaviors in different parameters were concluded and the results in Archie-M, 

RING and 3DEC were compared.  

Archie-M does not include sliding failure but RING does, and this led to differences in 

the failure modes. RING produced closer results to 3DEC than Archie-M modelling, 

not only for failure load, but also for failure mode. 

 

KEYWORDS: Single span masonry arches, limit state analysis, discrete element method, 

frictional sliding, 3DEC, Archie-M, RING 
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1 Literature Overview 

Masonry structures consist of individual units, like bricks, stones and so on, and joints 

between them. The joints can be dry or mortared. Masonry arch structures have a long 

history and an extensive use. Arch is the earliest and greatest invention in the field of 

architecture. The arch has been long used in masonry structures, most commonly in 

masonry bridges, masonry gates and aqueducts. Figure 1.1 shows some examples.  

Figure 1.1 Typical masonry arch structures: (a) semi-circular arches of brick construction at the Great 

Wall, China, 220-206 BC; (b) multiple arches of the Pont du Gard in Roman Gaul (modern in France); (c) 

segmental arch bridge of stone construction in Anji Bridge, China, 595-605; (d) Horseshoe arches in the 9th-

century Mosque of Uqba, in Kairoua, Tunisia (https://hyperallergic.com/219284/the-great-wall-of-china-is-

falling-apart/; https://www.pinterest.com/pin/352899320782715670/; http://stone-

bridge.blogspot.com/2006/07/zhaozhous-bridge.html; https://www.pinterest.com/pin/505669864387506101/ ) 

There are various types of arches, for example, triangular arch, lancet arch, equilateral 

pointed arch, shouldered flat arch, elliptical arch and Ogee arch (see Figure 1.2). In this 

thesis, I will discuss semi-circular arch and segmental arch, which are most widely used 

types in the world. 

https://hyperallergic.com/219284/the-great-wall-of-china-is-falling-apart/
https://hyperallergic.com/219284/the-great-wall-of-china-is-falling-apart/
https://www.pinterest.com/pin/352899320782715670/
http://stone-bridge.blogspot.com/2006/07/zhaozhous-bridge.html
http://stone-bridge.blogspot.com/2006/07/zhaozhous-bridge.html
https://www.pinterest.com/pin/505669864387506101/
https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjj58KjrLzeAhWFL1AKHZE6BgEQjRx6BAgBEAU&url=https://www.dailystar.co.uk/news/world-news/698998/army-ai-drones-protect-great-wall-of-china&psig=AOvVaw30M2EtoOk219JIm6WuiY_E&ust=1541476110450518
https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwid5L-FrrzeAhVMEVAKHeQNDuoQjRx6BAgBEAU&url=http://stone-bridge.blogspot.com/2006/07/zhaozhous-bridge.html&psig=AOvVaw0-S1r9dc58imJU757j143b&ust=1541476588865551
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Figure 1.2 Some types of arches 

Although masonry structures have been constructed and developed for a long time, their 

analysis is still a puzzle for engineers. Sometimes it appears nearly impossible to fully 

and correctly simulate and analyze an arch structure as the conditions may be so 

complicated. Masonry is a material with a discontinuous body (individual units and 

joints) and special mechanical properties (very high compression and very low tension), 

so that the behavior is totally different from that of elastic materials. Figure 1.3 shows 

this property vividly with a highly localized stress percolation visible. 

Figure 1.3 A comparison between the stress diffusion in an elastic body (on the left) and a model of masonry 

(on the right) (Wikipedia) 

 

1.1 Heyman’s Theory of Masonry Arches 

Heyman’s theory of masonry structures is a very popular and recognized modern 

method to analyze the behavior of masonry arches. It was based on the limit analysis 
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of plastic structures (Selvam, 1993) and the idea Kooharian (1952) proposed, and was 

introduced by Heyman in a paper entitled “The Stone Skeleton” (1966). Heyman’s 

theory puts emphasis on the question if the given structure can balance the given load 

or to find the range of load the structures can stand. Heyman analyzed the plasticity 

behavior of stone structures and made three assumptions about the material: 

(i) Stone has no tensile strength; 

(ii) Stone has an infinite compressive strength; 

(iii) Sliding failure cannot occur. 

(Heyman, 1968) 

Figure 1.4 Heyman’s first two hypotheses (Lucio, 2014) 

There is also an implicit assumption that stone blocks have infinite stiffness, which 

assures that the geometry of structures remains the same for any load. Although the 

assumptions were for stone, they can be used for all the masonry materials. 

 

1.1.1 Static Theorem 

According to Kooharian (1952), “It states that collapse will not occur in the structure 

if at each stage of loading, a safe, statically admissible state can be found.” 

The static theorem, also called safe theorem, aims to find an upper bound value of 

loading that can maintain the equilibrium of the structure. Firstly, there should be an 

equilibrium state such as the internal forces equilibrate the external forces, and the 

thrust line, which shows the path of the resultants of the compressive forces, should be 

within the cross-section of the arch. Once the thrust line passes outside of the cross-

section, we say the arch collapses, as that means tensile stresses should appear in the 

arch, which it cannot resist. 

When the thrust line is just at a surface point, a hinge develops at that point. Hinges 

appear at the intrados or extrados. When the number of hinges is big enough, a 

mechanism of collapse develops. For arches, usually four hinges make the structure fail. 

At collapse the arch forms a 4-bar mechanism.  

Usually, masonry arches are used to support two main types of loads: selfweight and 

live load. Figure 1.5 (a) shows a thrust line in the arch under its selfweight. In the figure 

that situation is shown when the thickness is just small enough to produce five contacts 

between the thrust line and the arch, developing five hinges shown in Figure 1.5 (b) 
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(five instead of four, because of the symmetry). The structure cannot find an 

equilibrium for smaller thickness and collapses. The thickness t belonging to this state 

is the minimum thickness of stable arches of the span 2R. This problem to determine 

the minimally thickness to carry selfweight is called “Couplet-Heyman problem”, 

which will be introduced later. 

Figure 1.5 Semicircular arch of least thickness (Heyman, 1968) 

Adding an additional live load, an arch could collapse due to a similar loss of stability. 

Figure 1.6 shows an example. The sufficiently large non-symmetrical live load makes 

the thrust line out of the arch and four hinges are generated in the alternating intrados 

and extrados.  

Figure 1.6 Live load generating the fourth hinge (Lucio, 2014) 

 

1.1.2 Kinematic Theorem 

Kooharian (1952) formulated this theorem in the following way: “collapse will occur 

(or will have occurred previously) if a kinematically admissible collapse state can be 

found” (the meaning of the term “kinematically admissible collapse state” is explained 

a few rows below). 

The kinematic theorem, also named unsafe theorem, leads to the conclusion that the 

arch will become a mechanism when suitably located four hinges are formed in the 

structure. Thus, we can assume the sufficient number of hinges in the structure and 

apply a “virtual displacement”. Then calculate the work done by external forces and the 

work done by internal forces and satisfy. Taking only live load (with live load multiplier 

𝜆𝑢) into consideration: 
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𝜆𝑢 ∫ 𝑞𝑖0𝑣𝑖
𝑢 ⅆ𝑆

𝑆𝑞

≥ ∫ 𝜎𝑖𝑗
𝑢𝜀𝑖̇𝑗

𝑢 ⅆ𝑉

𝑉

 

where λu refers to the kinematically admissible unstable load multipliers, i.e. such a 

load multiplier for which the structure collapses. 

For rigid blocks as assumed in Heyman’s theory, the internal work is always and 

automatically zero, as the stone blocks have infinite stiffness.  

∫ 𝜎𝑖𝑗
𝑢𝜀𝑖̇𝑗

𝑢 ⅆ𝑉

𝑉

= 0 

𝜆𝑢 ∫ 𝑞𝑖0𝑣𝑖
𝑢 ⅆ𝑆

𝑆𝑞

≥ 0 

Solving the equation 𝜆𝑢 ∫ 𝑞𝑖0𝑣𝑖
𝑘 ⅆ𝑆

𝑆
= 0, a load multiplier can be calculated. Different 

positions of hinges on an arch can be set, and different mechanisms can be found, 

respectively. These mechanisms, i.e. those situations when a positive work is done by 

the loads, are called kinematically admissible collapse states. As a result, the kinematic 

theorem gives several solutions. The lowest load multiplier is to be found, which 

represents an upper bound value of failure loading for a structure. The corresponding 

mechanism is the one which makes the arch collapse. 

Figure 1.7 Limit analysis to a masonry arch: (a) Static theorem; (b) Kinematic theorem (Nuno Mendes, 

2015) 

In summary, by applying the static theorem, equilibrium conditions should be satisfied, 

and the load multiplier is less than or equal to the failure load. Then a lower bound 

value of loading for the structure is determined. Conversely, in kinematic theorem, a 

mechanism condition is found, and the load multiplier is larger than or equal to the 

failure load. So, an upper bound value of failure loading can be determined. 

 

1.2 Failure of circular arches 

1.2.1 Under selfweight 
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As what is mentioned above, arches may fail due to the insufficient of the ring thickness, 

when tensile stresses occur in the cross section. So, a minimally necessary thickness for 

equilibrium of a circular arch should be determined. The is the Couplet-Heyman 

problem.  

Some assumptions were made in the Couplet-Heyman problem: 

(i) Circular arch with uniform thickness is analyzed; 

(ii) Infinitely dense radial contacts; 

(iii) Arch can only fail by hinging; sliding and material crushing are excluded. 

The failure mode is shown in Figure 1.8 below, where β refers to the angles from 

hinge A to B, and α refers to that from hinge A and C. 

Figure 1.8 Stretch of a symmetric circular arch subjected only to its own weight, with a symmetric five-

hinge rotational collapse mechanism (Cocchetti et al, 2011) 

Several solutions for semicircular arch are given by different people with different 

methods. Couplet (1730) assumed that the hinge B would appear at a position β = 45° 

and used elementary statics method to calculate a just failing arch. The minimum 

thickness he got is approximately 0,101 times the radius of middle axis (r in Figure 

2.7). Milutin Milankovitch (Foce, 2007) treated the thrust line theory from both a 

mechanical and mathematical point of view. He implicitly and instinctively applied the 

statical theorem (still not known at that time), and calculated the hinge position and 

minimally necessary thickness for selfweight. The results are: 

𝛽(90°) ≈ 54,5°, 𝑡𝑚𝑖𝑛(90°) ≈ 0,1075 ∙ 𝑟 

Heyman(1967) found unique equilibrium force system while minimizing the ring 

thickness. The solution given by Heyman is: 

𝛽(90°) ≈ 58,8°, 𝑡𝑚𝑖𝑛(90°) ≈ 0,106 ∙ 𝑟 

Cochetti at al gave a corrected analytical solution avoiding two mistakes Heyman had 

committed, and simulated the problem with the discrete element code DDA 

(Discontinuous Deformation Analysis, which will be introduced in section 2.1.2) 

models in 2011. They received the analytical solution and confirmed with the 

simulations: 

𝛽(90°) ≈ 54,5°, 𝑡𝑚𝑖𝑛(90°) ≈ 0,1074 ∙ 𝑟 

http://appliedmechanicsreviews.asmedigitalcollection.asme.org/article.aspx?articleid=1678926
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1.2.2 Under live load 

Applying a live load, the arch collapses when a mechanism is formed. Failure of an 

arch may occur due to hinging, sliding, material crushing and cracking. 

Boothby et al made a conclusion for possible failure in single-ring arch without material 

crushing (Figure 1.9). Sarhosis et al considered the possible crushing and cracking, 

which is shown in Figure 1.10. The failure mode depends on so many effects (like the 

exact position of the arch, material characteristics, exact geometry and stereotomy etc.) 

that each case has to be analyzed individually, with any of those methods that will be 

summarized in the next section. 

 

Figure 1.9 Collapse mechanisms of a masonry arch with rigid abutments (Nuno Mendes, 2016) 

 

Figure 1.10 Failure modes in masonry arch bridges (Sarhosis et al, 2016) 
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2 Computational Methods 

As far as my thesis project is concerned, the recent computational methods of stability 

analysis for arches can be roughly classified into five categories: graphic static method, 

empirical methods (such as MEXE), finite element method (FEM), discrete element 

method (DEM) and limit state analysis (LSA), based on both static theorem and 

kinematic theorem.  

Graphic static method, assuming the structure is rigid and no change in form when 

subjected to the action of forces, looks forward to a solution of static equilibrium 

problems by means of accurately constructed geometrical figures. The magnitude, 

direction and line of action of a force are represented by the length, inclination and 

position of a straight line. The unknown quantities required are obtained directly from 

the figures by scaling lines and angles. An example is shown in Figure 2.1. In (a) 

weights of different blocks and the thrust line are indicated on the random arched 

structure. In (b) the internal forces of one block are shown and closed in a force polygon 

in (c). The total force polygon for all the blocks is shown in (d). 

The MEXE (Military Engineering Experimental Establishment) method is a traditional 

technique which uses empiric calculations to assess the load carrying capacity of 

masonry arch bridges. It is still widely used in the practice for relatively simple bridges. 

In the last twenty years, FEM developed quickly, and was applied to the analysis of 

masonry arch bridges. The discrete nature of the masonry collection cannot be reflected 

in FEM and it is difficult to simulate the contact separation and sliding. What’s more, 

with the deformations of masonry structures, changes in geometry will occur, but new 

contacts cannot be taken into consideration in FEM. 

In this chapter, DEM and LSA are introduced in detail, with a particular emphasis on 

three commercial software – 3DEC, Archie-M and RING, which are widely used in the 

modern analysis of masonry arch bridges. They will be used in my later simulations 

and calculations.  
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Figure 2.1 Thrust line in a random arched structure (Block, DeJong et al, 2006) 

 

Figure 2.2 Several arch models in computational methods: Finite element method model (i); Discrete 

element method model (ii); Limit state analysis - RING model (iii); Limit state analysis - Archie-M 

model(iv) (http://www.portusproject.org/methods/computer-graphics/structural-analysis/; Lemos 1998; 

http://www.limitstate.com/news/limitstate-ring-3-preview; http://www.obvis.com/archie-theory/) 

http://www.portusproject.org/methods/computer-graphics/structural-analysis/
http://www.limitstate.com/news/limitstate-ring-3-preview
https://www.google.hu/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwijisSQyK3eAhWisKQKHdklBtAQjRx6BAgBEAU&url=http://www.portusproject.org/methods/computer-graphics/structural-analysis/&psig=AOvVaw3HY-3EhZn6fBYb3wAjB4K2&ust=1540931953097684
https://www.google.hu/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiA5YqNyq3eAhUOMewKHUUgCBgQjRx6BAgBEAU&url=https://www.researchgate.net/figure/the-deformed-shape-of-a-masonry-arch-bridge-modelled-using-3dec-courtency-of-J-V_fig22_289520880?_sg%3DriupBba2OUsOXrMBaeGMSeyuFHfv8C1_Y6F9f6M6gxjHtPGfRCU6T-tf_QS6gSt_tn-R8Ze95MBsQ4qdvVeUfg&psig=AOvVaw0u7SCDJjl67xx8U-L8nhkv&ust=1540968652021625
https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiJ3KThy63eAhWDmbQKHe0XAcUQjRx6BAgBEAU&url=http://www.limitstate.com/news/limitstate-ring-3-preview&psig=AOvVaw1tVU0Pg_cNRymR94Z6LyfO&ust=1540932006155638
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2.1 Discrete Element Method 

Discrete element method was first presented by Peter A. Cundall in his thesis titled 

“The measurement and analysis of accelerations in rock slops” in 1971.  

A numerical technique is said to be a discrete element model if:  

- it consists of separate, finite-sized bodies, so-called discrete elements, each of them 

being able to displace independently from each other, so the elements have independent 

degrees of freedom;  

- the displacements of the elements can be large;  

- the elements can come into contact with each other and loose contact, and these 

changes of topology are automatically detected during the calculations. (Bagi, 2012) 

As we can see, the main advantage of DEM over FEM is that it can be applied for 

discontinuous model. Structures can be assumed as a collection of finite-sized 

individual elements, such as bricks and granules. The elements are connected with 

joints. So, the discrete element method can simulate masonry structure and particulate 

matter better than FEM. 

Every DEM model can be seen as the collection of separate elements and their contacts. 

The elements can be rigid or deformable and shapes of the elements vary: convex or 

concave, smooth or nonsmoothed, polyhedral, spherical, elliptical and so on. When two 

elements are in contact, contact forces are formed and can be transmitted from one to 

the other. The constitutive relations can be specified. 

When the initial geometry and properties of elements and contacts are defined, 

boundary conditions, external load and/or prescribed displacements should be set by 

the users. Based on these data, the displacement increments are determined. The state 

of the system is history dependent, new contacts may be formed and calculations will 

be performed a lot of times. Two main kinds of time integration methods can be applied: 

explicit or implicit time integration. The main difference between them is that the 

explicit methods do not check whether the calculated equations of motion are satisfied 

at the end state in a time interval, but the implicit methods check it. As a result, explicit 

methods are less time-consuming and implicit methods are more numerically stable.  

In the following part, the most widely used codes in DEM (3DEC, DDA, CD) are 

introduced.  

 

2.1.1 3DEC 

3DEC (Three-Dimensional Distinct Element Code) is a commercial program which is 

an extension of the 2-dimensional code UDEC of P.A. Cundall. They are both 

developed by Itasca and widely applied in the engineering practice for masonry 

structures and for rock mechanics problems.  
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3DEC can simulate both quasi-static and dynamic response to loading. It has the 

following main features: 

  - blocks can be rigid or deformable, 

  - suitable contacts behaviors can be defined by parameters like joint normal and shear 

stiffness properties etc., 

  - an explicit time integration procedure is applied to find the solutions. 

The elements 

The shape of the elements in 3DEC is polyhedral. The elements may be convex or 

concave. The elements can behave in a perfectly rigid way or as deformable blocks. For 

rigid blocks the elements have six degrees of freedom (three translational and three 

rotational). Deformable elements are divided into simplexes (tetrahedral) by bisecting 

planes. The vertices of the simplexes are nodes and 3D domains (Voronoi-cells around 

the nodes) are assigned to these nodes. Each node of the blocks has three translational 

DOFs, which means the deformable elements have 3n DOFs, where n represents the 

number of nodes. 

Usually, for simulating masonry structures, especially rock or brick structures, the 

geometry of the model should be prepared in detail as individual blocks must be set 

detailed to model the whole structure.  

The contacts 

In order to recognize the contacts between discrete elements, the software should check 

all the possible pairs at first, where a method called Cell Mapping and Searching is used 

in 3DEC. Figure 2.3 illustrates the logic for Cell Mapping and Searching in 3DEC. 

First map all the blocks in block envelop into a cell space with identification numbers 

and entries. By mapping them, the neighboring elements can be found much easier. 

Note that the searching space is increased in all directions by a tolerance, so that all 

blocks within the given tolerance can be found.  

Figure 2.3 Block mapping to cell space (Itasca Consulting Group, 2003) 
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As the simulating process is history dependent, new contacts may form repeatedly. 

Moreover, the number of the elements is usually large. This step can be really time-

consuming. 

After finding the neighboring elements in pairs, we can determine the type of contacts 

(see explanation below). The analysis consists of two parts, determining a “common-

plane” and testing both blocks separately for contact with the common-plane. The 

common-plane is, by definition, that plane which minimizes the overlap and maximizes 

the gap between two discrete elements, so that, in some sense, it bisects the space 

between the two blocks. 

Figure 2.4 Common-plane in 2D (Itasca Consulting Group, 2007) 

A contact is formed when two elements overlap each other. In two dimensions, which 

is not the topic of my thesis, topologically three types of contacts exist, (i) edge-to-edge 

contact, (ii) corner-to-edge contact, and (iii) corner-to-corner as shown in Figure 2.5. 

Figure 2.5 Three types of contacts in 2D (Mohammad, 2010) 

When it comes to 3DEC (three dimensions), the contact types are extended to 7 types: 

face-to-face, edge-to-face, corner-to-face, edge-to-edge (intersecting), edge-to-edge 

(along each other), corner-to-edge and corner-to-corner. 
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For the convenience of calculation, sub-contacts are made by discretizing the common-

plane. Block faces are discretized into triangles containing surface nodes. For rigid 

blocks, these sub-contacts are generally created at the vertices of the block face. For 

deformable blocks, there are a number of surface nodes in the triangular faces. Each 

node has three independent degrees of freedom. There are two types of sub-contacts: 

vertex-to-face and edge-to-edge.  

In the k-th contact, the deformation increment of a sub-contact during Δt is calculated 

using the node deformation increment minus the deformation of the coincident point on 

the opposing face. The deformation increment is decomposed into a normal and a 

tangential deformation, Δ𝑢𝑛
𝑘 and Δ𝑢𝑠

𝑘. 

As for the constitutive law of the contacts, Coulomb-type frictional model is the most 

widely used one which constrains friction forces on every contact, depending on the 

magnitude of the applied normal force. The surface-distributed force transmitted 

through the sub-contact is decomposed into a normal and a tangential component, 

denoted by 𝜎𝑛
𝑘  and 𝜎𝑠

𝑘 , respectively. The increment of normal and tangential 

distributed forces can be determined by the formula below: 

Δ𝜎𝑛
𝑘 = 𝑘𝑛

𝑘Δ𝑢𝑛
𝑘 

Δ𝜎𝑠
𝑘 = 𝑘𝑠

𝑘Δ𝑢𝑠
𝑘 

where Δ𝑢𝑛
𝑘  and Δ𝑢𝑠

𝑘  are the increment of the normal and tangential relative 

translations in contact k; 𝑘𝑛
𝑘 and 𝑘𝑠

𝑘 are the normal and shear stiffnesses of the contact 

k. 

The equations of motion 

In 3DEC, elements are made deformable by subdivision into finite elements, which is 

in some sense similar to finite element methods. All calculations are performed on 

Voronoi-cell which is shown in Figure 2.6 (two-dimensional). Masses denote the mass 

of the Voronoi-cell of the node (blue zone) and forces are the resultant of the distributed 

forces acting on the Voronoi-cell of the node.  

Figure 2.6 Polyhedral element subdivided into simplexes and Voronoi-cell (Bagi, 2012) 

The kinematics of deformable discrete elements of 3DEC can be described by the 

translations of the nodes of its simplexes and are based on Newton’s second law. 

Suppose there are N nodes in all elements, and the p-th node belongs to the whole block. 

The equations of motion for the p-th node can be written in the form 
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𝑚𝑝(𝑡)𝒂𝑝(𝑡) = 𝐟𝑝(𝑡, 𝐮(𝑡), 𝐯(𝑡)). 

The complete system of the equations of motion is: 

𝐌 ∙ 𝐚(𝑡) = 𝐟(𝑡, 𝐮(𝑡), 𝐯(𝑡)). 

For rigid blocks, the equations of motion can be written in two parts, the translational 

and rotational motion. The two equations of motion for the i-th block can be written in 

the form  

𝑚𝑖(𝑎𝑖 + 𝛼𝑣𝑖 − 𝑔𝑖) = 𝑓𝑖  

𝐼(𝜔𝑖̇ + 𝛼𝜔𝑖) = 𝑀𝑖 

where       𝑎𝑖   the acceleration of the centroid of the block 

          𝑣𝑖     the velocity of the centroid of the block 

          𝛼     the viscous (mass-proportional) damping constant (will be explained 

later) 

          𝑓𝑖        the forces action on the block (contact forces, external forces and 

gravitational forces) 

          𝑚𝑖    the mass of the block 

          𝑔𝑖    the gravity acceleration vector 

          𝜔𝑖̇     the angular acceleration about the principal axes 

          𝜔𝑖    the angular velocity about the principal axes 

          𝑀𝑖    total torque 

          𝐼     approximate moment of inertia 

Time integration 

The program uses an explicit solution scheme. When considering a time interval, the 

end displacement and velocity values are determined by the starting values. When the 

end values are obtained, this technique does not check whether the equations of motion 

are satisfied at the endpoint of the actual interval. The calculated values are just used as 

the following time interval at the start point. 

3DEC uses the method of central differences, in which the discrete approximation of a 

specific equation of motion of p-th node in the (ti, ti+1) time interval is: 

𝑚𝑝
𝐯𝑖+1/2

𝑝
−𝐯𝑖−1/2

𝑝

𝛥𝑡
= 𝐟𝑖

𝑝
. 

The state at time t=ti is known, and the state at ti+1 can be calculated 

𝐯𝑖+1/2
𝑝 = 𝐯𝑖−1/2

𝑝 + Δ𝑡 ∙
1

𝑚𝑝 𝐟𝑖
𝑝
, 
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𝐮𝑖+1
𝑝

= 𝐮𝑖
𝑝

+ Δ𝑡 ∙ 𝐯𝑖+1/2
𝑝

, 

where 𝐯𝑖−1/2
𝑝

 and 𝐯𝑖+1/2
𝑝

 is the approximation of the function v(t) of p-th node in the 

middle point of the interval (ti-1, ti) and (ti, ti+1). 

For there is no checking for the predicted values, numerical instabilities may occur. So, 

the time step should be adequately small to ensure the numerical stability. 

Damping 

In physics, damping is the effect which reduces the amplitude of vibrations by 

dissipating kinetic energy. Damping used in computation process has the effect to 

reduce the dynamic vibration of the system and the unrealistic numerical oscillations 

around the exact solution. The applied damping methods help to increase the numerical 

stability of the engineering problems.  

Two kinds of damping models are used in 3DEC: adaptive global damping and local 

damping. Adaptive global damping is proportional to the magnitude of velocity. The 

value of it should be modified constantly with coefficients to ensure that the calculated 

change of kinetic energy in a timestep is cut according to the user-requested ratio. If a 

system tends to be equilibrated so that the velocities do not change significantly any 

more, the adaptive global damping gradually decreases. When an equilibrium state is 

found, the damping becomes zero. 

In local damping a force is added to the unbalanced force vector (i.e. the load vector 

acting on the nodes or on the rigid elements) in the equations of motion, and will be 

considered to reduce the unbalanced forces to help the solution to get convergence. It 

helps to decrease accelerating motions, while steady-state solutions are not affected. 

During my work, adaptive global damping was used with a default value of damping 

coefficient (α=0,5) in 3DEC. It means that the kinetic energy will be cut back by 50% 

if the node is not equilibrated. The kinetic energy dissipation is simulated and a solution 

will be found in less time than that of simulation without damping. 

Applications 

3DEC is particularly well suited to simulate blocky structures, such as stone masonry 

arches. There are several important assessment experiments in the 1990s, which 

indicated the importance of the development of DEM, and in the meanwhile, did some 

efforts to study masonry structures and rock mechanics.  

Till today, 3DEC has become the most widely used discrete element method code in 

the engineering practice of masonry structures and rock fracture mechanics. 
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2.1.2 The DDA Model 

The discontinuous deformation analysis (DDA) method was first presented as an idea 

to determine the deformed configuration of a block from a series of measured 

displacements and deformations (Goodman and Shi, 1985). Then the method was 

extended to analyse the deformation of a discontinuous block system (Shi, 1988), with 

uniform polygonal elements, having undeformable contacts that transmitted forces 

between the elements.   

The elements 

The DDA method is somewhat quite similar to 3DEC at first sight. The shape of 

elements is also polyhedral, but in addition to the translation and rotation as a rigid body 

(6 degrees of freedom), a uniform deformation field also belongs to the element. All 

together there are 12 DOFs in a DDA element. Similarly, a uniform stress field should 

be considered when it comes to reduced force vector of an element. 

where 𝑢𝑝  is the generalized displacement vector of element p and 𝑓𝑝  is the 

generalized reduced force vector of element p. 

The contacts 

In DDA, the contacts are assumed to be rigid due to a penalty-constraint approach. In 

the penalty method, contact springs constrain the overlapping of two elements, as 

Coulomb-friction gives a limit to the tangential force magnitude. As a result, no 

overlapping or interpenetration of blocks is allowed.  

The Mohr-Coulomb joint failure criterion is used in DDA method. Three types of 

contact states exist:  

(i) Free contact if the normal reduced force is positive, in this case the values of 

forces will be modified to zero.  

(ii) The normal component of the contact force is compressive and the friction (the 

tangential reduced force) is constrained and when it reaches the biggest 
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magnitude, the blocks will slide. The sliding force is rearranged from the known 

normal contact force. 

(iii) The normal component of the contact force is compressive and the tangential 

component of the contact force doesn’t reach the biggest value. In this case, no 

sliding between the two elements and the reduced forces is calculated according 

to the Mohr-Coulomb criterion. 

The equations of motion 

The equations of motion in DDA are derived by the principle of minimization of Hu-

Washizu functional, in which kinetic energy is taken into account. Note that don’t 

neglect the potential energy of the contacts. 

𝐌 ∙ 𝐚(𝑡) + 𝐂 ∙ 𝐯(𝑡) + 𝐊 ∙ 𝐮(𝑡) = 𝐟𝑒𝑥𝑡(𝑡, 𝐯(𝑡), 𝐮(𝑡)) 

Time integration 

When solving the equations of motion, DDA uses an implicit time marching scheme, 

the Newmark-β method, which is totally different from 3DEC. Implicit methods are 

generally numerically stable and larger time-step size can be used. But the problem is 

that it may be more time-assuming than explicit calculations. In addition, when there 

are extensive topological changes (like in case of a sliding soil slope), a phenomenon 

called “open-close iterations” may occur, which leads to very time consuming 

simulations, see Bagi (2012) for details. 

Comparison of DDA and 3DEC 

The differences between DDA and 3DEC are presented in the preceding sections. Now 

I summarize them: 

- For DDA model, each element considers uniform stress and strain vectors while 

for 3DEC model, the deformations are either zero (rigid elements), or vary from 

tetrahedron to tetrahedron inside the element that is made deformable by being 

subdivided into simplexes. 

- Deformable contact can be used in 3DEC and DDA while penalty-constraint (no 

overlapping) approach existed in early versions of DDA (in recent DDA versions 

the contacts are deformable). 

- Explicit time integration is used in 3DEC while DDA uses an implicit method. 

- Artificial damping is necessary in 3DEC to ensure numerical stability, but in DDA 

this is not necessary. If the user wants to simulate physical damping in DDA, 

damping can be included in the stiffness matrix. 

- The equations of motion in 3DEC are based on Newton’s second law while in DDA 

principle of minimization of Hu-Washizu functional. 
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2.1.3 The CD Method 

The contact dynamics (CD) method, also called nonsmooth contact dynamics (NSCD), 

was presented by M. Jean and J. J. Moreau at the end of the 1980s. This method was 

first applied for the analysis of granular materials, and it showed a faster and more 

efficient approach than 3DEC to simulate the granular mechanics with a relatively large 

particle scale and implicit time integration. Also, in some dynamic problems such as 

earthquake analysis and sound waves testing, the CD method is very helpful. 

The pair of two elements and the contacts 

The method of contact dynamics is very different from the methods above (3DEC and 

DDA). The basic unit in CD is the pair of two randomly chosen elements, not a single 

element alone. Also, the interactions between pairs are described by very simple contact 

laws instead of constitutive laws. The contact laws will be introduced later. 

Since the individual deformations of the grains are usually negligible in real problems, 

the elements in CD are modelled as perfectly rigid. For rigid elements, I will only 

discuss spherical ones in this thesis for the case of simplicity. The polyhedral elements 

are also widely used in many problems in CD.  

An arbitrarily chosen pair of two neighboring elements is shown in Figure 2.7. If the 

gap distance between the two elements equal to zero, we say the two elements have a 

point-like contact. Note that elements cannot overlap each other in CD method. 

Figure 2.7 The pair of two neighboring elements (Bagi, 2012) 

In addition to Cell Mapping and Searching introduced earlier, for a lot of elements, the 

potential contacts can be identified as the edges in a Delaunay triangulation where the 

vertices coincide with the particle centers (Figure 2.8). This method is usually 

conservative and time-consuming. The number of potential contacts may be larger than 

the real number of contacts. What’s more, if the potential contact of the two colliding 
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particles is not recorded, particle penetration may occur. But the error is usually minor 

and can be reduced by decreasing the time step. 

Figure 2.8 Potential contacts as given by Delaunay triangulation (Krabbenhoft et al, 2012) 

 

Nonsmooth contact laws 

If there is a gap between the two elements, no force is activated and the normal force fn 

is identically zero (Figure 2.9). If the gap is closed, the normal force is a compression 

which can have any value which is necessary to satisfy the equations of motion. 

Figure 2.9 A potential contact and Characteristics of Signorini’s complementarity relation 

These conditions define a complementary relation, named Signorini’s conditions, 

which can be shown in formula below: 

{
𝛿𝑛 > 0 ⇒ 𝑓𝑛 = 0

𝛿𝑛 = 0 ⇒ 𝑓𝑛 ≥ 0
 

Notice that the normal force fn could only be negative i.e. compressional. 

A contact is persistent if both 𝛿𝑛 = 0  and 𝑣𝑛 = 𝛿̇𝑛 = 0 . Hence, Signorini’s 

complementarity relation can be developed as follows: 

{

𝛿𝑛 > 0 ⇒ 𝑓𝑛 = 0

𝛿𝑛 = 0 {
𝑣𝑛 > 0 ⇒ 𝑓𝑛 = 0

𝑣𝑛 = 0 ⇒ 𝑓𝑛 ≥ 0

 

𝑓𝑛 
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The friction also influences the model importantly. Coulomb’s friction law is 

considered in the CD method, which determines the relationship between friction force 

ft and the sliding velocity ut at a contact point between two elements for dry friction 

(see Figure 2.10). 

Figure 2.10 Coulomb’s friction law (Radjai and Richefeu, 2010) 

{

𝑢𝑡 > 0 ⇒ 𝑓𝑡 = −𝜇𝑓𝑛

𝑢𝑡 = 0 ⇒ −𝜇𝑓𝑛 ≤ 𝑓𝑡 ≤ 𝜇𝑓𝑛

𝑢𝑡 < 0 ⇒ 𝑓𝑡 = 𝜇𝑓𝑛

 

Here we can see that the number of the unknown contact forces and their values in the 

model depend on the velocity (both normal and tangential component) of the contacts, 

just as the name “Contact Dynamics” literally suggests. 

The equations of motion and the time integration 

In CD, the fundamental kinematical unknowns are time-dependent, just like in 3DEC 

or DDA. The velocities, positions and reduced forces vectors of the p and q pair are 

calculated by applying the implicit version of the Euler method, which can be written 

as: 

where   𝑣𝑖
𝑝
 and 𝑣𝑖

𝑞
 are the velocities of p and q at t=ti; 

𝑢𝑖
𝑝
 and 𝑢𝑖

𝑞
 are the positions of p and q at t=ti; 

𝑓𝑖+1
𝑝

 and 𝑓𝑖+1
𝑞

 are resultants of the external and all contact forces acting on 

p and q; 
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𝑓𝑖+1
𝑝𝑘

 and 𝑓𝑖+1
𝑞𝑘

 are resultants of the external and all contact forces acting on 

p by q and on q by p, respectively; 

𝐵𝑖
𝑝𝑘

 and 𝐵𝑖
𝑞𝑘

 are the transition matrices; 

𝑀𝑝 and 𝑀𝑞 are the matrices where the mass and rotational inertia of the 

elements are collected.  

Because the state of system at ti is known, thus, what we should do is to find the state 

of the system at ti+1. 

To find the state of system at time ti+1, the contact dynamics method introduced the 

concept of “iterative solver”, which is used to find the contact forces at ti+1. The iterative 

solver will sweep along all pairs in the system one by one in a random order. Note that 

Cell Mapping and Searching scheme is used here. 

When analysis the p and q pair, first assume that there is no contact force between them 

(no contact in p and q pair) and compile the reduced forces 𝑓𝑖+1
𝑝

 and 𝑓𝑖+1
𝑞

. Assume 

constant acceleration during the time interval, calculate the predicted position of p and 

q. If the pair is indeed not in contact, the analysis of the pair is ended. If not, determine 

the contact force in the pair based on the equations of motion (and truncate the 

tangential force component if the friction limit is exceeded). The iterative solver has to 

be performed over and over again until the change in the forces becomes negligibly 

small and the forces belonging to ti+1 are received.  

By using an implicit time discretization, large time steps are allowed, which speed up 

significantly the time to find a result. The results derived are more reliable, and show 

better numerical stability than explicit time integration. 

 

2.2 LSA: Archie-M 

Archie-M is a Windows software which helps with the analysis of masonry bridges and 

viaducts. It is developed by Obvis. The first version of Archie was built in 1984 by Bill 

Harvey and till now it has been developing in a long way. While there are so many 

unknows and intangibles in masonry structures and it is impossible to fully analyze 

masonry bridges in all details, the Obvis team tends to achieve a level of confidence 

that the structure is sound. Archie-M helps to explore possibilities rather than results. 

Archie-M is based on Heyman’s static theorem (hence it completely ignores the 

possibility of frictional sliding between the blocks), and does a thrust line analysis with 

the help of powerful calculators in computer, instead of tedious hand calculation. The 

possibility of material crushing is included by using a finite-width “thrust zone” instead 

of a zero-width thrust line. Archie-M carries out a form of equilibrium analysis. The 

aim of Archie-M is to simulate whether a specific load can be supported by the bridge, 
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and to estimate the collapse load, but it cannot be used to consider how the bridge will 

deform.  

In the following part, the theory and model of Archie-M will be introduced. 

 

2.2.1 Equilibrium 

The basis of equilibrium analysis is set out by Heyman (The Masonry Arch, J Heyman, 

Ellis Horwood, 1980). It is based on the plastic theorems which were probably first 

developed in Hungary, but which were brought to Britain by Baker. 

(http://www.obvis.com/archie-theory/) The details of plastic theorems can be seen in 

the preceeding section 2.1.  

Based on the upper bound plastic theorems, Heyman set some equilibrium conditions 

to prevent the appearance of mechanism and used a large safety factor to simplify his 

solution. Archie-M follows some of Heyman’s simplifications to do equilibrium 

analysis but not mechanism analysis. 

Figure 2.11 shows two hinging arrangements of an arch as built and as collapse. Three 

hinges appear when the arch is under selfweight but still safe, usually at the intrados at 

the crown and at the extrados near the springings (symmetrically). The whole system 

can be seen as a three-bar linkage (one bar is the ground). Applying a live load, the 

shape of thrust line changes. As the load increases and the load position changes, the 

arch may collapse, when the mechanism becomes a four-bar one with a new crack 

appearing. At collapse, the arch sways to one side. 

The main difference between multi-span and single span bridges lies in piers. The 

movement of the pier which dues to a load applies to one span, can result in a reaction 

to the adjacent span.  

Further to the resistance to the applied overturning forces by piers, the fill, backing and 

the spandrel walls above the arch will stiffen the arch. 

http://www.obvis.com/archie-theory/
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Figure 2.11 Arch mechanisms (http://www.obvis.com/archie-theory/) 

 

2.2.2 The Thrust line analysis 

Based on Heyman’s safe theorem (1966), a thrust line shows one possible statically 

admissible state of the arch bridge under load. When the thrust line touches the 

boundary of the arch, the arch collapses.  

Figure 2.12 Determination of thrust line (Nobile, 2014) 

Equilibrium analysis is applied to determine a thrust line in the structure, and to check 

whether the thrust line is inside the cross section. To determine a point of the thrust line, 

eccentricity (e) of force resultant and the relation between normal force and shear force 

are important. With these two parameters, position and slope of the thrust line in one 

cross section can be defined. As arch is a statically indeterminate structure, the solution 

is not unique. The thrust line analysis defined the load carrying capacity by limiting the 

zone where the resultant force can be positioned. 

Heyman then proposed the concept of a geometric factor of safety (G.F.O.S.), which 

gives an indication of how much larger the arch under consideration is in comparison 

to one that is just stable under the given loading pattern (Gilbert, 2007). Harvey (1988) 

http://www.obvis.com/archie-theory/
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extended the trust line to thrust zone, combining the safe theorem and geometric factor 

of safety. The physical meaning of thrust zone is a collection of effective cross-sections, 

which carry the load.  

Archie-M uses thrust zone instead of thrust line. The thrust zone is based on 

consideration of the actual material crushing strength. As a result, material crushing is 

included as a possible failure mode of an arch.  

 

2.2.3 Frictional Sliding 

Archie-M is based on Heyman’s theory of masonry structures. One of the assumptions 

he made is that sliding between masonry units cannot occur.  

Arch models in Archie-M is considered to be rigid and no sliding exists. Structures fail 

only by hinging mechanism or material crushing. Concerning the hinging mechanism, 

the arch fails because of the openness of contacts. Bagi (2014) summarized the 

Heymanian and Non-Heymanian contact displacements.     

Figure 2.13 Contact displacements: (i) Heymanian contact displacement; (ii) Non-Heymanian contact 

displacement (Bagi, 2014) 

 

2.2.4 Conservatism 

Archie-M is a conservative program following some of the simplifications of Heyman 

which uses a large safety factor. Partial factors can be reset by users, with default 

conservative values from BD 21/97.  

It (Archie-M) is of paramount importance, that any analytical approach can be 

demonstrated to be conservative. This statement flies in the face of the suggestion from 

BA16 annex E that for assessment purposes, analytical results should lie in a band +-

20% from the true collapse load established by testing. (http://www.obvis.com/archie-

theory/) 

 

 

 

http://www.obvis.com/archie-theory/
http://www.obvis.com/archie-theory/
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2.2.5 Bridge Model of Archie-M 

Single and multi-span bridges can be modeled in Archie-M, an object-oriented program. 

Users should determine the geometry, material properties and load conditions carefully 

when simulating a real bridge. 

Figure 2.14 A complex multi-span masonry bridge model in Archie-M (Obvis Ltd (2007)) 

Several arch shapes are supported in Archie-M: circular, elliptical, three-centred, 

pointed, flat and true-shape which can be set by users by specifying some coordinates 

of the bridge.  

The abutments are not obligatory to create, and the software will assume the necessary 

reactive forces, while the piers are necessary to be specified as the trust line will be 

shown in the pier model. 

Archie-M model is an arch model with backfill and road on the arch. Similar to the arch 

shape, the road shape can be defined by different shapes or just use some points to 

define a fit curve. Two types of backing, flat-top and tangential ones, can be supported 

in Archie-M. Note that only the vertical component of the backing force is assessed by 

the software. 

In summary, Archie-M can approximately take into account the geometry of the arch 

and the properties of arch, fill and backing, i.e. masonry strength, masonry unit weight, 

mortar loss (which is used in the analysis of old bridges) and the angle of friction (φ) 

of the fill unit. With or without extra live load, the program can calculate the thrust line 

and visualize it in the arch. If the trust zone does not excess the extra boundaries of the 

arch, the bridge is in a safe condition. In this way, we can determine the collapse load 

of the arch easily. 
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2.3 LSA: RING 

RING is commercial software developed by the University of Sheffield spin-off 

company, LimitState Ltd. RING helps to analyze rigid-plastic arches, using a 

mechanism method in two-dimension. Different from Archie-M, RING would directly 

identify the collapse state, giving a result of minimum adequacy load factor and 

collapse mode (hinging, sliding or material crushing). In addition, the failure mode 

together with a thrust line would be represented on the screen. The program employs 

an efficient linear programming (LP) method, using mathematical optimization to find 

the minimum solution of virtual works equations.  

The realism of computational model in RING was developed, considering the effect of 

sliding, soil-structure interaction and material crushing. Multi-span and multi-ring 

masonry arch bridges can be analyzed in this program, built of arch barrels, supports 

and backfill, while Archie-M cannot analyze multi-ring arches. 

 

2.3.1 LP Limit Analysis method 

Livesley (1978) proposed a discrete limit analysis model for masonry structures. In 

RING, an arch is assumed to be a collection of rigid blocks connected by joints. The 

mechanism method combines the upper bond and the lower bond theorems and is 

solved by linear programming efficiently. RING considers only associated friction, 

which means the contact dilation angle is equal to the friction angle in the contacts. As 

a result, the upper and lower bound solutions for finding the failure load multiplier are 

equal, which is presented graphically in Figure 2.15. In this way, a unique solution can 

be found. However, it is important to emphasize that in reality the friction angle of a 

contact between masonry blocks (typically about 35-45°) is not equal to the dilation 

angle (around 0-10°), so the application of associative contact failure model is not really 

realistic. 

Figure 2.15 The relationship between upper and lower bound solutions in RING (Gilbert, 2014) 

A joint equilibrium formulation, which is used to find the adequacy factor, can be 

solved by LP algorithms. The formulation is shown below. 
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Assuming there are b blocks and c contact surfaces in an arch, contact and block forces 

are shown in Figure 2.16. The problem to find a collapse load factor is to find the 

maximum value of load factor based on static theorem, i.e.: 

Max λ 

Equilibrium constraints: 

𝐁𝐪 − λ𝐟L = 𝐟D 

where B is an equilibrium matrix (3b × 3c) containing the direction cosines; f is the 

block forces vector, 𝐟 = 𝐟D + 𝐟L, where 𝐟D and 𝐟L are vectors of dead and live loads 

applied at the centroid of blocks, respectively; q is the contact forces vector,  

𝐪𝐓 = {𝑛1, 𝑠1, 𝑚1, 𝑛2, 𝑠2, 𝑚2, … 𝑛𝑐, 𝑛𝑐, 𝑛𝑐}   

No-tension (‘rocking’) yield constraints: 

𝑚𝑖 ≤ 0,5𝑛𝑖𝑡𝑖

𝑚𝑖 ≥ −0,5𝑛𝑖𝑡𝑖
} for each contact, 𝑖 = 1, … . , 𝑐  

And the sliding yield constraints:  

𝑠𝑖 ≤ 𝜇𝑖𝑛𝑖

𝑠𝑖 ≥ −𝜇𝑖𝑛𝑖
} for each contact, 𝑖 = 1, … . , 𝑐  

Figure 2.16 Block and contact forces (LimitState Ltd, 2016) 

Using this formulation the LP problem variables are the contact forces and the unknown 

load factor λ. 

 

2.3.2 Masonry crushing 

RING considers the fact that no material can bear infinite compressive stresses. It is 

assumed that the compressive stress is carried by a rectangular stress block in the 

vicinity of hinges (Figure 2.17). It is obvious that the envelope is non-linear.  

To achieve linear programming, a LP solver for moment is still to be used to obtain a 

solution to the global program (the third equation in section 2.3.1), then these 

constraints need to be approximated as a series of linear constraints. In other words, the 

true non-linear moment yield surface is found by a piece-wise linear representation. 
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Figure 2.17 Contact surface moment vs. normal force failure envelopes for: (i) infinite; (ii) finite masonry 

crushing strengths (LimitState Ltd, 2016) 

 

2.3.3 Frictional Sliding 

As mentioned earlier, an “associative friction (saw tooth)” model is used in RING to 

analyze the effect of sliding. It is not quite realistic for masonry structures where the 

contact dilation angle is much smaller than the friction angle. But this kind of friction 

model saves the linear character of the problem. Figure 2.18 shows the idealized sliding 

models and real behavior of masonry joints.  

Whilst it can be shown that use of a “raw tooth” model for friction can lead to non-

conservative adequacy factors being obtained if sliding is involved in the critical failure 

mode (Drucker 1954), when previously applied to multi-ring brickwork arch bridges 

reasonably good agreement between experimental and numerical results were obtained 

(RING manual). 

Figure 2.18 Idealized sliding models and real behavior of masonry joints (Gilbert et al. 2006) 
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3 Numerical Modeling – 3DEC 

In this part, 5 arch models were built with the help of 3DEC, making two groups of 

arrangements. 

Group 1: three arches with the same number of blocks (51 blocks). The angles of 

embrace of the arches are 180°, 120° and 60°, respectively. 

Figure 3.1 The AutoCAD models of the arches in Group 1 [mm] 

Group 2: three arches with the same size (middle arc line) of blocks (≈0.205 m). The 

angles of embrace of the arches are 180°, 120° and 60°, respectively. 

Figure 3.2 The AutoCAD models of the arches in Group 2 [mm] 

As I determined the size of blocks in group 2 using the arch in group 1 with 60° 

embrace angle, the total number of arches is five.  

The thickness t is invariant, whose value is 1,5 times the minimally necessary thickness 

for selfweight for the semicircular arch, which is 0,107 times the radius of middle line 

(Cocchetti et al). Also, for each group of the arches, different frictional angles are set 

to evaluate the sliding effect of arches. In my work, 30°, 40° and 45° are analyzed. 

The solution strategy of 3DEC models: 

1. Define the geometries with the help of MATLAB and AutoCAD. 

2. Set material properties of the elements and contacts. 

3. Fixed boundary conditions are given and the structures are equilibrated under 

selfweight. 

4. Live load is applied dynamically; the complete load with its full magnitude is 

dropped on the structure. This is repeated using different positions of the arches to 

find the failure loads (which makes the structure fail) and corresponding failure 

modes that belong to the different positions. 
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5. Compare the results. The smallest failure load in one arch is defined as critical load. 

Critical loads and critical positions in several arches can be found. Register the 

types of failure modes. 

6. Apply quasi-static load around the critical positions of arches, and compare the 

values of dynamic critical loads and quasi-static loads. The aim is to check whether 

there is a considerable difference between dynamically applied and quasi-statically 

increased loads. 

7. Check whether the failure load can safely travel starting from outside along the arch 

until its critical position. 

An example of code to determine coordinates of arches with the help of MATLAB can 

be seen in Appendix A. Appendix B and C are codes in 3DEC finding failure dynamics 

load and quasi-static load applied to a certain load position to an arch, respectively. 

Appendix D checks the travelling load along the arch with 51 blocks, 60-degree 

embrace angle and 40-degree friction angle. 

 

3.1 The models of the arches in 3DEC 

The units in 3DEC code are all in the international system of units (SI), with length in 

meter (m), mass in kilogram (kg) and time in second (s). 

3.1.1 Geometry of the models of the arches in 3DEC 

All the arches have the same middle span of 10 m, and the same uniform thickness (t) 

of 0,8025 m and the same width (d) of 0,8025 m. The value of the length is set to be 

equal to the value of thickness, which is 1,5 times the minimally necessary thickness 

for selfweight for the semicircular arch, i.e. 0,8025 m. This value was chosen in the 

following way: 

Literally, the minimally necessary thickness for selfweight refers to the critical 

thickness for which an equilibrium force system can be found when the arch carries its 

own weight. If the thickness is smaller than this value, the arch will not be equilibrated. 

As mentioned above, the minimally necessary thickness for a semicircular arch is about 

0,107 times the middle line radius (Cocchetti et al), which means: 

𝑡 = 1,5 × 0,107 × 𝑅 = 1,5 × 0,107 × 5 = 0,8025 𝑚 

ⅆ = 𝑡 = 0,8025 𝑚 

For the models of Group 1, every arch consists of 51 trapezoidal blocks, while the same 

size of blocks is set for the models of Group 2.  

To calculate the number of blocks of the models in Group 2, first I set the block size of 

60° segmental circular arch as the reference. Since the blocks are slightly trapezoidal, 

I used the middle arc line (red line in Figure 3.3) to measure the size of the blocks.  



Frictional Sliding in Limit State Analysis Codes of Masonry Arches 
 

 36 / 106 

 

The length of the middle arc for 60 ° 

segmental circular arch is: 

𝑅 =
𝐿/2

𝑠𝑖𝑛30°
= 10 𝑚 

               𝐿𝑐𝑢𝑟𝑣𝑒 =
60

180
∙ 𝜋𝑅 = 10,47 𝑚  

Figure 3.3 Determination of the size of blocks 

The size of the blocks: 

              𝑙 =
𝐿𝑐𝑢𝑟𝑣𝑒

𝑛
=

10,47

51
= 0,205 𝑚 

Determine the number of blocks for semicircular arch: 

𝑅 = 𝐿/2 = 5 𝑚 

𝐿𝑐𝑢𝑟𝑣𝑒 = 𝜋𝑅 = 15,7 𝑚 

       𝑛 =
𝐿𝑐𝑢𝑟𝑣𝑒

𝑙
=

15,7

0,205
= 77 

Determine the number of blocks for 120° segmental circular arch: 

𝑅 =
𝐿/2

𝑠𝑖𝑛60°
= 5,77 𝑚 

𝐿𝑐𝑢𝑟𝑣𝑒 =
120

180
∙ 𝜋𝑅 = 12,09 𝑚 

       𝑛 =
𝐿𝑐𝑢𝑟𝑣𝑒

𝑙
=

12,09

0,205
= 59 

As a result, the semicircular arch consists of 77 blocks, the segmental arch with 120° 

of 59 blocks and the segmental arch with 60° of 51 blocks. 

For every arch, I created two blocks to serve as support blocks. The size of the support 

blocks is 2 m × 0,8025m × 0,50 m. The support blocks perfectly touch the two outer 

blocks without gaps or overlaps before adding the selfweight. 
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Two groups of models built in 3DEC are shown in Figure 3.4 and Figure 3.5, 

respectively. 

Figure 3.4 The 3DEC models of Group 1             Figure 3.5 The 3DEC models of Group 2 

In order to produce live load, a loading block should be put on the arch before the 

structure is equilibrated under selfweight with a practically zero initial density. (This is 

necessary because of the requirement in 3DEC that every block has to exist already 

from the beginning of the simulation procedure; after cycling, blocks cannot be added.) 

An example is shown in the figure below. 

 

3.1.2 Material of the models of the arches in 3DEC 

In the project, the DEM code 3DEC should be used as virtual reality, to produce 

computer-simulated experimental results. Deformable limestone voussoirs and dry 

contacts are applied in models. 

Limestone is widely distributed over the world and has rather uniform lithology. It is 

easy to be quarried and used for the base material of building bricks, so it is the most 

common material for masonry structures. I refer to the geostatistics results from the 

University of Texas at Austin, Jackson School of Geosciences 

(https://www.jsg.utexas.edu/tyzhu/files/Some-Useful-Numbers.pdf) to set the material 

properties in my thesis work. 

 

Density (ρ) Young's Modulus (E) Poisson's ratio (ν) 

2700 kg/m3 15-55 GPa 0.18-0.33 

Table 3.1: Some Useful Numbers on the Engineering Properties of Limestone (GEOL 615) 
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The density of blocks is set to 2700 kg/m3, the Young’s modulus is 35 GPa and the 

Poisson’s ratio is 0,25. The material properties of supporting blocks are the same as 

those of the arches. As for loading blocks, I chose a very small density value (100 kg/m3) 

at the initial stage, so that the additional blocks could not noticeably influence 

selfweight equilibrium of the structures. 

Figure 3.6 The 3DEC models with a loading block 

The joints are represented by face-to-face contacts of blocks. Coulomb frictional 

contacts are used in my project: cohesionless contacts with friction, but with zero 

dilation angle. The shear stiffness (ks) and normal stiffness (kn) are 1011 N/m2, 

according to the recommendation of “3DEC 5.0 Manual – Problem Solving 3.8.2”. To 

analyze the sliding mode in arches, different friction angles were set and simulations 

were repeated for all of them. Considering that models in RING cannot set a friction 

angle larger than 45 degrees, the largest value of friction angle is 45° in 3DEC too. So, 

the friction angles I used are 30°, 40° and 45°. 

- Blocks 

- Density:          ρ=2700 kg/m3 

- Young’s modulus:  E=35×1011 Pa 

- Poisson’s ratio:     ν=0,25 

- Joints 

- Normal stiffness:   kn=1011 N/m2 

- Shear stiffness:     ks=1011 N/m2 

- Friction angle:     φ=30°, 40° or 45° 

 

3.1.3 Boundary conditions and equilibrium of selfweight in 3DEC 

The two supporting blocks of the arch are fixed, which means that these blocks cannot 

move and the velocities of their nodes are zero. Nodes mean the vertices of the 

tetrahedral subdivision of the deformable blocks; the whole structure is meshed due to 

the deformable property. 

As a load, I applied the gravity to the structure (9,81 m/s2 in the vertical, i.e. in the y-

direction) and cycles a certain time to find the equilibrium state of all structures under 

selfweight. When the unbalanced force is relatively small, we can say that the structure 

is equilibrated.  
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Take one model for example. After 70000 cycles of calculation, the unbalanced force 

of the semicircular arch in Group 1 is 5.782x10-7 N as we can see in Figure 3.7. 

Figure 3.8 shows the displacement vectors under selfweight in the structure, with a 

maximum value 0,25 mm. 

Figure 3.7 Unbalanced force – semicircular in Group 1   

Figure 3.8 Displacement vectors under selfweight – semicircular in Group 1 

Compare unbalanced forces of all the models: 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Unbalanced force 

[N] 
5.782x10-7 1.211x10-8 3.352x10-9 1.600x10-7 5.055x10-9 

Weight of the 

structure [N] 
3.104x105 2.490x105 2.208x105 3.104x105 2.490x105 

Error 1.863x10-12 4.863x10-12 1.518x10-14 5.155x10-11 2.030x10-14 

Note: Model 1 refers to the semicircular arch in Group 1; Model 2 – 120-degree segmental arch in 

Group 1; Model 3 – 60-degree segmental arch; Model 4 – semicircular arch in Group 2; Model 

5 – 120-degree segmental arch in Group 2. 

Table 3.2: Comparison of the unbalanced force 
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Error in the table is the value of the maximum unbalanced force magnitude in the 

system divided with the total applied forces in the model. According to Table 3.2, we 

can observe that the unbalanced forces are very small in comparison to the whole 

weight of the structures. So, we can say that the arches are equilibrated under selfweight. 

And without live load, the displacements are small in all the cases (fractions of a mm, 

as shown in Figure 3.8). 

 

3.1.4 Live loads in 3DEC 

After equilibrating the arches under self-weight, live loads can be applied with the help 

of loading blocks. In discrete element modeling, giving the blocks prescribed velocities 

is rather complicated; so instead, I increased the density of the additional loading block 

until the structures could not find an equilibrium state, in other words, collapsed. The 

volume of the loading block (V) can be read out from 3DEC. With a known density (ρ) 

which makes the structure fail, the failure load can be calculated by the formula: 

𝐹 = 𝜌𝑉𝑔 

Using the units set in 3DEC code, the failure loads received are in Newton (N). 

However, in the following text, the results are shown in kN. 

 

3.2 The results in 3DEC 

Different comparisons of failure modes and failure loads are performed in this part –

different angles of embrace, different groups and different friction angles. In this thesis 

work, the origin point of the coordinate system is set to the middle of the arch at the 

springing, which can be seen in Figure 3.9 (this was done in order to have the same 

coordinate system in 3DEC, RING and Archie-M). The loading position refers to the 

horizontal distance of the point where the live load is applied, from the origin, i.e., d in 

the figure, which will be presented into n*L in the same time (L is the middle span). 

For example, when load is applied at the crown of the arch, the load position is 0.5L. 

Figure 3.9 Description of origin and position 

The detailed results can be seen in Appendix F. 

0.5L 
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3.2.1 The same number of blocks vs the same size of the block 

Wondering if the number of blocks influences the results significantly, I compared the 

failure loads and critical load for the two groups (remember that 180° and 120° arches 

in Group 1 had a smaller number of voussoirs than those in Group 2). The friction angle 

in these tests was 30°. Figure 3.10 illustrates the curves of failure loads depending on 

loading positions, from where we can see the differences are small for the two groups. 

Figure 3.11 shows the failure modes. It is obvious that all the failure modes are hinging 

mechanisms.  

Figure 3.10 Failure load – position curve with different groups 

 

Embrace 

angle 
Group Critical position Difference 

Critical load 

[kN] 
Difference 

180° 
51 blocks 0.434L 

5.07% 
43.399 

4.34% 
77 blocks 0.456L 41.515 

120° 
51 blocks 0.277L 

4.33% 
207.589 

1.37% 
59 blocks 0.265L 204.736 

Table 3.3: Comparison of the critical positions and critical loads of different groups 

Compare the critical loads and critical positions for the two groups. For the critical 

position, the difference between the two groups is approximately equal to 5% (see the 

explanation below). Considering that the observed positions are not continuous, due to 

the transverse finite size of the blocks (200~300 mm), I think there is only negligible 

difference in the critical positions. Arches with different numbers of blocks give similar 

results. 

Concerning the critical load, arches in Group 2 having more blocks than those in Group 

1, are proved to get smaller values of failure loads. This may be explained in this way: 

applying a certain load in the block, bending moment can occur in the block, which 

makes the bottom of the block in tension; if the size of the block gets smaller, let us 

make it the half size of the original one (Figure 3.12), the tension cannot be resisted 

and the contact opens up.  
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Figure 3.11: Comparison of the failure modes in critical positions of different groups 

Figure 3.12: The effect of numbers of blocks on failure load 

 

3.2.2 Effect of the angle of embrace 

In this part, I compared the arches with different angles of embrace, while the joints are 

in the same friction angle - 30 degrees. Remember that the arches have the same 

thickness, i.e. 1,5 times the mininally necessary thickness for selfweight for the 

semicircular arch. It is significantly above what is minimally needed for the segmental 

arches to keep their selfweight equilibrated. So, the segmental arches would have a 

rather large margin for live load. The failure load – position curves in Fugure 3.13 

illustrate the results. It is obvious to see that the smaller the angle of embrace is, the 

larger the load bearing capacity is. And the effect is especially huge in the arches with 

60-degree angle of embrace, which may be associated with flat arch (Heyman, 1982). 

More discussion on the flat arch will be given in Chapter 6. 

Concerning the critical positions, the semicircular arch has its critical position near half 

span, while as the angle of embrace decreases, the critical position get close to the arch 

springing. The results are shown in Table 3.4. 

Group1 - semicircular arch Group1 - segmental arch 

Group2 - semicircular arch Group2 - segmental arch 
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Figure 3.13: Failure load – Position curves with different angles of embrace  

 

Group Embrace angle Critical position Critical load [kN] 

1 

180° 0.434L 43.399 

120° 0.277L 207.589 

60° 0.008L 644.489 

2 

180° 0.456L 41.515 

120° 0.265L 204.736 

60° 0.008L 644.489 

Table 3.4: Comparison of the critical positions and critical loads of different angles of embrace 

As for the failure modes (Figure 3.14) of the arches, the 180-degree and 120-degree 

angles of embrace arches belong to pure hinge mechanism. The arch with 60-degree 

embrace angle has different failure modes. Near the arch springing (0.008L ~ 0.124L), 

a combined shear-hinge mechanism is shown. If loaded near the crown (0.457L ~ 

0.500L), individual block slides down and the structure fails under a pure shear 

mechanism. When the load is applied at 0.144L ~ 0.226L, four hinges are formed and 

the arch collapses. There is also a combined shear-hinge mode when load is applied 

between 0.246L and 0.436L.  

The failure modes that occur in the arch with the smallest angle of embrace will be 

described in detail.  

Combined shear-hinge mechanism (c1 & c3) 

The voussoir under the loading block slides down when live load is added. During 

iteration, the arch deforms more and more, and the joint between the voussoir under the 

loading block and its neighbor voussoir opens up. Finally, a buckling-type of loss of 

stability may occur.  

It should be mentioned that the sliding in (c1) is significant while in (c3) is small. Figure 

3.15 shows a pre-buckled shape when load is applied away from the springing, where 
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we can see the sliding is small. And the arch would collapse in the shape of what (c3) 

shows in Figure 3.14. 

Hinging (c2) 

During the load process, four hinges are generated in the intrados and extrados of the 

arch. The arch sways to one side. 

Sliding (c4) 

Firstly, when a dynamic load is applied, the individual block under the loading block 

slides abruptly. The fast sliding would not last for long and the individual block directly 

acted upon by the loading block will slide slowly due to the frictional resistance. During 

this process, the middle part of the arch deforms slowly to a straight line-like shape 

(Figure 3.16). Finally, the individual block slides down and the arch collapses.  

Figure 3.14: Comparison of the failure modes of different angles of embrace: (a) semicircular arch – hinge 

mechanism; (b) 120-degree of embrace arch – hinge mechanism; (c) 60-degree of embrace arch: 1. 

Combined shear-hinge mechanism, 2. Hinge mechanism, 3. Combined shear-hinge mechanism, 4. Sliding 

Figure 3.15: Pre-buckling state 

(a) 

(b) 

(c1) 

(c2) 

(c3) 

(c4) 

L 
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Figure 3.16: Displacement vectors when the load is applied to the middle span 

 

3.2.3 Effect of friction angle 

I list the comparison of different friction angles in Group 1, while the results of arches 

in Group 2 can be found in Appendix F.  

1) Semicircular arch 
 

Position 
Failure load [kN] 

30° friction angle 40° friction angle 45° friction angle 

0.500L 48.149 48.149 48.149 

0.467L 43.972 43.972 43.972 

0.434L 43.399 43.399 43.399 

0.401L 44.021 44.021 44.021 

0.368L 45.968 45.968 45.968 

0.336L 49.662 49.662 49.662 

Table 3.5: Failure loads of semicircular arch 

With different friction angles, the failure loads in the same position of the semicircular 

arch are the same. Critical position and critical load remain the same. As a result, 

friction angle has no effect on the failure loads. The results shown in Table 3.5 illustrate 

that the failure mode of semicircular arch is a perfect hinging mechanism as there is no 

difference for different friction angles, which means that no frictional sliding exists. 

2) 120-degree angle of embrace segmental circular arch 

 

Position 
Failure load [kN] 

30° friction angle 40° friction angle 45° friction angle 

0.500L 2105.879 2535.919 2634.944 

0.475L 945.408 998.651 1013.806 

0.449L 566.18 575.928 577.917 

0.424L  402.088 403.672 404.266 

0.399L 319.359 319.949 320.146 

0.374L 270.428 270.428 270.428 

0.349L 258.668 259.083 259.083 

0.329L 222.476 222.476 222.476 

0.301L 217.847 217.654 217.654 
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0.277L 207.589 206.651 206.651 

0.254L 209.576 209.576 209.576 

0.230L 208.663 208.663 208.663 

0.208L 217.202 217.906 217.906 

Note: The blue numbers refer to the positions where failure loads change with different friction 

angle; the red numbers refer to the critical position and critical loads. 

Table 3.6: Failure loads of 120-degree angle of embrace segmental arch  

Figure 3.17: Failure load – Position curves with different friction angles 

From Table 3.6 and Figure 3.17, we can see that for the most positions, the magnitude 

of friction angle doesn’t influence the failure loads. But if the live load is applied in the 

middle part of the span, i.e. 0,424 L~0,500 L, sliding will make a little change in failure 

load. With larger friction angle, the failure loads are slightly larger too. This may be 

explained with the sliding of individual blocks in the middle of the arch when a dynamic 

(large) load is suddenly applied on the arch (see Figure 3.18). Dynamic loading and 

quasi-static loading will be compared in Section 4.2.4. 

Figure 3.18: Slightly sliding of individual blocks 

3) 60-degree angle of embrace segmental circular arch 

Position 
Failure load [kN] 

30° friction angle 40° friction angle 45° friction angle 

0.185L 1489.915 1597.733 1621.604 

0.164L 1253.101 1279.671 1287.467 

0.144L 1256.903 1118.967 1121.811 

0.124L 977.286 1045.782 1047.193 

0.104L 869.924 1040.643 1043.287 

0.085L 793.071 1121.244 1122.939 

0.065L 740.42 1147.743 1346.594 
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0.046L 701.265 1105.952 1454.234 

0.027L 657.638 1054.137 1410.208 

0.008L 644.489 1052.581 1450.582 

Note: The red numbers refer to the critical position and critical loads; failure modes for the circled 

positions in the chart are hinge mechanism, while for the rest of places, failure modes are 

combined shear-hinge mechanism. 

Table 3.7: Failure loads of 60-degree angle of embrace segmental arch (part of data) 

 

Figure 3.19: Failure load – Position curves with different friction angles 

 

Friction angle Critical position Critical load [kN] 

30° 0.008L 644.489 

40° 0.104L 1040.643 

45° 0.104L 1043.287 

Table 3.8: Comparison of the critical positions and critical loads of different friction angles 

The results illustrate that frictional sliding has a significant effect on the behavior of the 

small embrace angle arch. Usually, as the friction angle becomes larger, the collapse 

load applied to the same position also becomes larger.  

Have known that there are three possible kinds of failure mode in the arch: sliding, 

hinge mechanism and combined shear-hinge mechanism. The ranges of load positions 

for three modes are determined in the Table 3.9. 

 

Failure mode 
Position rang 

30° 40° 45° 

Sliding (c4) 0.457L~0.500L 0.457L~0.500L 0.457L~0.500L 

Combined shear-hinge mechanism 

(c3&c1) 

0.246L~0.436L, 

0.008L~0.124L 

0.246L~0.436L, 

0.008L~0.065L 

0.246L~0.436L, 

0.008L~0.046L 

Hinge mechanism (c2) 0.144L~0.226L 0.085L~0.226L 0.065L~0.226L 

Table 3.9: Position range for different failure modes 
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Arches with smaller friction angle have more assess to slide, as the frictional resistance 

is smaller. As a result, frictional sliding takes the biggest role in the arch with 30-degree 

friction angle. This explains why the failure load – position curve for the arch 30-degree 

friction angle has a different shape from the others (Figure 3.19 & Table 3,8). It is 

sliding that influences collapse load and collapse load is lower than that in hinge 

mechanism. The positions that sliding occurs in the other two arches are smaller than 

700 mm, where a minimum value of collapse load occur due to pure hinge mechanism. 

So, failure loads fluctuate as the right graph in Figure 3.19. 

Checking the failure loads in different ranges for different failure modes, we can see 

that the differences of failure loads are small in cases when the arch fails due to pure 

hinge mechanism, and differ about 7% maximum for this case study. For other failure 

modes (those when sliding is involved), friction coefficient does take an important role. 

 

3.2.4 Dynamic loading VS quasi-static loading 

The results above are dynamic failure loads, which means that a large enough value of 

load is applied on the arch directly and make the arch collapse. The minimum value of 

it is the failure load I found. Considering that the dynamic load may cause the sudden 

failure of the arch, or make the arch deform a lot in the beginning, I simulated a quasi-

static load to check for the critical positions and the neighboring positions of them. 

Quasi-static load is applied using a slowly increasing density of the loading block. The 

two kinds of loads can be recognized through the plots of unbalanced force during time, 

see Figure 3.20 and Figure 3.21. 

 

Figure 3.20: Dynamic loading 

Selfweight equilibrium 

Dynamic loading 
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Figure 3.21: Quasi-static loading 

 

angle of 

embrace 
position 

friction angle = 30° 

dynamic load [kN] static load [kN] difference 

180° 

0.467L 43.972 43.972 0.00% 

0.434L 43.399 43.399 0.00% 

0.401L 44.021 44.021 0.00% 

120° 

0.301L 217.847 217.654 0.09% 

0.277L 207.589 207.964 -0.18% 

0.254L 209.576 209.759 -0.09% 

60° 
0.027L 657.638 660.333 -0.41% 

0.008L 644.489 644.934 -0.07% 

angle of 

embrace 
position 

friction angle = 40° 

dynamic load [kN] static load [kN] difference 

180° 

0.467L 43.972 43.972 0.00% 

0.434L 43.399 43.399 0.00% 

0.401L 44.021 44.021 0.00% 

120° 

0.301L 217.654 218.040 -0.18% 

0.277L 207.589 207.776 -0.09% 

0.254L 209.576 209.759 -0.09% 

60° 

0.124L 1045.782 1051.425 -0.54% 

0.104L 1040.643 1045.463 -0.46% 

0.085L 1121.244 1124.327 -0.27% 

Selfweight equilibrium 

Quasi-static loading 
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angle of 

embrace 
position 

friction angle = 45° 

dynamic load [kN] static load [kN] difference 

180° 

0.467L 43.972 43.972 0.00% 

0.434L 43.399 43.399 0.00% 

0.401L 44.021 44.021 0.00% 

120° 

0.301L 217.654 217.654 0.00% 

0.277L 207.776 207.776 0.00% 

0.254L 209.576 209.759 -0.09% 

60° 

0.124L 1047.193 1052.366 -0.49% 

644 1043.287 1045.308 -0.19% 

0.104L 1122.939 1124.172 -0.11% 

Table 3.10: Comparison of dynamic loading and quasi-static loading 

The negative values in difference (Table 3.10) mean that the dynamic failure loads are 

smaller than the static loads, which corresponds to what is generally expected from a 

discrete element model using explicit time integration like 3DEC. However, the 

differences are really small and we can give the conclusion that at the critical positions 

and also near the critical positions, the values of quasi-static failure loads are 

approximately equal to those of dynamic failure loads. What’s even more, we can see 

that the critical positions remain unchanged in the three models. So, the critical loads 

and critical positions received from dynamic loading are reliable approximations of the 

magnitude of a gradually increasing quasi-static load. This is an important outcome for 

practical engineering applications for the following reason. Based on this result, the 

loading history in 3DEC simulations can significantly be simplified: when checking in 

practice whether a given load magnitude remains under the failure load belonging to a 

certain position, the time-consuming procedure of gradually increasing the load until 

failure can be replaced by putting just single load with the required magnitude on the 

structure. 

 

3.2.5 Check travelling loadings 

In reality, load usually comes from one end of the arch and gradually deforms the arch, 

perhaps causing partial slides and cracks, which could, in principle, lead to the situation 

that the arch already becomes unable to carry the load before it arrives to the critical 

position. 

The strategy to check whether the failure load can safely travel starting from outside 

along the arch until its critical position is: 

1.  Create several adjacent loading blocks as shown in Figure 3.22 below. While for 

some positions, the slope of the arch is big enough that the loading blocks may slide 

down along the arch. So, for arches with 120-degree and 180-degree of embrace the 
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loading blocks are set from a certain position where sliding of the loading block 

will not occur. 

Figure 3.22 Travelling load blocks in two arches 

2. Change the density of the adjacent blocks to fulfill the condition that the self-weight 

of the blocks equals to the critical load (quasi-static load) in the according structure. 

First, block A (Figure 3.22) offers the whole critical load and the other blocks have 

a density of 10 kg/m3 (density of block cannot be zero in 3DEC).  

3. Gradually increase the density of B and at the same time decrease that of A. Finally, 

block A gets a density of 10 kg/m3 (which is the applied approximation of “zero” 

in the model) and B offers the whole critical failure load.  

4. Check whether the structure is safe. If it is, repeat the 2nd and 3rd steps to the next 

following neighbored blocks, for example, block B and C. 

5. If in this process the structures can always be equilibrated, we can say that the 

failure load can safely travel starting from outside along the arch until its critical 

position. 

The travelling load test considers the effect of accumulated deformations. As load 

travels, arch deforms more and more. The next load is applied to the deformed arch. 

Figure 3.23 shows the process of checking the arch with 120-degree embrace angle and 

30-degree friction angle. 

B C

B

D 
A 
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Figure 3.23 Process of travelling load test 

The next step when the block D support the whole load, the arch collapses. This verified 

that for the arch with 120-degree embrace angle, the failure load can safely travel 

starting from outside along the arch until its critical position. 

The main idea to determine densities of blocks is that the gravity of these blocks should 

be equal to the critical quasi-static failure load, i.e. ∑ 𝜌𝑖𝑉𝑖 = 𝐹. The densities of each 

step in my test can be found in Appendix E. 

After running all of the models, the results I got are shown in Table 3.11. 

 

Angle of embrace 
Friction angle 

30° 40° 45° 

180° × × × 

120° √ √ √ 

60° √ × √ 

Table 3.11: Results of travelling load test 

ρA = 118247,220 kg/m3  

ρB =ρC =ρD = 10 kg/m3  

ρB = 115810,740 kg/m3  

ρA =ρC =ρD = 10 kg/m3  

ρC = 113619,05 kg/m3  

ρA =ρB =ρD = 10 kg/m3  

ρC = 11361,905 kg/m3  

ρD = 99810,189 kg/m3  

ρA =ρB = 10 kg/m3  
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Obviously, when a load travels starting from outside along the arch, the arch may fail 

before the failure load reaches its critical position. This can be explained to deformation 

of the arch. For arches with 60-degree of embrace, a special case is that the arch with 

30-degree friction angle didn’t fail. This is because the critical position of it is close to 

the arch springing. 
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4 Numerical Modeling – Archie-M 

In this part, the models set in Archie-M should be as close to those in 3DEC as possible. 

Three models with the same numbers of blocks (40) are built, as the number of 

segments cannot be modified in a demo version. With the opinion in the previous 

chapter, I think the failure loads received in this part should be a little larger than those 

in higher numbers of blocks, such as 51 blocks in the previous section.  

 

4.1 The models of the arches in Archie-M 

4.1.1 Arches in Archie-M 

The following properties have to be specified: span, rise, ring thickness at crown, ring 

thickness at springing and position of left-hand springing. If the arch is in segmental 

circular arch shape, quarter rise parameter is not needed to specify. These are illustrated 

in Figure 4.1. The default LHS coordinates are (0,0) and I just used the default value. 

Figure 4.1 Geometric properties of the predefined arches in Archie-M (Manual) 

With the help of AutoCAD, the geometric properties are set (middle span is 10 m for 

each arch): 

Arch Shape 
Span 

[mm] 

Rise 

[mm] 

Ring thickness 

at crown [mm] 

Ring thickness at 

springing [mm] 

180° embrace 

angle 
Circular 9197 4598 802 802 

120° embrace 

angle 
Circular 9305 2684 802 802 

60° embrace 

angle 
Circular 9598 1286 802 802 

Table 4.1: Geometric properties of the arches in Archie-M 
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Masonry crushing strength and masonry unit weight have to be specified.  

Masonry crushing strength refers to compressive strength of masonry representative 

units, which shows the capacity of masonry to withstand the compressive force. Note 

that the masonry crushing strength does not consider the individual voussoir or mortar, 

but the complex masonry. The value of this strength can be influenced by lots of factors, 

such as mortar conditions and porosity, grain size, clay content and saturation of blocks. 

Amaryllis Audenaert and Johan Bake (2010) modelled an arch with backfill in Archie-

M and RING, and compared the relationship of masonry strength and collapse load. 

The results illustrated that the crushing strength had little influence on the collapse loads 

(differs about 5% maximum from 5N/mm2 and 8N/mm2), which is shown in Figure 4.2. 

Looking through several examples of arch analysis in Archie-M and RING, the 

masonry strength is about 5 to 8 MPa. In my work, I set two groups of masonry strength 

and compare the results of them, one is 5 MPa, and the other is 10 MPa. 

Figure 4.2 Collapse load ratio for different positions and masonry strength (Amaryllis and Johan, 2010) 

The thickness of mortar in 3DEC is infinitely small and the gravity of the structure 

depends on limestone blocks. So, the masonry unit weight in Archie-M is calculated 

with the density of limestone. 

𝛾 = 𝜌𝑔 = 2700 × 9,81 𝑁 𝑚2⁄ = 26,5 𝑘𝑁 𝑚2⁄  

 

4.1.2 Abutments and fill in Archie-M 

Abutments were not created in my models, as a result, the underlying calculation would 

assume the necessary reactive forces. 

Uniform fill can be supported by Archie-M. While there is no fill in my models, I set 

the unit weight of fill to zero.  
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4.1.3 Road in Archie-M 

Archie-M is designed to analyze masonry bridges and road is an important part to be 

predefined. But my work is to analyze single arches. To simulate the models that I built 

in 3DEC, I defined the shape of road in a three-point mode, which makes the road shape 

is a circular segment. The road is just lying directly on the arch, with a depth of 

surfacing 1 mm, which is negligible. The width of the bridge is set to be 802 mm.   

The models are shown in Figure 4.3. The blue line on each segment represents the load 

applied to it, for both selfweight and live load. 

Figure 4.3 The Archie-M models of the arches 

- Arches 

- Masonry strength:      5 MPa or 10 MPa 

- Masonry unit weight:   26,5 kN/m3 

- Mortar loss:           0 

- Fill 

- Unit weight:           0 

- Angle of friction:       30° 

- Road 

- Depth of surfacing:      1 mm (minimum value, negligible) 

- Depth of overlay:        0 

- Surfacing unit weight:    15 kN/m3 (minimum value) 

- Overlay unit weight:      1 kN/m3 (minimum value) 

- Bridge width:           802 mm 

 

4.1.4 Load in Archie-M 

Apply an axel load with unit weight to the arch, which means that the value of the load 

is 9,81 kN. Change the factor for live load γ until the thrust line is out of the cross-

section and a sufficient number of hinges is formed.  
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4.2 The results in Archie-M 

The program shows thrust line and positions of hinges, while it doesn’t show how the 

structure deforms or fails. We can check internal forces and thrust zone position for 

each segment in Archie-M. The collapse load of the three arches for different load 

positions is calculated. And a similar comparison is done. 

4.2.1 Effect of masonry strength 

Compare the collapse loads for different masonry strengths in Figure 4.4 and Table 4.2. 

Figure 4.5 illustrates the failure load-position curves for 120-degree and 60-degree 

embrace angle arches. The results shown are different from what Amaryllis and Johan 

have found (Figure 4.2), as the angle of embrace differs. The conclusion is that masonry 

strength has an important effect on the collapse load, especially for arches with rather 

smaller embrace angle. In this case study, the collapse load differs about 50% maximum 

for the arch with 60-degree angle of embrace, while 30% maximum for the arch with 

120-degree angle of embrace, and 7,5% maximum for the semicircular arch.  

As the effect of masonry strength is not negligible, two sets of masonry strengths will 

be considered in the later comparison.  

Figure 4.4: Failure load – Position curves with different masonry strengths (semicircular arch) 

 

position 
Failure load [kN] 

Difference 
Masonry strength 5MPa Masonry strength 10MPa 

0.500L 4.24 4.58 7.42% 

0.467L 4.04 4.35 7.13% 

0.434L 3.98 4.27 6.79% 

0.401L 3.86 4.12 6.31% 

0.368L 3.97 4.21 5.70% 

0.336L 4.26 4.5 5.33% 

Table 4.2: Comparison of failure loads for different masonry strengths (semicircular arch) 
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Figure 4.5: Failure load – Position curves with different masonry strengths  

 

4.2.2 Effect of angle of embrace 

As shown in Figure 4.6, the collapse load differs significantly for arches with different 

embrace angles. The error bar shows values of failure loads in two masonry strengths 

– the higher one for 10 MPa and the lower one for 5 MPa. The curves show the trends 

for mean values. It is obvious that with the same ring thickness, bearing capacity of 

semicircular arch is the lowest, and that of arch with 60-degree angle of embrace is the 

highest.  

Figure 4.6: Failure load – Position curves with different angles of embrace in Archie-M 

A summary of critical positions and critical loads of arches in Archie-M is shown in 

Table 4.3. 

 

Angle of 

embrace 

Masonry 

strength 
Critical position Difference 

Critical load 

[kN] 
Difference 

180° 
5 Mpa 0.401L 

0 
37.867 

6.31% 
10 Mpa 0.401L 40.417 

120° 
5 Mpa 0.186L 

0 
160.884 

4.71% 
10 Mpa 0.186L 168.830 
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60° 
5 Mpa 0.164L 

0 
311.958 

40.00% 
10 Mpa 0.164L 519.930 

Table 4.3: Comparison of critical positions and critical loads in Archie-M 

Arch with smaller angle of embrace has smaller critical position (closer to the springing) 

and larger critical load. The difference of critical load in arch with 60-degree of embrace 

is much larger than those in arches with 180-degree or 120-degree embrace angles. 

Positions of hinges could be shown in Archie-M. As Figure 4.7 shows, hinge 

mechanism forms when four hinges appear in the arches with 180-degree and 120-

degree embrace angles. While for arch with 60-degree embrace angle, something 

interesting happens. The arch would not fail or collapse due to four-hinge mechanism, 

but the voussoir would be crushed at the position where the load is applied to. This 

explains why arches with stronger masonry strength could bear larger load. Note that 

frictional sliding is not taken into consideration in Archie-M program so the failure can 

be due to hinging, or to the crushing of the material. 

Figure 4.7: Failure modes: (a) semicircular arch: hinge mechanism; (b) 120° embrace angle arch: hinge 

mechanism; (c) 60° embrace angle: masonry crush 

From the left graph in Figure 4.6 we can see that failure loads near the springing are 

extremely large for the arch with 60° embrace angle. Figure 4.8 shows the failure when 

a load is applied to a certain position. Archie-M considers that the abutment under the 

arch could withstand the compressive stresses and only consider the crush on the 

(a) (b) 

(c) 
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extrados. So, the values are not realistic and in the following comparisons, collapse 

loads at the abutments will not be considered.      

                     Figure 4.8: Failure modes at the abutments 
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5 Numerical Modeling – RING 

In this part, five models simulating those in 3DEC are built.  

 

5.1 The models of the arches in RING 

5.1.1 Geometry of arches in RING 

A span with stone voussoir and in segmental shape has to be specified with span (l), 

midspan rise (h), ring thickness (t) and numbers of units. A backfill whose top cannot 

be lower than the arch rings should be set. So, I set the height to surface (y) is equal to 

the highest point of the arch. The surface fill depth (d) is zero. Figure 5.1 shows the 

geometric properties of the predefined in RING. The final geometric properties are 

shown in Table 5.1 and the final models can be seen in Figure 5.2.  

Figure 5.1 Geometric properties of the predefined arches in RING (Program) 

 

Model 
Span 

[mm] 

Midspan 

rise [mm] 

No. of 

units 

Ring thickness 

[mm] 

Hight to surfaces 

depth [mm] 

Arch1 9197.4 4598.68 51 802.5 5401.25 

Arch2 9305.2 2684.9 51 802.5 3488.6 

Arch3 9598.8 1286 51 802.5 2088.5 

Arch4 9197.4 4598.68 77 802.5 5401.25 

Arch5 9305.2 2684.9 59 802.5 3488.6 

Table 5.1: Geometric properties of the arches in RING 

Arch1 Arch4 

Arch2 Arch5 

Arch1 Arch4 
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Figure 5.2 The RING models of the arches 

 

5.1.2 Materials of arches in RING 

For the masonry, the unit weight is 26,5 kN/m3. Crushing properties are not considered 

which means that the model will not be able to fail by masonry crushing. Sliding 

properties with the usual friction coefficient of the contacts are taken into consideration. 

The three friction angles, 30°, 40° and 45° are analyzed. So, the friction coefficients 

are 0,577, 0,839 and 1,000, respectively.  

For the backfill, soil unit weight is set to be zero, so that there is no additional load 

applied on the arch. It does not consider the soil effects such as model dispersion of live 

load and model horizontal passive pressures.  

- Masonry 

- Masonry unit weight:         26,5 kN/m3 

- Mortar sliding: 

Standard friction coefficient:   0,577, 0,839 or 1,000 

- Backfill 

- Soil unit weight:             0 

- Soil effects:                 not considered 

 

5.1.3 Load in RING 

Apply a unit force (1 kN) with 802,5 mm width to the arch. Loaded length can be 

modified to find a best value to simulate the block loads in 3DEC. For example, an 

appropriate value for the loaded length in Arch 1 is 170 mm, while 130 mm goes well 

in Arch 4 (Figure 5.3). 

Figure 5.3 Modifications of loaded length in RING 

Arch3 
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5.2 The results in RING 

5.2.1 Effect of fill depth 

Considering there is backfill in the models, which is different to the initial conditions, 

I analyzed arches with different fill depths to see whether the backfill has an influence 

on the failure modes and failure loads on the condition that the soil effects are not taken 

into consideration in the program.  

Table 5.2 shows the failure loads for different positions in semicircular arches. 

position 0.500L 0.467L 0.434L 0.401L 0.368L 0.336L 

Failure load [kN] 

depth 0 49.5 46 44.6 45 46.9 50.5 

depth 500 49.5 46 44.6 45 46.9 50.5 

depth 1000 49.5 46 44.6 45 46.9 50.5 

Note: “depth x”, x here means the height from the crown to the backfill surface 

Table 5.2: Failure loads with different fill depths for Arch 1 with 30-degree friction angle 

position 
0.50

L 

0.45

L 

0.40

L 

0.35

L 

0.30

L 

0.28

L 

0.25

L 

0.23

L 

0.20

L 

Failure 

load 

[kN] 

depth 0 3950 544 324 253 225 220 219 222 238 

depth 

500 
3950 544 324 253 225 220 219 222 238 

depth 

1000 
3950 544 324 253 225 220 219 222 238 

Table 5.3: Failure loads with different fill depths for Arch 2 with 45-degree friction angle 

The two tables above show only a part of the results, while the complete set of the 

detailed results can be found in Appendix E. Failure modes in two positions for Arch 2 

are shown in Figure 5.4. 

Figure 5.4 Failure modes for arches with different backfill depth 

depth 0 

depth 500 

depth 1000 
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It is clear that the depth of backfill has no effect on the results, neither on failure load 

nor on failure mode. Even the hinge positions do not show any difference. It provides 

the conclusion that the models I built can be considered as a “concentrated load” applied 

to the arch without backfill, which is important for later comparisons. 

 

5.2.2 Effect of number of blocks 

In this case, arches with 30-degree friction angle are analyzed. Similar to the results in 

3DEC modelling, number of blocks has small influences in the failure loads for 

different positions. As shown in Figure 5.5 and Table 5.4, for arches with larger blocks 

(smaller the number of blocks), collapse loads are slightly smaller. The critical load 

differs about 1,5%, which is absolutely negligible. The critical position differs about 5% 

for this case study.  

Figure 5.5 Failure load – position curve with different numbers of blocks 

 

Embrace 

angle 
Group Critical position Difference 

Critical load 

[kN] 
Difference 

180° 
51 blocks 0.434L 

5.07% 
44.6 

1.57% 
77 blocks 0.412L 43.9 

120° 
51 blocks 0.254L 

-4.33% 
219 

1.37% 
59 blocks 0.265L 216 

Table 5.4: Comparison of the critical positions and critical loads of different block numbers 

 

5.2.3 Effect of angle of embrace 

The angle of embrace has a significant effect on the failure load and failure mode. The 

case study analyzes the three arches with angle of embrace 180°, 120° and 60°, having 

51 segments. The friction angle is 30°.  

Similar to the conclusions of the 3DEC modelling and Archie-M modelling, arch with 

smaller angle of embrace has larger bearing capacity. Critical positions will be close to 

the arch springing, if embrace of angle decreases.   
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Figure 5.6: Failure load – Position curves with different angles of embrace  

 

Group Embrace angle Critical position Critical load [kN] 

1 

180° 0.434L 44.6 

120° 0.254L 219 

60° 0.027L 696 

Table 5.5: Comparison of the critical positions and critical loads of different angles of embrace 

Concerning the failure modes in Figure 5.8, we can see that the arches with 180-degree 

and 120-degree embrace collapse with a pure hinge mechanism.  

For the arch with 60-degree of embrace, there are several cases calculating collapse 

load from the arch springing to the crown. At the position from 0,008L to 0,144L, the 

arch fails on account of frictional sliding near the load position and three hinges. A 

hinge mechanism will be formed from 0,144L to 0,226L. A special phenomenon is 

found when the load travels from 0,226L to 0,500L (half span), that a “geometrically 

locked” situation appears (Figure 5.8 (c)).  

It is an idea that the geometry could be locked in the case, if the arch could bear 

infinitely large forces or loads. As the blocks used in RING are rigid, the geometry of 

the arch is not deformable. What’s more, crushing is not taken into account in the model, 

so, the reaction forces could be arbitrarily large. The situation can be explained by a 

graphical static analysis, which is shown in Figure 5.7. As the blue line shows, the three 

lines of action intersect, which means no matter how much the applied force is, the 

system can find an equilibrium. Note that the selfweight of the arch is neglected, when 

the applied force is considered to be infinitely large.  

A position range for infinitely large bearing capacity can be determined by the orange 

line in Figure 5.7. Draw a straight line from one side of arch springing, which is always 

within the cross section of the arch. B is the tangent point of the line and intrados.  

Extend AB to the extrados and the intersect point is denoted by C. Then C is the critical 
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position we are looking for. With the help of AutoCAD, the x coordinate of C is 0.228L. 

In the simulation in RING, the critical position is 0.246L. The graphical static 

predictions are in agreement with the RING results. 

Figure 5.7: Graphical static analysis to find the position range for geometrically locked situation 

If an arch can bear any downwards load applied to any arbitrary positions on the arch, 

i.e. a statically admissible force system can always be found, then the arch can be called 

a “flat arch”. This concept is proposed by Heyman in 1982. This kind of arches cannot 

fail with any Heymanian collapse modes (which means that only hinging mechanism 

exists). Failure in flat arches can happen due to material crushing or contact sliding. 

Figure 5.8: Failure modes of arches with different angles of embrace (friction angle = 30°) 

 

 

 

 

Angle of embrace: 180° 

Hinge mechanism 

 

 

Angle of embrace: 120° 

Hinge mechanism 

 

 

Angle of embrace: 60° 

No failure 

0,226 L ~ 0,500 L 

 

Hinge mechanism 

0,144 L ~ 0,266 L 

 

 

Combined shear-hinge mechanism 
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5.2.4 Effect of friction angle 

The detailed results of load positions and corresponding collapse loads can be found in 

Appendix F. 

1) Semicircular arch & 120-degree embrace angle segmental arch 

Everything remains the same though frictional angle changes from 30° to 45°: 

- Same value of failure load in the same load position; 

- Same failure mode – Hinge mechanism; 

- Same critical position and same critical load. 

I tried to set a friction angle of 20° to see what would happen, though the value is not 

realistic for masonry structures. Figure 5.9 and Table 5.6 show the result. 

Figure 5.9: Failure modes of arches with different angles of embrace (friction angle = 20°) 

 

Angle of embrace: 180° 

Position 
Failure load [kN] 

Difference 
20° 30°/40°/45° 

0.500L 6.42 49.5 671% 

0.467L 6.4 46 619% 

0.434L 6.94 44.6 543% 

0.401L 7.74 45 481% 

0.368L 8.72 46.9 438% 

0.336L 9.95 50.5 408% 

Angle of embrace: 120° 

Position 

[mm] 

Failure load [kN] 
Difference 

20° 30°/40°/45° 

0.500L 176 3950 2144% 
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0.449L 159 544 242% 

0.424L 154 399 159% 

0.349L 149 253 70% 

0.301L 150 225 50% 

0.277L 150 220 47% 

0.230L 154 222 44% 

0.186L 165 238 44% 

Table 5.6: Comparison of the critical positions and critical loads of different friction angles 

Sliding between blocks and abutments can occur due to weak connections. For 

semicircular arch, three hinges and one slide may be formed. For an arch with 120-

degree angle of embrace, two conditions can occur: sliding at the abutment and at the 

load position; two hinges and two slides. What’s more, the difference of failure loads 

for 20- and 30-degree friction angle is really huge, which also confirms that frictional 

sliding occurs at failure.  

2) 60-degree embrace angle segmental arch 

Frictional sliding is taken into account in RING.  

position 
Failure load [kN] 

30° friction angle 40° friction angle 45° friction angle 

0.246L - - - 

0.226L 7300 7300 7300 

0.205L 2520 2520 2520 

0.185L 1660 1660 1660 

0.164L 1320 1320 1320 

0.144L 1110 1180 1180 

0.124L 965 1140 1140 

0.104L 873 1210 1210 

0.085L 812 1250 1450 

0.065L 761 1210 1590 

0.046L 722 1170 1590 

0.027L 696 1150 1600 

0.008L 719 1200 1660 

Note: The red numbers refer to the critical position and critical loads; failure modes for the circled 

positions in the table are hinge mechanism, while for the rest of places, failure modes are 

combined shear-hinge mechanism; “-” means no solution is found due to geometrically 

locked force system. 

Table 5.7: Failure loads of 60-degree angle of embrace segmental arch (part of data) 

It is clear that friction angle does not influence the failure loads when a pure hinge 

mechanism is found in the arch. But in the case that sliding takes part in the failure of 

arches, friction angle would have a significant effect on the results. The smaller the 
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friction angle is, the smaller the failure load is. Figure 5.10 shows the failure load – 

position curve with different friction angles. 

Figure 5.10: Failure load – Position curves with different friction angles for the 60-degree arch 
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6 Comparisons of the three methods 

In this chapter, failure load and failure mode obtained from the three programs are 

compared and a brief summary of the thesis is made. 

 

6.1 Semicircular arch 

Friction does not participate in the four models with 180-degree embrace angle. With 

different friction angles, the results are the same. Figure 6.1 and Table 6.1 illustrate that 

collapse load in Archie-M is smaller than that in 3DEC (no matter how large the 

masonry strength is), while collapse load in RING is larger than 3DEC. As for the 

critical position and critical load, the results in RING are closer to those in 3DEC, 

compared to Archie-M.  

Figure 6.1 Failure load – position curve with different programs (semicircular arch) 

 

Model Critical position Difference Critical load [kN] Difference 

3DEC 0.434L - 43.399 - 

Archie-M, 5MPa 0.401L 7.60% 37.867 12.75% 

Archie-M, 10MPa 0.401L 7.60% 40.417 6.87% 

RING 0.434L 0 44.6 -2.77% 

Note: the difference in the table refers to the difference between the corresponding value and that 

of 3DEC 

Table 6.1: Critical position and critical load in different programs (semicircular arch) 

Arches would fail due to hinge mechanism in all of these models.  

 

6.2 120-degree angle of embrace segmental arch 

A similar comparison is done for arches with 120-degree embrace angle. As shown in 

Figure 6.2 and Table 6.2, the failure load differs about 6% maximum for RING and 

3DEC, neglecting one value when load applied on the crown. At that load position, the 
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arch in 3DEC would deform a little and the voussoir under the loading block may slide 

a little, while the RING model is rigid and would not deform. This can also explain why 

in 3DEC model, friction angle would influence the values of failure load around the 

arch crown. Archie-M models produce a smaller result with a difference around 20% 

(compared to the result in 3DEC model).  

The three models produce a similar trend for the failure load in different load position, 

while 3DEC model and RING model give a similar result for critical position and 

critical load. But the results in Archie-M are much safer.  

Figure 6.2 Failure load – position curve with different programs (segmental arch – 120° embrace angle) 

 

Model Critical position Difference Critical load [kN] Difference 

3DEC 0.277L - 206.651 - 

Archie-M, 5MPa 0.186L 32.85% 160.884 -22.15% 

Archie-M, 10MPa 0.186L 32.85% 168.83 -18.30% 

RING 0.254L 8.30% 219 +5.98% 

Table 6.2: Critical position and critical load in different programs (segmental arch – 120° embrace angle) 

The three models produce the same collapse mode, i.e. hinge mechanism, which can be 

seen in previous chapters. 

 

6.3 60-degree angle of embrace segmental arch 

Situations in arches with a small angle of embrace are complicate as frictional sliding 

takes part in the failure mode and friction influences the value of collapse load. Firstly, 

failure modes in different models are compared, and the results are shown in Table 6.3.  

Obviously, Archie-M couldn’t consider the effect of frictional sliding. As a result, the 

arch fails because of material crushing, on which masonry strength has an important 

effect. RING cannot produce a failure load at position between 0.246L to 0.500L, while 

because of the deformability of the material and contacts, a failure can be found in 

3DEC (this has been explained in section 3.2.2). But the failure modes at the position 
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range 0.008L ~ 0.226L are similar in RING and 3DEC. Note that RING can also 

consider the effect of material crushing, but since the aim of this project was to compare 

the possibly most similar situations in 3DEC and the other codes, the RING models in 

this thesis don’t consider it. The compressive strength in 3DEC model is infinitely large, 

and structures in it can only fail by contact cracking up or sliding of blocks. 

 

Position 
30° friction angle 40° friction angle 45° friction angle 

Archie-M 
3DEC RING 3DEC RING 3DEC RING 

0.500L 
Sliding 

- 

Sliding 

- 

Sliding 

- 

Material 

Crushing 

0.457L 

0.436L 
Combined Combined Combined 

0.246L 

0.226L 

Hinging 
Hinging 

Hinging 
Hinging 

Hinging 
Hinging 

0.164L 

0.144L 

Combined 

0.124L 

Combined 

0.104L 

0.085L 

Combined 

0.065L 

Combined Combined 
0.046L 

Combined 0.027L 

0.008L 

Table 6.3: Failure modes in different programs (segmental arch – 60° embrace angle) 

As shown in Figure 6.3, generally, failure load in Archie-M ≤ failure load in 3DEC 

≤ failure load in RING. Magnification of the curve for certain positions can be shown 

in Figure 6.4, where we can see a similar result is provided by 3DEC and RING, while 

Archie-M gives a totally different one. 

Table 6.4 shows critical positions and critical loads in these models. The difference of 

failure loads between 3DEC and RING with the same friction angle is approximately 

9%.  

Figure 6.3 Failure load – position curve with different programs (segmental arch – 60° embrace angle) 
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Figure 6.4 Magnification failure load – position curve with different programs (segmental arch – 60° 

embrace angle) 

 

Model 
Friction angle/ 

Masonry strength 
Critical position 

Critical load 

[kN] 
Difference 

3DEC 

30° 0.008L 644.489 - 

40° 0.104L 1040.643 - 

45° 0.104L 1043.287 - 

Archie-M 
5 MPa 0.246L 283.509 - 

10 MPa 0.164L 519.93 - 

RING 

30° 0.027L 696 7.99% 

40° 0.124L 1140 9.55% 

45° 0.124L 1140 9.27% 

Table 6.4: Critical position and critical load in different programs (segmental arch – 60° embrace angle) 

 

6.4 Summary 

The summary will be in two parts, one for behaviors of arches, and the other for the 

comparison of the three methods (3DEC, Archie-M and RING). 

6.4.1 Arch behaviors 

- For single-ring arches with the same ring thickness, the smaller angle of 

embrace causes larger load bearing capacity. 

- Arches with smaller size of blocks have lower load bearing capacity. However, 

the difference was found small (4.34% maximum) in my thesis. 

- Concerning the critical positions, semicircular arch has a critical position near 

half span of the arch, while as the angle of embrace decreases, the critical 

position shifts to the arch springing.  
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- Arches with 180- and 120-degree angles of embrace fail due to hinge 

mechanism. Arches with 60-degree angle of embrace may fail due to different 

reasons: combined sliding-hinging mechanism (large sliding) occurs when 

load is applied near abutments; pure hinge mechanism; combined sliding-

hinging mechanism (small sliding) and pure frictional sliding mechanism is 

found when load is applied around the arch crown. In addition, material 

crushing should also be taken into account. 

- Contact friction angle has an important effect on the arch with 60-degree angle 

of embrace. With smaller friction angle, failure load is smaller. But it has no 

effect on collapse load where hinge mechanism dominates the failure mode, 

i.e. where no frictional sliding exists. 

- Dynamic failure load and quasi-static failure load are roughly equal around the 

critical position of the arch.  

- When a load travels starting from outside to inside along the arch, the arch may 

fail before the failure load reaches its critical position. This can be explained 

by the deformation of the arch. 

 

6.4.2 Comparisons of 3DEC, Archie-M and RING 

- The collapse load differs in the three programs. Generally, failure load in 

Archie-M ≤ failure load in 3DEC ≤ failure load in RING. This means 

Archie-M model is the safest one to apply among these three programs, if 

material crushing is an issue to consider. 

- Compared to Archie-M, RING produce closer results to 3DEC modelling, not 

only for failure load, but also for failure mode. 

- Archie-M model does not include the possibility of sliding failure, while RING 

does. In addition, RING can also consider material crushing in masonry 

bridges, which is the main failure mode in Archie-M for arches with small 

angle of embrace. 3DEC models cannot fail by material crushing, as 

compressive strength of material is infinitely large. 

- RING may not accurately predict the failure load and failure mode of an arch 

which contains flat sections because the structure is considered undeformable 

in RING. In 3DEC, elastic deformations prior to collapse will significantly 

change the arch geometry. 

- Archie-M does not give a solution on how the arch deforms after failure, while 

RING and 3DEC do give.  

- 3DEC needs a long time to iterate (1 ~ 5 hours for a dynamic load simulation) 

while Archie-M and RING get results fast (immediately). 
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- Regarding theoretical fundaments, Archie-M checks whether the arch is safe 

by a trust line method (static theorem), while RING combines the kinematic 

and static theorems. 

  



Frictional Sliding in Limit State Analysis Codes of Masonry Arches 
 

 76 / 106 

 

References 

Audenaert, A., Beke, J. (2010). Applicability analysis of 2D-models for masonry arch 

bridge assessment: RING, Archie-M and the elasto-plastic model, WSEAS 

Transactions on Applied and Theoretical Mechanics, Vol. 5 pp. 221-230 

Bagi, K. (2012). Fundaments of the discrete element method, Lecture Notes, Budapest 

University of Technology and Economics 

Bagi, K. (2014). When Heyman’s Safe Theorem of rigid block systems fails: Non-

Heymanian collapse modes of masonry structures, International Journal of Solids 

and Structures Vol. 51, Issue 14, pp. 2696 – 2705 

Beatini, V., Royer-Carfagni, G. and Tasora, A. (2018). Modeling the shear failure of 

segmental arches, International Journal of Solids and Structures, doi: 

10.1016/j.ijsolstr.2018.08.023. 

Block, P., DeJong, M. and Ochsendorf, J. (2006). As hangs the flexible line: equilibrium 

of masonry arches, Nexus network journal 8(2), pp. 13-24 

Boothby, T. E., Nelson, S. E., Scolforo, M. J. (1994). A visual classification system for 

masonry arch failures. In: Procs. 10th IB2MaC, 5-7 July 1994, Calgary, Canada, pp. 

349-358 

Cocchetti, G., Colasantle, G., Rizzi, E. (2011). On the analysis of minimum thickness 

in circular masonry arches, Applied Mechanics Reviews, ASME, 64(5), 050802 

Cundall, P. A. (1971). The measurement and analysis of accelerations in rock slops, 

PhD Thesis, University of London 

Cundall, P. A. and Hart, R. D. (1992). Numerical modelling of discontinua, Engineering 

Computations, 9(2), 101-113, doi:10.1108/eb023851 

Drucker, D. C. (1954). Coulomb Friction, Plasticity and Limit Loads, Journal of 

Applied Mechanics 21, pp. 71 – 74  

Foce, F. (2007). Milankovitch’s Theorie der Druckkurven: Good mechanics for 

masonry architecture, Nexus Network Journal 9(2), pp. 185–210 

Gilbert, M. (2007). Limit analysis applied to masonry arch bridges: State-of-art and 

recent developments, Conference Paper: 5th International Arch Bridges 

Conference 

Gilbert, M., Casapulla, C., Ahmed, H.M. (2006). Limit analysis of masonry block 

structures with non-associative frictional joints using linear programming. 

Computers and Structures 84, pp. 873-887. 

Gilbert, M., Ahmed, H. M. (2004). Developments to the RING masonry arch bridge 

analysis software, 4th International Arch Bridges Conference 



Frictional Sliding in Limit State Analysis Codes of Masonry Arches 
 

 77 / 106 

 

Heyman, J. (1966). The Stone Skeleton, International Journal of Solids and Structures 

Vol.2, pp. 249 – 279 

http://www.obvis.com/archie-theory/ 

https://www.jsg.utexas.edu/tyzhu/files/Some-Useful-Numbers.pdf 

Itasca consulting group (2003). 3DEC - 3 Dimensional Distinct Element Code - Online 

Manual. 

Itasca Consulting Group (2007). 3 Dimensional Distinct Element Code. Theory and 

Background. Minneapolis, Minnesota, USA 

Jing, L. (1998). Formulation of discontinuous deformation analysis (DDA) – an implicit 

discrete element model for block systems, Engineering Geology Vol. 49, Issue 3-4, 

pp. 371-381 

Khan, M. S. (2010). Investigation of Discontinuous Deformation Analysis for 

Application in Jointed Rock Masses, Ph.D. Thesis, University of Toronto 

Koohariant, A. (1952). Limit Analysis of Voussoir (Segmental) and Concrete arches, 

Journal of the American Concrete Institute 24, pp. 317 – 328 

Krabbenhoft, K., Lyamin, A. V., Huang, J., Vicente da Silva, M. (2012). Granular 

contact dynamics using mathematical programming methods, Computers and 

Geotechnics 43(2012), pp. 165-176 

Lemos, J. V. (2007). Discrete Element Modeling of Masonry Structures, International 

Journal of Architectural Heritage 1(2), pp. 190-213 

LimitState Ltd (2016). LimitState:RING Manual Version 3.2.b 

Manicka Selvam, V.K. (1993), Fundamentals of Limit Analysis of Structures (A Course 

in Plastic Analysis of Structures), ISBN-10: 9383182180 

Mendes, N. (2015). Masonry macro-block analysis, Frequency-Magnitude Distribution 

of Seismicity in Volcanic Regions, pp. 1411-1419  

Nobile, L., Bartolomeo, V. (2014). Methods for the Assessment of Historical Masonry 

Arches, Recent Advances in Civil Engineering and Mechanics, pp. 160-167, ISBN: 

978-960-474-403-9 

Nobile, L., Bartolomeo, V. (2017). Comparison between available assessment methods 

of historical masonry arches, International Journal of Mathematical Models and 

Methods in Applied Sciences, Vol. 11 pp. 61-67 

Obvis Ltd (2007). Archie-M, masonry arch bridge and viaduct assessment software, 

Version 2.3.1 

Radjai, F. and Richefeu, V. (2010). Contact dynamics method, Laboratoire de 
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Appendix A – MATLAB code of the segmental arch (120°) 

with 0.205 m blocks 

 

clc;clear;close all  

% generate a 59-element vector, divide a 120 degree segmental circle into 59 parts  

angle = linspace(pi/6,5*pi/6,60);  

% calculate the radius of the arch 

r = 5/(sin(pi/3)) 

r20 = r+0.8025/2 

r10 = r-0.8025/2 

% create another vector with the value of the outer radius  

r2 = linspace(r20,r20,60);  

% calculate the coordinates of the points in the outer circle  

x2 = r20*cos(angle)  

y2 = r20*sin(angle)  

% plot the circle and the chosen 52 points with little red circles(ro)  

polar(angle,r2,'o')  

% name the figure 'Single-ring arch'  

title('semicircular arch')  

hold on  

% create another 59-element vector for the inner radius  

r1 = linspace(r10,r10,60);  

% calculate the coordinates of the points in the inner circle 

x1 = r10*cos(angle)  

y1 = r10*sin(angle)  

% plot this circle and the chosen 59 points with little blue x-es(bx)  

polar (angle, r1,'bx')  

% mark the center of the circles with a black square(ks)  

polar(0,0,'ks')     

z1 = -0.401250; 

z2 = 0.401250; 

% print the command to build the arch blocks 

for i = 1:59 

    fprintf('polyhedron prism a %f,%f,%f %f,%f,%f %f,%f,%f %f,%f,%f 

b %f,%f,%f %f,%f,%f %f,%f,%f %f,%f,%f\n', 
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x2(i),y2(i),z1,x1(i),y1(i),z1,x1(i+1),y1(i+1),z1,x2(i+1),y2(i+1),z1,x2(i),y2(i),z2,x1(i),

y1(i),z2,x1(i+1),y1(i+1),z2,x2(i+1),y2(i+1),z2) 

end 

% print the command to build the support blocks 

fprintf(';Define the support blocks with the same command\n') 

fprintf('polyhedron prism a -6.1161,2.9536,-0.401250 -5.8661,3.3866,-0.401250 -

4.1341,2.3866,-0.401250 -4.3841,1.9536,-0.401250 b -6.1161,2.9536,0.401250 -

5.8661,3.3866,0.401250 -4.1341,2.3866,0.401250 -4.3841,1.9536,0.401250\n') 

fprintf('polyhedron prism a 6.1161,2.9536,-0.401250 5.8661,3.3866,-0.401250 

4.1341,2.3866,-0.401250 4.3841,1.9536,-0.401250 b 6.1161,2.9536,0.401250 

5.8661,3.3866,0.401250 4.1341,2.3866,0.401250 4.3841,1.9536,0.401250\n') 

% print the command to build the loading blocks 

for i=1:30 

    fprintf(';Define the loading block %d with the same command\n',i) 

    fprintf('polyhedron prism a %f,%f,%f %f,%f,%f %f,%f,%f %f,%f,%f 

b %f,%f,%f %f,%f,%f %f,%f,%f %f,%f,%f\n',x2(32-i),y2(32-i),z1,x2(32-i),y2(32-

i)+1,z1,x2(31-i),y2(31-i)+1,z1,x2(31-i),y2(31-i),z1,x2(32-i),y2(32-i),z2,x2(32-

i),y2(32-i)+1,z2,x2(31-i),y2(31-i)+1,z2,x2(31-i),y2(31-i),z2) 

end 
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Appendix B – 3DEC code of the segmental arch (60°) with 

51blocks (Dynamic load, 30-degree friction angle) 

 

; Start the *3ddat file with the new command 

new 

; 

;Define the geometry with command prism 

polyhedron prism a 5.200625,9.007747,-0.401250 4.799375,8.312761,-0.401250 

4.627687,8.409549,-0.401250 5.014583,9.112626,-0.401250 b 

5.200625,9.007747,0.401250 4.799375,8.312761,0.401250 

4.627687,8.409549,0.401250 5.014583,9.112626,0.401250 

polyhedron prism a 5.014583,9.112626,-0.401250 4.627687,8.409549,-0.401250 

4.454048,8.502791,-0.401250 4.826427,9.213664,-0.401250 b 

5.014583,9.112626,0.401250 4.627687,8.409549,0.401250 

4.454048,8.502791,0.401250 4.826427,9.213664,0.401250 

polyhedron prism a 4.826427,9.213664,-0.401250 4.454048,8.502791,-0.401250 

4.278531,8.592449,-0.401250 4.636236,9.310817,-0.401250 b 

4.826427,9.213664,0.401250 4.454048,8.502791,0.401250 

4.278531,8.592449,0.401250 4.636236,9.310817,0.401250 

polyhedron prism a 4.636236,9.310817,-0.401250 4.278531,8.592449,-0.401250 

4.101210,8.678483,-0.401250 4.444091,9.404045,-0.401250 b 

4.636236,9.310817,0.401250 4.278531,8.592449,0.401250 

4.101210,8.678483,0.401250 4.444091,9.404045,0.401250 

polyhedron prism a 4.444091,9.404045,-0.401250 4.101210,8.678483,-0.401250 

3.922161,8.760859,-0.401250 4.250071,9.493308,-0.401250 b 

4.444091,9.404045,0.401250 4.101210,8.678483,0.401250 

3.922161,8.760859,0.401250 4.250071,9.493308,0.401250 

polyhedron prism a 4.250071,9.493308,-0.401250 3.922161,8.760859,-0.401250 

3.741457,8.839542,-0.401250 4.054260,9.578569,-0.401250 b 

4.250071,9.493308,0.401250 3.922161,8.760859,0.401250 

3.741457,8.839542,0.401250 4.054260,9.578569,0.401250 

polyhedron prism a 4.054260,9.578569,-0.401250 3.741457,8.839542,-0.401250 

3.559176,8.914497,-0.401250 3.856740,9.659791,-0.401250 b 

4.054260,9.578569,0.401250 3.741457,8.839542,0.401250 

3.559176,8.914497,0.401250 3.856740,9.659791,0.401250 

polyhedron prism a 3.856740,9.659791,-0.401250 3.559176,8.914497,-0.401250 

3.375395,8.985695,-0.401250 3.657594,9.736940,-0.401250 b 

3.856740,9.659791,0.401250 3.559176,8.914497,0.401250 

3.375395,8.985695,0.401250 3.657594,9.736940,0.401250 
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polyhedron prism a 3.657594,9.736940,-0.401250 3.375395,8.985695,-0.401250 

3.190191,9.053104,-0.401250 3.456905,9.809985,-0.401250 b 

3.657594,9.736940,0.401250 3.375395,8.985695,0.401250 

3.190191,9.053104,0.401250 3.456905,9.809985,0.401250 

polyhedron prism a 3.456905,9.809985,-0.401250 3.190191,9.053104,-0.401250 

3.003641,9.116696,-0.401250 3.254760,9.878894,-0.401250 b 

3.456905,9.809985,0.401250 3.190191,9.053104,0.401250 

3.003641,9.116696,0.401250 3.254760,9.878894,0.401250 

polyhedron prism a 3.254760,9.878894,-0.401250 3.003641,9.116696,-0.401250 

2.815826,9.176444,-0.401250 3.051242,9.943637,-0.401250 b 

3.254760,9.878894,0.401250 3.003641,9.116696,0.401250 

2.815826,9.176444,0.401250 3.051242,9.943637,0.401250 

polyhedron prism a 3.051242,9.943637,-0.401250 2.815826,9.176444,-0.401250 

2.626823,9.232324,-0.401250 2.846437,10.004189,-0.401250 b 

3.051242,9.943637,0.401250 2.815826,9.176444,0.401250 

2.626823,9.232324,0.401250 2.846437,10.004189,0.401250 

polyhedron prism a 2.846437,10.004189,-0.401250 2.626823,9.232324,-0.401250 

2.436712,9.284311,-0.401250 2.640433,10.060523,-0.401250 b 

2.846437,10.004189,0.401250 2.626823,9.232324,0.401250 

2.436712,9.284311,0.401250 2.640433,10.060523,0.401250 

polyhedron prism a 2.640433,10.060523,-0.401250 2.436712,9.284311,-0.401250 

2.245575,9.332384,-0.401250 2.433315,10.112615,-0.401250 b 

2.640433,10.060523,0.401250 2.436712,9.284311,0.401250 

2.245575,9.332384,0.401250 2.433315,10.112615,0.401250 

polyhedron prism a 2.433315,10.112615,-0.401250 2.245575,9.332384,-0.401250 

2.053490,9.376523,-0.401250 2.225171,10.160444,-0.401250 b 

2.433315,10.112615,0.401250 2.245575,9.332384,0.401250 

2.053490,9.376523,0.401250 2.225171,10.160444,0.401250 

polyhedron prism a 2.225171,10.160444,-0.401250 2.053490,9.376523,-0.401250 

1.860540,9.416708,-0.401250 2.016090,10.203989,-0.401250 b 

2.225171,10.160444,0.401250 2.053490,9.376523,0.401250 

1.860540,9.416708,0.401250 2.016090,10.203989,0.401250 

polyhedron prism a 2.016090,10.203989,-0.401250 1.860540,9.416708,-0.401250 

1.666805,9.452923,-0.401250 1.806158,10.243232,-0.401250 b 

2.016090,10.203989,0.401250 1.860540,9.416708,0.401250 

1.666805,9.452923,0.401250 1.806158,10.243232,0.401250 

polyhedron prism a 1.806158,10.243232,-0.401250 1.666805,9.452923,-0.401250 

1.472368,9.485153,-0.401250 1.595465,10.278156,-0.401250 b 

1.806158,10.243232,0.401250 1.666805,9.452923,0.401250 

1.472368,9.485153,0.401250 1.595465,10.278156,0.401250 

polyhedron prism a 1.595465,10.278156,-0.401250 1.472368,9.485153,-0.401250 

1.277310,9.513384,-0.401250 1.384099,10.308747,-0.401250 b 
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1.595465,10.278156,0.401250 1.472368,9.485153,0.401250 

1.277310,9.513384,0.401250 1.384099,10.308747,0.401250 

polyhedron prism a 1.384099,10.308747,-0.401250 1.277310,9.513384,-0.401250 

1.081714,9.537604,-0.401250 1.172150,10.334992,-0.401250 b 

1.384099,10.308747,0.401250 1.277310,9.513384,0.401250 

1.081714,9.537604,0.401250 1.172150,10.334992,0.401250 

polyhedron prism a 1.172150,10.334992,-0.401250 1.081714,9.537604,-0.401250 

0.885661,9.557803,-0.401250 0.959706,10.356880,-0.401250 b 

1.172150,10.334992,0.401250 1.081714,9.537604,0.401250 

0.885661,9.557803,0.401250 0.959706,10.356880,0.401250 

polyhedron prism a 0.959706,10.356880,-0.401250 0.885661,9.557803,-0.401250 

0.689235,9.573973,-0.401250 0.746858,10.374401,-0.401250 b 

0.959706,10.356880,0.401250 0.885661,9.557803,0.401250 

0.689235,9.573973,0.401250 0.746858,10.374401,0.401250 

polyhedron prism a 0.746858,10.374401,-0.401250 0.689235,9.573973,-0.401250 

0.492518,9.586106,-0.401250 0.533695,10.387549,-0.401250 b 

0.746858,10.374401,0.401250 0.689235,9.573973,0.401250 

0.492518,9.586106,0.401250 0.533695,10.387549,0.401250 

polyhedron prism a 0.533695,10.387549,-0.401250 0.492518,9.586106,-0.401250 

0.295594,9.594198,-0.401250 0.320307,10.396317,-0.401250 b 

0.533695,10.387549,0.401250 0.492518,9.586106,0.401250 

0.295594,9.594198,0.401250 0.320307,10.396317,0.401250 

polyhedron prism a 0.320307,10.396317,-0.401250 0.295594,9.594198,-0.401250 

0.098545,9.598244,-0.401250 0.106784,10.400702,-0.401250 b 

0.320307,10.396317,0.401250 0.295594,9.594198,0.401250 

0.098545,9.598244,0.401250 0.106784,10.400702,0.401250 

polyhedron prism a 0.106784,10.400702,-0.401250 0.098545,9.598244,-0.401250 -

0.098545,9.598244,-0.401250 -0.106784,10.400702,-0.401250 b 

0.106784,10.400702,0.401250 0.098545,9.598244,0.401250 -

0.098545,9.598244,0.401250 -0.106784,10.400702,0.401250 

polyhedron prism a -0.106784,10.400702,-0.401250 -0.098545,9.598244,-0.401250 -

0.295594,9.594198,-0.401250 -0.320307,10.396317,-0.401250 b -

0.106784,10.400702,0.401250 -0.098545,9.598244,0.401250 -

0.295594,9.594198,0.401250 -0.320307,10.396317,0.401250 

polyhedron prism a -0.320307,10.396317,-0.401250 -0.295594,9.594198,-0.401250 -

0.492518,9.586106,-0.401250 -0.533695,10.387549,-0.401250 b -

0.320307,10.396317,0.401250 -0.295594,9.594198,0.401250 -

0.492518,9.586106,0.401250 -0.533695,10.387549,0.401250 

polyhedron prism a -0.533695,10.387549,-0.401250 -0.492518,9.586106,-0.401250 -

0.689235,9.573973,-0.401250 -0.746858,10.374401,-0.401250 b -

0.533695,10.387549,0.401250 -0.492518,9.586106,0.401250 -

0.689235,9.573973,0.401250 -0.746858,10.374401,0.401250 
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polyhedron prism a -0.746858,10.374401,-0.401250 -0.689235,9.573973,-0.401250 -

0.885661,9.557803,-0.401250 -0.959706,10.356880,-0.401250 b -

0.746858,10.374401,0.401250 -0.689235,9.573973,0.401250 -

0.885661,9.557803,0.401250 -0.959706,10.356880,0.401250 

polyhedron prism a -0.959706,10.356880,-0.401250 -0.885661,9.557803,-0.401250 -

1.081714,9.537604,-0.401250 -1.172150,10.334992,-0.401250 b -

0.959706,10.356880,0.401250 -0.885661,9.557803,0.401250 -

1.081714,9.537604,0.401250 -1.172150,10.334992,0.401250 

polyhedron prism a -1.172150,10.334992,-0.401250 -1.081714,9.537604,-0.401250 -

1.277310,9.513384,-0.401250 -1.384099,10.308747,-0.401250 b -

1.172150,10.334992,0.401250 -1.081714,9.537604,0.401250 -

1.277310,9.513384,0.401250 -1.384099,10.308747,0.401250 

polyhedron prism a -1.384099,10.308747,-0.401250 -1.277310,9.513384,-0.401250 -

1.472368,9.485153,-0.401250 -1.595465,10.278156,-0.401250 b -

1.384099,10.308747,0.401250 -1.277310,9.513384,0.401250 -

1.472368,9.485153,0.401250 -1.595465,10.278156,0.401250 

polyhedron prism a -1.595465,10.278156,-0.401250 -1.472368,9.485153,-0.401250 -

1.666805,9.452923,-0.401250 -1.806158,10.243232,-0.401250 b -

1.595465,10.278156,0.401250 -1.472368,9.485153,0.401250 -

1.666805,9.452923,0.401250 -1.806158,10.243232,0.401250 

polyhedron prism a -1.806158,10.243232,-0.401250 -1.666805,9.452923,-0.401250 -

1.860540,9.416708,-0.401250 -2.016090,10.203989,-0.401250 b -

1.806158,10.243232,0.401250 -1.666805,9.452923,0.401250 -

1.860540,9.416708,0.401250 -2.016090,10.203989,0.401250 

polyhedron prism a -2.016090,10.203989,-0.401250 -1.860540,9.416708,-0.401250 -

2.053490,9.376523,-0.401250 -2.225171,10.160444,-0.401250 b -

2.016090,10.203989,0.401250 -1.860540,9.416708,0.401250 -

2.053490,9.376523,0.401250 -2.225171,10.160444,0.401250 

polyhedron prism a -2.225171,10.160444,-0.401250 -2.053490,9.376523,-0.401250 -

2.245575,9.332384,-0.401250 -2.433315,10.112615,-0.401250 b -

2.225171,10.160444,0.401250 -2.053490,9.376523,0.401250 -

2.245575,9.332384,0.401250 -2.433315,10.112615,0.401250 

polyhedron prism a -2.433315,10.112615,-0.401250 -2.245575,9.332384,-0.401250 -

2.436712,9.284311,-0.401250 -2.640433,10.060523,-0.401250 b -

2.433315,10.112615,0.401250 -2.245575,9.332384,0.401250 -

2.436712,9.284311,0.401250 -2.640433,10.060523,0.401250 

polyhedron prism a -2.640433,10.060523,-0.401250 -2.436712,9.284311,-0.401250 -

2.626823,9.232324,-0.401250 -2.846437,10.004189,-0.401250 b -

2.640433,10.060523,0.401250 -2.436712,9.284311,0.401250 -

2.626823,9.232324,0.401250 -2.846437,10.004189,0.401250 

polyhedron prism a -2.846437,10.004189,-0.401250 -2.626823,9.232324,-0.401250 -

2.815826,9.176444,-0.401250 -3.051242,9.943637,-0.401250 b -
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2.846437,10.004189,0.401250 -2.626823,9.232324,0.401250 -

2.815826,9.176444,0.401250 -3.051242,9.943637,0.401250 

polyhedron prism a -3.051242,9.943637,-0.401250 -2.815826,9.176444,-0.401250 -

3.003641,9.116696,-0.401250 -3.254760,9.878894,-0.401250 b -

3.051242,9.943637,0.401250 -2.815826,9.176444,0.401250 -

3.003641,9.116696,0.401250 -3.254760,9.878894,0.401250 

polyhedron prism a -3.254760,9.878894,-0.401250 -3.003641,9.116696,-0.401250 -

3.190191,9.053104,-0.401250 -3.456905,9.809985,-0.401250 b -

3.254760,9.878894,0.401250 -3.003641,9.116696,0.401250 -

3.190191,9.053104,0.401250 -3.456905,9.809985,0.401250 

polyhedron prism a -3.456905,9.809985,-0.401250 -3.190191,9.053104,-0.401250 -

3.375395,8.985695,-0.401250 -3.657594,9.736940,-0.401250 b -

3.456905,9.809985,0.401250 -3.190191,9.053104,0.401250 -

3.375395,8.985695,0.401250 -3.657594,9.736940,0.401250 

polyhedron prism a -3.657594,9.736940,-0.401250 -3.375395,8.985695,-0.401250 -

3.559176,8.914497,-0.401250 -3.856740,9.659791,-0.401250 b -

3.657594,9.736940,0.401250 -3.375395,8.985695,0.401250 -

3.559176,8.914497,0.401250 -3.856740,9.659791,0.401250 

polyhedron prism a -3.856740,9.659791,-0.401250 -3.559176,8.914497,-0.401250 -

3.741457,8.839542,-0.401250 -4.054260,9.578569,-0.401250 b -

3.856740,9.659791,0.401250 -3.559176,8.914497,0.401250 -

3.741457,8.839542,0.401250 -4.054260,9.578569,0.401250 

polyhedron prism a -4.054260,9.578569,-0.401250 -3.741457,8.839542,-0.401250 -

3.922161,8.760859,-0.401250 -4.250071,9.493308,-0.401250 b -

4.054260,9.578569,0.401250 -3.741457,8.839542,0.401250 -

3.922161,8.760859,0.401250 -4.250071,9.493308,0.401250 

polyhedron prism a -4.250071,9.493308,-0.401250 -3.922161,8.760859,-0.401250 -

4.101210,8.678483,-0.401250 -4.444091,9.404045,-0.401250 b -

4.250071,9.493308,0.401250 -3.922161,8.760859,0.401250 -

4.101210,8.678483,0.401250 -4.444091,9.404045,0.401250 

polyhedron prism a -4.444091,9.404045,-0.401250 -4.101210,8.678483,-0.401250 -

4.278531,8.592449,-0.401250 -4.636236,9.310817,-0.401250 b -

4.444091,9.404045,0.401250 -4.101210,8.678483,0.401250 -

4.278531,8.592449,0.401250 -4.636236,9.310817,0.401250 

polyhedron prism a -4.636236,9.310817,-0.401250 -4.278531,8.592449,-0.401250 -

4.454048,8.502791,-0.401250 -4.826427,9.213664,-0.401250 b -

4.636236,9.310817,0.401250 -4.278531,8.592449,0.401250 -

4.454048,8.502791,0.401250 -4.826427,9.213664,0.401250 

polyhedron prism a -4.826427,9.213664,-0.401250 -4.454048,8.502791,-0.401250 -

4.627687,8.409549,-0.401250 -5.014583,9.112626,-0.401250 b -

4.826427,9.213664,0.401250 -4.454048,8.502791,0.401250 -

4.627687,8.409549,0.401250 -5.014583,9.112626,0.401250 
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polyhedron prism a -5.014583,9.112626,-0.401250 -4.627687,8.409549,-0.401250 -

4.799375,8.312761,-0.401250 -5.200625,9.007747,-0.401250 b -

5.014583,9.112626,0.401250 -4.627687,8.409549,0.401250 -

4.799375,8.312761,0.401250 -5.200625,9.007747,0.401250 

; 

;Define the support blocks with the same command  

polyhedron prism a -5.9330,9.2763,-0.401250 -5.5000,9.5263,-0.401250 -

4.5000,7.7942,-0.401250 -4.9330,7.5442,-0.401250 b -5.9330,9.2763,0.401250 -

5.5000,9.5263,0.401250 -4.5000,7.7942,0.401250 -4.9330,7.5442,0.401250 

polyhedron prism a 5.9330,9.2763,-0.401250 5.5000,9.5263,-0.401250 

4.5000,7.7942,-0.401250 4.9330,7.5442,-0.401250 b 5.9330,9.2763,0.401250 

5.5000,9.5263,0.401250 4.5000,7.7942,0.401250 4.9330,7.5442,0.401250 

;Save the geometry with command save  

save structure.sav 

; 

;Define the loading block 13 with the same command  

polyhedron prism a -2.4333,10.1127,-0.401250 -2.4333,11.1127,-0.401250 -

2.6404,11.0606,-0.401250 -2.6404,10.0606,-0.401250 b -2.4333,10.1127,0.401250 -

2.4333,11.1127,0.401250 -2.6404,11.0606,0.401250 -2.6404,10.0606,0.401250 

; 

;Generate  

gen edge 0.2 

; 

;Creat ranges  

range name loadingblock id 35492  

range name supportblock1 id 34869 

range name supportblock2 id 34246 

;  

;Fix the support blocks  

fix range supportblock1  

fix range supportblock2 

; 

;Define the material properties of the blocks and joints  

prop mat=1 density=2700. ymod 35.e9 prat 0.25 

prop mat=2 density=100. ymod 35.e9 prat 0.25 

change mat 2 range loadingblock  

prop jmat=1 jkn 1.e11 jks 1.e11 jfri 30.  

; 

;Plot the structure_single-ring arch 

plot block 

; 

;Apply gravity  
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gravity 0.0,-9.81,0.0 

;  

;history the unbalanced forces of the system  

hist unbal id=1  

cycle 1  

plot hist 1 yaxis label 'Unbalanced force'  

;  

;Find the equilibrium under selfweight  

cycle 50000  

plot contour ydisp above au  

plot contour xdisp above au  

plot jointcontour sforce  

plot jointcontour nforce  

;  

;Apply live loads_additional loading block with increasing density until the structure 

collapsed  

;plot block  

;plot contour ydisp above au  

;plot contour ydisp above au  

;plot jointcontour sforce  

;plot jointcontour nforce  

prop mat=2 density=2089900. ymod 35.e9 prat 0.25 

solve ratio 1.e-11  
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Appendix C – 3DEC code of the segmental arch (60°) 

with 51blocks (Quasi-static load, 45-degree friction 

angle) 

 

; Start the *3ddat file with the saved document “arch3.sav”, which defines the 

geometry of the structure 

restore arch3.sav 

;Define the loading block 21 with the same command  

polyhedron prism a -4.0543,9.5786,-0.401250 -4.0543,10.5786,-0.401250 -

4.2501,10.4934,-0.401250 -4.2501,9.4934,-0.401250 b -4.0543,9.5786,0.401250 -

4.0543,10.5786,0.401250 -4.2501,10.4934,0.401250 -4.2501,9.4934,0.401250 

gen edge 0.2 

;Creat ranges  

range name loadingblock id 35492  

range name supportblock1 id 34869 

range name supportblock2 id 34246 

;  

;Fix the support blocks  

fix range supportblock1  

fix range supportblock2 

; 

;Define the material properties of the blocks and joints  

prop mat=1 density=2700. ymod 35.e9 prat 0.25 

prop mat=2 density=100. ymod 35.e9 prat 0.25 

change mat 2 range loadingblock  

prop jmat=1 jkn 1.e11 jks 1.e11 jfri 45.  

; 

;Plot the structure_single-ring arch 

plot block 

; 

;Apply gravity  

gravity 0.0,-9.81,0.0 

;  

;history the unbalanced forces of the system  

hist unbal id=1  

cycle 1  

;  

;Find the equilibrium under selfweight  

cycle 50000  
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;  

;Apply live loads_additional loading block with increasing density until the structure 

collapsed  

prop mat=2 density=20000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=40000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=60000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=80000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=100000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=120000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=140000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=160000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=180000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=200000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=220000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=240000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=260000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=280000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=300000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=320000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=340000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=360000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=380000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=400000. ymod 35.e9 prat 0.25 
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solve ratio 1.e-9  

prop mat=2 density=420000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=440000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=460000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=480000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=500000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=520000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=540000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=560000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=580000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=600000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=620000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=640000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=660000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=680000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=700000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=720000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9  

prop mat=2 density=722000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9 

prop mat=2 density=724000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9 

prop mat=2 density=726000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9 

prop mat=2 density=728000. ymod 35.e9 prat 0.25 

solve ratio 1.e-9 

prop mat=2 density=728100. ymod 35.e9 prat 0.25 
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solve ratio 1.e-9 

prop mat=2 density=728200. ymod 35.e9 prat 0.25 

solve ratio 1.e-9 

prop mat=2 density=728300. ymod 35.e9 prat 0.25 

solve ratio 1.e-9 

prop mat=2 density=728400. ymod 35.e9 prat 0.25 

solve ratio 1.e-9 

prop mat=2 density=728500. ymod 35.e9 prat 0.25 

solve ratio 1.e-9 
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Appendix D – 3DEC code of the segmental arch (60°) 

with 51blocks (travelling load, 40-degree friction angle) 

 

; Start the *3ddat file with the saved document “arch3.sav”, which defines the 

geometry of the structure 

restore arch3.sav 

;Define the loading block 20 with the same command  

polyhedron prism a -3.8568,9.6598,-0.401250 -3.8568,10.6598,-0.401250 -

4.0543,10.5786,-0.401250 -4.0543,9.5786,-0.401250 b -3.8568,9.6598,0.401250 -

3.8568,10.6598,0.401250 -4.0543,10.5786,0.401250 -4.0543,9.5786,0.401250 

;Define the loading block 21 with the same command  

polyhedron prism a -4.0543,9.5786,-0.401250 -4.0543,10.5786,-0.401250 -

4.2501,10.4934,-0.401250 -4.2501,9.4934,-0.401250 b -4.0543,9.5786,0.401250 -

4.0543,10.5786,0.401250 -4.2501,10.4934,0.401250 -4.2501,9.4934,0.401250 

;Define the loading block 22 with the same command  

polyhedron prism a -4.2501,9.4934,-0.401250 -4.2501,10.4934,-0.401250 -

4.4432,10.4021,-0.401250 -4.4432,9.4021,-0.401250 b -4.2501,9.4934,0.401250 -

4.2501,10.4934,0.401250 -4.4432,10.4021,0.401250 -4.4432,9.4021,0.401250 

;Define the loading block 23 with the same command  

polyhedron prism a -4.4432,9.4021,-0.401250 -4.4432,10.4021,-0.401250 -

4.6343,10.3069,-0.401250 -4.6343,9.3069,-0.401250 b -4.4432,9.4021,0.401250 -

4.4432,10.4021,0.401250 -4.6343,10.3069,0.401250 -4.6343,9.3069,0.401250 

;Define the loading block 24 with the same command  

polyhedron prism a -4.6343,9.3069,-0.401250 -4.6343,10.3069,-0.401250 -

4.8265,10.2137,-0.401250 -4.8265,9.2137,-0.401250 b -4.6343,9.3069,0.401250 -

4.6343,10.3069,0.401250 -4.8265,10.2137,0.401250 -4.8265,9.2137,0.401250 

;Define the loading block 25 with the same command  

polyhedron prism a -4.8265,9.2137,-0.401250 -4.8265,10.2137,-0.401250 -

5.0146,10.1127,-0.401250 -5.0146,9.1127,-0.401250 b -4.8265,9.2137,0.401250 -

4.8265,10.2137,0.401250 -5.0146,10.1127,0.401250 -5.0146,9.1127,0.401250 

;Define the loading block 26 with the same command  

polyhedron prism a -5.0146,9.1127,-0.401250 -5.0146,10.1127,-0.401250 -

5.2006,10.0078,-0.401250 -5.2006,9.0078,-0.401250 b -5.0146,9.1127,0.401250 -

5.0146,10.1127,0.401250 -5.2006,10.0078,0.401250 -5.2006,9.0078,0.401250 

; 

gen edge 0.2 

; 

;Creat ranges  

range name loadingblock20 id 35492 

range name loadingblock21 id 36199  
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range name loadingblock22 id 36948 

range name loadingblock23 id 37697 

range name loadingblock24 id 38446 

range name loadingblock25 id 39195 

range name loadingblock26 id 39944 

range name supportblock1 id 34869 

range name supportblock2 id 34246 

;  

;Fix the support blocks  

fix range supportblock1  

fix range supportblock2 

; 

;Define the material properties of the blocks and joints  

prop mat=1 density=2700. ymod 35.e9 prat 0.25 

prop mat=2 density=10. ymod 35.e9 prat 0.25 

prop mat=3 density=10. ymod 35.e9 prat 0.25 

prop mat=4 density=10. ymod 35.e9 prat 0.25 

prop mat=5 density=10. ymod 35.e9 prat 0.25 

prop mat=6 density=10. ymod 35.e9 prat 0.25 

prop mat=7 density=10. ymod 35.e9 prat 0.25 

prop mat=8 density=10. ymod 35.e9 prat 0.25 

change mat 2 range loadingblock20  

change mat 3 range loadingblock21  

change mat 4 range loadingblock22  

change mat 5 range loadingblock23  

change mat 6 range loadingblock24  

change mat 7 range loadingblock25  

change mat 8 range loadingblock26  

prop jmat=1 jkn 1.e11 jks 1.e11 jfri 40.  

; 

;Plot the structure_single-ring arch 

plot block 

; 

;Apply gravity  

gravity 0.0,-9.81,0.0 

;  

;history the unbalanced forces of the system  

hist unbal id=1  

cycle 1  

;  

;Find the equilibrium under selfweight   

cycle 100000  
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; 

;Apply travelling loads_additional loading block with increasing and decreasing 

densities until the total load is applied to the critical position, check when the 

structure collapse  

prop mat=8 density=713954.374 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=8 density=611960.892 ymod 35.e9 prat 0.25 

prop mat=7 density=100640.783 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=8 density=509967.410 ymod 35.e9 prat 0.25 

prop mat=7 density=201281.566 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=8 density=407973.928 ymod 35.e9 prat 0.25 

prop mat=7 density=301922.349 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=8 density=305980.446 ymod 35.e9 prat 0.25 

prop mat=7 density=402563.132 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=8 density=203986.964 ymod 35.e9 prat 0.25 

prop mat=7 density=503203.915 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=8 density=101993.482 ymod 35.e9 prat 0.25 

prop mat=7 density=603844.698 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=8 density=10. ymod 35.e9 prat 0.25 

prop mat=7 density=704485.481 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=7 density=603844.698 ymod 35.e9 prat 0.25 

prop mat=6 density=99741.26 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=7 density=503203.915 ymod 35.e9 prat 0.25 

prop mat=6 density=199482.52 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 
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; 

prop mat=7 density=402563.132 ymod 35.e9 prat 0.25 

prop mat=6 density=299223.78 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=7 density=301922.349 ymod 35.e9 prat 0.25 

prop mat=6 density=398965.04 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=7 density=201281.566 ymod 35.e9 prat 0.25 

prop mat=6 density=498706.3 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=7 density=100640.783 ymod 35.e9 prat 0.25 

prop mat=6 density=598447.56 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=7 density=10. ymod 35.e9 prat 0.25 

prop mat=6 density=698188.82 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=6 density=598447.56 ymod 35.e9 prat 0.25 

prop mat=5 density=98498.378 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=6 density=498706.3 ymod 35.e9 prat 0.25 

prop mat=5 density=196996.756 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=6 density=398965.04 ymod 35.e9 prat 0.25 

prop mat=5 density=295495.134 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=6 density=299223.78 ymod 35.e9 prat 0.25 

prop mat=5 density=393993.512 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=6 density=199482.52 ymod 35.e9 prat 0.25 

prop mat=5 density=492491.89 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=6 density=99741.26 ymod 35.e9 prat 0.25 
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prop mat=5 density=590990.268 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=6 density=10. ymod 35.e9 prat 0.25 

prop mat=5 density=689488.646 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=5 density=590990.268 ymod 35.e9 prat 0.25 

prop mat=4 density=97787.565 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=5 density=492491.89 ymod 35.e9 prat 0.25 

prop mat=4 density=195575.13 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=5 density=393993.512 ymod 35.e9 prat 0.25 

prop mat=4 density=293362.695 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=5 density=295495.134 ymod 35.e9 prat 0.25 

prop mat=4 density=391150.26 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=5 density=196996.756 ymod 35.e9 prat 0.25 

prop mat=4 density=488937.825 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=5 density=98498.378 ymod 35.e9 prat 0.25 

prop mat=4 density=586725.39 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=5 density=10. ymod 35.e9 prat 0.25 

prop mat=4 density=684512.955 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=4 density=586725.39 ymod 35.e9 prat 0.25 

prop mat=3 density=96888.599 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=4 density=488937.825 ymod 35.e9 prat 0.25 

prop mat=3 density=193777.198 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 
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; 

prop mat=4 density=391150.26 ymod 35.e9 prat 0.25 

prop mat=3 density=290665.797 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=4 density=293362.695 ymod 35.e9 prat 0.25 

prop mat=3 density=387554.396 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=4 density=195575.13 ymod 35.e9 prat 0.25 

prop mat=3 density=484442.995 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=4 density=97787.565 ymod 35.e9 prat 0.25 

prop mat=3 density=581331.594 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=4 density=10. ymod 35.e9 prat 0.25 

prop mat=3 density=678220.193 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=3 density=581331.594 ymod 35.e9 prat 0.25 

prop mat=2 density=96054.621 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=3 density=484442.995 ymod 35.e9 prat 0.25 

prop mat=2 density=192109.242 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=3 density=387554.396 ymod 35.e9 prat 0.25 

prop mat=2 density=288163.863 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=3 density=290665.797 ymod 35.e9 prat 0.25 

prop mat=2 density=384218.484 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=3 density=193777.198 ymod 35.e9 prat 0.25 

prop mat=2 density=480273.105 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=3 density=96888.599 ymod 35.e9 prat 0.25 
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prop mat=2 density=576327.726 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 

; 

prop mat=3 density=10. ymod 35.e9 prat 0.25 

prop mat=2 density=672382.347 ymod 35.e9 prat 0.25 

solve ratio 1.e-10 
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Appendix E – Setting of blocks’ densities in 3DEC running 

travelling load 

 

*The unit of density is kg/m3. 

 

1) Arch1 

material no. 7 6 5 4 3 2 

loading block no. 8 7 1 2 3 4 

1 18412.55 10 10 10 10 10 

2 15782.18 2538.785 10 10 10 10 

3 13151.82 5077.569 10 10 10 10 

4 10521.46 7616.354 10 10 10 10 

5 7891.092 10155.14 10 10 10 10 

6 5260.728 12693.92 10 10 10 10 

7 2630.364 15232.71 10 10 10 10 

8 10 17771.49 10 10 10 10 

9 10 15232.71 2484.325 10 10 10 

10 10 12693.92 4968.65 10 10 10 

11 10 10155.14 7452.974 10 10 10 

12 10 7616.354 9937.299 10 10 10 

13 10 5077.569 12421.62 10 10 10 

14 10 2538.785 14905.95 10 10 10 

15 10 10 17390.27 10 10 10 

16 10 10 14905.95 2441.199 10 10 

17 10 10 12421.62 4882.398 10 10 

18 10 10 9937.299 7323.597 10 10 

19 10 10 7452.974 9764.796 10 10 

20 10 10 4968.65 12206 10 10 

21 10 10 2484.325 14647.19 10 10 

22 10 10 10 17088.39 10 10 

23 10 10 10 14647.19 2408.352 10 

24 10 10 10 12206 4816.703 10 

25 10 10 10 9764.796 7225.055 10 

26 10 10 10 7323.597 9633.406 10 

27 10 10 10 4882.398 12041.76 10 

28 10 10 10 2441.199 14450.11 10 

29 10 10 10 10 16858.46 10 

30 10 10 10 10 14450.11 2385.735 

31 10 10 10 10 12041.76 4771.469 

32 10 10 10 10 9633.406 7157.204 
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33 10 10 10 10 7225.055 9542.938 

34 10 10 10 10 4816.703 11928.67 

35 10 10 10 10 2408.352 14314.41 

36 10 10 10 10 10 16700.14 

 

2) Arch2 

material no. 5 4 3 2 

loading block no. 13 12 11 10 

1 118247.22 10 10 10 

2 106422.498 11581.074 10 10 

3 94597.776 23162.148 10 10 

4 82773.054 34743.222 10 10 

5 70948.332 46324.296 10 10 

6 59123.61 57905.37 10 10 

7 47298.888 69486.444 10 10 

8 35474.166 81067.518 10 10 

9 23649.444 92648.592 10 10 

10 11824.722 104229.666 10 10 

11 10 115810.74 10 10 

12 10 104229.666 11361.905 10 

13 10 92648.592 22723.81 10 

14 10 81067.518 34085.715 10 

15 10 69486.444 45447.62 10 

16 10 57905.37 56809.525 10 

17 10 46324.296 68171.43 10 

18 10 34743.222 79533.335 10 

19 10 23162.148 90895.24 10 

20 10 11581.074 102257.145 10 

21 10 10 113619.05 10 

22 10 10 102257.145 11090.021 

23 10 10 90895.24 22180.042 

24 10 10 79533.335 33270.063 

25 10 10 68171.43 44360.084 

26 10 10 56809.525 55450.105 

27 10 10 45447.62 66540.126 

28 10 10 34085.715 77630.147 

29 10 10 22723.81 88720.168 

30 10 10 11361.905 99810.189 

31 10 10 10 110900.21 

 

3) Arch3 (friction angle = 30°) 

material no. 3 2 
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loading block no. 26 25 

1 440441.55 10 

2 396397.395 43460.015 

3 352353.24 86920.03 

4 308309.085 130380.045 

5 264264.93 173840.06 

6 220220.775 217300.075 

7 176176.62 260760.09 

8 132132.465 304220.105 

9 88088.31 347680.12 

10 44044.155 391140.135 

11 10 434600.15 

 

4) Arch3 (friction angle = 40°) 

material no. 8 7 6 5 4 3 2 

loading block no. 26 25 24 23 22 21 20 

1 713954.4 10 10 10 10 10 10 

2 611960.9 100640.8 10 10 10 10 10 

3 509967.4 201281.6 10 10 10 10 10 

4 407973.9 301922.3 10 10 10 10 10 

5 305980.4 402563.1 10 10 10 10 10 

6 203987 503203.9 10 10 10 10 10 

7 101993.5 603844.7 10 10 10 10 10 

8 10 704485.5 10 10 10 10 10 

9 10 603844.7 99741.26 10 10 10 10 

10 10 503203.9 199482.5 10 10 10 10 

11 10 402563.1 299223.8 10 10 10 10 

12 10 301922.3 398965 10 10 10 10 

13 10 201281.6 498706.3 10 10 10 10 

14 10 100640.8 598447.6 10 10 10 10 

15 10 10 698188.8 10 10 10 10 

16 10 10 598447.6 98498.38 10 10 10 

17 10 10 498706.3 196996.8 10 10 10 

18 10 10 398965 295495.1 10 10 10 

19 10 10 299223.8 393993.5 10 10 10 

20 10 10 199482.5 492491.9 10 10 10 

21 10 10 99741.26 590990.3 10 10 10 

22 10 10 10 689488.6 10 10 10 

23 10 10 10 590990.3 97787.57 10 10 

24 10 10 10 492491.9 195575.1 10 10 

25 10 10 10 393993.5 293362.7 10 10 

26 10 10 10 295495.1 391150.3 10 10 
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27 10 10 10 196996.8 488937.8 10 10 

28 10 10 10 98498.38 586725.4 10 10 

29 10 10 10 10 684513 10 10 

30 10 10 10 10 586725.4 96888.6 10 

31 10 10 10 10 488937.8 193777.2 10 

32 10 10 10 10 391150.3 290665.8 10 

33 10 10 10 10 293362.7 387554.4 10 

34 10 10 10 10 195575.1 484443 10 

35 10 10 10 10 97787.57 581331.6 10 

36 10 10 10 10 10 678220.2 10 

37 10 10 10 10 10 581331.6 96054.62 

38 10 10 10 10 10 484443 192109.2 

39 10 10 10 10 10 387554.4 288163.9 

40 10 10 10 10 10 290665.8 384218.5 

41 10 10 10 10 10 193777.2 480273.1 

42 10 10 10 10 10 96888.6 576327.7 

43 10 10 10 10 10 10 672382.3 

 

5) Arch3 (friction angle = 45°) 

material no. 8 7 6 5 4 3 2 

loading block no. 26 25 24 23 22 21 20 

1 713867 10 10 10 10 10 10 

2 611886 100628.5 10 10 10 10 10 

3 509905 201256.9 10 10 10 10 10 

4 407924 301885.4 10 10 10 10 10 

5 305943 402513.8 10 10 10 10 10 

6 203962 503142.3 10 10 10 10 10 

7 101981 603770.8 10 10 10 10 10 

8 10 704399.2 10 10 10 10 10 

9 10 603770.8 99729.05 10 10 10 10 

10 10 503142.3 199458.1 10 10 10 10 

11 10 402513.8 299187.1 10 10 10 10 

12 10 301885.4 398916.2 10 10 10 10 

13 10 201256.9 498645.2 10 10 10 10 

14 10 100628.5 598374.3 10 10 10 10 

15 10 10 698103.3 10 10 10 10 

16 10 10 598374.3 98486.32 10 10 10 

17 10 10 498645.2 196972.6 10 10 10 

18 10 10 398916.2 295459 10 10 10 

19 10 10 299187.1 393945.3 10 10 10 

20 10 10 199458.1 492431.6 10 10 10 

21 10 10 99729.05 590917.9 10 10 10 
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22 10 10 10 689404.2 10 10 10 

23 10 10 10 590917.9 97775.59 10 10 

24 10 10 10 492431.6 195551.2 10 10 

25 10 10 10 393945.3 293326.8 10 10 

26 10 10 10 295459 391102.4 10 10 

27 10 10 10 196972.6 488878 10 10 

28 10 10 10 98486.32 586653.6 10 10 

29 10 10 10 10 684429.1 10 10 

30 10 10 10 10 586653.6 96876.74 10 

31 10 10 10 10 488878 193753.5 10 

32 10 10 10 10 391102.4 290630.2 10 

33 10 10 10 10 293326.8 387506.9 10 

34 10 10 10 10 195551.2 484383.7 10 

35 10 10 10 10 97775.59 581260.4 10 

36 10 10 10 10 10 678137.2 10 

37 10 10 10 10 10 581260.4 96042.86 

38 10 10 10 10 10 484383.7 192085.7 

39 10 10 10 10 10 387506.9 288128.6 

40 10 10 10 10 10 290630.2 384171.4 

41 10 10 10 10 10 193753.5 480214.3 

42 10 10 10 10 10 96876.74 576257.2 

43 10 10 10 10 10 10 672300 
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Appendix F – Summary of failure loads in three programs 

 

Note: the unit of failure load is kN 

*Friction angle or masonry strength is shown in the row. 

 

semicircular arch with 51 blocks 

position 
3-Dec Archie-M RING 

*30° *40° *45° *5MPa *10MPa *20° *30° *40° *45° 

0.500L 48.149 48.409 48.409 41.5944 44.9298 6.42 49.5 49.5 49.5 

0.467L 43.972 43.972 43.972 39.6324 42.6735 6.4 46 46 46 

0.434L 43.399 43.399 43.399 39.0438 41.8887 6.94 44.6 44.6 44.6 

0.401L 44.021 44.021 44.021 37.8666 40.4172 7.74 45 45 45 

0.368L 45.968 45.968 45.968 38.9457 41.3001 8.72 46.9 46.9 46.9 

0.336L 49.662 49.662 49.662 41.7906 44.145 9.95 50.5 50.5 50.5 

 

semicircular arch with 77 blocks 

position 
3-Dec Archie-M RING 

*30° *40° *45° *5MPa *30° *40° *45° 

0.500L 47.359 47.359 47.359 4.24 47.9 47.9 47.9 

0.456L 41.515 41.515 41.515 3.92 44.3 44.3 44.3 

0.434L 41.832 41.832 41.832 3.84 43.9 43.9 43.9 

0.412L 44.814 44.814 44.814 3.97 46.2 46.2 46.2 

0.369L 51.096 51.096 51.096 4.26 51.3 51.3 51.3 

0.327L 61.534 61.534 61.534 4.74 59.9 59.9 59.9 

0.286L 78.108 78.108 78.108 5.86 73.1 73.1 73.1 

 

120-degree embrace segmental arch with 51 blocks 

position 
3-Dec Archie-M RING 

*30 *40 *45 *5MPa *10MPa *20 *30 *40 *45 

0.500L 2105.879 2535.919 2634.944 459.108 689.643 176 3950 3950 3950 

0.475L 945.408 998.651 1013.806 373.761 512.082 166 921 921 921 

0.449L 566.18 575.928 577.917 318.825 405.153 159 544 544 544 

0.424L 402.088 403.672 404.266 282.528 340.407 154 399 399 399 

0.399L 319.359 319.949 320.146 240.345 276.642 151 324 324 324 

0.374L 270.428 270.428 270.428 212.877 238.383 149 280 280 280 

0.349L 258.668 259.083 259.083 196.2 216.801 149 253 253 253 

0.329L 222.476 222.476 222.476 189.333 206.991 142 240 240 240 

0.301L 217.847 217.654 217.654 175.599 189.333 150 225 225 225 

0.277L 207.589 206.651 206.651 166.77 178.542 150 220 220 220 

0.254L 209.576 209.576 209.576 162.846 173.637 151 219 219 219 
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0.230L 208.663 208.663 208.663 163.827 173.637 154 222 222 222 

0.208L 217.202 217.906 217.202 161.865 169.713 158 228 228 228 

0.186L - - - 160.884 168.8301 165 238 238 238 

0.176L - - - 164.808 172.656 - - - - 

0.166L - - - 165.789 172.8522 - - - - 

0.156L - - - 166.77 174.618 - - - - 

0.146L - - - 172.656 180.9945 - - - - 

 

120-degree embrace segmental arch with 59 blocks 

position 
3-Dec Archie-M RING 

*30° *40° *45° *5MPa *30° *40° *45° 

0.500L 1790.323 2158.229 2244.896 46.8 3390 3390 3390 

0.478L 931.867 1010.83 1031.346 39.4 984 984 984 

0.456L 693.154 624.522 625.556 35.7 594 594 594 

0.434L 436.575 442.579 443.094 29.3 437 437 437 

0.391L 293.363 293.363 293.363 24.4 303 303 303 

0.348L 236.769 236.769 236.769 19.9 248 248 248 

0.306L 210.027 210.027 210.027 17.9 224 224 224 

0.265L 204.736 204.736 204.736 17.2 216 216 216 

0.225L 209.553 209.553 209.553 16.4 220 220 220 

0.187L - - - 16.4 236 236 236 

0.150L - - - 17.3 271 271 271 

 

60-degree embrace segmental arch with 51 blocks 

position 
3-Dec Archie-M RING 

*30 *40 *45 *5MPa *10MPa *20 *30 *40 *45 

0.500L 18245.47 30191.77 33568.7 546.417 1098.72     

0.479L 16282.6 28885.45 32880.34 534.645 1030.05     

0.457L 15950.73 28874.61 32865.27 500.31 981     

0.436L 12172.76 19553.96 24398.72 457.146 922.14     

0.415L 11268.73 18551.31 24487.5 446.355 922.14  Geometrically  

0.393L 9886.435 17112.86 20513.29 410.058 824.04  locked  

0.372L 9068.377 14194.13 17419.1 423.792 863.28     

0.351L 8342.006 12607.72 15942.85 385.533 774.99     

0.330L 7209.718 10947.69 13155.64 355.122 765.18     

0.309L 6181.294 8613.69 10032.31 321.768 608.22 48000    

0.288L 5090.703 7103.116 7784.126 321.768 647.46 3840    

0.267L 4179.421 5523.241 5749.044 328.635 598.41 2280    

0.246L 3407.373 3920.786 4087.902 283.509 529.74 1550    

0.226L 2547.754 2873.399 2956.594 305.091 519.93 1250 7300 7300 7300 

0.205L 1929.915 2093.563 2106.622 311.958 559.17 1010 2520 2520 2520 
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0.185L 1489.915 1597.733 1621.604 333.54 559.17 880 1660 1660 1660 

0.164L 1253.101 1279.671 1287.467 311.958 519.93 777 1320 1320 1320 

0.144L 1256.903 1118.967 1121.811 348.255 588.6 716 1110 1180 1180 

0.124L 977.286 1045.782 1047.193 392.4 657.27 670 965 1140 1140 

0.104L 869.924 1040.643 1043.287 415.944 686.7 600 873 1210 1210 

0.085L 793.071 1121.244 1122.939 502.272 804.42 550 812 1250 1450 

0.065L 740.42 1147.743 1346.594 716.13 1152.675 509 761 1210 1590 

0.046L 701.265 1105.952 1454.234 1006.506 1667.7 477 722 1170 1590 

0.027L 657.638 1054.137 1410.208 2183.706 3619.89 453 696 1150 1600 

0.008L 644.489 1052.581 1450.582 - - 465 719 1200 1660 

 

RING - semicircular arch with 51 blocks – backfill depth 

position 

30° friction angle 40° friction angle 50° friction angle 

depth 

0 

depth 

500 

depth 

1000 

depth 

0 

depth 

500 

depth 

1000 

depth 

0 

depth 

500 

depth 

1000 

0.500L 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 

0.467L 46 46 46 46 46 46 46 46 46 

0.434L 44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6 44.6 

0.401L 45 45 45 45 45 45 45 45 45 

0.368L 46.9 46.9 46.9 46.9 46.9 46.9 46.9 46.9 46.9 

0.336L 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 

 

RING - 120° embrace segmental arch with 51 blocks - backfill depth 

positi

on 

30° friction angle 40° friction angle 50° friction angle 

depth 

0 

depth 

500 

depth 

1000 

depth 

0 

depth 

500 

depth 

1000 

depth 

0 

depth 

500 

depth 

1000 

0.500L 3950 3950 3950 3950 3950 3950 3950 3950 3950 

0.475L 921 921 921 921 921 921 921 921 921 

0.449L 544 544 544 544 544 544 544 544 544 

0.424L 399 399 399 399 399 399 399 399 399 

0.399L 324 324 324 324 324 324 324 324 324 

0.374L 280 280 280 280 280 280 280 280 280 

0.349L 253 253 253 253 253 253 253 253 253 

0.329L 240 240 240 240 240 240 240 240 240 

0.301L 225 225 225 225 225 225 225 225 225 

0.277L 220 220 220 220 220 220 220 220 220 

0.254L 219 219 219 219 219 219 219 219 219 

0.230L 222 222 222 222 222 222 222 222 222 

0.208L 228 228 228 228 228 228 228 228 228 

0.186L 238 238 238 238 238 238 238 238 238 

 


