1. Mean error of a function derived from measurements

If we compute the value of a function that is dependent on measurements, the mean error of the measured values will affect the function value as well. The mean error of the function value can be computed using the law of propagation of the mean error.

Let $G$ denote some function of a single measurement $L$, that is $G = G(L)$. If the mean error of the measurement is $m_L$, the mean error of the function will be

$$m_G = \pm g \cdot m_L$$

where $g$ is the derivative of the function $G$ with respect to $L$, computed at the value of the measurement:

$$g = \frac{dG}{dL}(L)$$

If $G$ is a function of multiple measurements, we suppose the following:

- the measurements are independent from each other, meaning that the effect of each measurement on the function’s mean error can be computed separately using the function’s partial derivative with respect to the measurements;
- the mean error of the function is the vector sum of the effect of the individual measurements.

$$m_G = \pm \sqrt{g_1^2 \cdot m_1^2 + g_2^2 \cdot m_2^2 + \cdots + g_i^2 \cdot m_i^2 + \cdots + g_n^2 \cdot m_n^2}$$

where $g_i$ is the partial derivative of $G$ with respect to the $i$-th measurement and $m_i$ is the mean error of the $i$-th measurement.

The mean error of simple functions:

- Measurement multiplied by a constant: $G = c \cdot L$
  
  $g = c$
  
  $$m_G = \sqrt{g^2 \cdot m_L^2} = c \cdot m_L$$
  
  - Sum or difference of two measurements: $G = L_1 + L_2$ and $G = L_1 - L_2$
    
    $g_1 = +1$ in both cases
    
    $g_2 = +1$ in the case of the sum, and $g_2 = -1$ in the case of the difference
    
    $$m_G = \sqrt{g_1^2 \cdot m_1^2 + g_2^2 \cdot m_2^2} = \sqrt{m_1^2 + m_2^2}$$
    
    If both measurements have the same mean error $m$: $m_G = \sqrt{2} \cdot m$
  
  - Product of two measurements: $G = L_1 \cdot L_2$
    
    $g_1 = L_2$
\[ g_2 = L_1 \]
\[ m_G = \sqrt{g_1^2 \cdot m_1^2 + g_2^2 \cdot m_2^2} = \sqrt{l_1^2 \cdot m_1^2 + l_2^2 \cdot m_2^2} \]

- Mean of measurements with the same mean error \( m \): 
  \[ G = \frac{1}{n} \cdot (L_1 + L_2 + \cdots + L_n) \]
  
  \[ g_1 = g_2 = \cdots = g_n = \frac{1}{n} \]

\[ m_G = \sqrt{\left(\frac{1}{n}\right)^2 \cdot m^2 + \left(\frac{1}{n}\right)^2 \cdot m^2 + \cdots + \left(\frac{1}{n}\right)^2 \cdot m^2} = \sqrt{n \cdot \left(\frac{1}{n}\right)^2 \cdot m^2} = \frac{m}{\sqrt{n}} \]

2. **Practice exercises**

1. A distance was measured in two parts using two different instruments. The measurements are 54,872 m ± 0.02 m and 634,21 dm ± 1 dm. Compute the sum of the two measurements and its mean error. Give the results in meter, using mm precision.

   \[ G = L_1 + L_2 = 54,872 \text{ m} + 63,421 \text{ m} = 118,293 \text{ m} \]

   The partial derivatives:

   \[ g_1 = 1 \text{ and } g_2 = 1 \]

   The mean errors of the measurements:

   \[ m_1 = 0.02 \text{ m and } m_2 = 0.1 \text{ m} \]

   The mean error of the function:

   \[ m_G = \pm \sqrt{g_1^2 \cdot m_1^2 + g_2^2 \cdot m_2^2} = \sqrt{0.02^2 + 0.1^2} = \pm 0.102 \text{ m} \]

   The distance and its mean error: 118,293 m ± 0.102 m

2. In order to find the value of an angle, we measured the mean direction of the angle’s two legs using the same instrument. The mean direction of the right leg is 165-12-43, the mean direction of the left leg is 91-48-40. The mean error of the instrument is ± 10". Compute the value of the angle in DMS units and its mean error in arc seconds.

   The value of the angle is the mean direction of the left leg \( L_2 \) subtracted from the right leg \( L_1 \):

   \[ G = L_1 - L_2 = 73-24-03 \]

   The partial derivatives:
The mean error of the angle:

\[ m_G = \pm \sqrt{g_1^2 \cdot m_2^2 + g_2^2 \cdot m_2^2} = \sqrt{2} \cdot m = 14,14'' \approx \pm 14'' \]

The value of the angle and its mean error: 73-24-03 ± 14"

3. To compute the volume of a pyramid with a square base, we measured the side of the base \((a = 25,032 \text{ m} ± 3,5 \text{ cm})\), the side connecting the base to the apex \((b = 3765,9 \text{ cm} ± 2 \text{ dm})\) and angle between the base and the slant side \((\alpha = 42-11-33 ± 0,2')\). Compute the volume of the pyramid rounded to integer cubic meters and the mean error of the volume in cubic meters with one decimal precision.

The volume of the pyramid as a function of the measurements:

\[ G = V = \frac{1}{3} \cdot a^2 \cdot h = \frac{1}{3} \cdot a^2 \cdot b \cdot \sin(\alpha) = \frac{1}{3} \cdot 25,032^2 \cdot 37,659 \cdot \sin(42-11-33) = 5282,8 \approx 5283 \text{ m}^3 \]

The partial derivatives of the volume function with respect to the measurements:

\[ g_a = \frac{1}{3} \cdot 2 \cdot a \cdot b \cdot \sin(\alpha) = 422,084 \text{ m}^2 \]
\[ g_b = \frac{1}{3} \cdot a^2 \cdot \sin(\alpha) = 140,280 \text{ m}^2 \]
\[ g_c = \frac{1}{3} \cdot a^2 \cdot b \cdot \cos(\alpha) = 5827,655 \text{ m}^3 \]

The mean errors of the measurements:

\[ m_a = 0.035 \text{ m} \]
\[ m_b = 0.2 \text{ m} \]
\[ m_a = 12'' \]

The mean error of the volume. Note that the mean error of the angular measurement has to be converted into radians.

\[ m_G = \sqrt{g_a^2 \cdot m_a^2 + g_b^2 \cdot m_b^2 + g_c^2 \cdot m_c^2} = \]
\[ = \sqrt{422,084^2 \cdot 0,035^2 + 140,280^2 \cdot 0,2^2 + 5827,655^2 \cdot \left(12 \cdot \frac{\pi}{180 \cdot 3600}\right)^2} = 31,709 \approx ± 31,7 \text{ m}^3 \]

The volume and its mean error: 5283 m³ ± 31,7 m³
4. We would like to compute the area of a parcel with a maximum mean error of $\pm 30 \text{ m}^2$. The shorter side of the parcel is measured to be 38,339 m, while the longer side is 59,165 m. The longer side can be measured with a mean error that is three times as much as the mean error of the shorter side. What is the maximum mean error of the shorter side if we don’t want to exceed the limit for the mean error of the parcel’s area? If we could decrease the mean error of one of the measurements, which one should be decreased in order to have the most effect on the mean error of the area?

Let $L_1$ denote the shorter side and $L_2$ denote the longer side:

$$G = A = L_1 \cdot L_2$$

The partial derivatives:

$$g_1 = L_2 = 59,165 \text{ m}$$
$$g_2 = L_1 = 38,339 \text{ m}$$

The mean errors of the measurements:

$$m_1 = m_1$$
$$m_2 = 3 \cdot m_1$$

The mean error of the area:

$$m_G = \pm 30 = \sqrt{g_1^2 \cdot m_1^2 + g_2^2 \cdot (3 \cdot m_1)^2} = \sqrt{m_1^2 \cdot (g_1^2 + 9g_2^2)} \Rightarrow m_1 = \frac{30^2}{\sqrt{g_1^2 + 9g_2^2}} = \frac{900}{\sqrt{59,165^2 + 9 \cdot 38,339^2}} = \pm 0,231 \text{ m}$$

The maximum mean error of the shorter side can be $\pm 0,231 \text{ m}$.

If we can decrease the mean error of the one of the measurements, we should decrease the one that has the larger coefficient in the formula as this will have the most effect on the mean error of the function. The coefficient of the mean error of the shorter side is greater than that of the longer side ($g_1 > g_2$), which means that we should decrease the mean error of the shorter side.