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Stress tensors

Strain tensors
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BASIC ASSUMPTIONS

Rigid elements: translate; rotate;
own deformations are small and
restricted to the neighborhood of contacts

Contacts: small, point-like;
transmit concentrated forces

Overall deformations:
dominantly from the
displacements of the elements

Strain tensor:
this presentation




STRAIN TENSORS

Content:

— Strain tensor in continuum mechanics
— Microstructural strain tensors based on
equivalent continuum
— Microstructural strain tensors based on

least-square approximaions

Continuum mechanics:

du du. continuous translation field
ou, . —
de; = Fv I the gradient of the translation field
Xi

L» different strain tensors
linear strain tensor:;

the symmetric part of deij
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STRAIN TENSORS

Continuum mechanics :

du du. continuous translation field
ou, : —
deij :8_ I the gradient of the translation field
X.

|
L» different strain tensors
linear strain tensor:
the symmetric part of deij

Basic assumption: du; ,,nearly-everywhere” continuous and can be differentiated

Assemblies of discrete elements:

tinu
tra 1Iom{jeld
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THE CORE OF THE PROBLEM

Common misbelief:

2

assembly of more and more discrete elements — ,.tends to the continuum” ???

countably conti-
00 nuum -
o0
Number of elements:
finite finite countably continuum-
infinite infinite
Number of neighbours of the elements:
finite finite finite continuum
infinite
Deqgrees of freedom of the elements:
translation, translation, translation; [different
rotation, ... rotation, ... rotation, ... versions ]
Translation field:
strongly strongly strongly continuous &
heterogeneous  heterogeneous heterogeneous differentiable
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Translations of the elements in a biaxial compression test:

e,
SN Y
—— e .
N
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STRAIN TENSORS ﬂ

Suqgestions for microstructural strain tensors:

olbased on an equivalent continuum:lBagi (1993) (2D, 3D)
Rothenburg & Kruyt (1996) (2D)
Kuhn (1999) (2D)
E> Dedecker et al (2000) (2D)
Kruyt (2003) (2D)
e based on least-square approximatrions: ,,best-fit”
[Cundall (????)| (2D, 3D)
Liao et al (1997) (2D, 3D)
Cambou I., Cambou I1. (2000) (2D)
e Otherideas: Satake (2004) (2D, 3D)

Common for all: |define a translation gradient,land then take its symmetric part
e small displacements are assumed
e initial configuration is used
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STRAIN TENSORS

Microstructural strain tensor based on equivalent continuum:

Reminder from continuum mechanics:

@V
v

=—<_[>de dv |,
(V)

Nt Adu

Continuum divided into subdomains:

N7 du

VL
SL

L-th cell:

- L5 (v -

(L)

=L
de;

3

(L)

2

(S)

..=—ngu n.ds
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STRAIN TENSORS

Microstructural strain tensor based on equivalent continuumj

The equivalent continuum: ,,Space cell system”
in 2D:
material space the discrete
cell system [ cell system elements
cell node centroid of
the element
face edge neghbouring
(a line!) pair of elements
node cell (=) void

— simplex cells
— space covered ,,unilayerly”
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STRAIN TENSORS

Microstructural strain tensor based on equivalent continuumj

The equivalent continuum: ,,Space cell system”
in 3D:
material space the discrete
cell system | cell system elements

cell node centroid of
the element

face edge neghbouring

(surface) (line) pair of elements

edge face 7?7

(triangle)
node cell (=) void
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STRAIN TENSORS

Microstructural strain tensor based on equivalent continuum:

— how to define a continuous translation field?

in the nodes: average rigid-body transla-
tions of the elements
inside the cells: linear interpolation

L-th cell:

_ 1
dej =t ¢ du;nds
(s")
= average for the whole space cell system:

1 relative
de; = \72\/ ‘de . translation of
— discretization: (L) neighbouring
; elements
: ™ complementa
summing up for all » COMP ry

i ; ; area vector”

neighbouring pairs U116




CRITICAL REMARK:
l chzz

Biaxial shear tests: _.

=

2

Kuhn & Bagi, 2006

R0 & v e
Deformation patterns: TR ﬁg/‘%
o A W IR 2
e St 5 Y p 30 o 3
Ai\.f‘\':!l,; ;& g vﬂg’ P \ %ﬁ ’}'w:“! "s'
~ 66 600 grains w4 R VAT blue: volume increase
Taene e SR, Moy 1%
o red: volume decrease

~ 16 600 grains

~ 4150 grains

~ 1040 grains

LAVERAGE STRAIN™
DOES NOT DESCRIBE
WHAT HAPPENS ON
THE ELEMENT LEVEL!
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STRAIN TENSORS

Microstructural strain tensor based on

o if elements would move exactly according to a de;; :  their translation: dd? =de
e but usually this is not the case, hence: du’”

NP
o Determine that de;; tensor for which: = =>(dd?

least-square approximation:

e minimization problem; its solution:

NP
PR
p=1

NP
Zy(lpy(zp
p=1

NP

p=1

FPFP
D KK
p=1
ND

49'¢s
Z 2 2

p=1

NP

p=1

PP
XS&.

de,;
de,,

N
e.g. Cundall (??): &P =xP —%Zxﬁ ; da” =du,
q=1

_de3i |

—de.XP #0.

n

—a.XP

7P
iX]
NP
A — p
deﬁ__akzaqiiyk
p=1
T[ I
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STRAIN TENSORS

Microstructural strain tensor based on
least-square approximation:

e.g. Cundall (??):

NP
A o TPGP
de; =z, > daPx;
p=1

Application: in DEM codes (PFC-2D, -3D, TRUBAL, ...)

Other ,,best-fit” strain tensors:
built in other translation characteristics, e.g.
— relative translation of contacting material points (Liao et al)
— relative translation of the centroids of neighbouring elements (Cambou et al)
[coincides well with the equivalent-continuum strain]

14716




STRAIN TENSORS I

% Gy

Comparison of microstructural strain tensors

16571 grains; f =0.01; biaxial
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1.0 - m LiaoChang
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0,8 —+—
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ell
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QUESTIONS |

1. In case of a 2D assembly of discrete elements, define the
space cell system. How is it generalized for 3D?

2. How to calculate the microstrucrural strain tensor based on
an equivalent continuum?

3. Introduce Cundall’s best-fit strain.
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