Árvízvédelmi töltés térfogatának meghatározása RTK GNSS-mérésekből

A geodézia szakterület oktatási célja

Vonalas mérnöki létesítmények modellezése RTK GNSS-technikával mért pontok alapján. Digitális terepmodellek létrehozásának, építőmérnöki alkalmazásának megismerése. A mért pontokból keresztszelvények levezetése, majd térfogatszámítási feladat elvégzése.

Gyakorló feladatok

Árvízvédelmi töltés egy rövid (mintegy néhány 100 méter hosszú) szakaszáról és közvetlen környezetéről mérések alapján digitális terepmodell készítése. A modell alapján a töltés egy adott szakaszán térfogatszámítás. Alkalmas lehet erre pl. a Szentendrei-szigeten a Horányi hajóállomástól északra eső terület vagy Felsőgödön az árvízvédelmi töltésen. A digitális terepmodellt RTK GNSS-technikával mért tereppontok alapján készítjük el. A felmérést keresztszelvényszerűen végezzük el. A keresztszelvényeket pl. 25 méterenként vesszük fel. Egy szelvényben mérjük a töltéskorona két pontját, a töltéslábakat, a töltéseken kívül legalább egy tereppontot, illetve szükség esetén további pontokat, pl. töréspontokat, burkolt felületek jellemző pontjait, ha vannak.

Mérés előtt célszerű röviden az RTK-mérés alapfogalmait áttekinteni és gyakorlati jelentőségét bemutatni (pl. saját bázis vagy GNSS-infrastruktúra használata, inicializálás, becsült pontosság). Mindenképpen utaljunk a Geodézia tárgy előadásain elhangzott ismeretekre. A mérés során egy hallgató legalább két jellemző keresztszelvényt vegyen fel, lehetőség szerint több RTK műszert is ismerjen meg. A mérés közben a hallgató figyelje meg és értse meg az RTK vevő kontrollerén látható információkat:

- megoldás típusa (fix, float ...);
- mért műholdak száma, műholdrendszerek szerint (NAVSTAR GPS, Glonass, Galileo, BeiDou);
- a mért pozíció becsült pontossága.

Mérés közben a hallgató adjon a mért pontoknak pontkódot, állítsa be, hogy egy ponton mennyi ideig mérjen a vevő. Hajtson végre több inicializálását, az oktató segítségével értse meg ennek a lényegét.

A mérést végén az oktató segítségével mentsék le a mért pontok koordinátajegyzékét.

Az irodai feldolgozás keretében határozzuk meg a töltés térfogatát több különböző módszerrel. Ehhez készítsük el a töltés digitális terepmodelljét, háromszögek alapján. Célszerű ezt GeoEasy szoftverben végezni, figyelni kell a háromszögek felvételére, a munkaterület lehatárolására. A modellben minél hosszabb töltésszakaszt vizsgáljunk, tehát több hallgató mérését együtt is feldolgozhatjuk. A kapott háromszögmodellt jelenítsük meg térben (vrml export). Készítsük el a töltés nélküli terepmodellt is, tehát csak a töltésen kívüli terep és töltésláb pontokat használjuk fel. Figyeljünk arra, hogy a két terepmodell határa azonos legyen.

A töltéstérfogat számításának módszerei:

1. legalacsonyabb tereppont magasságának meghatározása, ez alatt egy tetszőleges alapszint felvétele, majd mindkét modellből az alapszint feletti térfogat számítása. A két térfogat különbsége adja a töltés keresett térfogatát.

- 2. a két terepmodell összehasonlítása, a két terepmodell közötti különbség levezetése szabályos rácsban és a térfogat számítása. Célszerű különböző rácsmezőket felvenni és a rácsmező méretének térfogszámításra gyakorolt hatását áttekinteni. Célszerű a két módszer eredményét összehasonlítani, a kétféle számítás eredményének különbségét átbeszélni.
- 3. a mért pontokból szerkesszünk keresztszelvényeket. Határozzuk meg a keresztszelvények területét, majd a köztük mért távolsággal szorozva határozzuk meg a térfogatot. Hasonlítsuk öszsze az így kapott eredményt az előző két módszer eredményével.

Az egyes számítások között lesz különbség. Az oktató és a hallgató közösen beszéljék át a különbségek okait. Beszéljék át a térfogatszámítás becsült pontosságát és ennek gyakorlati jelentőségét. Az oktató hívja fel a figyelmet a Geodézia I. és Geodézia II. tárgyakban tanult ismeretekre és ezek alkalmazására, pl. területszámítás koordináták alapján, hibaterjedés törvénye.

A számítások elvégzése után hívjuk fel a figyelmet a részleteket dokumentálásának fontosságára. A gyakorlatban nem elegendő csak a térfogatszámítás eredményét közölni, hanem azt alá is kell tudni támasztani. A később bemutatott számítási munkarészek és részletek a dokumentálást, az eredmények ellenőrizhetőségét is segítik.

Ha van rá idő, akkor mutassuk meg a területről korábbi években, drón fotogrammetriával készült színes pontfelhőt, és végezzük el a térfogatszámítást a pontfelhő alapján is. Hasonlítsuk össze a pontfelhőből levezetett térfogatot, az RTK GNSS mérésekkel meghatározott pontokból kapott eredménnyel. Vezessünk le keresztszelvényeket a pontfelhő alapján és hasonlítsuk össze az RTK GNSS technológiával kapott keresztszelvényekkel is.

Ajánlott mérőfelszerelés:

RTK GNSS-vevők és tartozékaik, pl:

- 2 db. CHC GNSS-vevő, antennatartó bot, kezelő tablet
- Leica GS08 vevő, antenna tartó bot
- Leica GS18 vevő, antenna tartó bot
- Topcon HiperPro vevőpár, állvány, antenna tartó bot

Utolsó frissítés 2023. június 6. Takács Bence

A végrehajtás lépései

A Szentendrei-szigeten a Horányi hajóállomástól északra eső területen készült az alábbi fotó az árvízvédelmi töltésről:

Három keresztszelvényben mért pontok alaprajzi nézetben és a mért pontok koordinátajegyzéke:

🔳 Grafikus ablak 0	_	×
Parancsok Számítások DTM Súgó		
109 110 111 112		×
108 107 106 105		
101 102 103 104		•
		Þ

🔳 gat_cod	, ,		_		×
Parancsok	Számításo	k Súgó			
Pontszám	Pont kód	Y Előzetes Y	X Előzetes X	M Előzetes	≜ M
101	tolteslab	655481.867	259975.854	103.363	
102	koronael	655490.753	259973.584	106.208	
103	koronael	655494.555	259972.741	106.250	
104	tolteslab	655500.979	259972.279	103.420	
105	tolteslab	655504.790	259991.267	103.389	
106	koronael	655497.933	259992.713	106.299	
107	koronael	655494.382	259993.152	106.182	
108	tolteslab	655487.624	259994.036	103.721	
109	tolteslab	655490.371	260013.107	103.710	
110	koronael	655498.012	260011.493	106.181	
111	koronael	655502.175	260010.681	106.195	
112	tolteslab	655509.087	260010.966	103.399	

A keresztszelvényeket kb. 20 méteres távolságonként vettük fel. A keresztszelvények helyét ki lehet tűzni RTK GNSS vevővel is, vagy akár mérőszalaggal is. A részletpontok szelvénybe esését elegendő szabad szemmel ellenőrizni.

A töltésről és az "eredeti terepről" készített digitális terepmodellek GeoEasy szoftverben:¹

¹ A DTM létrehozása előtt célszerű a kényszerként kezelendő háromszögoldalakat (a kontúrt és a koronaéleket) megrajzolni a "Törésvonal/idomvonal bevitele" ikonra kattintva. A DTM létrehozása során célszerű a "konvex körvonal opciót" kikapcsolni.

A terep legalacsonyabb pontja 103.36 m, így az alapszintet pl. 103 méteren² lehet felvenni.

Az alapszint feletti térfogatok³:

2022.06.28	21:44 - Térfo	ogat toli	tes2		
Alapszint	Térfogat	Felette	Alatta	Terület	Felszin
103.000	1515.7	1515.7	0.0	706.0	744.9
2022.06.28	21:47 - Térfo	gat tere	ep2		
Alapszint	Térfogat	Felette	Alatta	Terület	Felszin
103.000	374.0	374.0	0.0	708.7	708.8

A töltés térfogata tehát: 1141.7 m³. Meg kell említeni, hogy a számítás nem teljesen korrekt, hiszen a két modell kontúrja nem azonos. Ez látszik az alapterületek különbségében is. Abból adódik, hogy a pontokat nem sikerült egy szelvényben mérni: az eredeti terepet leíró modellben a 109 és 112 pontokat egyenesse kötjük össze, de a töltést leíró modellben a határvonal kiegészül a 110 és 111 pontokkal. A konkrét példában ez numerikusan lényegében elhanyagolható, általánosságban azonban nem.

A két digitális terepmodell közti különbség térfogata, 5.00 méteres rácstávolsággal számolva⁴:

```
Rács lépésköz: 5.00
Bal alsó sarok: 655481.87 259972.28
Jobb felső sarok: 655509.09 260013.11
Bevágás térfogat: 0.0 m3 Terület: 0.0 m2
Töltés térfogat: 1189.3 m3 Terület: 750.0 m2
Azonos: 0.0 m2
```

A kétféle számítás eredménye közötti különbség 47.6 m³, kb. 4%. A térfogatszámítás pontossága általános körülmények között 5% pontossággal jellemezhető, a konkrét feladat esetén ennél jobb eredmény is elérhető a rácsmező méretének csökkentésével:

- 2 méteres rácstávolság esetén a terület 704.0 m², a térfogat 1130.4 m³, a különbség 11.3 m³, 1%;
- 1 méteres rácstávolság esetén a terület 693 m², a térfogat 1124.2 m³;
- 0.50 méteres rácstávolság esetén a terület 697 m², a térfogat 1127.3 m³;
- 0.25 méteres rácstávolság esetén a terület 696.7 m², a térfogat 1127.4 m³.

³ A DTM menüpont Térfogat menüpontjára kattintva érhető el

² A DTM menüpont Statisztika menüpontjára kapjuk meg legkönnyebben az információt

⁴ A DTM menüpont Térfogat különbség menüpontjára kattintva érhető el

Az 5.00 méteres rácsmezőhöz tartozó rácspontokban a két digitális terepmodell különbsége és a töltésre vonatkozó digitális terepmodell a következő ábrán látható:

Keresztmetszeti területek számításához a GeoEasy szoftverben a kitűzési méretek számításával érdemes áttérni metszetsíkbeli, helyi koordináta-rendszerre^{5,6}. A példában látható keresztmetszetek területe:

2022.06.28	22:00	- Terület	számítás	
Pontszám		У	Х	Hossz
101		0.000	103.363	
102		9.152	106.208	9.584
103		13.044	106.250	3.892
104		19.443	103.420	6.997
101		0.000	103.363	19.444
Terület				33.03839

2022.06.28	21:58	- Terület	számítás	
Pontszám		У	Х	Hossz
105		17.388	103.389	
106		10.388	106.299	7.581
107		6.813	106.182	3.578
108		0.000	103.721	7.243
105		17.388	103.389	17.391
Terület				28.13802

2022.06.28 22:01 - Terület számítás

Pontszám	У	Х	Hossz
109	0.000	103.710	
110	7.775	106.181	8.158
111	12.003	106.195	4.228
112	18.838	103.399	7.385
109	0.000	103.710	18.841
Terület			30.44195

Az első (101, 102, 103, 104-es pontok) és a második (105, 106, 107, 108) metszetek közötti távolság kb. 19.9 m, a második és harmadik metszetek közötti 18.7 m. Így a keresett térfogat értéke:

$$V = \frac{33.03 + 28.14}{2} \cdot 19.9 + \frac{28.14 + 30.44}{2} \cdot 18.7 = 1156.4 \, m^3$$

⁵ Ehhez a grafikus ablakban az adott metszet egyik szélső pontjára (pl. 101) érdemes vinni a kurzort, majd jobb kattintással a kitűzés menüpontra kattintani a felugró ablakban. A referencia irány a metszet másik szélső pontja legyen (pl. 104). A számítás eredményét célszerű geo adatállományba menteni. Az Y oszlopban kapjuk a metszetsíkbeli koordinátákat, az X oszlopban az erre merőleges méreteket. Az X és az M oszlopokat célszerű megcserélni az erre szolgáló funkcióval, a koordinátajegyzék Parancsok menüpontjában.

⁶ A keresztmetszetek területe a Számítások menüpontban a Terület funkcióval számítható ki, értelemszerűen a metszetsíkbeli koordináták és a magasságok alapján.