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Schedule

DAY 1
Topology optimization of structures: basics

DAY 2

Stress-constrained topology optimization

DAY 3

Mixed finite elements for the optimal design of structures

DAY 4

Analysis and design of no-tension structures, by formulating 
optimization problems
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Structural and topology optimization

a) sizing optimization:
the areas of the elements of a fixed truss “ground structure” are unknown

b) shape optimization:
the parameters describing the geometry of the boundaries are unknown

c) topology optimization: 
the distribution of material is unknown

(Topology Optimization: 
Methods and Applications, 
Bendsøe and Sigmund, 2003)
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Structural topology optimization: a design tool

“The art of structure is where to put the holes”

Robert Le Ricolais (1894–1977)
French/American Engineer, “Father of Spatial Structures”
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Structural topology optimization: a design tool

Gigantic tree-like columns support the overhanging
roof canopy of the Qatar National Convention Centre
by Japanese Architect Arata Isozaki



7

Structural topology optimization: a design tool

A one-of-a-kind project: a conceptual design for the
Zendai competition (China) created with topology
optimization by Prof. Glaucio Paulino's research
group along with Skidmore, Owings & Merrill LLP

Illustration for the concept design of a 288 m tall high-rise
in Australia, showing the engineering and architecture
expressed together at Skidmore, Owings & Merrill LLP
(Beghini, Katz, Baker and Paulino, 2014)
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Outline

 Governing equations:
 “penalized” elasticity problem and structural compliance

 Problem formulation:
 conventional volume-constrained minimum compliance formulation

 Solution of the minimization problem:
 gradient-based algorithms
 sensitivity computation
 numerical issues

 Applications:
 design of stiff structures (with 88-line Matlab code)
 design of compliant mechanisms
 design of periodic microstructures
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Structural topology optimization:
state equations (linear elastic problem) 

in Ω, along with

A homogeneous domain Ω ∈ R2 with a regular boundary
Γ is considered, assuming that Γ = Γd ∪ Γt.

Prescribed displacements with components u0j and
tractions with components t0j are assigned on Γd and Γt
gj are the components of the vector of body loads in Ω
(generally neglected)

Cijhk are the component of the 4th order elasticity tensor

Let be 𝑢𝑢 the unknown displacement field, σ the unknown
stress field and ε the unknown strain field. One has:

Ω

Γd

Γt

equilibrium

in Ω, along withcompatibility

constitutive law
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Structural topology optimization: 
mathematical formulation

 Given a domain with assigned loads and boundary conditions, find the distribution
of linear elastic isotropic material that minimizes an assigned scalar function for a
fixed set of constraints

Function representing a discrete material
density, i.e. the minimization unknown

“Full material”

“Void”

The elastic problem depends on : find such that and

Material model to interpolate the constitutive tensor
(i.e. the Young modulus for isotropic material)

properties of the “full material”
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 Volume constraint: enforcement of the available “volume fraction” of material

 Objective function: “structural compliance”, work of the external loads at
equilibrium, twice the strain energy stored in the structure (Clapeyron th.),
measure of the structural deformability

Structural topology optimization: 
mathematical formulation

Objective function

State equation, as a 
constraint

Volume constraint
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 Two unknown fields arise in the formulation: density and displacement
In the conventional Nested Analysis and Design Approach (NAND) only the structural design
variable is treated as the optimization variable. In the more demanding Symultaneous Analysis
and Design Approach (SAND) both variables enter the optimization problem

Structural topology optimization: 
NAND/SAND

Objective function

Nested (or treated as 
an equality constraint)

Volume constraint

Max-min problem in terms of the total potential energy
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Structural topology optimization: 
is the continuous problem well-posed?

1. allowing for microstructures with intermediate densities between 0-1: 
optimization of composite materials

2. alternatively, introducing a penalization of the intermediate densities to 
achieve pure 0-1 design: optimization by distribution of isotropic material

 Minimization problem with discrete values (0-1): the formulation has no feasible
solution in the case of isotropic material. The stiffest geometry calls for the
largest number of holes, finally achieving “optimal microstructures”

Function representing a continuous material density,
i.e. the minimization unknown

“Void”              “Full material”
 An enlargement of the design domain is needed
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Structural topology optimization: 
topology optimization of composite materials

1. Material density represents the material as a microstructure (“gray” is allowed)

The microstructure is a composite material with an infinite number of infinitely small
voids, leading to a porous composite with a density varying between 0 and 1.
Macroscopic mechanical features can be derived through homogenization methods.

Since the macroscopic properties of common
types of microstructure are not isotropic an
orientation angle is also needed

“Full material”

“Composite”

“Void”

“Full material”
“Void”
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Structural topology optimization: 
topology optimization by distribution of isotropic material

 The power p > 1 penalizes intermediate densities to achieve pure 
0-1 design (usually p=3). ρmin is needed against FEM singularities

 It makes even the compliance minimization a nonconvex problem

SIMP: Solid Isotropic Microstructure with Penalty
(Rozvany et al, 92; Bendsøe and Sigmund, 99; Berke 70)

RAMP: Rationale Approximation of Material Properties
(Stolpe and Svanberg, 03)

2. Intermediate material density is penalized to achieve 0-1 design (no “gray”)

 A convex interpolation model implies a convex objective function.  
Unfortunately, this result is achieved only if q ≥ E0/Emin-1

 It works fine for two-material problems with E0=E01 Emin=E02
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“Full material”

“Full material”
“Void”

“Void”

“Void”

Structural topology optimization: 
topology optimization by distribution of isotropic material

 SIMP/RAMP improves the numerical
tractability of the continuous setting
(topology → sizing), but does not
completely solve the problem (mesh
dependence of the discrete setting)

 For p ≥ 3, SIMP can be seen as a
«material model»

Cijhk(ρ) corresponds to a composite material
constructed from void and the given material at a real
density ρ, since the bulk modulus k and the shear
modulus μ satisfy the Hashin-Shtrikman bounds:
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Governing equations:
SIMP-based elasticity problem

Given a domain with assigned loads and boundary conditions, find the distribution
of linear elastic isotropic material that minimizes an assigned scalar function for a
fixed set of constraints

Function representing the continuous material
density, i.e. the minimization unknown

SIMP: Solid Isotropic Microstructure with Penalty 
i.e. the material interpolation scheme to represent 
the constitutive tensor depending on ρ

p>1 to penalize intermediate densities and achieve 
a pure 0-1 design

Elasticity tensor
of the given isotropic material
(“full material”)

“Void”              “Full material”

The elastic problem depends on : find such that and
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Governing equations:
SIMP-based structural compliance

A classical scheme for the discretization of the above problem adopts the same 
mesh of four-node elements and a two-field interpolation with:
- A piecewise constant density discretization (with unknowns x)
- A bilinear displacement approximation (with unknowns U)

 Compliance: - work of the external loads at equilibrium (Clapeyron th.)
- measure of the structural deformability

Ue: element 
displacements vector
Ke

0: element stiffness 
matrix for virgin material

topology optimization → sizing optimization
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Problem formulation:
classical formulation for maximum stiffness

Given a domain with assigned loads and boundary conditions, find the distribution
of an amount of linear elastic isotropic material that minimizes the compliance

Structural compliance

Governing eqns. elastic problem

Volume constraint 

MCW Minimum Compliance with Weight (volume) constraint (Bendsøe and Kikuchi, 88) 

 For low Vf, truss-like structures arise / for high Vf, beam with optimal openings are found

Vf = 0.4
C/C0 = 2.1

Vf = 0.8
C/C0 = 1.1

bound/side constraints
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Solution of the minimization problem:
gradient-based minimization

Iterative algorithms:

macrostructural non-gradient approaches,
in general heuristic methods: evolutionary
approaches, fully stressed design
method…

gradient-based approaches:
- optimality criteria
- mathematical programming

(MMA, CONLIN…)

 Nested Analysis and Design Approach (NAND): only the structural design
variable is treated as the optimization variable

sensitivity analysis
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Sensitivity analysis:
fundamentals

 1+N systems of equations must be solved, per step

Using the chain rule on the equilibrium equation one has: 

Assuming that F does not depend on xk one has:

→

 At each iteration, values and derivatives with respect to xk are computed for the
objective function and the volume

where U solves
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Sensitivity analysis:
the adjoint method

 Derivatives with respect to xk for the objective function can be computed more
efficiently through the adjoint method

o.f. is re-written adding a «zero function», with u  arbitrary but fixed real vector

that can in turn be written as:

where satisfies the adjoint eqn.   
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Sensitivity analysis:
the adjoint method

The adjoint equation is in the form of an equilibrium equation (self-adjoint problem) 

→→

 only 1 system of equations must be solved, per step (very efficient)

 the sensitivity is “localized”: only information at the element level is involved (the
effect of the other variables is “hidden” in Uk)

 the sensitivity is negative for any element: according to physical intuition,
additional material in any element decreases compliance, i.e. increases stiffness
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Update of the design variables:
optimality criterion

 Heuristic method based on the Lagrangian function of the optimization problem

↓
o.f.

↓
volume con.

↓
equilibrium con.

↓
lower bounds

↓
upper bounds

the o.j. is augmented by the constraints through a set of non-negative multipliers

optimality arises when all derivatives of the Lagrangian with respect to xk are zero
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Update of the design variables:
optimality criterion

Assuming that side constraints are not active and F is design-independent:

Hence, for intermediate densities, the strain energy density-like term is
constant all over the domain in the optimal solution. Since areas with high
energy are expected to be too low on stiffness, a fix-point type update scheme
can be formulated. For intermediate density:

↓
updated

↓
current

↓
current

=1 at optimum 

↓
η is a tuning parameter
to stabilize the iteration

(0.5 in general)

Add material where Bk >1 
otherwise remove material
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A general scheme accounting for side constraints reads:

 Add material where Bk >1, otherwise remove material
 This only takes place if the update does not violate the bounds on xk

 A positive move limit ζ (0.2 in general) is introduced to ensure that no big 
change in relative density arises between two subsequent steps

 The lagrangian multiplier λ is updated in an inner iteration loop using bisection in 
order to satisfy the active volume constraint

Update of the design variables:
optimality criterion
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Update of the design variables:
mathematical programming

Sequential convex programming: a sequence of explicit sub-problems 
is used that are convex approximations of the original one

 Sequential linear and quadratic programming techniques attack the 
problem without accounting for the specific characteristics of the 
involved functions: they generate sub-problems by linearizing both 
objective function and constraints in the direct variables

 MMA (Svanberg, 1987) and CONLIN (Fleury, 1986)  linearize objective function and 
constraints in the direct variables and in the reciprocal variables, 
depending on the sign of the gradient. Such an approximation perfectly 
suits a broad range of structural optimization problems
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Update of the design variables:
Method of Moving Asymptotes (MMA)

 MMA (Svanberg, 1987) CONLIN (Fleury, 1986) use a sequence of simpler approximated
sub-problems of given type. They are separable, convex and are constructed
on the current sensitivity information as well as some history

positive sensitivitynegative sensitivity

Ui and Li control the range for 
which the approximation is  
reasonable, depending on 
the iteration history so far
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Update of the design variables:
Method of Moving Asymptotes (MMA)

 separable subproblems → necessary conditions of optimality do not couple the
primary variables (the design variables)

 convex approximations → efficient dual methods can be used

For the volume-constrained minimum compliance problem, the sensitivity is
negative and an MMA convex approximation of the o.f. after the j-th step reads:

A dual method can be used:
1) the Lagrange functional is minimized element by element with respect to all xe
2) then, the resulting functional is maximized with respect to λ

Flexibility + Excellent performance in case of a limited number of constraints
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Numerical issues

 Checkerboard patterns and mesh dependence (Sigmund and Petersson, 98)

Checkboarded layouts are optimal solutions from a mathematical point of view, but they are not feasible
from a physical point of view (this depends on the adopted FEM and density discretization)

Mesh dependence: different solutions arise for different meshes 
(this is the discrete counterpart of not well-posedness)
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Numerical issues:
filters

 Filtered sensitivities of the objective function can be successfully used to prevent
numerical instabilities, i.e. mesh dependence and checkerboard patterns

Being dm the reference size of the mesh of 
finite elements:

rmin = 1.5 dm is the minimum value to avoid the 
arising of undesired checkerboard patterns

rmin > 1.5 dm provides control on the minimum 
thickness of any member of the design

distance between elementsl-th unfiltered sensitivitye-th filtered sensitivity

filter radius
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 Alternatively, filtered densities can be easily implemented for increased robustness

distance between elementsl-th design variablee-th physical unknown

filter radius

The chain rule is needed to compute the derivatives of o.f. and constraints:

 Heaviside projection filters can be implemented to reduce blurred edges in case of big rmin

l-th design variable e-th intermediate variable

Numerical issues:
filters

e-th physical unknowne-th intermediate variable

A continuation approch is needed starting the first optimization from large values of β: high CPU cost

β → ∞ Heaviside step function
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Numerical issues:
filters

Optimal layouts using the same filtering radius rmin and finer meshes: density filter vs. HS projection filter

Optimal layouts using increasing values of the filtering radius rmin on the same mesh: HS projection filter 
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Other numerical issues

 What about uniqueness of the solution?

Most problems are non-convex → multiple
solutions arise (one big bar/many small bars under
uni-axial tension)

 What about local minima?

Most problems are non-convex → many local
minima arise (multi-start procedures along with
globally convergent algorithms can be used, but
there is no guarantee of global optimality)

 How to choose the starting guess?
xe=Vf or xe=1 are generally used to start the minimization
all over the domain, no matter for their feasibility with
respect to the volume constraint

 How to choose the convergence criterion?
In general, check on the maximum change in density / o.f.
between two subsequent steps
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Efficient implementation in Matlab

Efficient topology optimization in MATLAB using 88 lines of code (Andreassen et al, 2011) 

It exploits a mesh of nelx x nely four-node finite elements with dm=1. For each element, one density unknown.
It allows for two filtering techniques (ft=1/2 sensitivity/density filter)
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Efficient implementation in Matlab
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Efficient implementation in Matlab

x design unknown
xPhys physical unknown
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Efficient implementation in Matlab

convergence criterion
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Efficient implementation in Matlab

inner loop in the o.c. update to 
enforce the volume constraint 

through the multiplier λ

to enforce black/white regions
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A variation of the theme:
multiple loads

 Optimal design for more than one load case (M) can be achieved working with
the sum of the relevant strain energies 1

2

only 1 1 + 2 (1 load case) 1 and 2 (2 load cases)only 2
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A variation of the theme:
multiple loads

 Multiple load cases can be implemented to improve robustness of the layouts

one load case

multiple 
load cases

1 2

1 2 3

statically determinate and completely constrained

statically determinate and partially constrained

Load condition can be probabilistic to account for several uncertainties (Lógó 2013)
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A variation of the theme:
compliant mechanisms

Given a domain with assigned loads and boundary conditions, find the distribution
of a prescribed amount of linear elastic isotropic material that maximizes the
output displacement:

 Design of flexible (micro-)mechanisms that transfer an input force or 
displacement to another point through elastic body deformation

Input: linear 
strain actuator

Output: linear 
strain actuator

Inverter

design domain       springs
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Sensitivity analysis:
the adjoint method

 Derivatives with respect to xk for the o.f. are computed via the adjoint method

that can in turn be written as:

o.f. is re-written adding a «zero function», with u  arbitrary but fixed real vector

where satisfies the adjoint eqn.   

(not a self-adjoint problem) 
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A variation of the theme:
compliant mechanisms

 Control of “hinge“ dimension in «lumped» mechanisms
 Need for geometric non-linear models
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A variation of the theme:
compliant mechanisms

 Design of «distributed» compliant mechanism (structures with no internal hinge)

non-auxetic
structure

auxetic
structure
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A variation of the theme:
periodic microstructures

periodic cell Y
SIMP-based

constituent material

Define the
homogenized

costitutive tensor
starting from the 

varying local
constitutive tensor
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A variation of the theme:
periodic microstructures

 Homogenization and periodic boundary conditions 

periodic 
cell Y

SIMP-based
constituent 
material

Define the
homogenized

costitutive tensor
starting from the 

varying local
constitutive tensor

 Unit strains are enforced at the boundaries of the cell to compute the so-called 
SIMP-based mutual energies:                                    

Unit strains in 2D
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A variation of the theme:
periodic microstructures

Max bulk modulus

Max bulk modulus with limited shear modulus
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A variation of the theme:
periodic microstructures

 Auxetic microstructures → o.f. -ε2/ε1 , -ε1/ε2

0<β<1
ν*=-0.33

ν*=-0.71

Highly nonconvex: many (local) solutions!
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Some remarks

 Topology optimization by distribution of isotropic material is a powerful numerical
tool to perform conceptual design of structures, structural components and
materials

 Key ingredients are: adoption of a “material model”, formulation of a constrained
minimization problem, implementation of ad hoc/general algorithms for the
solution, iterative computation of obj. fun., constraints and sensitivities

 Numerical issues: instabilities, mesh dependence, non uniqueness of the 
solution, local/global minima 

 Very easy implementation for basic problems (design for stiff structures / 
compliant mechanisms / periodic microstructures)

 Many advanced issues can be dealt with…
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Some references

 Suggested readings
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with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1): 68–75
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 Pictures and numerical examples from authored and co-authored papers
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