

GRAPHICAL METHODS

Citation:

K. Bagi (2018): Mechanics of Masonry Structures. Course handouts, Department of Structural Mechanics, Budapest University of Technology and Economics

The images in this file may be subjected to copyright.
In case of any question or problem, do not hesitate to contact Prof. K. Bagi, kbagi.bme@gmail.com .

This Lecture:

Graphical Methods

Historical times: Practical geometrical rules
e.g. Vitruvius
e.g. Gothic rules

Graphical statics
The basic problem: Stability of an arch
Durand-Claye's stability area method for arches computerized \& extended for domes: Aita et al 2003 ... 2018
Wolfe's method for membrane forces in domes
O'Dwyer's funicular analysis \Rightarrow
Thrust Network Analysis (TNA)
Questions

Historical times: Practical geometrical rules

Roman era, Vitruvius (Roman Empire, BC $1^{\text {st } c t ., ~ a r m y ~ e n g i n e e r ~ \& ~ a r c h i t e c t): ~}$ „Ten Books on Architecture"
\rightarrow inspired many architects, already from VIIIth century; particularly important for Renaissance
e.g. in the „Tuscan" order, the design of the column of a temple:

St Paul's Church, London, XVIIth century, flickr.com/photos/ddtmmm/1367084017

Historical times: Practical geometrical rules

Gothic architecture terminology:
Felicity Lynch: Gothic Art History 1150-1500 A.D.
http://slideplayer.com/slide/5932736/
Cameron Daniels: Architecture of The Middle Ages
http://slideplayer.com/slide/8837376/

groin vault

ribbed cross vault

Historical times: Practical geometrical rules

Gothic rules:
e.g. Derand's rule for buttress thickness:
(\Rightarrow. similarity of Gothic cathedrals of the same geographic area)

Historical times: Practical geometrical rules

Gothic rules:
e.g. Rodrigo's interior pier diameter design rule:

$$
d:=\frac{1}{2} \sqrt{h+w+s}
$$

h : pillar height
w : length of the bay
s : span of the bay
dimension !!!!
\Rightarrow works only in Castilian feet $(0,28 \mathrm{~m})$

Further reading: Huerta (2006); Aita et al (2018a)

This Lecture: Graphical Methods

Historical times: Practical geometrical rules
e.g. Vitruvius
e.g. Gothic rules

Graphical statics

The basic problem: Stability of an arch
Durand-Claye's stability area method for arches
computerized \& extended for domes: Aita et al 2003 ... 2018
Wolfe's method for membrane forces in domes
O'Dwyer's funicular analysis \Rightarrow
Thrust Network Analysis (TNA)
Questions

GRAPHICAL STATICS

Reminder to fundaments:
Equilibrium of three forces in 2D:

funicular diagram („form diagram"): the three lines of action intersect

force diagram:
closed vector triangle

Equilibrium of four forces in 3D: different projections, e.g. hoop view and top view all views have to intersect / be closed

More than three (2D) or more than four (3D) forces: closed force diagram, but: lines of action not necessarily intersect

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

„loads are transmitted to the supports"
Given: geometry: $R_{\text {inner }}=2,4 \mathrm{~m} ; R_{\text {middle }}=2,7 \mathrm{~m}$ identical selfweight for each block: $G_{1}=G_{2}=G_{3}=G_{4}=G_{5}$
Try to find an equilibrated force system!
\rightarrow contact forces: compression \& friction; inside the contact area

The basic problem: Stability of an arch

Thrust line: [intuitive concept; theoretical definition: Gáspár et al (2018)]

\approx „ the line determined by
the points of action of the
contact forces"

BUT: depends on the orientation of contacts (Alexakis \& Makris, 2015)
stability criterion: [later: more details] thrust line can be found so that
it runs everywhere inside the contacts

arch shape is „better", if it can be done with smaller thickness
\rightarrow e.g. pointed arch versus circular arch

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

Given: geometry: $R_{\text {inner }}=2,4 \mathrm{~m} ; R_{\text {middle }}=2,7 \mathrm{~m}$ identical selfweight for each block: $G_{1}=G_{2}=G_{3}=G_{4}=G_{5}$
Try to find an equilibrated force system!
\rightarrow contact forces: compression \& friction; inside the contact area \lceil kernel? $]$

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

a wide range of equilibrium solutions: \Leftarrow because the arch is thick enough !

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

EQUILIBRIUM IS IMPOSSIBLE WITH THIS H
\Rightarrow possible direction of the reactions is limited

The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces ?
Solution for an arch having infinitely dense, radially oriented contacts, with zero tension resistance ? $\quad \Rightarrow$ thrust line must run inside the arch

Ideal shape of the arch to produce thrust line through the contacts centroids: ch-curve (,,chain curve")

Existing arches: typically circular middle curve (or composed of circular arcs)

$2 R \quad$ (middle diameter)
$t_{\text {min }}$: smallest uniform thickness for which the arch can carry its selfweight
semicircle: $\quad \operatorname{Heyman}(1966): t_{\min }=0,1059 \cdot R$ Milankovitch (1907): $t_{\text {min }}=0,1075 \cdot R$

Stability of vaults under selfweight

Slicing technique: cut into individual arches, and check them separately! XIXth century: different assumptions on the internal force system based on the inspection of typical crack patterns: e.g.

Stability of vaults under selfweight

Slicing technique:

Gaudi, Sagrada Familia, Barcelona:
designed by:

N. Valencia, archdailiy.com
\rightarrow graphical statics:
slice of the structure:

Rafals, 1929
\rightarrow physical models:

http://www.art-nouveau-around-theworld.org/en/villes/barcelona/models.htm

http://dataphys.org/list/gaudis -hanging-chain-models/$25 / 76$

Stability of vaults under selfweight

Slicing technique:

https://spainattractions.es/palma-cathedral-mallorca/
Problem:
extremely tall slender pillars of the main nave \rightarrow is it safe?
Rubio Bellver, 1912: graphical statics analysis
\Rightarrow weights needed over the crown!

Rubio Bellver, 1912

This Lecture: Graphical Methods

Historical times: Practical geometrical rules
e.g. Vitruvius
e.g. Gothic rules

Graphical statics

The basic problem: Stability of an arch
Durand-Claye's stability area method for arches
computerized \& extended for domes: Aita et al 2003 ... 2018
Wolfe's method for membrane forces in domes
O’Dwyer's funicular analysis \Rightarrow
Thrust Network Analysis (TNA)
Questions

Durand-Claye's stability area method

Durand-Claye, 1867: Symmetric arches \& symmetric vertical loads

Admissible (P, e) pairs?

Consider a contact j, and a point , A " on it:
Contact force resultant, F_{j} : acts at the chosen point , A " direction: intersects with $\left(P, W_{j}\right)$ magnitude: from the force vector diagram:

Durand-Claye's stability area method

Durand-Claye, 1867: Symmetric arches \& symmetric vertical loads

Admissible (P, e) pairs?
Consider a contact j : and a point , A " on it:
Contact force resultant, F_{j} : acts at the chosen point , A " direction: intersects with $\left(P, W_{j}\right)$ magnitude: from the force vector diagram: magnitude of P depends on e :

Possible magnitudes of P belonging to „ A ":
[see dotted line above]

Durand-Claye's stability area method

Durand-Claye, 1867: Symmetric arches \& symmetric vertical loads

Possible magnitudes of P belonging to ,, A ": [see grey domain horizontal sizes] similarly to any,$B^{\prime \prime}$: [see cyan domain horizontal sizes]

Durand-Claye's stability area method

Durand-Claye, 1867: Symmetric arches \& symmetric vertical loads
 found those (P, e) pairs that can be equilibrated
now the limitations due to constitutive behaviour have to be taken into account:
\rightarrow friction limit
\rightarrow compression strength
\rightarrow [in new versions: tension strength - will not be shown here]

Durand-Claye's stability area method

Durand-Claye, 1867: Symmetric arches \& symmetric vertical loads

Friction limit:

friction cone
[remember: P is equal to the horizontal component of F_{j}]
$\Rightarrow H_{j}^{\text {min,fr }}$ and $H_{j}^{m a x, f r}$ found

Equals for all other points from C to D !

$H_{j}^{\max , f r}$

Durand-Claye's stability area method

Durand-Claye, 1867: Symmetric arches \& symmetric vertical loads

Compression strength: σ_{c}

$e_{N}=0$:
$N \leq b \cdot h \cdot \sigma_{c}$
$\left|e_{N}\right| \leq h / 6:$

$\left|e_{N}\right|=h / 6:$
$N \leq \frac{h}{h+6 \cdot\left|e_{N}\right|} \cdot b \cdot h \cdot \sigma_{c}$
$N \leq \frac{1}{2} b \cdot h \cdot \sigma_{c} \quad N \leq \frac{3}{2}\left(\frac{h}{2}-\left|e_{N}\right|\right) \cdot b \cdot \sigma_{c}$

Durand-Claye's stability area method

Durand-Claye, 1867: Symmetric arches \& symmetric vertical loads

Further reading:

Durand-Claye's stability area method

Applications:
e.g. Barsotti et al (2017):

M4:
comparison of different arch types
and their possible collapse modes
μ : friction coefficient
h : arch thickness; l : span

M6:

Durand-Claye's stability area method

Applications:

e.g. Aita et al (2018a):
geometrical factor of safety for historic design rules:
\rightarrow find necessary minimum value of a certain size with Durand-Claye's;
\rightarrow find that size according to historic rule;
\rightarrow compare!
Comparison of different historical rules for pier thickness for the same arch-wall-pier system:

La Hire, 1731

Latre 1731

limit width according to the Durand-Claye's method: $2,54 \mathrm{~m}$ $\leftarrow 2,81 \mathrm{~m}$
2,81 m

Durand-Claye's stability area method

Applications:

e.g. Aita et al (2018b): Safety assement of the dome of Pisa Cathedral

tripadvisor.co.za
constructed: XIth century dome: oval groundplan, \approx circular meridians
 restoration of the dome going on recently
,OOn the north side... at about eye level, is an original piece of Roman marble, on which are a series of small black marks. Legend says that these marks were left by the Devil when he climbed up to the dome attempting to stop its construction, and so they are referred to as the scratches of the devil. The legend also says that out of spite the number of scratches always changes when counted." (Wikipedia)

Durand-Claye's stability area method

Applications:

e.g. Aita et al (2018b):
\rightarrow D-C method extended for domes with membrane forces
(Durand-Claye, 1880)
\rightarrow analysis of the dome

Result:
geometrical factor of safety ≈ 2

Further reading:
Aita (2018b)

This Lecture: Graphical Methods

Historical times: Practical geometrical rules
e.g. Vitruvius
e.g. Gothic rules

Graphical statics

The basic problem: Stability of an arch
Durand-Claye's stability area method for arches
computerized \& extended for domes: Aita et al 2003 ... 2018
Wolfe's method for membrane forces in domes
O'Dwyer's funicular analysis \Rightarrow
Thrust Network Analysis (TNA)
Questions

Wolfe's method

Wolfe (1921);

\rightarrow Version 1.: domes with tension resistance
\rightarrow Version 2.: domes without tension resistance

Wolfe's method

\rightarrow Restricted to: domes with vertical axis of symmetry;
under vertical loads with vertical axis of symmetry
\rightarrow basic assumption: membrane state

\rightarrow Version 1.: domes with tension resistance
\rightarrow Version 2.: domes without tension resistance
Starting step:
weights of lune voussoirs; at centroids
Assumption:
contact force: line of action joins the two neighbouring centroids

Wolfe's method

\rightarrow Restricted to: domes with vertical axis of symmetry;
under vertical loads with vertical axis of symmetry
\rightarrow basic assumption: membrane state

1. Analysis of the top segment:

funicular diagram

force diagram, front view
top view:

[later]

Wolfe's method

\rightarrow Restricted to: domes with vertical axis of symmetry;
under vertical loads with vertical axis of symmetry
\rightarrow basic assumption: membrane state
\Rightarrow contact force intersect with weight along the middle line
2. Analysis of the 2 nd segment:

Wolfe's method

\rightarrow Restricted to: domes with vertical axis of symmetry;
under vertical loads with vertical axis of symmetry
\rightarrow basic assumption: membrane state
\Rightarrow contact force intersect with weight along the middle line
3. Analysis of the bottom segment:

Wolfe's method

\rightarrow Restricted to: domes with vertical axis of symmetry;
under vertical loads with vertical axis of symmetry
\rightarrow basic assumption: membrane state
\Rightarrow contact force intersect with weight along the middle line
3. Analysis of the bottom segment:

Wolfe's method

\rightarrow Restricted to: domes with vertical axis of symnetry;
under vertical loads with vertical axis of symmetry
\rightarrow basic assumption: membrane state
\Rightarrow contact force intersect with weight along the middle line

1. Analysis of the top segment:

Hoop forces:
top view:

Wolfe's method

\rightarrow Restricted to: domes with vertical axis of symmetry;
under vertical loads with vertical axis of synmetry
\rightarrow basic assumption: membrane state
\Rightarrow contact force intersect with weight along the middle line
2. Analysis of the 2 nd segment:

top view:

Wolfe's method

\rightarrow Restricted to: domes with vertical axis of symmetry;
under vertical loads with vertical axis of symmetry
\rightarrow basic assumption: membrane state
\Rightarrow contact force intersect with weight along the middle line

Wolfe's method

\rightarrow Restricted to: domes with vertical axis of symmetry;
under vertical loads with vertical axis of symmetry
\rightarrow basic assumption: membrane state
\Rightarrow contact force intersect with weight along the middle line
3. Analysis of the bottom segment:

Wolfe's method

How large tie force is needed, in order to have zero horizontal reaction componght?
3. Analysis of the 3rd segment: If tie is used:

Wolfe's method, for tension-resisting domes

Wolfe's method. for tension-resisting domes

Wolfe's method, for tension-resisting domes

Wolfe's method

\rightarrow Version 1.: domes with tension resistance
\rightarrow Version 2.: domes without tension resistance

Wolfe's method

REMEMBER:

3. Analysis of the bottom segment:

Wolfe's method, for no-tension domes

3. Analysis of the bottom segment:

Wolfe's method, for no-tension domes

hoop compression acts on these blocks

Wolfe's method

Application:
Morer \& Goni (2008):
Pantheon in Rome, Italy
[not masonry!]

agreement with ABAQUS

method extended to find line of thrust: Lau (2006)

Wolfe's method

Application:

Cavalagli \& Gusella (2015)

Cavalagli et al (2016)

Dome of the „Santa Maria Degli Angeli"
Basilica, Assisi, Italy
\rightarrow construction: 1569-1679; dome completed in 1677
\rightarrow dome diameter: $\approx 20 \mathrm{~m}$; thickness: $\approx 180 \ldots 90 \mathrm{~cm}$ perimeter: inside circular, outside octagonal
\rightarrow several earthquakes; e.g. 1832 after that: iron rings were added

Cavalagli et al (2016)

Wolfe's method

Application:

Cavalagli \& Gusella (2015)

Cavalagli \& Gusella (2015):
Wolfe's method compared to:
\rightarrow the Italian architect manual
\rightarrow another old graphical method;
Conclusion:
graphical methods predict slight crackings near the base

Wolfe's method

Further reading:
Wolfe (1921); Reese (2008); Lau (2006);
Cavalagli, N., Gusella, V. (2015); Morer \& Goni (2008)

Remark: Membrane solution for spherical cap

Details: next lecture!

This Lecture: Graphical Methods

Historical times: Practical geometrical rules
e.g. Vitruvius
e.g. Gothic rules

Graphical statics

The basic problem: Stability of an arch
Durand-Claye's stability area method for arches
computerized \& extended for domes: Aita et al 2003 ... 2018
Wolfe's method for membrane forces in domes
O'Dwyer's funicular analysis \Rightarrow
Thrust Network Analysis (TNA)
Questions

Thrust Network Analysis

Preliminary: „Funicular Analysis", O’Dwyer (1999)

nodes \approx stone block inner points bars \approx contacts between blocks bar forces \approx contact forces

Vertical loads only!

Approximative because:
\rightarrow all forces acting on a stone block intersect in the same point
\rightarrow the lines of action in top view must be assumed at the beginning
Given: geometry of the vault; loading forces (dead \& live)
Unknowns: \rightarrow vertical coordinates $\left(z_{i}\right)$ of the nodes
\rightarrow some of the horizontal force magnitudes

Equalities: equilibrium of the nodes
Inequalities: nodes fall inside the material: $z_{i}^{\text {intrados }} \leq z_{i} \leq z_{i}^{\text {extrados }}$
Objective function: either: live load multiplier \rightarrow max!

Thrust Network Analysis

Preliminary: „Funicular Analysis", O’Dwyer (1999)

> nodes \approx stone block inner points bars \approx contacts between blocks bar forces \approx contact forces

Applications:
Problem Type 1:
Find maximum admissible live load on a given vault:

\rightarrow admissible max. load magnitudes were determined
Problem Type 2:
Find optimum network shape of a vault under a given load: minimize the vertical deviation of force lines of action from the vault middle surface

Thrust Network Analysis

Block \& Ochsendorf (2007), (2008); Block \& Lachauer (2014):
\rightarrow based on O'Dwyer's „Funicular Analysis"
\rightarrow sophisticated computer coding; nice graphic representations objective functions can be:
(1) minimize deviation from middle surface (max geometrical factor of safety)
(2) minimal / maximal horizontal thrust (deepest / shallowest force systems)
(3) maximize live load multiplier which can be added to the given selfweight

Thrust Network Analysis

Block \& Ochsendorf (2007), (2008); Block \& Lachauer (2014):
\rightarrow based on O'Dwyer's „Funicular Analysis"
\rightarrow sophisticated computer coding; nice graphic representations
\rightarrow analysis of several Gothic structures

Thrust Network Analysis

Block \& Ochsendorf (2007), (2008); Block \& Lachauer (2014):

\rightarrow based on O'Dwyer's „Funicular Analysis"
\rightarrow sophisticated computer coding; nice graphic representations
\rightarrow analysis of several Gothic structures
\rightarrow design optimal shapes for vaults

Thrust Network Analysis

Block Research Group:

e.g. The Red Line project, Rwanda:
drone port: tile-vaulted (very thin) structures, easy and cheap to construct „Durabric" (earth $+8 \%$ cement, not burnt)

https://www.youtube.com/watch?v=mZwIIndTUow

This Lecture: Graphical Methods

Historical times: Practical geometrical rules
e.g. Vitruvius
e.g. Gothic rules

Graphical statics
The basic problem: Stability of an arch
Durand-Claye's stability area method for arches
computerized \& extended for domes: Aita et al 2003 ... 2018
Wolfe's method for membrane forces in domes
O'Dwyer's funicular analysis \Rightarrow
Thrust Network Analysis (TNA)

QUESTIONS

1. Introduce a chosen historic geometrical design rule. What is the background for this design rule?
2. How to determine the possible minimal and maximal horizontal thrust for an arch under selfeight, using graphical statics?
3. What is the geometrical factor of safety of an arch or vault?
4. Introduce Durand-Claye's stability area method.
5. Introduce Wolfe's method for domes. How is it used for notension material, and for determining the tie force?
6. Introduce the Thrust Network Analysis method. What objective functions can be used?
