
GRAPHICAL 

METHODS



Citation:

K. Bagi (2018): Mechanics of Masonry Structures. Course

handouts, Department of Structural Mechanics, Budapest

University of Technology and Economics

The images in this file may be subjected to copyright.

In case of any question or problem, do not hesitate to contact

Prof. K. Bagi, kbagi.bme@gmail.com .



THIS LECTURE:

GRAPHICAL METHODS

Historical times: Practical geometrical rules

e.g. Vitruvius

e.g. Gothic rules

Graphical statics

The basic problem: Stability of an arch

Durand-Claye’s stability area method for arches

computerized & extended for domes: Aita et al 2003 … 2018

Wolfe’s method for membrane forces in domes

O’Dwyer’s funicular analysis 

Thrust Network Analysis (TNA)

Questions
2 / 76



Historical times: Practical geometrical rules

Roman era, Vitruvius (Roman Empire, BC 1stct., army engineer & architect):

„Ten Books on Architecture”

 inspired many architects, already from VIIIth century;

particularly important for Renaissance

e.g. in the „Tuscan” order, the design of the column of a temple:
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St Paul’s Church, London, XVIIth century, 

flickr.com/photos/ddtmmm/1367084017 
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Historical times: Practical geometrical rules

Gothic architecture terminology:

Felicity Lynch: Gothic Art History 1150 - 1500 A.D.

http://slideplayer.com/slide/5932736/

Cameron Daniels: Architecture of The Middle Ages

http://slideplayer.com/slide/8837376/
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Historical times: Practical geometrical rules

Gothic rules:

e.g. Derand’s rule for buttress thickness:

( . similarity of Gothic cathedrals of the same geographic area)

Gerona cathedral Saint-Chapelle,

Paris 5 / 75



Historical times: Practical geometrical rules

Gothic rules:

e.g. Rodrigo’s interior pier diameter design rule:

dimension !!!!

 works only in Castilian feet (0,28m)

Further reading: Huerta (2006); Aita et al (2018a)

1
:

2
d h w s  

h: pillar height

w: length of the bay

s: span of the bay

inte-

rior 

pier 6 / 76
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GRAPHICAL STATICS

Reminder to fundaments:

Equilibrium of three forces in 2D:

funicular diagram („form diagram”): force diagram:

the three lines of action intersect closed vector triangle

Equilibrium of four forces in 3D:

different projections, e.g. hoop view and top view

all views have to intersect / be closed

More than three (2D) or more than four (3D) forces: closed force diagram,

but: lines of action not necessarily intersect
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The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

Contact forces: H = ??

Direction?

Point of action?

„loads are transmitted to the supports”

Given: geometry: Rinner = 2,4 m ; Rmiddle = 2,7 m

identical selfweight for each block:

Try to find an equilibrated force system!

 contact forces: compression & friction; inside the contact area
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9 / 76

3 STATICALLY

INDETERMINATE 

PROBLEM



The basic problem: Stability of an arch

Thrust line: [ intuitive concept; theoretical definition: Gáspár et al (2018) ]

 „ the line determined by

the points of action of the

contact forces ”

BUT: depends on the

orientation of contacts

(Alexakis & Makris, 2015)

stability criterion: [ later: more details]

thrust line can be found so that

it runs everywhere inside the contacts

arch shape is „better”, if it can be done with smaller thickness

 e.g. pointed arch versus circular arch

40

20
20

20
20

20

10 / 75



The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

Given: geometry: Rinner = 2,4 m ; Rmiddle = 2,7 m

identical selfweight for each block:

Try to find an equilibrated force system!

 contact forces: compression & friction; inside the contact area [kernel?]
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The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?
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The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?
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The basic problem: Stability of an arch
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The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

40

20
20

20
20

20

6H G

20 / 76



The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

a wide range of equilibrium solutions:  because the arch is thick enough !

40
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20
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1,1H G
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The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces?

EQUILIBRIUM IS IMPOSSIBLE WITH THIS H

 possible direction of the reactions is limited

40

20
20

20
20

20

0,8H G
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The basic problem: Stability of an arch

Question: arch submitted to its selfweight; ?reactions? ?contact forces ?

Solution for an arch having infinitely dense, radially oriented contacts,

with zero tension resistance ?  thrust line must run inside the arch

Ideal shape of the arch to produce thrust line through the contacts centroids:

ch-curve („chain curve”)

Existing arches: typically circular middle curve (or composed of circular arcs)

tmin: smallest uniform thickness for which the arch can carry its selfweight

semicircle: Heyman (1966):

Milankovitch (1907):
min 0,1059t R 

2 (middle diameter)R

mint

23 / 75min 0,1075t R 

 Geometrical 

factor of safety:  

tactual / tmin



Stability of vaults under selfweight

Slicing technique: cut into individual arches, and check them separately!

XIXth century: different assumptions on the internal force system

based on the inspection of typical crack patterns: e.g.

24 / 76pictures from: Huerta, 2001 and the references therein



Stability of vaults under selfweight

Slicing technique:

Gaudi, Sagrada Familia, Barcelona:

designed by:

 graphical statics:

slice of the structure:

 physical models:
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Rafals, 1929

http://www.art-nouveau-around-the-

world.org/en/villes/barcelona/models.htm

http://dataphys.org/list/gaudis

-hanging-chain-models/

N. Valencia, archdailiy.com



Stability of vaults under selfweight

Slicing technique:

Problem:

extremely tall slender pillars of the main nave

 is it safe?

Rubio Bellver, 1912: graphical statics analysis

 weights needed over the crown!
26 / 75

https://spainattractions.es/palma-cathedral-mallorca/
Rubio Bellver, 1912
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Durand-Claye’s stability area method

Durand-Claye, 1867: Symmetric arches & symmetric vertical loads

Admissible (P, e) pairs?

Consider a contact j ,

and a point „A” on it:

Contact force resultant, Fj:

acts at the chosen point „A”

direction: intersects with (P, Wj)

magnitude: from the force vector diagram:

28 / 75
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Durand-Claye’s stability area method

Durand-Claye, 1867: Symmetric arches & symmetric vertical loads

Admissible (P, e) pairs?

Consider a contact j :

and a point „A” on it:

Contact force resultant, Fj:

acts at the chosen point „A”

direction: intersects with (P, Wj)

magnitude: from the force vector diagram:

magnitude of P depends on e:

Possible magnitudes of P belonging to „A”:

[see dotted line above]
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Durand-Claye’s stability area method

Durand-Claye, 1867: Symmetric arches & symmetric vertical loads

Admissible (P, e) pairs?

Consider a contact j :

and a point „A” on it:

Contact force resultant, Fj:

acts at the chosen point „A”

direction: intersects with (P, Wj)

magnitude: from the force vector diagram:

magnitude of P depends on e

Possible magnitudes of P belonging to „A”: [see grey domain horizontal sizes]

similarly to any „B”: [see cyan domain horizontal sizes]
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Durand-Claye’s stability area method

Durand-Claye, 1867: Symmetric arches & symmetric vertical loads

Considering all possibe points of action for Fj:

found those (P, e) pairs that can be equilibrated

now the limitations due to constitutive behaviour

have to be taken into account:

 friction limit

 compression strength

 [ in new versions: tension strength – will not be shown here ]
31 / 75
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Durand-Claye’s stability area method

Durand-Claye, 1867: Symmetric arches & symmetric vertical loads

Friction limit:

if Fj acts at any chosen point „A”:

friction cone

[remember: P is equal to the horizontal

component of Fj]

 Hj
min,fr and Hj

max,fr found

Equals for all other points from C to D !
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Durand-Claye’s stability area method

Durand-Claye, 1867: Symmetric arches & symmetric vertical loads

Compression strength: c

thickness: h ; perpendicular width: b
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,min fr
jH

,max fr
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Durand-Claye’s stability area method

Durand-Claye, 1867: Symmetric arches & symmetric vertical loads

Now do the same for all contacts!

 will there be any admissible (P, e) ?

In case of empty set: STRUCTURE IS UNSAFE!

In case of non-empty set:

the structure is safe

Further reading:

Foce & Aita (2003); Aita et al (2017)
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Durand-Claye’s stability area method

Applications:

e.g. Barsotti et al (2017):

comparison of different arch types

and their possible collapse modes

 : friction coefficient

h : arch thickness; l : span
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M1: M2:

M3: M4:

M5: M6:

M7: M8:

Michon, 1857



Durand-Claye’s stability area method

Applications:

e.g. Aita et al (2018a):

geometrical factor of safety for historic design rules:

 find necessary minimum value of a certain size with Durand-Claye’s;

 find that size according to historic rule;

 compare!

Comparison of different historical rules for pier thickness

for the same arch-wall-pier system:

La Hire, 1731 Frézier, 1737
36 / 75

limit width according

to the Durand-Claye’s

method: 2,54 m

 2,81 m 3,61 m 



Durand-Claye’s stability area method

Applications:

e.g. Aita et al (2018b): Safety assement of the dome of Pisa Cathedral

constructed: XIth century

dome: oval groundplan,

 circular meridians

restoration of the dome going on recently

„On the north side... at about eye level, is an original piece of Roman marble,

on which are a series of small black marks. Legend says that these marks

were left by the Devil when he climbed up to the dome attempting to stop

its construction, and so they are referred to as the scratches of the devil.

The legend also says that out of spite the number of scratches always

changes when counted.” (Wikipedia)
37 / 76

tripadvisor.co.za



Durand-Claye’s stability area method

Applications:

e.g. Aita et al (2018b):

 D-C method extended for domes

with membrane forces

(Durand-Claye, 1880)

 analysis of the dome

Result:

geometrical factor of safety  2

Further reading:

Aita (2018b)
38 / 76
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Wolfe’s method

Wolfe (1921);

 Version 1.: domes with tension resistance

 Version 2.: domes without tension resistance
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Wolfe’s method

 Restricted to: domes with vertical axis of symmetry;

under vertical loads with vertical axis of symmetry

 basic assumption: membrane state

 Version 1.: domes with tension resistance

 Version 2.: domes without tension resistance

Starting step:

weights of lune voussoirs; at centroids

Assumption:

contact force: line of action joins the two neighbouring centroids
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Wolfe’s method

 Restricted to: domes with vertical axis of symmetry;

under vertical loads with vertical axis of symmetry

 basic assumption: membrane state

1. Analysis of the top segment:

[ later ]
42 / 76

funicular diagram force diagram, front view

?

top view:



Wolfe’s method

 Restricted to: domes with vertical axis of symmetry;

under vertical loads with vertical axis of symmetry

 basic assumption: membrane state

 contact force intersect with weight

along the middle line

2. Analysis of the 2nd segment:

43 / 76
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Wolfe’s method

 Restricted to: domes with vertical axis of symmetry;

under vertical loads with vertical axis of symmetry

 basic assumption: membrane state

 contact force intersect with weight

along the middle line

3. Analysis of the bottom segment:

Assumption: Reaction goes through the centroid of the last segment,

perpendicular to lowest contact ( to the radial direction) 44 / 75

??



Wolfe’s method

 Restricted to: domes with vertical axis of symmetry;

under vertical loads with vertical axis of symmetry

 basic assumption: membrane state

 contact force intersect with weight

along the middle line

3. Analysis of the bottom segment:

OR:
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Wolfe’s method

 Restricted to: domes with vertical axis of symmetry;

under vertical loads with vertical axis of symmetry

 basic assumption: membrane state

 contact force intersect with weight

along the middle line

1. Analysis of the top segment:

Hoop forces:

46 / 76
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Wolfe’s method

 Restricted to: domes with vertical axis of symmetry;

under vertical loads with vertical axis of symmetry

 basic assumption: membrane state

 contact force intersect with weight

along the middle line

2. Analysis of the 2nd segment:
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Wolfe’s method

 Restricted to: domes with vertical axis of symmetry;

under vertical loads with vertical axis of symmetry

 basic assumption: membrane state

 contact force intersect with weight

along the middle line

3. Analysis of the bottom segment:
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top view:



Wolfe’s method

 Restricted to: domes with vertical axis of symmetry;

under vertical loads with vertical axis of symmetry

 basic assumption: membrane state

 contact force intersect with weight

along the middle line

3. Analysis of the bottom segment:

OR:
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Wolfe’s method

3. Analysis of the 3rd segment:

If tie is used:

50 / 76

?

How large tie force is needed, 

in order to have zero horizon-

tal reaction component?



Wolfe’s method, for tension-resisting domes
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front view
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Htop



Wolfe’s method, for tension-resisting domes
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Wolfe’s method, for tension-resisting domes
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Wolfe’s method, for tension-resisting domes
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Wolfe’s method, for tension-resisting domes
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front view
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Wolfe’s method, for tension-resisting domes
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Wolfe’s method, for tension-resisting domes
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Wolfe’s method, for tension-resisting domes
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front view

top view

front view

top view

force in tie

force in tie



Wolfe’s method

 Version 1.: domes with tension resistance

 Version 2.: domes without tension resistance
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Wolfe’s method

REMEMBER:

3. Analysis of the bottom segment:
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Wolfe’s method, for no-tension domes

3. Analysis of the bottom segment:

direction of force

from below: cannot

be prescribed/assumed:

may deviate from the

membrane state
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Wolfe’s method, for no-tension domes
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hoop compression 

acts on these blocks

no hoop forces 

on these blocks



Wolfe’s method

Application:

Morer & Goni (2008):

Pantheon in Rome, Italy

[ not masonry! ]

agreement with ABAQUS

method extended to find line of thrust: Lau (2006)
63 / 76



Wolfe’s method

Application:

Dome of the „Santa Maria Degli Angeli”

Basilica, Assisi, Italy

 construction: 1569-1679; dome completed in 1677

 dome diameter: 20 m; thickness: 180…90 cm

perimeter: inside circular, outside octagonal

 several earthquakes; e.g. 1832

after that: iron rings were added
64 / 76

Cavalagli & Gusella (2015) Cavalagli et al (2016)

Cavalagli et al (2016)



Wolfe’s method

Application:

Cavalagli & Gusella (2015):

Wolfe’s method compared to:

 the Italian architect manual

 another old graphical method;

Conclusion:

graphical methods predict slight

crackings near the base 65 / 76

Cavalagli & Gusella (2015)



Wolfe’s method

Further reading:

Wolfe (1921); Reese (2008); Lau (2006);

Cavalagli, N., Gusella, V. (2015); Morer & Goni (2008)
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Remark: Membrane solution for spherical cap

Details: next lecture!
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Thrust Network Analysis

Preliminary: „Funicular Analysis”, O’Dwyer (1999)

masonry vault  3D truss: nodes  stone block inner points

bars  contacts between blocks

bar forces  contact forces

Vertical loads only!

Approximative because:

 all forces acting on a stone block intersect in the same point

 the lines of action in top view must be assumed at the beginning

Given: geometry of the vault; loading forces (dead & live)

Unknowns:  vertical coordinates (zi) of the nodes

 some of the horizontal force magnitudes

Equalities: equilibrium of the nodes

Inequalities: nodes fall inside the material:

Objective function: either: live load multiplier  max!

or : deviation from middle surface  min! 69 / 76
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Thrust Network Analysis

Preliminary: „Funicular Analysis”, O’Dwyer (1999)

masonry vault  3D truss: nodes  stone block inner points

bars  contacts between blocks

bar forces  contact forces

Applications:

Problem Type 1:

Find maximum admissible live load on a given vault:

 admissible max.

+ = load magnitudes

were determined

Problem Type 2:

Find optimum network shape of a vault under a given

load: minimize the vertical deviation of force lines of

action from the vault middle surface 70 / 76



Thrust Network Analysis

Block & Ochsendorf (2007), (2008); Block & Lachauer (2014):

 based on O’Dwyer’s „Funicular Analysis”

 sophisticated computer coding; nice graphic representations

objective functions can be:

(1) minimize deviation from middle surface (max geometrical factor of safety)

(2) minimal / maximal horizontal thrust (deepest / shallowest force systems)

(3) maximize live load multiplier which can be added to the given selfweight
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Thrust Network Analysis

Block & Ochsendorf (2007), (2008); Block & Lachauer (2014):

 based on O’Dwyer’s „Funicular Analysis”

 sophisticated computer coding; nice graphic representations

 analysis of several Gothic structures

cross vaults: fan vaults:
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Thrust Network Analysis

Block & Ochsendorf (2007), (2008); Block & Lachauer (2014):

 based on O’Dwyer’s „Funicular Analysis”

 sophisticated computer coding; nice graphic representations

 analysis of several Gothic structures

 design optimal shapes for vaults
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Thrust Network Analysis

Block Research Group:

e.g. The Red Line project, Rwanda:

drone port:

tile-vaulted (very thin) structures,

easy and cheap to construct

„Durabric” (earth + 8% cement, not burnt)

https://www.youtube.com/watch?v=mZwIIndTUow
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block.arch.ethz.ch/brg/project/venice-biennale-2016_droneport
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QUESTIONS

1. Introduce a chosen historic geometrical design rule. What is the

background for this design rule?

2. How to determine the possible minimal and maximal horizontal

thrust for an arch under selfeight, using graphical statics?

3. What is the geometrical factor of safety of an arch or vault?

4. Introduce Durand-Claye’s stability area method.

5. Introduce Wolfe’s method for domes. How is it used for no-

tension material, and for determining the tie force?

6. Introduce the Thrust Network Analysis method. What objective

functions can be used?


