

THE DISCRETE ELEMENT METHOD

WHAT IS DEM?

The aim to model materials or structures having discrete internal builtup

"what does it do if loads are put on it?"

THIS PRESENTATION

 \rightarrow Non-continuous phenomena:

phenomena from the engineering practice that cannot properly be reflected with continuum mechanics (eg. FEM; FDM)

\rightarrow What is DEM?

- \Rightarrow definition
- \Rightarrow history
- \Rightarrow example
- \Rightarrow main steps

Soil mechanics:

e.g. Large scatter in the measured data:

also for cemented materials!

Soil mechanics:

e.g. Stress dip under sand piles:

depends on:

- \rightarrow deposition technique
- \rightarrow grain size distribution

 \rightarrow stiffness of the subsoil

Microstructual explanation: ,,internal arches"

Silos:

problems e.g.:

- \rightarrow Pressure acting on the walls?
- \rightarrow Emptying: sudden large forces

Reason: The stored material is not a continuum!

Tunnels in fractured rock soils:

D. Borbély, MSc Thesis

Futai et al (2017)

Collapse of masonry structures:

Microgravity circumstances:

Here on Earth: during earthquakes:

≈ ,,fluidized"

San Francisco, 1989

NASA, in different space shuttle missions:

? behaviour of granular assemblies at nearly-zero gravity ?

Microgravity circumstances:

How to predict behaviour of ,,rubble pile" asteroids?

,rubble pile"-type: porosity > 30% e.g. Tunguska event (?), 1905, Siberia

Microgravity circumstances:

How to predict behaviour of ,,rubble pile" asteroids?

Bennu:

2nd most dangerous near-Earth object, \cong 500 m, ? 2175 ?

NASA, OSIRIS-REx

Microgravity circumstances:

How to predict behaviour of ,,rubble pile" asteroids?

1950 DA:

1st most dangerous near-Earth object, $\cong 1100 \text{ m}$, ? 2035 ?

http://neo.jpl.nasa.gov/1950da /radar_bw_scale.gif

Microgravity circumstances:

How to predict behaviour of ,,rubble pile" asteroids?

 \Rightarrow protection against them: can they be ,,pushed away"?

NO !!!

microstructural explanation: huge energy dissipating capacity [friction/collisons between grains]

Traditional application of the huge energy-dissipating capacity:

Taking advantage of the huge energy-dissipating capacity:

Taking advantage of the huge energy-dissipating capacity:

Circumstances on Moon to cope with:

 \rightarrow dense meteorite bombardment (10 ... 30 km/sec)

 \rightarrow temperature extremities (+120 ... -150 °C)

 \rightarrow radiation

 \rightarrow powder \otimes

"volcanic caves" would provide protection;

BUT: we don't know where & how they are A possible solution:

Boldoghy et al, 2006

Calculation:

Tóth & Bagi, 2010, J. Aerospace Eng.

ଷ୍ଟ

8 Ø

"There are no good continuum models, only good curve fits."

/unknown soil mechanican from the XXth century/

THIS PRESENTATION

 \rightarrow Non-continuous phenomena:

phenomena from the engineering practice that cannot properly be reflected with continuum mechanics (eg. FEM; FDM)

\rightarrow What is DEM?

- \Rightarrow definition
- \Rightarrow history
- \Rightarrow example
- \Rightarrow main steps

WHAT IS DEM? The aim: to model materials or structures having discrete internal builtup "what does it do if loads are put on it?" The components of the model: separate elements + their contacts or mechanical models for the <u>material of the elements</u>: \rightarrow rigid \rightarrow deformable \rightarrow they have to be <u>recognized</u> contacts: \rightarrow they have to be <u>mechanically modelled</u>: \rightarrow non-deformable \rightarrow deformable: e.g.point-like, deformable \uparrow e.g. frictional, e.g. finite size, deformable \int e.g. cemented 19/36

WHAT IS DEM?

Definition:

A discrete element model is a numerical model which satisfies the following conditions:

→ consists of clearly separated <u>finite-sized</u> <u>elements</u>, and the <u>contacts</u> between them;

→ the elements have their own <u>independent degrees of freedom</u>
 e.g. translational, rotational, deformational
 (→← FEM: "C0-continuous", "C1-continuous")

 \rightarrow the displacements are <u>finite</u> (i.e. ,,large")

 → elements can be separated and <u>new contacts can</u> be formed between them, so that the creation of <u>new contacts are automatically recognised</u>
 (→← frame models, FEM fracture models: no new contacts)

THIS PRESENTATION

 \rightarrow Non-continuous phenomena:

phenomena from the engineering practice that cannot properly be reflected with continuum mechanics (eg. FEM; FDM)

\rightarrow What is DEM?

- \Rightarrow definition
- \Rightarrow history
- \Rightarrow example
- \Rightarrow main steps

WHAT IS DEM?

History overview

 \rightarrow end of 1960ies:

Peter A Cundall, Imperial College: UDEC (,,Uniform Distinct Element Code")

LEGINO en inventione inventi

model for fractured rocks

→ 1970ies: Molecular Dynamics methods, physics literature point-like objects: not really DEM

WHAT IS DEM?

History overview

 \rightarrow end of 1970ies: Cundall & Strack, 1979: "BALL"

- \rightarrow from the 1980ies:
 - \rightarrow several new codes, already in 3D
 - \rightarrow general element shapes
 - \rightarrow different mathematical tools
- \rightarrow from the 1990ies: practical applications in engineering

THIS PRESENTATION

 \rightarrow Non-continuous phenomena:

phenomena from the engineering practice that cannot properly be reflected with continuum mechanics (eg. FEM; FDM)

\rightarrow What is DEM?

- \Rightarrow definition
- \Rightarrow history
- \Rightarrow example
- \Rightarrow main steps

EXAMPLE

1. Define the geometry:

3. Specify the loads:

set gravity 0.0 -9.81

From them, calculate the displacements: [series of small increments]

THIS PRESENTATION

 \rightarrow Non-continuous phenomena:

phenomena from the engineering practice that cannot properly be reflected with continuum mechanics (eg. FEM; FDM)

\rightarrow What is DEM?

- \Rightarrow definition
- \Rightarrow history
- \Rightarrow example

 \Rightarrow main steps

Step 1: Geometry

- Step 2: Material characteristics
- Step 3: Determine the displacement increments

26/36

WHAT IS DEM?

Main steps of the analysis of an engineering problem:

- the model: collection of separate elements ('discrete elements')
 {1 body ↔ 1 element} or {several bodies ↔ few elements}
 <u>Step 1.:</u> define the initial geometry
- rigid or deformable *elements*; rigid or deformable *contacts* <u>Step 2.:</u> specify the material characteristics
- the loading process:
 - (e.g. external forces acting on the elements; e.g. prescribed displacements)
- calculation of the state changing: *series of small increments, based on* ,, f = ma "
 <u>Step 3.:</u> calculation of the actual displacement increments

WHAT IS DEM?

Main steps of the analysis of an engineering problem:

the model: collection of separate elements('discrete elements')
 {1 body ↔ 1 element} or {several bodies ↔ few elements}

 <u>Step 1.:</u> define the initial geometry

- rigid or deformable *elements*; rigid or deformable *contacts* <u>Step 2.:</u> specify the material characteristics
- the loading process:
 - (e.g. external forces acting on the elements; e.g. prescribed displacements)
- calculation of the state changing: *series of small increments, based on* ,, f = ma "
 <u>Step 3.:</u> calculation of the actual displacement increments

<u>Contact recognition:</u> a point of an element is in the interior of another element

Contact recognition:

several different algorithms exist; its speed basically determines the computational efficiency of the whole DEM code!

the time consuming part: to check the existence of a contact with exact calculations

Contact recognition:

several different algorithms exist; its speed basically determines the computational efficiency of the whole DEM code!

the time consuming part: to check the existence of a contact with exact calculations

Aim: avoid checking every element with every other element:

Trick #1: apply windows

→ "body based search" technique: consider only those others which are in the vicinity of the analyzed element; then take the next element to analyze, …

 \rightarrow ,,space based search":

divide the domain into "windows" (overlapping); collect which elements are in which windows; analyze those pairs only where both elements belong to the same window

Contact recognition:

several different algorithms exist; its speed basically determines the computational efficiency of the whole DEM code!

the time consuming part: to check the existence of a contact with exact calculations

Aim: avoid checking every element with every other element:

Trick #2: Simple surrounding domains checked first (instead of the elements having complicated shapes)

the idea: "surrounding domain" assigned to each element (simple shape: a brick; a sphere)

 \rightarrow Phase 1.: intersection between the surrounding domains? (fast)

 \rightarrow if necessary: Phase 2.: detailed, **exact** calculations (slow)

WHAT IS DEM?

Main steps of the analysis of an engineering problem:

the model: collection of separate elements('discrete elements')
 {1 body ↔ 1 element} or {several bodies ↔ few elements}
 <u>Step 1.:</u> define the initial geometry

- rigid or deformable *elements*; rigid or deformable *contacts* <u>Step 2.:</u> specify the material characteristics
- the loading process:
 - (e.g. external forces acting on the elements; e.g. prescribed displacements)
- calculation of the state changing: *series of small increments, based on* ,, f = ma "
 <u>Step 3.:</u> calculation of the actual displacement increments

MECHANICAL PROPERTIES

Constitutive model of the elements:

task: to specify how to calculate the stresses from the deformations of the elements

Elements basic types:

 \rightarrow perfectly rigid elements: deformability concentrated into the contacts

 \rightarrow deformable elements:

stress-strain-relations have to be specified

[e.g. *E*, μ, …]

Constitutive model of the contacts:

task: to specify how to calculate the contact forces from the relative displacements at the contact

Contacts basic types:

 \rightarrow usually: ",deformable" contacts (relative displ. at the contact regions)

[e.g., $\Delta T = k_T \cdot \Delta u_T$ but $T \le -f \cdot N$ "]

 \rightarrow sometimes: infinitely rigid contacts: no overlap or any other deformation

QUESTIONS

1. What are the **four conditions** to consider a numerical technique a **discrete element model**?

2. The following numerical methods are not DEM. Why? Give reason for both.

 \rightarrow molecular dynamics method

 \rightarrow FEM 3D continuum model with contact elements

- 3. What are the **three main steps** of discrete element modelling?
- 4. What does it mean that a contact detection algorithm is **hyper-linear**?

5. Introduce the aim and the basic idea of the **body-based technique**. Introduce the aim and the basic idea of the **space-based technique**.

6. What is the task of the constitutive model of the **elements**? From the point of view of constitutive mechanical behaviour, what **basic types of elements** are used in the different DEM models?

7. What is the task of the constitutive model of the **contacts**? From the point of view of constitutive mechanical behaviour, what **basic types of contacts** are used in the different DEM models?