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REMEMBER:

Main steps of the analysis of an engineering problem:

e the model: collection of separate elements (’discrete elements’)

{1 body <> 1 element} or {several bodies «> few elements}
Step 1.: define the initial geometry

e rigid or deformable elements; rigid or deformable contacts

Step 2.: specify the material characteristics

o the loading process:

e cal

( e.g. external forces acting on the elements; e.g. prescribed displacements)
culation of the state Phanging' series of small increments

Step 3.: calculation of the actual displacement increments

The main techniques:
— Mc %
— [Timestepping ,,f=m-a”
— explicit
— implicit
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THE EQUATIONS OF MOTION ﬁ

Three main types of the elements:

(1) perfectly rigid elements @ @
— reference point @

(2) elements being deformable because of an internal FEM mesh
— nodes

(3) elements being deformable because of a uniform strain field

— a reference point + a constant strain function Q
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THE EQUATIONS OF MOTION CQ‘

29

,f=ma
a) Perfectly rigid elements

@ @/y the displacement vector of the p-th element:

uP (t) total displacement vector:
@ up (1 u()”
2
Reference point u®(t) = ;122)) u=| - E(t)
to every element o7 (1) _uN ® |
o, (1)

summed up of small increments!
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THE EQUATIONS OF MOTION

,,f=ma”
a) Perfectly rigid elements

velocity vector: v(t) = du(t) du, (t)

‘@ dt dt
@/ 3 _ | dug(t)

@ v, (t) dt
Vy () | | du’(t)

ol. VP (t) = Vzr;(t) dt
o, ()| | def(t)

P (1) dt
! (t)| | doy (1)

dt
do, (t)

dt
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THE EQUATIONS OF MOTION CQ‘

,,f=ma”
a) Perfectly rigid elements
velocity vector: v(t):M _ _
o @/ dt d2uP (t)
2 2
acceleration vector: a(t) = d uz(t) at
Cdtt [ dul()
a, (t) dt?
ay(t) | | d?uP(t)
p w2
pl ap(t): az (t) — dt
)| | diel (1)
By (t) dt’
VACINERAV
dt*
MG/%
Cdtt




THE EQUATIONS OF MOTION CQ‘

a) Perfectly rigid elements
Equations of motion of the p-th element: —> @]

/1 )] [mP))

mPaP = fP
S 2@ |5 | my ()
mPaP = fP ; ;
y T f) ] [ m) ()]
mpazp:fzp
p p p PP p PP Y PP\ _ p
128158, — 128, + o} (01} =01} — 0?1} )= of (0] 1] — ] 1}, —P1 P ) = m]
p p p pp P ppp PP _ p
Iyyﬂy_lyx x_lyz ( @, zz_a) I ylzy)+a)z (a)xlxx a)ylxy_a)zlxz)_my

Pp 1P P PP _ PP _ p PP _ PP Y_mP
128, — 128~ 128, + ! (a)ylyy ol 15 -oP1))-of (of 1] —af 1) PP )=m!

15 = [ (x=x")-(y=y")- u(x,y,2)- AV

Izi)/: (z-2")-(y—Vy") - u(x,y,2)-dV etc. 7136




THE EQUATIONS OF MOTION ‘%\

a) Perfectly rigid elements
Special case: e.g. Spheres:

I, =0, 1;=0; etc; Igp=I1;=1,=1I"
mPal = fP
mfa) = f?
mpazp: fzp
1", =m;
1?5, =my
1P =m)
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THE EQUATIONS OF MOTION ﬂ

a) Perfectly rigid elements
Equations of motion of the p-th element: —> @]

AR

the load vector: forces reduced to the reference point
— partly from the external forces
acting on the elements (e.g. weight)
depend on position and velocity
— partly from the contact forces
expressed by the neighbouring elements
depend on position and velocity

9/36




THE EQUATIONS OF MOTION

a) Perfectly rigid elements
Equations of motion of the p-th element: > @]

mPa’ =|f° / T )

PabP _ p
may_fy

PAaP _J£P
mPfa, =|f,

Ip

-1 —1°
XXX xy I~y xz 17z y 7 "z X "X y “zy

1

p p _10b 1ImP p PP _ P _ PP Y_ P _ _
Iyyﬁy_lyxﬁx Iyz z_my+a)x (a)zlzz 5 P a)ylzy) , (a)x XX a)y Xy

PP
2z |

AmP — P (P1P — PP — PP P(PIP — PP —
=|m, a)(a)l , | a)l)+a)z(a)ylW o,

p p p — p p PP _ PP _ _ _
| z_lzx x_lzyﬁy _Imz_ x(wylyy a)xlyx @, yz)+a)y (a)x XX a)ylxy

|

MF(t)a" (t) =" (t,u(t), v(t))
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THE EQUATIONS OF MOTI®N

a) Perfectly rigid elements MP =

Equations of motion of the p-th element:
mPa) =|f?
mP°a; =f”
mPa) =f°

p
Ixx
_1P
|

X

_1P _1]P

Ixy Ixz

p _1]P

Iyy IyZ
_1]0b p
Izy Izz

p 1P _ P — pP_ 4P PP _ PP _ PP p PP _
128~ 108, - 128, =[m! —af (01} -l 1} -1} )+ ol (o] 1]

X "X y

p P P _ p p pyp _ PP _ PP
128, — 158, —128, 4} +of (oP1) - 0?1} - {1}

p —
| yX

X XX

p PP _ PP _, PP
)—a)z (a) L —o, 1, —o 1,

_ 1P _ 1P —ImP _ 3P PP _ PP PP p Pyp _ PP _ PP
221z Iu X Iwﬁy_PE )(G%IW (%I C%Iﬂ)+a)(kax wyky wzkz

y

PP PP
!l —a)zlyz)r

yX

|

MF(t)a" (t) =" (t,u(t), v(t))
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THE EQUATIONS OF MOTION CQ‘

a) Perfectly rigid elements
Equations of motion of the p-th element: (6 scalar equations)

@ @/ MP(t)a”(t) ="t u(t), v(t))
@ for the complete system (N elements):

"M ] (L, u(t), v(t)) |

M| M e u@ ) -| " GOV

MV _fN(t,U(t),V(t))_

12 /36



THE EQUATIONS OF MOTION

29

,f=ma
b) Elements made deformable by being subdivided
most often: SIMPLEX subdivision
displacement vector of the p-th node:

P (t)|
ul(t)=uy(t)
u?(t)]

displacement vector of the whole system:

u'(t)

a-| O

™ (1)
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THE EQUATIONS OF MOTION ﬂ

b) Elements made deformable by being subdivided

the equations of motion of the p-th node:

m*(t)a” (t) =" (t,u(t), v(t))

mass assigned to the p-th node: mP

= the VVoronoi-cell of the p-th node

\oronoi tessellation:
. . in 2D:
AN\

* /' \_" bisecting lines = 2D domains assigned to the nodes

in 3D:
bisecting planes = 3D domains assigned to the nodes
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THE EQUATIONS OF MOTION %

b) Elements made deformable by being subdivided

the equations of motion of the p-th node:

m*(t)a” (t) =" (t,u(t), v(t))

mass assigned to the p-th node: mP

the force acting on the p-th node: fP(t,u(t),v(t)) (3 components)
ON THE <« from the stresses inside the simplexes
NODE! 1 <« from the neighbouring element
' < from external forces (e.g. self weight, drag force)

force from the stress within a simplex:
--- nodal translations = simplex strain v*
--- from this and material characteristics = uniform stress in the simplex v/
--- stress vector acting on the face of the cell:  oyn, =p;  ; resultant v* 15/



THE EQUATIONS OF MOTION CQ‘

b) Elements made deformable by being subdivided

the equations of motion of the whole system:
M-a(t) =f(t,u(t), v(t))
(N x 3 scalar equations)

mp
the complete inertial matrix consists of : MP = mP
_Ml ] mp
M? ) )
M =
e Lt u(t), V(D) |

the load vector: nodal forces f(t,u(t),v(t)) =

2 (t,u(t), v(t))

U, u(.t), v(t))_ 10736



THE EQUATIONS OF MOTION

9

—_— 9
,f=ma

¢) Uniform-strain deformable elements without subdivision

displacement vector of the p-th element:

(reference point:
rigid-body translation and rotation;

uf =

the uniform strain of the element) ~ _

uy

u p

e.g.in2D: ;

translation of another point in the element: u® =| %

+— A Exp

é;p

| U Y) (y=y*) yﬁ
uy(xly) 4— 0 | /XY ]

P (x=x") L
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THE EQUATIONS OF MOTION a‘

,,f=ma”
c) Uniform-strain deformable elements without subdivision HOME:
translation of another point in the element: with the help of superposition

u.(x,y)="? 0, (%, y) =U? ‘ u (x,y)=(x—-x")e’

(y—y°) (y—y®)
| I (x=x") | Lox=x) ]

D

&

P
7/xy

u, (X, y)=+(y-y°") 5

Q)

)

2 5
Vs
UX(X, y) = uxp _(y_ yp)(pzp +(X_Xp)gxp +(y_ yp)7y 18/36




THE EQUATIONS OF MOTION %

,,f=ma”
¢) Uniform-strain deformable elements without subdivision
translation of another point in the element:

Y/
UX(X, y):uf_(y_yp)¢zp+(x_xp)gxp+(y Zy )7/xy
X— X"
(0¥ =07 + (= x)? +(y -yl + S
_uf_
_ - Y
(y=y") ||
_ __yP _yP
2 |:uX(X’ y):|: 10 (y y) (X X) 0 5 (sz
u, (X, _yP p
o I To 1wy 0 oy & =
similarly in 3D! l 2 1| &y
=> relative translations in the contacts: ¥

can be expressed from uP



THE EQUATIONS OF MOTION CQ‘

I =ma”
¢) Uniform-strain deformable elements without subdivision B

remember: uy
Vi the displacement vector of the p-th element: u;

(reference point: @,
rigid-body translation and rotation;
the uniform strain of the element) g
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THE EQUATIONS OF MOTION

¢) Uniform-strain deformable elements without subdivisi

load vector beloning to element p:
— from the contacts with
neighbouring elements
— from the external forces
directly actingon fP =
the element
the equations of motion of the p-th element:

M® -aP (t) =P (t,u(t), v(t))

the equations of motion of the whole system:

M -a(t) = f(t, u(t), v(t))
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THE EQUATIONS OF MOTION ﬁ
M -a(t) = f(t, u(t), v(t))

Three main types of the elements:

(1) perfectly rigid elements @ @
— reference point @

(2) elements being deformable because of an internal FEM mesh
— nodes

(3) elements being deformable because of a uniform strain field

— a reference point + a constant strain function Q
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THIS PRESENTATION

— The Equations of Motion
(1) Perfectly rigid elements

(2) Elements being deformable because of
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a uniform strain field
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— Newmark’s — method
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SOLUTION OF THE EQUATIONS OF I\/IOTIOI\IC%‘

Numerical solutions only! M -a(t) =f(t,u(t), v(t))

The aim:

starting from a known u(t,) = u, and v(t,) = v, state at a t, time instant,
the aim Is to determine the approximative solutions (u,, v,), (u,, v,), ...,
(Ui, vi), (Uiyq, Viyq), ... belonging to the t, t,, ..., t, t,,, ... time instants.

Initial remarks:
1. Explicit vs. implicit time integration methods
2. How to transform the equations of motion into
first-order differential equations
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SOLUTION OF THE EQUATIONS OF I\/IOTIOI\ICa

1. Explicit vs. implicit methods:

— explicit methods:

In the state at t.: (u, v;, f;) = equations of motion =
approximate (u.,,, v.,, , f.,,) belonging to the state at t,,,

NO checking of whether (u.,,, vi,,, f.,,) satisfy the egs of motion,
accept them and use them for the calculations of the next timestep

= fast, but less reliable; numerical stability problems! o | 36



SOLUTION OF THE EQUATIONS OF I\/IOTIOI\ICa

1. Explicit vs. implicit methods:

Up

— implicit methods:

In the state at t.: (u,, v;, f.) = equations of motion =
approximate (u.,,, v.,,, f.,;) belonging to the state at t., ,;
then iterations, to improve this approximation belonging to t
so that the egs of motion be satisfied at t._,
= slow, but longer timesteps,

more reliable, better numerical stability 26 /36
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SOLUTION OF THE EQUATIONS OF I\/IOTIOI\IC%‘

2. How to transform the equations of motion into first-order DE

d’ “(t) _f(tu®) vD) where v(t) = 4O

The DE: M-
dt

Notation:
new unknowns: y(t) = {u(t)}
new right-hand side: V()
a(t,u(t),v(t)) =M"-f(t,u(t),v(t)) or: a(t,y(t))=M"-f(t,y())

a(t,u(t), v(t)) ::[ vt }

a(t,u(t), v(t))
so the equations become: [ du(t) |
dy(t dt || VO
i;()—a(t y(®)) dv(t) _{M‘l-f(t,y(t))}
i dt | 27136




THIS PRESENTATION

— The Equations of Motion
(1) Perfectly rigid elements

(2) Elements being deformable because of
an internal FEM mesh

(3) Elements being deformable because of
a uniform strain field

— Overview of Numerical Solution Techniques

— The aim

— Initial remarks

—~ Euler method

- Method of Central Differences
-1 Newmark’s — method
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EULER-METHOD |

For the DEM eqgs of motion:

Cdu(t) ]

dt | v(t) _ u(t,) | Yo
dv(t) | [atu®).v)] T [vi)] [V,
-t \a(t,u(t),v(t)):=I\/I‘l-f(t,u(t),v(t))

at t;: known v; and f ;

From these, the new position and velocity: u.., u. At V.
V, V, a(t;,u;,v;)

1+1 1

The problem:

meaning: the velocity and the acceleration are known at the beginning of At, and
their values are kept constant along the time interval

or:
Uiy =U; + ALV, DEM: = contact dynamics methods (implicit vs)

Vg =V, +At-a(t,u;,v;) disadvantage: oscillations 29 /36




METHOD OF CENTRAL DIFFERENCES CQ‘

For the DEM eqgs of motion:

The problem: du(t)

a W u(ty) = Uy;
dv(t v(t,)=vV
(1 =a(t,u(t), v(t)) (o) =Vs
dt
At At positions
t, t ‘ t t., forces
| | | o) | >t accelerations
| | \I/ '5 . | velocities
known: V._,; a(t,u.,v. ,,) (initially: e.g. V4, =V,)
Let Vi = Vi HAL-AG, U,V )

then from this: U, , =u, +At-v. ,,,
30/36



METHOD OF CENTRAL DIFFERENCES

For the DEM eqgs of motion:

The problem: du(t)

dt
dv(t)

v(t);

— a(t,u(t), v(t)

Y,

known: Vi—1/2; a(t| ) ui ] Vi—1/2)

Let Vi = Vi, HAt-a(t,u, v ,)

then fromthis: U, , =u, +At-v, RS
DEM: e.g. UDEC, PFC (most of the explicit timestepping methods) - =




NEWMARK’S #METHOD |

For the DEM eqgs of motion:

The problem: Find the u(t), v(t), a(t) functions which satisfy the egs.
M -a(t) =f(t,u(t), v(t))
o du(t) d?u(t)
inwhich v(t)=——=, a(t)=
(t) ~ (t) i

Notation:  residual™  r(t,u(t), v(t),a(t)) = f(t,u(t), v(t)) - M-a(t)

The u(t), v(t), a(t) functions are the solutions of the differential egs
if and only if: | r(t,u(t),v(t),a(t)) =0

— Assume that the u;, v; and a; numerical solutions belonging to t; satisfied this.

[ L
— We would like to find u,,,, v;,, and a;,, belonging to t;,, so that:

1+1 Y+l i+1

r(t Vi+1’ai+l) — O

i+1’ui+l’
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NEWMARK’S #METHOD |

For the DEM eqgs of motion:

Approximation of the position and velocity at the end of the timestep:
2

ui+1 = Ui +A'[-Vi +A7t[(1—2ﬁ)al +2B‘ai+1]
Vig =V, +(1_Y)'At'ai +'Y'At'ai+1

Expression for the unknown values v;,, and a,,, in terms of the unknown u._,:

_ 1 _ v A
Ay '_B-Atz {um (ui+At Vi + 2 (1 ZB)aiﬂ

Vi, =V, +({1-y)-At-a +y-At-a,

here B and y are constants controlling the behaviour of the method

The core of the method: Determine that u;,,, for which: r(ti+1’ u..,, Vi+1’ai+1) =0

— e.g. Newton-Raphson iteration to find u,,,, thenexpress v,,, anda,, v’

-

DEM: e.g. DDA models o *}
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NEWMARK’S S~-METHOD

For the DEM eqgs of motion:

Approximation of the position and velocity at the end of the timestep:
2

ui+1 = Ui +A'[-Vi +A7t[(1—2ﬁ)al +2l3‘ai+1]
Vig =V, +(1_Y)'At'ai +'Y'At'ai+1

Expression for the unknown values v;,, and a,,, in terms of the unknown u,_:

i+1

1 At?
a ., = u..—|u +At-v. +——(1-2p)a.
i+1 BAt2|: i+1 ( 1 i 2 ( B) |j:|
Vig =V, +(1-7)-At-a, +y-At-a,

here B and y are constants controlling the behaviour of the method

~ ,,no numerical blown-up for specific B and y values — several other methods
any time step length” -
UNCONDITIONALLY STABLE IF: 2B>y>%

e.g.y="%, B =0:method of central differences, which is

~ ytime step length &\ oONLY CONDITIONALLY STABLE
should be limited” 34/36




QUESTIONS |

1. What are the kinematic degrees of freedom in case of perfectly rigid
elements in 3D? For a model consisting of n perfectly rigid elements in
3D, what is the number of scalar equations of motion?

2. What are the kinematic degrees of freedom in case of an element being
deformable because of being subdivided into uniform-strain simplexes in
3D? How could you determine the number of scalar equations of motion
In 3D?

3. What are the kinematic degrees of freedom in case of uniform-strain
deformable elements in 3D? For a model consisting of n uniform-strain
deformable elements, what is the number of scalar equations of motion in
3D?

4. What is the difference between explicit and implicit time integration

methods?
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QUESTIONS |

5. You learnt about the Euler-method, the central difference method and
Newmark's g-method. Which statements are true for which method(s)?

a) The velocity is constant along the timestep, and equal to its
previously calculated value at the beginning of the timestep.

b) The velocity is constant along the timestep, and equal to its
previously calculated value at the middle of the timestep.

c) The velocity is constant along the timestep, and equal to the
weighted average of the values at the beginning and at the end of the
timestep.

d) It is an explicit method.

e) It is an implicit method.

f) It contains an inner Newton-Raphson iteration.

g) This method is unconditionally stable.

h) This method is the special case of the Newmark method, with
y=1/2and f=0.
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