

BALL-TYPE MODELS

OVERVIEW OF DEM SOFTWARES

Quasi-static methods ← <u>equilibrium states</u> are searched for From an initial approximation of the equilibrium state searched for, the displacements **u** are to be determined taking the system to the equilibrium (assumption: time-independent behaviour, zero accelerations!!!)

$$\mathbf{K} \cdot \Delta \mathbf{u} + \mathbf{f} = \mathbf{0}$$

 $\begin{array}{c} circular, \\ rigid \\ elements \end{array} \left\{ \begin{array}{c} \text{Kishino, 1988} \\ \text{Bagi-Bojtár, 1991} \end{array} \right. \\ \begin{array}{c} \text{Baraldi \& Cecchi (2017)} \\ \text{Galassi \& Tempesta (2019)} \end{array} \right\} \begin{array}{c} not DEM: \\ \rightarrow no \ new \ contacts; \\ \rightarrow no \ large \ displa \end{array} \right\}$

<u>Time-stepping methods</u> " $\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$ " $\leftarrow a \text{ process in time}$ is searched for

simulate the motion of the system along small, but finite Δt timesteps

OVERVIEW OF DEM SOFTWARES

<u>Quasi-static methods</u> \leftarrow <u>equilibrium states</u> are searched for

From an initial approximation of the equilibrium state searched for, the displacements **u** are to be determined taking the system to the equilibrium (assumption: time-independent behaviour, zero accelerations!!!)

 $\mathbf{W}\mathbf{K}\cdot\Delta\mathbf{u}+\mathbf{f}=\mathbf{0}\mathbf{W}$

<u>Time-stepping methods</u> " $\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$ " $\leftarrow a \text{ process in time} \text{ is searched for}$ simulate the motion of the system along small, but finite Δt timesteps

Explicit timestepping methods:

 \rightarrow <u>Polyhedral elements</u>, e.g. UDEC *rigid / deformable elements; deformable contacts*

 \rightarrow BALL-type models e.g. PFC rigid elements; deformable contacts

Implicit timestepping methods:

→ DDA (,,Discontinuous Deformation Analysis") deformable polyhedral elements

→ Contact Dynamics models rigid elements, non-deformable contacts

THIS PRESENTATION

BALL-type models:

History and definition

Most important codes:

 \rightarrow PFC (BALL-type version)

 \rightarrow EDEM

 \rightarrow YADE

 \rightarrow Rocky-DEM

 $\rightarrow \text{OVAL}$

Applications

GRANULAR ASSEMBLIES

Thanks to BALL:

Translations of the particles in a biaxial shear test

Quasi-rigid *subdomains*:

Development of voids:

ORGANIZED NATURE OF THE KINEMATICS

GRANULAR ASSEMBLIES

Thanks to BALL:

Force chains discovered:

Frequency diagrams of contact forces: importance of *exponential distribution* ↑↑↑ entropy max.

With increasing loading:

- \rightarrow force chains become more and more *vawy*
- \rightarrow finally *buckle*, but neighbours get involved
- → failure: *no more neighbours* to involve

ORGANIZED NATURE OF THE STATICS

HISTORY

BALL: P.A. Cundall, 1979

3D version: 1983, TRUBAL

NSF grant, it was free for anyone who asked for

 \Rightarrow huge effect on granular mechanics researches !!!

validate the experiences for **3D** and **non-spherical** elements

countless similar codes were developed around the world

- "BALL-type" models:
- \rightarrow (1) perfectly *rigid* elements
- \rightarrow (2) shape: *smooth* convex surface ,,nearly-everywhere" \Rightarrow *point-like contacts*

- \rightarrow (3) eqs of motion *separately* for each element: $\mathbf{M}^{p}(t) \mathbf{a}^{p}(t) = \mathbf{f}^{p}(t, \mathbf{u}(t), \dot{\mathbf{u}}(t))$
- \rightarrow (4) numerical solution of the eqs of motion: *explicit* time integration,

(mostly: central difference method)

THIS PRESENTATION

BALL-type models:

History and definition

Most important codes:

- \rightarrow **PFC** (BALL-type version)
- \rightarrow EDEM
- \rightarrow YADE
- \rightarrow Rocky-DEM
- $\rightarrow \text{OVAL}$

Applications

Elements:

perfectly rigid cylinders (2D) or spheres (3D) *m*: mass, *I*: inertia

"clump": rigid group of elements, fixed together *m*: sum of masses, *I*: sum of inertia about the "centre"

Degrees of freedom:

translation of the "centre" (i.e. reference point); rotation about the "centre"

Displacement calculations

Newton II.: ,, ma = f"

- forces acting on the spherical elements:

 \leftarrow from the contacts of the element $\rightarrow f, M$ $\leftarrow \text{ from the external loads (weight, drag force) }$ \leftarrow from damping

- forces acting on the clumps:

- $\left. \leftarrow \text{ from the contacts of the element} \right. \\ \leftarrow \text{ from the external loads (weight, drag force)} \right\} \rightarrow f, M$
- \leftarrow from damping

Displacement calculations Method of Central Differences

- the eqs of motion, discretized: $\mathbf{v}^{p}(t_{i} + \Delta t/2) = \mathbf{v}^{p}(t_{i} \Delta t/2) + (\mathbf{M}^{p})^{-1}\mathbf{f}^{p}(t_{i})\Delta t$
- from this: $\mathbf{u}^{p}(t_{i} + \Delta t) = \mathbf{u}^{p}(t_{i}) + \mathbf{v}^{p}(t_{i} + \Delta t/2)\Delta t$

Newton II.: ,, ma = f"

- to ensure numerical stability, and to help fast convergence:

- 1. estimation for the longest allowed Δt : $\Delta t_{crit} = \min \left\{ \frac{1}{2} \right\}$
- 2. density scaling: to modify masses/inertia

for time-dependent problems: never use it!

3. damping

 $\sqrt{m/k^{transl}}$

3. Damping:

the eqs. of motion would be, if including velocity-proportional damping:

$$\mathbf{v}(t_i + \Delta t/2) = \mathbf{v}(t_i - \Delta t/2) \neq \mathbf{M}^{-1} \left(\mathbf{f}(t_i) - c_u \mathbf{v}(t_i - \Delta t/2) \right) \cdot \Delta t$$

 \rightarrow a.) Local damping \leftarrow default

 \rightarrow b.) Contact viscous damping

3. Damping:

a.) Local damping: e.g. for a sphere:

$$v_{x}(t_{i} + \Delta t/2) = v_{x}(t_{i} - \Delta t/2) + \left(f_{x}(t_{i}) - \alpha \cdot |f_{x}(t_{i})| \operatorname{sign}(v_{x}(t_{i} - \Delta t/2))\right) \frac{\Delta t}{m}$$

$$\omega_{z}(t_{i} + \Delta t/2) = \omega_{z}(t_{i} - \Delta t/2) + \left(M_{z}(t_{i}) - \alpha \cdot |M_{z}(t_{i})| \operatorname{sign}(\omega_{z}(t_{i} - \Delta t/2))\right) \frac{\Delta t}{I_{z}}$$

default: $\alpha := 0.70$

- unequilibrated motions are damped only;
- does not depend on the magnitude of the velocities;
- very good for systems in which: parts are already in equilibrium, while parts are still far from the eq.

b.) Contact viscous damping:

- viscous force added to the contact force:
- its direction: opposite to the relative velocity

 $\begin{vmatrix} D_N \end{vmatrix} = c_N \begin{vmatrix} \frac{\Delta u_N}{\Delta t} \end{vmatrix}$ $\begin{vmatrix} D_T \end{vmatrix} = c_T \begin{vmatrix} \frac{\Delta u_T}{\Delta t} \end{vmatrix}$

- realistic

Further details:

e.g. application results, publications, courses, conferences, ...

www.itascacg.com

\rightarrow Software \rightarrow Demo Downloads

<u>New in PFC:</u> polyhedral elements as well (not BALL-type)

PFC PRACTICAL APPLICATIONS

PFC PRACTICAL APPLICATIONS

Railway ballast modelling

e.g. effect of stone shape: Lu & McDowell, 2007, PFC-3D

PFC PRACTICAL APPLICATIONS

Railway ballast modelling

e.g. effect of stone shape: Lu & McDowell, 2007

Main outcome: do NOT use spherical elements for assemblies

THIS PRESENTATION

BALL-type models: History and definition Most important codes: \rightarrow PFC (BALL-type version) \rightarrow EDEM \rightarrow YADE \rightarrow Rocky-DEM \rightarrow OVAL Applications

EDEM *www.edemsimulation.com*

- J. Favier, Edinburgh
- \rightarrow elements: spheres / composed of spheres
- → contacts: frictional, linearly elastic Hertz-Mindlin cohesional cemented individually coded
- \rightarrow boundaries: several types!
- → special features of the displacement calcultions:
 - easy to connect to FEM or CFD (solids, fluids)
 - fast, \setminus
- \rightarrow output: rich (videos, pictures, etc.)

EDEM *www.edemsimulation.com*

applications:

e.g. J. Boac, 2010: assemblies of soy bean & corn

result: well-calibrated model for machine design

optimize the geometry of the spoon

THIS PRESENTATION

BALL-type models: History and definition Most important codes: \rightarrow PFC (BALL-type version) \rightarrow EDEM \rightarrow YADE \rightarrow Rocky-DEM \rightarrow OVAL

Applications

YADE not just a **software**, rather an international **community**

<u>elements:</u> spheres; complex shapes consisting of spheres; polyhedra; [anything personal can be coded]

contacts:

[several models, individual codes shared]

applications:

mostly researchers!
e.g. simulation of lunar regolith: Modenese (2013)

YADE

<u>elements:</u> spheres; complex shapes consisting of spheres; polyhedra; [anything personal can be coded]

contacts:

[several models, individual codes shared]

applications:

in engineering: e.g. design of rockfall protective system: Thoeni et al (2011)

https://yade-dem.org

Rocky-DEM since 2015; originally: transport of agricultural products

elements: spheres; complex shapes consisting of spheres; polyhedra;

huge variety of other shapes

Rocky-DEM since 2015; originally: transport of agricultural products

<u>elements:</u> spheres; complex shapes consisting of spheres; polyhedra; huge variety of other shapes

	Real-World Concave Shape	Physical Representation in Rocky DEM
Thin Potato Chip		
Cheetos		

Rocky-DEM since 2015; originally: transport of agricultural products

<u>elements:</u> spheres; complex shapes consisting of spheres; polyhedra; huge variety of other shapes

coupled with ANSYS (also with fluid analysis): $DEM \rightarrow FEM$

https://rocky.esss.co/software/

OVAL

Matthew R. Kuhn, USA, research code!

kuhn@up.edu

 \rightarrow elements: surface composed of cylindical/spherical/toroidal etc. surfaces

THIS PRESENTATION

BALL-type models: History and definition Most important codes: \rightarrow PFC (BALL-type version) \rightarrow EDEM \rightarrow YADE \rightarrow Rocky-DEM \rightarrow OVAL

Applications

BALL-TYPE MODELS: OTHER APPLICATIONS

Floating ice blocks: effect on military vessels and structures

US Army Research Institute, Cold Regions Department:

BALL-TYPE MODELS: OTHER APPLICATIONS

Tyres on snow

Michael (2014), "XDEM":

Contact properties: \rightarrow

(1) direct analysis of the contacts

(2) macro-level (,,bulk") behaviour

 \rightarrow simulation of different profiles

BALL-TYPE MODELS: OTHER APPLICATIONS

Architectural design: Simulation of a crowd in panic

https://www.youtube.com/watch?v=fPXr0HEwoD8 0:03 ... 0:27

QUESTIONS

1. What are those **four** characteristics that define the BALL-type models?

2. In PFC, for **frictional** contacts, what is the difference between **linear** contact behaviour and **Hertz-Mindlin** contact behaviour? (Answer in maximum 2 sentences and with an explanatory drawing.)

3. In PFC, for **cemented** contacts, why is the extended contact called "**parallel bond**"?

4. Explain how "**local damping**" works in PFC. Explain how "**contact viscous damping**" works in PFC.

5. Summarize the main steps of the analysis of a timestep in PFC.

6. Explain what does "**periodic boundary**" mean.