

UDEC / 3DEC

OVERVIEW OF DEM SOFTWARES

<u>Quasi-static methods</u> \leftarrow <u>equilibrium states</u> are searched for From an initial approximation of the equilibrium state searched for,

the displacements **u** are to be determined taking the system to the equilibrium (assumption: time-independent behaviour, zero accelerations!!!)

 $\mathbf{W}\mathbf{K}\cdot\Delta\mathbf{u}+\mathbf{f}=\mathbf{0}\mathbf{W}$

<u>Time-stepping methods</u> " $\mathbf{M} \cdot \mathbf{a}(t) = \mathbf{f}(t, \mathbf{u}(t), \mathbf{v}(t))$ " $\leftarrow a \text{ process in time}$ is searched for

simulate the motion of the system along small, but finite Δt timesteps

Explicit timestepping methods:

 \rightarrow Polyhedral elements, e.g. UDEC *rigid / deformable elements; deformable contacts*

→ BALL-type models, e.g. PFC rigid elements; deformable contacts Implicit timestepping methods:

→ DDA (,,Discontinuous Deformation Analysis") deformable polyhedral elements

→ Contact Dynamics models *rigid elements, non-deformable contacts*

3DEC:

Origins of UDEC / 3DEC

Elements

Contacts in 3D

Time integration

 \rightarrow The "mass of the node" and the reduced force vector

 \rightarrow How to calculate the displacement increments during Δt

 \rightarrow Methods to help numerical stability

 \rightarrow Summary: Main steps of the analysis of a timestep

UDEC practical applications

3DEC practical applications

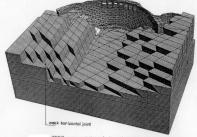
Questions

UDEC / 3DEC

<u>Origins:</u> "Universal Distinct Element Code"
 P.A. Cundall, PhD thesis, 1971;
 Development through decades
 3D: early 1990ies
 Itasca Consulting Group: graphics, I/O system, manuals, sample applications (www.itascacg.com)

from the 1990ies:

MOST WIDESPREAD DEM CODE IN CIVIL ENGINEERING



3DEC:

Origins of UDEC / 3DEC Elements

Contacts in 3D

Time integration

 \rightarrow The "mass of the node" and the reduced force vector

 \rightarrow How to calculate the displacement increments during Δt

 \rightarrow Methods to help numerical stability

 \rightarrow Summary: Main steps of the analysis of a timestep

UDEC practical applications

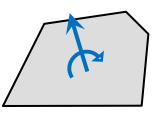
3DEC practical applications

Questions

3DEC BASICS – THE ELEMENTS

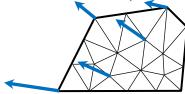
<u>Elements:</u> polygons / polyhedra (planar faces!);

- rigid elements



<u>degrees of freedom:</u> translation of and rotation about the centroid

- deformable elements (subdivided into simplex zones)



"uniform strain" tetrahedral zones ((10-node tetrahedra – not worth)) degrees of freedom: translations of the nodes

Material models for the elements:

(rigid) \leftrightarrow deformable:

e.g. marble: K = 37,2 GPa; G = 22,3 GPa e.g. granite: K = 43,9 GPa; G = 30,9 GPa e.g. sandstone: K = 26,8 GPa; G = 7 GPa; Mohr-Coulomb, fric = 28°; coh = 27,2 MPa; tens = 1,17 MPa

- "null element" (no material in the element)

 $default \rightarrow$

- linearly elastic, isotropic (e.g. intact rock; metal)

- lin. elast., with: Mohr-Coulomb / Prager-Drucker failure crit.

(e.g. soils, concrete) (e.g. clay)

+ tensile strengh + cohesion + dilation angle

 $K = \frac{E}{3(1-2\mathbf{v})}; G = \frac{E}{2(1+\mathbf{v})}$

where $\sigma_0 = K(\varepsilon_1 + \varepsilon_2 + \varepsilon_3)$

3DEC:

Origins of UDEC / 3DEC

Elements

Contacts in 3D

Time integration

 \rightarrow The "mass of the node" and the reduced force vector

 \rightarrow How to calculate the displacement increments during Δt

 \rightarrow Methods to help numerical stability

 \rightarrow Summary: Main steps of the analysis of a timestep

UDEC practical applications

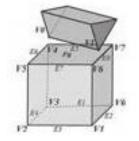
3DEC practical applications

Questions

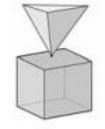
Contacts in 3D:

Types:

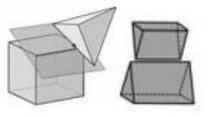
face-to-face



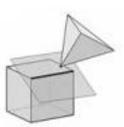
edge-to-face



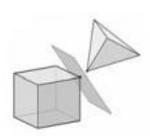
corner-to-face



edge-to-edge



corner-to-edge



corner-to-corner

<u>The aim:</u> ← **"common-plane" technique**

- \rightarrow **recognize** the contacts;
- \rightarrow produce their AREA ($A^{(k)}$) and their CONTACT NORMAL ($\mathbf{n}^{(k)}$) in such a way that **abrupt changes** during block motions are **avoided**

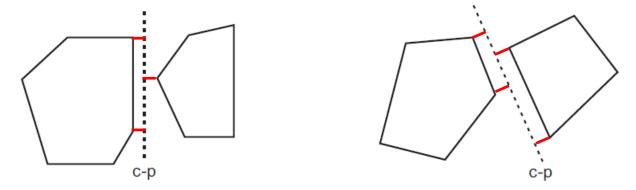
 $\rightarrow \text{ mechanical model:} \qquad \Delta \boldsymbol{\sigma}_n^{(k)} = -k_n \Delta \boldsymbol{u}_n^{(k)} \qquad \Delta \boldsymbol{\sigma}_t^{(k)} = k_s \Delta \boldsymbol{u}_t^{(k)} \qquad 7/33$

Contacts in 3D:

- To recognize if there is a contact:
- "common-plane" concept:

"*Maximize* the gap between the common-plane and the node with the smallest gap." or, equivalently:

"Locate the plane to have the *largest* minimal distance between any nodes of the two polyhedra and the common-plane."



the common-plane is found with a small OPTIMIZATION SUBROUTINE \Rightarrow if this gap turns out to be **NEGATIVE**: \Rightarrow means that a **contact** is found

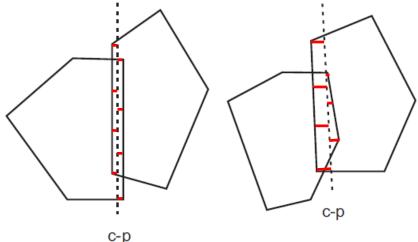
<u>Contacts in 3D:</u> if the **gap** is **negative**, i.e. a **positive overlap**:

"common-plane" concept:

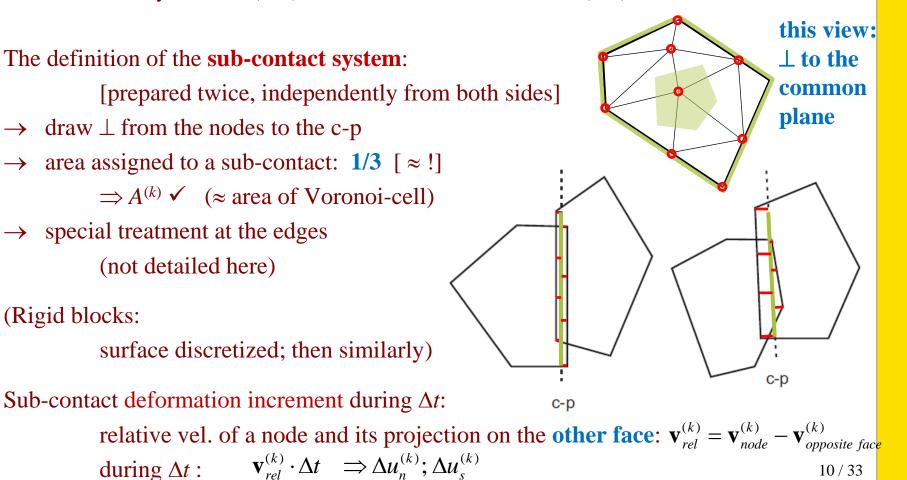
"*Minimize* the overlap between the common-plane and the node with the greatest overlap." or, equivalently:

"Locate the plane to have the *smallest* maximal distance between nodes on the other side and the common-plane."

- \Rightarrow contact normal \checkmark
- ⇒ then separately for the two elements: assign a sub-contact to every node which is on the other side of the c-p result: two sets of sub-contacts [see on next slide how]



<u>Contacts in 3D:</u> What to mean by AREA ($A^{(k)}$) and CONTACT NORMAL ($\mathbf{n}^{(k)}$) of a subcontact?



Distributed forces along the sub-contacts:

sub-contact area: $A^{(k)}$; normal direction: $\mathbf{n}^{(k)}$ by linear interpolation Sub-contact deformation increment during At. this view: $\mathbf{v}_{rel}^{(k)} = \mathbf{v}_{node}^{(k)} - \mathbf{v}_{opposite face}^{(k)}$ \perp to the $\mathbf{v}_{ral}^{(k)} \cdot \Delta t \implies \Delta u_n^{(k)}; \Delta u_t^{(k)}$ common plane because of the normal and shear stiffness: \rightarrow increment of contact normal stress: $\Delta \sigma_n^{(k)} = -k_n \Delta u_n^{(k)}$ (**uniformly** distributed contact force) \rightarrow increment of contact shear stress: $\Delta \sigma_{t}^{(k)} = k_{s} \Delta u_{t}^{(k)}$ (**uniformly** distributed contact force) **Resultant force** assigned to the node; \leftarrow "subcontact force" \downarrow opposite resultant distributed among the three nodes on the opposite face After doing the same also for all the face nodes of other block: two sets of nodal forces (,,**sub-contact forces**") are gained for both blocks! $\Rightarrow \frac{1}{2}$ (,,averaged"), for every node, on both faces 11/33

– others

Material models for the contacts:

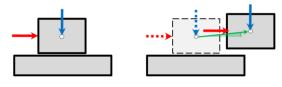
[aim: calculate the increments of distrib. contact forces from the increments of rel.disps]

- if no material in the contacts: $\rightarrow k_n, k_s$: numerical parameters, ∞ ; friction: real value
- if material is in the joints: (modelled as length or area, with zero thickness):
 - $default \rightarrow -$ linear behaviour for compression and shear, Coulomb-friction, + cohesion and tensile strength

- linear behaviour for compression and shear, Coulomb-friction,

+ cohesion & tensile strength + softening + dilation angle

 $\Delta U_n(dil) = \Delta U_s tan\psi$



examples for characteristic values:

normal and shear stiffness: $10 - 100 \text{ MPa/m} \dots 100 \text{ GPa/m}$ (soft, with clay) $\dots (hard rock, healed)$

friction angle: $10^{\circ} \dots \dots 50^{\circ}$ cohesion and tensile strength: from $0 \dots \dots$ till the strength of intact rock... ... dilation angle: $0^{\circ} \dots 10^{\circ}$

3DEC:

Origins of UDEC / 3DEC

Elements

Contacts in 3D

Time integration

 \rightarrow The "mass of the node" and the reduced force vector

 \rightarrow How to calculate the displacement increments during Δt

 \rightarrow Methods to help numerical stability

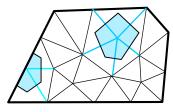
 \rightarrow Summary: Main steps of the analysis of a timestep

UDEC practical applications 3DEC practical applications Questions

Calculation of nodal displacements

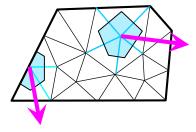
Newton II.: ,, ma = f"

– mass assigned to the node:



Voronoi-cell

- force on the node: resultant of the forces acting on the Voronoi-cell of the node



- \leftarrow from the neighbouring element
- ← from external forces (e.g. self weight, drag force)
- \leftarrow from the stresses inside the simplexes
- steps to get the force from the stress inside a simplex:
 - nodal translations \Rightarrow simplex strain \checkmark
 - from this and material characteristics \Rightarrow uniform stress in the simplex \checkmark
 - stress vector acting on the face of the cell: $\sigma_{ii}n_i = p_i$; resultant

Calculation of nodal displacements

– discretized form of the eqs of motion:

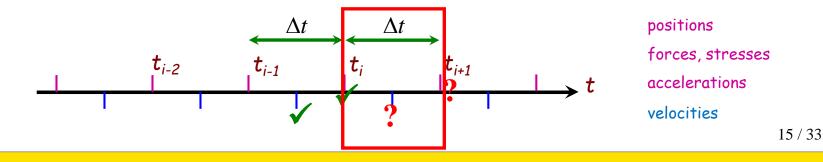
Newton II.: ,,
$$ma = f$$
"

$$m\frac{\mathbf{v}(t_i + \Delta t/2) - \mathbf{v}(t_i - \Delta t/2)}{\Delta t} = \mathbf{f}(t_i)$$

or:

$$\mathbf{v}(t_i + \Delta t/2) = \mathbf{v}(t_i - \Delta t/2) + \frac{\mathbf{f}(t_i)}{m} \Delta t$$

- at t_i : the *positions of the nodes* and the *forces and stresses* are known; at $t_i - \Delta t/2$: the *nodal velocities* are known; determine the *nodal velocities* at $t_{i+1/2} = t_i + \Delta t/2$ and the *positions of the nodes* at $t_{i+1} = t_i + \Delta t$



Calculation of nodal displacements

- series of small finite time steps:
- main disadvantages: explicit; no stiffness matrix!!!

 \Rightarrow numerical instabilities, convergence problems

Newton II.: ,, ma = f"

- to help numerical stability:
 - 1. estimate the longest allowed Δt

ELASTIC SYSTEMS:

 $\Delta t := \min$

requirement for deformation calculations: $\Delta t \leq \Delta t_{nodes}$ =

$$= \min_{(nodes)} \left\{ 2\sqrt{\frac{m_{node}}{k_{node}}} \right\}$$

• ... (

requirement for contact deformation calculations:

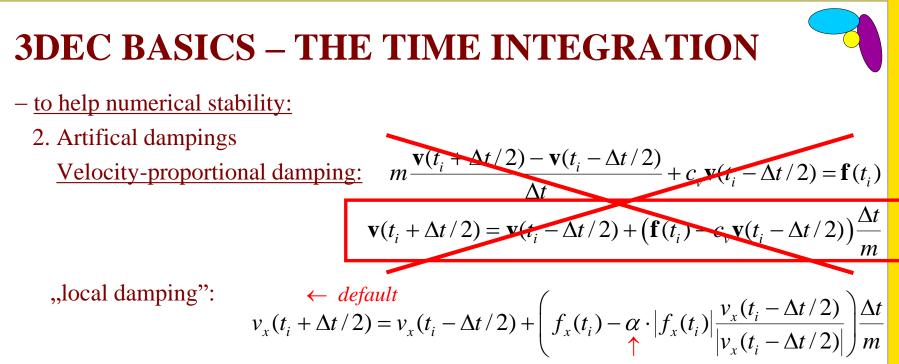
$$\Delta t \leq \Delta t_{blocks} = \gamma \cdot \left\{ 2 \sqrt{\frac{\min_{(blocks)} (Mass_{block})}{\max_{(joints)} (k_{joints})}} \right\}$$

$$t_{blocks}$$

$$default: \ \gamma := 0.10$$

ſ

NOT ELASTIC!!! \rightarrow friction; damping; plastic yield; ...



default: $\alpha := 0.80$

advantageous if some parts of the system are already equilibrated, others are just collapsing

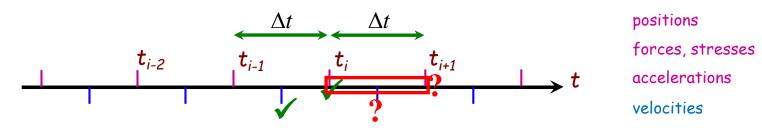
"adaptive global damping" or "auto damping":

 \cong velocity-proportional damping, with coefficients being adjusted, so that the change of kinetic energy during Δt is decreased (eg 50%)

advantageous if the whole system oscillates around the equilibrium $\frac{17/33}{17/33}$

Summary: Main steps of the analysis of a timestep:

- \rightarrow determine the **reduced force vector** for every node;
- \rightarrow determine the new velocities; \leftarrow [consider damping if exists]
- → determine the **translation increments** and the **new positions**;
- → check contacts states (lost? new? sliding/broken?) and upgrade contact forces



3DEC:

- Origins of UDEC / 3DEC
- Elements
- Contacts in 3D
- Time integration
 - \rightarrow The "mass of the node" and the reduced force vector
 - \rightarrow How to calculate the displacement increments during Δt
 - \rightarrow Methods to help numerical stability
 - \rightarrow Summary: Main steps of the analysis of a timestep

UDEC practical applications

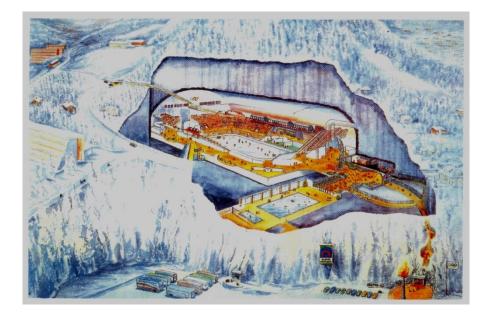
3DEC practical applications

Questions

Ice hockey cavern, Norway, Gjovick:

The problem:

- \Rightarrow Fractured rock
- \Rightarrow Large dimensions



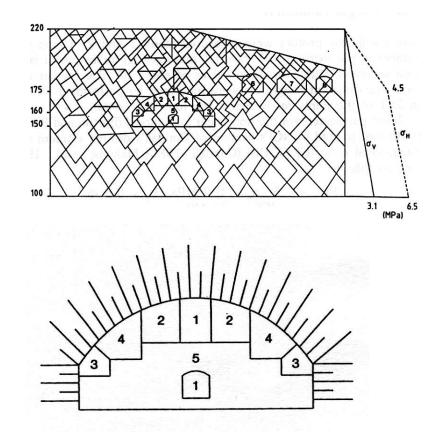
"The ice hockey cavern has a finished span of 62 m, a length 91 m and a height of 24 m. The spectator capacity is currently 5300, making it far the largest cavern for public use in the world. As is typical when one is extending the limits of experience and technology, the initial skepticism that had to be overcome was formidable."

(completion: 1993)

Ice hockey cavern, Norway, Gjovick:

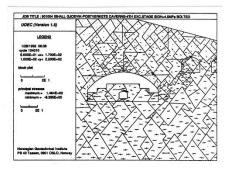
fractured gneiss • <u>Soil:</u> joint systems: 5 no clay 😳 •Geological state wellknown: existing caves + drill \Rightarrow material characteristics \checkmark \Rightarrow initial stress state \checkmark •the structure: cables / bars; shotcrete •<u>Numerical model:</u>

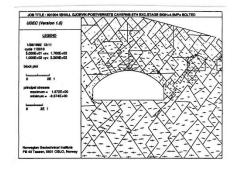
> UDEC (2D) deformable elements



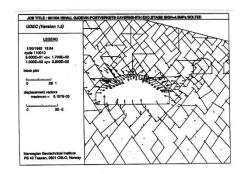
Ice hockey cavern, Norway, Gjovick:

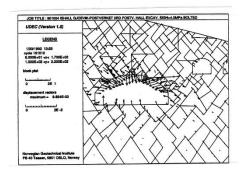
e.g. development of principal stresses:





e.g. translations:





Ice hockey cavern, Norway, Gjovick:

Parameter	Step 1	Step 2	Step 3	Step 4	Step 5	Excav. of 1st cavern	Excav. of 2nd cavern	Excav. of 3rd cavern
Maximum principal stress MPa	9.29	11.49	9.91	8.39	8.37	8.56	8.71	8.83
Maximum displacement (mm) total	1.85	1.80	2.63	6.99	8.16	8.28	8.43	8.65
wall crown (vertical component)	0.50	1.08	2.62	1.33 4.05	3.78 4.33	3.88 4.39	3.92 4.87	3.97 7.01
Maximum shear displacement (mm) along horizontal joint crown	1.11 1.11	1.54 1.54	2.49 2.49	3.51 3.51	4.67 3.70	5.67 3.70	5.54 4.10	5.56 6.85
Maximum hydraulic aperture (mm) crown	0.69	1.01	1.62	2.64	2.86	3.68	3.72	4.13
Maximum axial forces on bolts (tnf)	7.0	25	25	25	25	25	25	25

Table 1. Summary of Gjøvik Olympic cavern run (with Postal service caverns)

Measured:

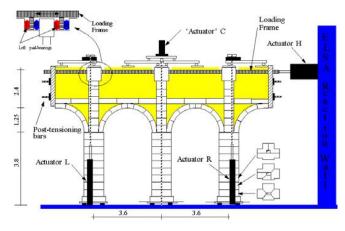
UDEC:

Table 2. Summary of Gjøvik Olympic cavern in situ measurements for Location E4. The number given refer to total deformation. (NGI extensometers (E4) + SINTEF (S2) + surface subsidence).

Parameter	Step 1	Step 2	Step 3	Step 4	Step 5
Total deformation (mm)	0.65	1.31	2.86	6.56	8.55

Sao Vicente de Fora monastery, Portugal:

previous studies: experiments FEM simulations



Sao Vicente de Fora monastery, Portugal:

Giordano et al, 2002: simulations with UDEC and with different FEM models
UDEC model:

 \rightarrow geometry: 2D

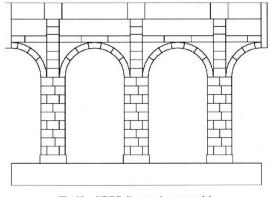


Fig. 18. UDEC discrete element model.

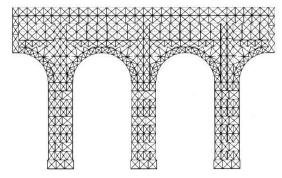


Fig. 19. UDEC internal finite element mesh.

Sao Vicente de Fora monastery, Portugal:

\rightarrow material parameters:

Table 2 Parameter values for the CASTEM model

Table 3

blocks:

	Stones	Infill panels
Weight per unit volume (kg/m ³)	2500	2500
Young's modulus (Gpa)	65	6.5
Poisson's ratio	0.2	0.2
k _u : normal stiffness (Gpa)	115	
ks: shear stiffness (Gpa)	47.9	
N _i : tensile strength	0	
φ: friction angle	30	
μ : dilatancy angle	5°	

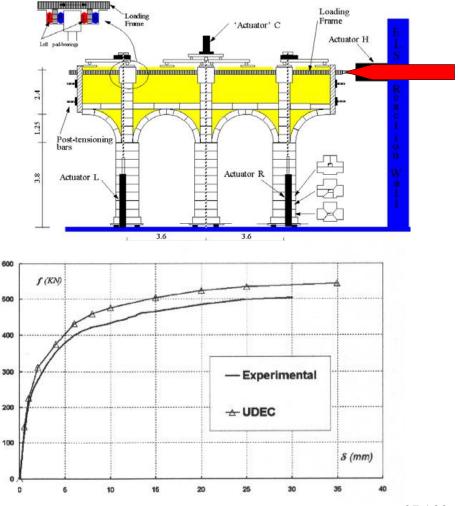
con	tac	to.
COI	lac	13.

k _n : normal stiffness (Gpa)	115	
k _s : shear stiffness (Gpa)	46	
N_t : tensile strength	0	
φ: friction angle	35	
μ : dilatancy angle	0	
c: cohesion	0	

Parameter values for the UDEC model

Sao Vicente de Fora monastery, Portugal:

→ loading process: constant vertical load; lateral "force": disp-controlled, increasing translation



→ force-displacement-diagram: [filling: linear elastic, isotropic model]

→ UDEC advantages: large displacements O.K., crack opening O.K.

3DEC:

- Origins of UDEC / 3DEC
- Elements
- Contacts in 3D
- Time integration
 - \rightarrow The "mass of the node" and the reduced force vector
 - \rightarrow How to calculate the displacement increments during Δt
 - \rightarrow Methods to help numerical stability
 - \rightarrow Summary: Main steps of the analysis of a timestep

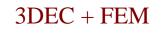
UDEC practical applications

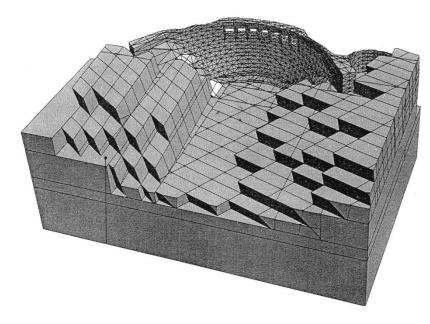
3DEC practical applications

Questions

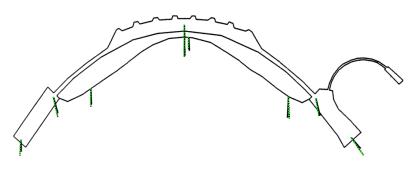
Cambambe dam 1995

Discrete element model:

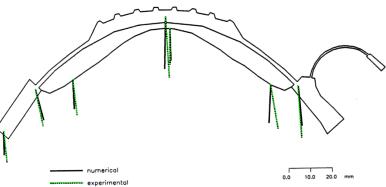




Measurements: (translations at different water levels)



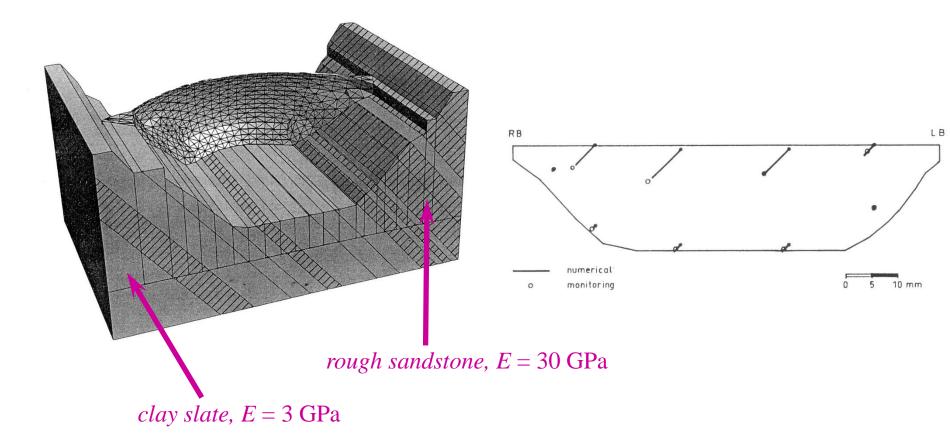
(a)



----- 3DEC

----- measured

<u>Funcho dam</u> (Heterogeneous rock; + strongly unsymmetric)



OWN EXAMPLES

3DEC:

- Origins of UDEC / 3DEC
- Elements
- Contacts in 3D
- Time integration
 - \rightarrow The "mass of the node" and the reduced force vector
 - \rightarrow How to calculate the displacement increments during Δt
 - \rightarrow Methods to help numerical stability
 - \rightarrow Summary: Main steps of the analysis of a timestep
- UDEC practical applications
- **3DEC** practical applications

1. Give two alternative definition of the "**common plane**" between two polyhedra.

2. Explain how to determine the **area of a sub-contact** in 3DEC.

3. In 3DEC, what is understood on the "**relative velocity**" belonging to a **node** in a contact?

4. In 3DEC, how is the **subcontact force** calculated (i.e. when the calculation of the actual timestep has been finished and the displacement increments have been found)?

6. Explain the main steps of how a **time step** is analysed in 3DEC.

7. Introduce the two kinds of **damping** used in 3DEC.