UDEC / 3DEC




OVERVIEW OF DEM SOFTWARES %

Quasi-static methods « equilibrium states are searched for
From an initial approximation of the equilibrium state searched for,
the displacements u are to be determined taking the system to the equilibrium
(assumption: time-independent behaviour, zero accelerations!!!)

"K-Au+f =0"

Time-stepping methods "M -a(t) =f(t,u(t),v(t))" <« aprocessin time is searched for

simulate the motion of the system along small, but finite At timesteps

Explicit timestepping methods:
— Polyhedral elements, e.g| UDEC | rigid / deformable elements; deformable contacts
— BALL-type models, e.g. PFC rigid elements; deformable contacts

Implicit timestepping methods:
— DDA (,,Discontinuous Deformation Analysis”) deformable polyhedral elements
— Contact Dynamics models rigid elements, non-deformable contacts
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UDEC / 3DEC %\

Origins: ,,Universal Distinct Element Code”
P.A. Cundall, PhD thesis, 1971;
Development through decades
3D: early 1990ies
Itasca Consulting Group: graphics, 1/0 system, manuals, sample applications

(www.itascacg.com)

from the 1990ies:

MOST WIDESPREAD DEM CODE
IN CIVIL ENGINEERING &
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3DEC BASICS — THE ELEMENTS ﬂ

Elements: polygons/ polyhedra (planar faces!);

— rigid elements
deqgrees of freedom:
translation of and rotation about the centroid

— deformable elements (subdivided into simplex zones)
,uniform strain” tetrahedral zones
((10-node tetrahedra — not worth))
- degrees of freedom: translations of the nodes

e.g. marble: K=37,2GPa; G=22,3GPa
) e.g. granite: K =439 GPa; G =30,9 GPa
Material models for the elements: e.g. sandstone: K = 26,8 GPa; G =7 GPa; Mohr-Coulomb,

.. fric = 28°; coh = 27,2 MPa; tens = 1,17 MPa
(rigid) <> deformable:

E E
— ,,null element” (no material in the element) - 3(1—2\;)’G T 20+v)
default — — linearly elastic, isotropic (e.g. intact rock; metal) ~ Where o, =K(&+&,+&)
— lin. elast., with: Mohr-Coulomb / Prager-Drucker failure crit.
(e.g. soils, concrete) (e.g. clay)

+ tensile strengh + cohesion + dilation angle
— . 5/33
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3DEC BASICS — CONTACTS

Contacts in 3D:

Types:

face-to-face

=l

edge-to-edge

2 o g

U 143 v

corner-to-edge

The aim: <« ,,common-plane” technique

— recognize the contacts;

corner-to-face

P ““*—»\}..
N ..'___Jja

corner-to-corner

— produce their AREA (A®) and their CONTACT NORMAL (n®) in such a way that

abrupt changes during block motions are avoided
Aol =—k Au

— mechanical model:

Act¥) =k Aul? 7133




3DEC BASICS — CONTACTS |

Contacts in 3D.
To recognize if there is a contact:

,,common-plane” concept:
,,Maximize the gap between the common-plane and the node with the smallest gap.”
or, equivalently:

,,Locate the plane to have the largest minimal distance between any nodes of the two
polyhedra and the common-plane.”

cjp CEP
the common-plane is found with a small OPTIMIZATION SUBROUTINE

= if this gap turns out to be NEGATIVE: = means that a contact is found
8/33




3DEC BASICS — CONTACTS

Contacts in 3D.
If the gap is negative, i.e. a positive overlap:

,,common-plane” concept:

2

,Minimize the overlap between the common-plane and the node with the greatest

overlap.” or, equivalently:

,,Locate the plane to have the smallest maximal distance between nodes on the other

side and the common-plane.”

— contact normal v/
= then separately for the two elements:
assign a sub-contact to every node
which is on the other side of the c-p
result: two sets of sub-contacts
[see on next slide how]
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3DEC BASICS — CONTACTS |

Contacts in 3D.
What to mean by AREA (A®) and CONTACT NORMAL (n®) of a subcontact?

this view:
The definition of the sub-contact system: 1 to the
[prepared twice, independently from both sides] common
plane

— draw L from the nodes to the c-p
— area assigned to a sub-contact: 1/3 [=!]
= A® v" (~ area of Voronoi-cell)
— special treatment at the edges
(not detailed here)

(Rigid blocks:
surface discretized; then similarly)
Sub-contact deformation increment during At: c-p
relative vel. of a node and its projection on the other face: Vi = Viq, = Vo e tace

during At : v At = Aul; AulY 10/33
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3DEC BASICS — CONTACTS |

Distributed forces along the sub-contacts:

sub-contact area: A®; normal direction: n® by linear interpolation

Sub-contact deformation_jncrement during this view:
Viel = Vaote “Vopposice face 1 to the
v At = AulY; Aul common

because of the normal and shear stiffness: plane

— increment of contact normal stress: A\ =—k Aul¥
(uniformly distributed contact force)

—> increment of contact shear stress: Aot =k Aul
(uniformly distributed contact force)
Resultant force assigned to the node; « ,subcontact force” 4
opposite resultant distributed among the three nodes on the opposite face

After doing the same also for all the face nodes of other block:
two sets of nodal forces (,,sub-contact forces™) are gained for both blocks!
= % (,,averaged”), for every node, on both faces 11/33




3DEC BASICS — CONTACTS |

Material models for the contacts:
[aim: calculate the increments of distrib. contact forces from the increments of rel.disps]

— if no material in the contacts: — k,,, k;: numerical parameters, co; friction: real value

— if material is in the joints: (modelled as length or area, with zero thickness):
default - — linear behaviour for compression and shear, Coulomb-friction,
+ cohesion and tensile strength
— linear behaviour for compression and shear, Coulomb-friction,
+ cohesion & tensile strength + softening + dilation angle
AUn(dil') = AUstany

— others ... N i “:_;;?‘I”'i

examples for characteristic values:

normal and shear stiffness: 10— 100 MPa/m ... ... 100 GPa/m

(soft, with clay) ... ... (hard rock, healed)
friction angle: 10°... ... 50°
cohesion and tensile strength: from 0 ... ... till the strength of intact rock... ...

dilation angle: 0°... 10° 12/33
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3DEC BASICS — THE TIME INTEGRATION ﬂ

Calculation of nodal displacements Newton Il.:, ma=f”

— mass assigned to the node:

Voronoi-cell

— force on the node: resultant of the forces acting on the VVoronoi-cell of the node

<« from the neighbouring element
<« from external forces (e.g. self weight, drag force)
<« from the stresses inside the simplexes

A\

e steps to get the force from the stress inside a simplex:
- nodal translations = simplex strain v/
- from this and material characteristics = uniform stress in the simplex v/

- stress vector acting on the face of the cell:  oyn; = p; ; resultant v/
14 /33




3DEC BASICS — THE TIME INTEGRATION ﬁ

Calculation of nodal displacements Newton Il.:, ma=f”

m VAU V(- AL2)

— discretized form of the egs of motion: At

or: V(t, +At/2) = v(t, —At/2)+%At

— att; : the positions of the nodes and the forces and stresses are known;
at t. —At/2 : the nodal velocities are known;
determine the nodal velocities at t.,,, =t. + At/2
and the positions of the nodes at t_, =t +At

At At positions
) 1, . forces, stresses
ti2 tig t; i+1 .
| | | J/ LSt accelerations
| | \I/ 'ﬁ | velocities
15/33




3DEC BASICS — THE TIME INTEGRATION ﬂ

Calculation of nodal displacements Newton Il.:, ma=f”
— series of small finite time steps: M
— main disadvantages: explicit; no stiffness matrix!!!

= numerical instabilities, convergence problems
— to help numerical stability:
1. estimate the longest allowed At
ELASTIC SYSTEMS:

: : _ : m
requirement for deformation calculations: At <At .. = (molln){Z k”"de }
noaes

node

N

requirement for contact deformation calculations:

min (Mass,q )
(blocks)
At = min Atnodes T L (joints) joints )
T (D) At default: »:=0.10
blocks

NOT ELASTIC!H!  — friction; damping; plastic yield; ... 633




3DEC BASICS — THE TIME INTEGRATION ﬁ

— to help numerical stability:
2. Artifical dampings
Velocity-proportional damping;: mV

—At/2) =f(t)

V(t, + At/2) =

t —At/2))%

,,Jlocal damping’: <« default
v (t +At/2)=v (t — At/2) +(fx(ti) —a-\fx(ti)\‘
T

v (t. —At/2) |At
v (t, —At/2)] ) m
default: o := 0.80

advantageous if some parts of the system are already equilibrated,
others are just collapsing

,,adaptive global damping” or ,,auto damping”:
~ velocity-proportional damping, with coefficients being adjusted,
so that the change of kinetic energy during At is decreased (eg 50%)

advantageous if the whole system oscillates around the equilibrium ;5,45




3DEC BASICS — THE TIME INTEGRATION ﬁ

Summary: Main steps of the analysis of a timestep:

— determine the reduced force vector for every node;
— determine the new velocities; <« [ consider damping if exists ]
— determine the translation increments and the new positions;

— check contacts states (lost? new? sliding/broken?) and upgrade contact forces

At At positions

forces, stresses
tHl

| L L m NG > accelerations
| | ‘I/ ! velocities
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UDEC PRACTICAL APPLICATIONS

Ice hockey cavern, Norway, Gjovick:

The problem:
= Fractured rock
= Large dimensions

,, The ice hockey cavern has a finished span of 62 m, a length 91 m and a height of 24 m. The
spectator capacity is currently 5300, making it far the largest cavern for public use in the world.
As is typical when one is extending the limits of experience and technology, the initial skepticism
that had to be overcome was formidable.”

(completion: 1993)
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UDEC PRACTICAL APPLICATIONS

Ice hockey cavern, Norway, Gjovick:

e Soil:  fractured gneiss
joint systems: 5
no clay ©
eGeological state wellknown:
existing caves + drill
—> material characteristics v’
—> initial stress state v/
ethe structure:
cables / bars;
shotcrete
eNumerical model:
UDEC (2D)
deformable elements

220

175 4

160 4
150 4

100

(MPa)
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UDEC PRACTICAL APPLICATIONS

Ice hockey cavern, Norway, Gjovick:

e.g. development of principal stresses: e.g. translations:
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UDEC PRACTICAL APPLICATIONS

Ice hockey cavern, Norway, Gjovick:

Table 1. Summary of Gjpvik Olympic cavern run (with Postal service caverns)

Parameter Step 1 Step 2 Step 3 Step 4 Step 5 Excav. Excav. Excav.
of 1st of 2nd of 3rd
cavern cavern cavern

Maximum principal stress MPa 9.29 1149 9.91 8.39 8.37 8.56 8.71 8.83

Maximum displacement (mm)

total 11.85 1.80 2.63 6.99 8.16 l 8.28 8.43 8.65
. wall = = = 1.33 3 3.88 392 397
U D EC . crown (vertical component) 0.50 1.08 2.62 4.05 4.33 4.39 4.87 7.01
Maximum shear displacement
(mm) along horizontal 1.11 1.54 2.49 3.51 4.67 5.67 5.54 5.56
joint crown 1.11 1.54 2.49 3.51 3.70 3.70 4.10 6.85
Maximum hydraulic aperture
(mm) crown 0.69 1.01 1.62 2.64 2.86 3.68 3.72 4.13
Maximum axial forces on bolts 7.0 25 25 25 25 25 25 25
(tnf)

Table 2. Summary of Gj¢vik Olympic cavern in situ measurements for Location E4.
The number given refer to total deformation. (NGI extensometers (E4) +

. SINTEF (S2) + surface subsidence).
Measured: - - )
Parameter Step 1 Step 2 Step 3 Step 4 Step 5
Total deformation (mm) 0.65 1.31 2.86 6.56 8.55
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UDEC PRACTICAL APPLICATIONS

Sao Vicente de Fora monastery, Portugal:

Loading
Frame

/ Actuator H

previous studies:
experiments
FEM simulations

125,

Post-tensioning
bars

kE]

Actuator L

3.6 36




UDEC PRACTICAL APPLICATIONS

Sao Vicente de Fora monastery, Portugal:

Giordano et al, 2002: simulations with UDEC and with different FEM models

UDEC model:

— geometry: 2D

| ]

1 [

|

LTT]]T

7N

L[]

LTI

—
._.r_-— —

—]

Fig. 18. UDEC discrete element model.

Fig. 19. UDEC internal finite clement mesh.

25/33



UDEC PRACTICAL APPLICATIONS

Sao Vicente de Fora monastery, Portugal:

— material parameters:

Table 2
Parameter values for the CASTEM model

blocks:

Stonces Infill panels

Weight per unit volume (kg/m?) 2500 2500
Young's modulus (Gpa) 65 6.5
Poisson’s ratio 0.2 0.2
k.. normal stiffness (Gpa) 115
k.. shear stiffness (Gpa) 479
N, tensile strength 0
¢: friction angle 30
e dilatancy angle 5°

Table 3

. Parameter values for the UDEC model
contacts:

k,: normal stiffness (Gpa) 115

k,: shcar stiffncss (Gpa) 46

N, tensile strength 0

¢: friction angle 35

i dilatancy angle 0

¢: cohesion 0
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UDEC PRACTICAL APPLICATIONS

Sao Vicente de Fora monastery, Portugal:

— loading process:
constant vertical load;
lateral ,,force”: disp-controlled,
Increasing translation

— force-displacement-diagram:
[filling: linear elastic, :

| — Experimental

— UDEC advantages: - - ................
large displacements O.K., - S s e =
crack opening O.K. ‘ S |
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3DEC PRACTICAL APPLICATIONS

Cambambe dam 1995

Discrete element model: 3DEC + FEM Measurements:
(translations at different water levels)

(a)

———— 3DEC

———— measured e

asecesacerenes: @xperimental

0.0 10.0 200 mm
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3DEC PRACTICAL APPLICATIONS

Funcho dam (Heterogeneous rock; + strongly unsymmetric)

AHAILZ) /
) S
S : B RB
CAZS ' ‘ :
&7

LB

numerical

o monitoring

rough sandstone, E = 30 GPa

clay slate, E = 3 GPa

5 10 mm
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OWN EXAMPLES
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QUESTIONS %\

1. Give two alternative definition of the ,,common plane” between two
polyhedra.

2. Explain how to determine the area of a sub-contact in 3DEC.

3. In 3DEC, what is understood on the "relative velocity" belonging to a node
In a contact?

4. In 3DEC, how is the subcontact force calculated (i.e. when the calculation
of the actual timestep has been finished and the displacement increments have
been found)?

6. Explain the main steps of how a time step is analysed in 3DEC.

7. Introduce the two kinds of damping used in 3DEC.
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