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1. MATLAB/OCTAVE BASICS 1 

During the next practices, various engineering problems will be solved with numerical 

methods algorithms using the Matlab mathematical environment.  Matlab software is 

available for the students of Budapest University of Technology and Economics 

(BUTE) for educational purposes from March 2017. A good alternative might be the 

Octave mathematical environment, which is a free, open-source program where you 

can use essentially the same commands as in Matlab. Even the graphical interface is 

very similar in the two programs, with optional rearrangeable windows (see Figures 1, 

2). Octave can be downloaded from https://www.gnu.org/software/octave/, the current 

version is 5.1.0, which came out on Mar 1, 2019. 

The students can create a MathWorks account on the Matlab site using BME email 

address, using this account they can access Online Matlab also. With the MathWorks 

account, students can practice the basics of Matlab solving the tasks of the Matlab 

Onramp online study site, which is recommended for everyone (it takes about 2-3 

hours). There are other good online practice options at Matlab Cody site. 

1MATLAB GRAPHICAL ENVIRONMENT 

                                            
1 Refernce for Matlab/Octave Basics: Todd Young and Martin J. Mohlenkamp: Introduction to 
Numerical Methods and Matlab Programming for Engineers, Department of Mathematics, Ohio Univer-
sity, July 24, 2018, http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/book.pdf  

https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
https://www.mathworks.com/login
https://matlabacademy.mathworks.com/
https://matlabacademy.mathworks.com/
https://www.mathworks.com/matlabcentral/cody/
http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/book.pdf
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1 OCTAVE GRAPHICAL ENVIRONMENT 

STARTING MATLAB/OCTAVE 

The most important parts of the graphical interface are the current folder where the 

current directory is stored, the command window, the workspace with the used 

variables, the command history with all the used commands and the editor ( editor). 

Left-click and hold on the name of a panel to drag and drop them into the blue-colored 

area. You may want to dock the editor by clicking on the arrow at the top right of the 

Editor window. 

Keep in mind that file names used in Matlab should not begin with a number or contain 

special characters or spaces! In the program, only those functions and files can be 

used or run which are in the current directory. 

HELP, DOCUMENTATION 

We can learn a lot from the proper use of documentation. In older Matlab versions 

(before 2019), typing help to the Command Window listed the categories of various 

built-in functions. Here you could either double-click on the category name or type in 

the name of the category after the help command (in this handbook, the > sign 

indicates the Matlab commands). From Matlab R2019a, typing only the ’help’ 

command will display help of the last used command. Try the next: 

 help elfun 

This will list the 'Elementary math functions', e.g. trigonometric, exponential, complex 

and rounding functions. If we know the name of a function, we can type it after help: 

 help 'function name' 

This gives you a description of the command and how to use it. E.g. try: 

 help rand 
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This command describes that the rand function generates an evenly distributed 

random number between 0 and 1, specifies how to use it to call with one or more inputs, 

and lists some associated commands (e.g. randn, which generates standard normal 

random numbers with 0 expected values and 1 standard deviation). 

The doc command works much like help, but is a much more detailed description of 

the command, with many examples.  

 doc randn 

Let's try the pwd function! Use the help command to figure out what the command 

does! 

Another useful function is the lookfor command. This can be used to search for a word 

in the name of the command or in its description. Let's try the following: 

 lookfor rand 

This will list all the commands whose names or their short description contains the 

word rand. If the search takes too long, it can be aborted by pressing CTRL + C. 

ONLINE DOCUMENTATION 

Help for Octave: https://www.gnu.org/software/octave/doc/interpreter/ 

Help for Matlab: http://www.mathworks.com/help/matlab/ 

Useful tips, functions in Matlabcentral: http://www.mathworks.com/matlabcentral/ 

Practice material: https://matlabacademy.mathworks.com/  

Other practicing examples to solve: https://www.mathworks.com/matlabcentral/cody/ 

SOME USEFUL COMMANDS 

clc  – clears the content of the command window 

clear  – deletes variables (see workspace) 

close – closes current figure or all (close all) 

CTRL+c  – interrupts the given command (e.g. exit an infinite loop) 

% – comment (the program ignores everything in the line after this sign) 

%% – you can open a new section in your script 

; – using this sign at the end of the command the result will not be displayed 

in the Command window (cancels echo) 

USING THE 'TAB' AND ARROW BUTTONS IN THE COMMAND WINDOW 

The ’Tab’ button is very useful. If we do not know exactly the name of a particular 

command, just the beginning, let’s start typing the beginning to the command line e.g. 

pref, then press ’Tab’. If there is only one command with pref beginning, the ’Tab’ 

button will complete the command, if there are more, the ’Tab’ will list them. In this 

case, there are several commands with the beginning of pref, e.g. prefdir (the name 

https://www.gnu.org/software/octave/doc/interpreter/
http://www.mathworks.com/help/matlab/
http://www.mathworks.com/matlabcentral/
https://matlabacademy.mathworks.com/
https://www.mathworks.com/matlabcentral/cody/


Numerical Methods for Civil Engineers with Matlab 1. MATLAB basics 

 4 Piroska Laky, 2019 

of the directory where all settings, history, etc. are located) or preferences, which 

opens the settings window. 

The up and down arrow buttons are also very useful in the command line. With them, 

the previous commands can be retrieved, executed and modified. Previous commands 

can also be executed using the command history by double-clicking on the command 

name. 

TAB  - use it to finish the started function/variable etc. name  

ARROW KEYS - you can scroll around the previously processed commands (you can 

access those from the command history too) 

CTRL+ENTER - run the whole section 

F9 - run the selected part 

F5 - run the whole script 

ENTERING NUMBERS/VECTORS, VARIABLE TYPES, FUNCTIONS 

 %% Entering numbers 
 a = 0.01 
 b = 1e-2 
 c = 1d-2; 
 a+c 
 clear a % deletes the variable 'a' 
 clear % (or 'clear all') clears all variables 
 pi % built-in value (3.14) 
 e = exp(1) % e^1 = e = 2.71 
 b = e^-10 % exponentiation 

Basic formatting: 

 format long % 14 decimal digits 
 e, b 
 format short % 4 decimal digits 
 e, b 

The basic variable type in Matlab is the matrix. Vectors are special matrices, 1xn row 

vectors or mx1 column vectors. Square brackets are used in Matlab to define a matrix 

or vector. If you work with matrices/vectors, be careful with the different parenthesis, 

because each type is doing different operations: ( ), [ ], { } ! The elements are separated 

by a comma or space within the row, and the rows are separated by semicolon. 

 z = [1 3 45 33 78] % rowvector 
 z = [1,3,45,33,78] % rowvector 
 t = [2; 4; 22; 66; 21] % column vectors 
 M = [1,2,3; 4,5,6] % matix, with 2x3 size 

When displaying a vector, it can be problematic to have very small and very large 

numbers at the same time. Let's look at the following vector, for example 

 x = [25 56.31156 255.52675 9876899999]; 
 format short 
 x 

The result is difficult to read and not very informative: 

x = 1.0e+09 * 
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    0.0000    0.0000    0.0000    9.8769 

In this case, it is better to use a different display format, such as shortG or longG, 

which displays numbers of each different magnitude in their compact format (shortG 

– 5 significant digits, longG 15 significant digits). 

 format shortG 
 x 
 format longG 
 x 

The results are: 

x = 25       56.312       255.53     9.8769e+09 % format shortG 
x = 25       56.31156     255.52675      9876899999 % format longG 

You can query any element of a vector by putting the element index number in round 

brackets.  

 t(2) % result: 4 
 M(2,3) % result: 6 
 z(end) % last element of z: 78 

Or you can override the value of any element in the same way: 

 t(2)=47 
 p = [] % empty vector 
 z(3)=[]; % deletes the 3rd element, after: z = 1 3 33 78 

You can query a part of the vector or the matrix 

 t(2:4) % result after the previous override command: 47 22 66 
 t(1:29 % error message after mistyping 

  t(39 
      ? 
 Error: Expression or statement is incorrect--possibly unbalanced (, {, or 
[. 

 t(1:29)  
Index exceeds matrix dimensions. 
 

 M(1:2,2:3) % result: [2,3; 5,6] 

Transposed vector/matrix (switched rows and columns): 

 tt = t' % t transposed, line vector 
 Mt = M' % result: [1,4; 2,5; 3,6] 

There are some useful commands that you can use to generate vectors: 

 x1 = 1:10 % line vector: integers from 1 to 10 
 x2 = 1:0.3:10 % line vector from 1 to 10, with 0.3 spacing 
 x3= (1:0.3:10)' % column vector from 1 to 10, with 0.3 spacing 
 x4 = linspace(1,10,4) % 4 numbers between 1 and 10, equaly spaced 

It is easy to concatenate vectors/matrices horizontally/vertically when they have the 

same number of rows or columns. 

 X = rand(2,3) % A matrix of random numbers between [0,1], size: 2x3 
 Y = ones(2,4) % matrix of ones, size: 2x4 
 Z = eye(3) % 3x3 identity (unit) matrix 
 W = zeros(2,4) % Matrix of zeros, size: 2x4 
 XY = [X, Y] % 2x7 sized matrix, X and Y horizontally concatenated 
 XZ = [X; Z] % 5x3 sized matrix, X and Z vertically concatenated  
 XY2 = [X; Y] % error message 
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Error using vertcat 
Dimensions of matrices being concatenated are not consistent. 

 XZ2 = [X,Z] % error message 
Error using horzcat 
Dimensions of matrices being concatenated are not consistent. 

Accessing one row/column in a matrix: 

 XY(1,:) % first row of XY (the : sign means all items in that row) 
 XY(end,:) % last row of XY  
 XY(:,1) % first column of XY (all items in that column) 
 XY(:,end-1) % penultimate column of XY  

Texts as vectors of characters 

 s = 'p' % a text/character (string) variable of size 1x1 
 u = 'University of Technology' % string type variable, size 1-by-24 
 b = ’Budapest ’ 
 bu = [b,u] % you can combine them using square brackets '[]' 
 % Budapest University of Technology 
 bu(24:29) % The strings could be handled as vectors 
 % Techno 

MOST COMMON VARIABLE TYPES 

 Double: represents a double-precision floating-point number, mostly used to represent 

rational numbers. This is the default data type for numbers. 

 Integer: represent an integer number (no fractional part). Be careful when calculating with 

both integers and doubles. 

 Array (vector/matrix): a (multi-dimensional) collection of numbers. Can only contain data of 

similar type. 

 Character array: textual data enclosed in single quotes, e.g. 'vehicle'. 

 Cell array: similar to the regular, multi-dimensional array, but the types of the contained 

data can be different. 

 Structure: an array with named fields, can contain varying data types. 

 Table: array in a tabular form whose columns can be named and can be of varying data 

types. 

WRITING AND RUNNING SCRIPT FILES 

So far, we have been working from the command line, but solving a more complex 

calculation would be very difficult using only the command window. Therefore it may 

be better to collect the necessary commands/functions into a script file. The default file 

type for Matlab is the * .m file, a simple text file that can be edited with any text editor. 

In addition, in recent versions of Matlab, you can use the LiveScript file type (* .mlx), 

in which you can mix Matlab instructions and formatted text, images, and see the 

results right away. The disadvantage of this format is that this is Matlab's own format, 

which can only be opened within Matlab. 

You can run the script files by typing their names or just pressing F5, this will save and 

run the program right away. Make sure that the filename does not start with a number 

or contain spaces or special characters! Filenames must start with a letter and contain 

only the English alphabet, numbers, and underscores (_). 
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If you don't want to run the whole program, you can write a return command 

somewhere, and after pressing F5 the program will only run until that point. 

Alternatively, pressing F9 will run only the selected part. You can divide the file into 

sections using double % characters (%%) followed by a section title. You can execute 

commands in a particular section by pressing CTRL+Enter. Let's start a new script file 

by clicking on the plus sign (new) in the upper left corner and this will open a blank 

page in the Editor. Save it to your current directory as practice1.m file!  

PLOTTING - THE BASICS 

The next table contains the data of a stress-strain diagram (σ-ε) of a steel bar for 

reinforced concrete: 

ε [%] 0 0.2 2 20 25 

σ [N/mm2=Mpa] 0 300 285 450 350 

1. TABLE,  STRESS-STRAIN DIAGRAM OF A STEEL BAR FOR REINFORCED CONCRETE 

Type the next commands to practice1.m script file! 

 %% STRESS-STRAIN DIAGRAM OF STEEL 
 x = [0,0.2,2,20,25] % prints its contents to the command window 
 y = [0,300,285,450,350]; % does not display its contents in the 

command window 

Run either the entire file with F5 or a selected section with F9 or the actual section with 

CTRL + Enter. You can check the content of any variable by typing its name into the 

command window or to the script file.  

 x, y 

To plot data stored in vectors, use the plot command: 

 plot(x,y) 

This will connect the points with a line. If you want to mark points with symbols, try the 

following: 

 plot(x,y,'x') 
 plot(x,y,'o-') 
 plot(x,y,'r*-') 

You can add many arguments to define the specifics of a plot, like the shape and size 

of the markers, specifics of the lines, etc. 

 plot(x,y,'--gs','LineWidth',2,'MarkerSize',10,... 
       'MarkerEdgeColor','b','MarkerFaceColor',[0.5,0.5,0.5]) 
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Useful specifiers: 

     

LineWidth Line width 

MarkerEdgeColor Color of the outline of the symbol  

MarkerFaceColor Color of the symbol fill  

MarkerSize Size of the symbol 

You can name the axes, or add a legend or a title: 

 xlabel('Strain) 
 ylabel('Stress') 
 title(’STRESS-STRAIN DIAGRAM OF STEEL') 

ADDITIONAL USEFUL TIPS FOR PLOTTING 

Each figure and also the plotted elements can be named with a handle (an identifier). 

You can use this to access any figure/element later if you want to set a property or 

clear them. If you don't do further settings, by plotting a new element, the previous one 

will be deleted. 

 clf   % clear figure 
 f1 = figure; % the figure function creates a new figure 
 p1 = plot(x,y,'r*');  
 hold on  % you can fix the diagram, to add new elements to it without 

cleaning it first 
 p2 = plot(x,y); 
 p3 = plot(x,y,'bo'); 
 delete(p1)  % you can delete elements by using its handle 
 figure(1)   % by referring to the number of the figure, you can work 

on any previous figure 
 close % close figure 
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FUNCTIONS 

There are many mathematical and other built-in functions in Matlab, it is useful to 

browse the documentation to get to know them. Let's look at some of the basic math 

functions, from ’Elementary math functions’ in the documentation, using the ’help 

elfun’ command! The input variables of the functions are always enclosed in round 

brackets. The default angular unit for trigonometric functions is radian. 

 sin(pi) % its value is 0 within the accuracy of the numerical 
representation 

 cos(pi) % -1 
 tan(pi) % a large number instead of infinite 
 log(100) % natural logarithm 
 log10(100) % 10 based logarithm 
 3^4 % értéke: 81 
 sqrt(81) % 9 
 abs(-6) % 6 
 exp(0) 

exp(0) is e0, its value is of course 1. The built-in functions work not only on numbers 

but also on vectors. 

 x = linspace(0,2*pi,40) 
 y = sin(x) 
 figure(1); plot(x,y) 

For more settings see help plot! 

USER DEFINED ANONYMOUS (’SINGLE-LINE’) FUNCTIONS 

There are many ways to specify your own functions in Matlab, in simple cases we use 

the so-called anonymous function, which is not saved as a separate program, only 

assigned to a variable. Let’s define cos(2x) function in this way! 

 f = @(x) cos(2*x) 

Here, after the @ symbol, you must specify the independent variables of the function, 

and after a space you can write the formula. Let's plot this function also next to the sine 

function you have just drawn. When drawing the sine function, we first calculated some 

points of the function and plotted them using the plot command. We can plot functions 

without calculating their points beforehand, using symbolic fplot or ezplot commands. 

(Note: In Octave and older Matlab versions you can use only the ezplot command, in 

newer Matlab fplot is recommended). 

 hold on 
 fplot(f,[0,2*pi]) % or ezplot(f,[0,2*pi]) 

Without the hold on command, the previously drawn elements will be deleted from the 

figure, the hold off command restores this default mode. For fplot, you can specify an 

interval where you want to display the function (it is optional, there is a default interval 

also). 

Calculate the squares of the integers between 1-10 using your own function! First, let’s 

define a function to calculate the square of any number! 

 f1 = @(x) x^2 
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Check for a given value of x: 

 f1(3) % value: 9 

And now let’s calculate the squares of the integers between 1-10!  

 x = 1:10; 
 y = f1(x) 

We got an error message: 

Error using  ^  
One argument must be a square matrix and the other must be a scalar. Use 
POWER (.^) for elementwise power. 
Error in gyak1>@(x)x^2 
Error in gyak1 (line 100) 
y = f(x) 

Why? Because our variable x is a line vector, and when it is squared we try to multiply 

two line vectors, which is mathematically incorrect (mathematically the line vector could 

be multiplied by a column vector). If we do not want to perform a vector/matrix 

operation, but element by element operation, we must put a dot before the * operation 

symbol (elementwise operation). 

 f1 = @(x) x.^2 
 y = f1(x) % 1  4   9  16  25  36  49  64  81  100 

Since addition/subtraction, division/multiplication with a scalar for vectors/matrices is 

done element by element, there is no need to put a dot before the operation symbol in 

these cases, only in case of multiplication, division and power of vectors:. *,. /,. ^. 

One of Matlab's strengths is its ability to perform operations with vectors and matrices, 

so in many cases, we can avoid the use of the much slower loops with vectorized 

operations. 

FUNCTIONS IN SEPARATE FILES 

Matlab's default file type is a text file with the *.m extension. There are two main types, 

script file and function. We have used the former in our work so far, now let's see the 

differences between functions and script files! 

One of the advantages of writing the functions into a separate file compared with the 

anonymous functions is that it can be invoked from any other script file also. Another 

advantage is that it can be used to perform more complex calculations, it is easy to 

parameterize the input and output variables and a description can be added for help. 

Let’s rewrite the previous square function into a separate function file! Click the plus 

sign (new) in the upper left corner and a blank page will open in the Editor. Type in the 

following, and save it as squarefun.m to the current directory. Important: The name of 

the function (written in bold in the following code) must be the same as the file name, 

otherwise the function cannot be called! 

 function y = squarefun(x) 
 % Calculate the square of a number 
     y = x.^2; 
 end 

Some characteristics of the functions are: 
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 begins with the word function 

 There are at least one output and one input 

 The output, function name and input arguments are on the first line and the 

function name must match the *.m filename 

 We need to assign value to the output somewhere inside the function 

 Internal variables in a function are local variables, they will not appear in the 

workspace, and the function will not have access to the variables in the 

workspace except to the defined input arguments. 

 A function cannot be executed, it can only be called from another file or 

command line! To be called, the function must be in the current directory (or in 

a directory that is in the path). 

 The comments written after the first line of the function are listed when using 

the help command with this function name. 

Let's call the written function on our vector x! To do this, switch back to the practice1.m 

script file! 

 squarefun(11) % 121 
 squarefun(x) % 1  4  9  16  25  36  49  64  81  100 
 help squarefun %  Calculate the square of a number 

A function can have multiple inputs, listed after the name of the function in round 

brackets. Let’s modify our previous function as follows and save it as powerp.m! 

 function y = powerp(x,p) 
     y = x.^p  
 end 

A function can have multiple outputs collected in a vector in square brackets 

(powers.m): 

 function [x2 x3 x4] = powers(x) 
     x2 = x.^2; 
     x3 = x.^3; 
     x4 = x.^4; 
 end 

Call the above functions also from our script file! 

 powerp(x,3) % 1  8  27  64  125  216  343  512  729  1000 
 [a b c] = powers(x) 
 % a = 1 4  9 16 25 36 49 64 81 100 
 % b = 1 8 27 64 125 216 343 512 729 1000 
 % c = 1 16 81 256 625 1296 2401 4096 6561 10000 

Plot the results in a new Figure (number 3) using the figure command. You can list 

several graphs to plot in the same figure in one plot command! 

 figure(3) 
 plot(x,a,x,b,x,c) 

We can add custom colors and legend. The text of the legend should be in the same 

order as we plotted the graphs. 

 plot(x,a,'black',x,b,'blue',x,c,'green') 
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 plot(x,a,'k',x,b,'b',x,c,'g') 
 legend('square','x^3','x^4','Location','North') 
 legend('square','x^3','x^4','Location','Best') 

COMMENTS AND HELP TO USER DEFINED FUNCTIONS 

Comments are an important part of multi-line programs. On the one hand, others also 

can understand our code, and on the other hand, we will also remember it if we want 

to use it again or modify later. It is advisable to write comments not only at the 

beginning of the program but also for each new section. In Matlab, you can write 

comments after the % sign. For a function, it is useful to specify in the comments what 

the purpose of the function is, what input and output values are used. In the case of a 

function, the comments written after the first line will be displayed when calling the help 

command with this function name. 

MATLAB ERROR MESSAGES 

When writing a script we encounter many error messages, as we have seen some 

earlier. It is important that we could interpret these to correct our mistakes! 

Let's look a mistyping error in ’clear all’! 

 cler all 
Undefined function or variable 'cler'.  
Did you mean: 
>> clear all 

Matlab is case sensitive: 

 X = 3/4; x 
Undefined function or variable 'x'.  

Let's look an example of a syntactically incorrect Matlab statement: 

 1 X 

1 X 

   ↑ 

Error: Unexpected MATLAB expression. 

Wrong number of input parameters: 

 sin(pi,3) 
Error using sin 
Too many input arguments. 

The number of rows/columns in the matrices does not match: 

 M = [1 2;3] 
Dimensions of matrices being concatenated are not consistent. 

 [3, 4, 5] * [1; 2; 3; 4] 
Error using  *  
Inner matrix dimensions must agree. 

 a = 1:5, b = 1:3 
 [a;b] 

Error using vertcat 
Dimensions of matrices being concatenated are not consistent. 

An easy typing error would be to type 8 or 9 instead of round parentheses: 
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 sin(pi9 
sin(pi9 
        ↑ 
Error: Expression or statement is incorrect--possibly unbalanced (, {, or [. 

Missing parenthesis: 

 abs(sin(rand(2)) 
abs(sin(rand(2)) 
                 ↑ 
Error: Expression or statement is incorrect--possibly unbalanced (, {, or [. 

We want to perform element-by-element operation on a vector, but the point is missed: 

 v =1:4; 
 1/v 

Error using  /  
Matrix dimensions must agree. 

Worst of all, when there is no error message, but the result is still incorrect. Example: 

Calculate 
1

2𝜋
  with the following statement. Why is the result wrong? 

 1/2*pi %  1.5708 

ADDITIONAL ADVICE FOR USING OCTAVE 

If you decide to use Octave to practice at home, Octave can be downloaded from 

https://www.gnu.org/software/octave/, the current version is 5.1.0, which came out on 

Mar 1, 2019. The advantage of Octave over education licensed Matlab is that it is an 

open source program that can be used not only for educational purposes but also for 

work. There are many add-on packages available, see https://octave.sourceforge.io/ 

and https://octave.sourceforge.io/packages.php, many of them are installed, just need 

to be loaded when you want to use them. You can query what is installed with the pkg 

list command). 

INSTALLING THE SYMBOLIC PACKAGE  

During the numerical methods practices we will perform many symbolic computations 

too, which requires installing an extra symbolic package for Octave (this is a separate 

toolbox in matlab). This package is based on python-sympy and must be installed 

separately. Installation under Windows (link: 

https://github.com/cbm755/octsympy/wiki/Notes-on-Windows-installation) 

1. Download the symbolic-win-py-bundle-x.y.z.zip file at the github releases 
page.  https://github.com/cbm755/octsympy/releases  (here x.y.z is the version 
number, e.g.symbolic-win-py-bundle-2.8.0.tar.gz) 

2. Start Octave, change folder to where your downloads are. 
3. Install the package by typing into Octave: 
 pkg install symbolic-win-py-bundle-x.y.z.tar.gz 

4. Load  symbolic package to octave 
 pkg load symbolic 

5. Check the package by typing a few symbolic commands! 
 syms x 
 f = sin(cos(x)); 

https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
https://octave.sourceforge.io/
https://octave.sourceforge.io/packages.php
https://github.com/cbm755/octsympy/wiki/Notes-on-Windows-installation
https://github.com/cbm755/octsympy/releases
https://github.com/cbm755/octsympy/releases/download/v2.8.0/symbolic-win-py-bundle-2.8.0.tar.gz
https://github.com/cbm755/octsympy/releases/download/v2.8.0/symbolic-win-py-bundle-2.8.0.tar.gz
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 diff (f) 

Result ⇒ -sin(x)⋅cos(cos(x)) 

Functions of the symbolic package in detail: 

https://octave.sourceforge.io/symbolic/overview.html  

USED MATLAB BUILT-IN FUNCTIONS 

help - matlab help categories, or help of a specific topic or function  

rand - Random numbers between 0-1, evenly distributed 

randn - 
Random numbers in standard normal distribution with 0 

expected value and 1 standard deviation 

doc - detailed documentation for a given function, in a new window 

lookfor - search for a word, word fragment in help 

clc - clears the contents of the command window 

clear, clear all - deletes the specified variables or all variables 

close, close all - closes the current graph or all 

CTRL+C - interrupts the given command (e.g. exit an infinite loop) 

% - comment (the program ignores what is next in the line) 

; - 
at the end of the command; the result will not appear in the 

Command Window 

Tab gomb - completes a command that has been started 

preferences - opens the settings window 

prefdir - 
the name of the directory where the settings, history, etc. are 

stored 

 buttons - previous commands can be returned to the Command Window 

pi - 3.14… (pi number) 

exp(1), exp(n) - e1 = 2.71…, en, Euler's number 

^ - exponentiation 

format long,  

format short 
- 

displaying multiple (14) or less decimal digits (4) 

format shortG, 

format longG 
- 

displays numbers of different magnitudes in compact format (5 

or 15 significant digits). 

[1, 2, 3; 4, 5, 6] - vector/matrix definition 

' - transposed vector/matrix 

[A,B] vagy [A B] - join matrices side by side (equal number of rows) 

[A;B] - join matrices under each other (equal number of columns) 

A(1,:) - first row of matrix 

https://octave.sourceforge.io/symbolic/overview.html
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A(:,1), A(:,end) - first / last column of matrix 

linspace(x1,x2,n) - Vector between [x1, x2] with n points evenly distributed 

ones - matrix of ones 

zeros - matrix of zeros 

eye - identity matrix 

figure - Open a new graph 

plot - drawing point vectors 

xlabel, ylabel - x, y axis annotation 

title - Figure title 

sin, cos, tan - angle functions (default unit: radian) 

log, log10 - natural logarithm, 10 based logarithm 

sqrt - square root 

abs - absolute value 

hold on, hold off - overwrite or do not overwrite the existing figure with the new one 

fplot, ezplot - plotting functions 

.*      ./      .^ - multiplication, division, power with vectors element-by-element 

clf - deleting elements of the figure (does not close the window) 

legend - legend 

return - return point - F5 executes the program only up to this point 
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2. CONTOL FLOW STUCTURES, DATA IMPORT/EXPORT 

LOGICAL OPERATIONS 

Some basic knowledge of logical operations (1-true / 0-false) is also very important 

using Matlab, especially when modifying and querying elements of vectors/matrices. 

There are many problems that can be solved with matrices and logical variables that 

would require a loop in other program languages. Create the practice2.m script file in 

the current directory! 

 clc; clear all; close all; 
 % equal ==, non equal ~= 
 a = 3==4 % false - 0 
 whos a 
 b = 5~=6 % true - 1 
 vs = [1 2 3 4 5 6] % row vector 
 vs(5)>5 
 vs(5)>=5 
 % or: ||, and: && 
 a || b % true because one of the 2 conditions are true 
 a && b % false because only one condition is true 

Let's look at an example where we query a given property of a vector with a logical 

variable. Imaginary let’s have a university professor who likes to grade the students 

randomly on the exam. There are 6 students on the exam, their names are a, b, c, d, 

e, f. Everyone got a mark between 1-5 randomly. The question is how many people 

failed (got mark 1) and exactly who in a given exam? 

 students = ['a';'b';'c';'d';'e';'f'] 
 marks = ceil(rand(1,6)*5) 
 failed = marks<2 
 students(failed) 

The result of the failed vector will be a 6-element vector with 1 in the places where the 

condition was true, 0 in the other places. If you want to retrieve the names of the 

candidates who have failed, all you have to do is call the ’students(failed)’ command, 

it will only return the names from students vector, where the value of failed vector was 

1. Such a query can be solved in Matlab without a loop using logical variables. Note: 

we used a rounding command: ceil, see for details others in help: round, floor, fix. 

CHOICES, LOOPS 

IF -ELSE CONDITIONAL STATEMENTS 

The if-else conditional statement is a two-way conditional branch.  The structure of the 

basic ‘if statement’ is: condition; what to do if the condition is true (can be in one or 

more rows), end; There may be other branches before the end using elseif (otherwise 

if ...) or else (otherwise). The structure of an if-else conditional statement in Matlab is: 

        if  (conditional expression) 
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            (Matlab commands) 

        elseif (conditional expression) 

            (Matlab commands) 

        else 

            (Matlab commands) 

        end 

Let’s see an example! Plot the following quadratic equations, determine the number of 

real roots and give them if there is any!  

2 𝑥2 − 𝑥 − 3 = 0 

𝑥2 + 2 𝑥 + 3 = 0 

2 𝑥2 + 4 𝑥 + 2 = 0 

The general form of the quadratic equation is:𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. And the solution form:  

𝑥1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

Plot the first equation as a function using fplot!  

 a = 2, b = -1, c = -3 
 f = @(x) a*x.^2+b*x+c; 
 figure; fplot(f);  

First, we have to check if there is any real solution or 

not, if there is any then there are 1 or 2 solutions? 

Let's look at the following user-defined function (quadratic.m), which examines the 

number of solutions of a quadratic equation (x2+bx+c=0), plots the function and gives 

the real solutions if there is any! To do so, one must consider the different cases of the 

discriminant D = b ^ 2-4ac. Save the file to the current directory. 

 function x = quadratic(a,b,c) 
 % Solving a*x^2+b*x+c=0 equation, input: a,b,c 
     f = @(x) a*x.^2+b*x+c; 
     figure; fplot(f);  
     D = b^2-4*a*c; % discriminant 
     if D>0 
         disp('The equation has 2 real solutions') 
         x(1) = (-b+sqrt(D))/(2*a); 
         x(2) = (-b-sqrt(D))/(2*a); 
         hold on; plot(x,[0,0],'r*') 
     elseif D==0 
         disp('The equation has 1 real solution') 
         x = -b/(2*a); 
         hold on; plot(x,0,'r*') 
     else 
         disp('The equation has no real solution') 
         x = []; 
     end 
 end 

The disp command will print a text to the command window.  
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The functions, compared with the scripts, cannot be run by using F5, they can only be 

called from the command line or from a script file. Solve the first equation from the 

command line by calling the quadratic function! (You can do this if the file is in the same 

directory where you are working.) 

 quadratic(2,-1,-3) 

However, it is better to work to a script file that can be easily modified later. Go to the 

practice2.m script file! 

 %% Branches - IF 
 disp('Solving quadratic equations: ax^2+bx+c=0') 
 a = 2, b = -1, c = -3, 
 x = quadratic(a,b,c) 
 a = 1, b = 2, c = 3, 
 x = quadratic (a,b,c) 
 a = 2, b = 4, c =2, 
 x = quadratic (a,b,c) 

 

Note: In case of the latest Matlab versions, you can copy the functions to the end of 

the script file also, it is not necessary to save them to a separate file. In this case, the 

function can be called when running the whole script (with F5), when running only a 

section (with F9) Matlab will not find the function at the end of the script file! 

SWITCH STATEMENT 

We can use not only two-way branches but also multidirectional ones in more complex 

cases. Write a program that helps a teacher to grade the students randomly! The 

randi(n) command can be used to generate random integers between 1 and n. 

Generate a number between 1-5 and display a message based on the result! Let’s put 

this into a new section using double %% characters. We can run a separate section 

using CTRL + Enter. Try this at 3 times.  Did you get an excellent (5) mark from 3 runs? 

 %% Branches - SWITCH 
 disp('Mark:') 
 mark = randi(5); 
 switch mark 
   case 1 
     disp('Fail') 
   case 2 
     disp('Pass') 
   case 3 
     disp('Satisfactory ') 
   case 4 
     disp('Good') 
   case 5 



Numerical Methods for Civil Engineers with Matlab 2. MATLAB basics 2. 

 4 Piroska Laky, 2019 

     disp('Excellent') 
 end 

ITERATIONS - FOR LOOP 

In a loop, the execution of a group of command is repeated several times 

consecutively. In the for loop the number of repetition is predetermined. The structure 

of a for-end loop is: 

        for i = f:s:t 

           (Matlab commands) 

        end 

Where i is the loop index variable, f is the value of i in the first pass, s is the increment 

in i after each pass and t is the value of i in the last pass.  

Let's see how we can solve the equations described in the first example using a loop 

if we store the coefficients in a matrix! 

 %% Loops - FOR 
 close all; clc; clear all; 
 disp('Solve the next equations: 2x^2-x-3=0, x^2+2x+3=0, 2x^2+4x+2=0') 
 M = [2,-1,-3; 
     1,2,3; 
     2,4,2] 
 n = size(M,1) % number of rows 
  
 for i = 1:n 
     a = M(i,1), b = M(i,2), c = M(i,3), 
     quadratic(a,b,c) 
 end 

The size(M) function has two outputs in default, the first is the number of rows, the 

second is the number of columns of the M matrix. The size (M,1) returns the number 

of rows and size(M,2) returns the number of columns. There are other similar functions, 

length returns the number of elements in a vector or the larger size of a matrix, and 

numel returns the number of all elements in the matrix or vector. 

ITERATIONS – WHILE LOOP 

The while loop allows commands to be executed repeatedly based on a given 

conditional expression. The commands inside the loop will be executed until the 

condition is true. The structure of a while loop is: 

        while (conditional expression) 

           (matlab commands) 

        end  

Let's look again our imaginary example: a subject is randomly scored in the exam 

between 0-100. The excellent mark is above 88%. We'll try the exam until we get five. 

Let's write a program that randomly generates our grades for each exam. How many 

exams needed to get an excellent mark? 
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 %% Loops - WHILE 
 disp('How many exams do you need to get more than 88 %?’) 
 i = 0; point = 0;  
 while point<=88 
     i=i+1; 
     point = rand()*100     
 end 
 i 

FORMATTED STRINGS (FPRINTF, SPRINTF) 

It is often necessary to present our results in a specific format. Take, for example, the 

operation of angles. Most software that performs mathematical operations (e.g. Matlab, 

Octave, Excel ...) considers the radian to be the default angle unit. In Matlab/Octave 

the trigonometric functions use radians as default (e.g. sin, cos, tan, atan, atan2 ...) 

but they also have a degree-variant (e.g. sind, cosd, tand, atand, atan2d ...), but if 

you want to display the results in degrees, minutes and seconds, in a format we use in 

geodesy (deg-min-sec format), or to a certain number of decimal places (23-03-

48.5831), you need to use the so-called formatted texts. Similarly, if we want to 

automatically name pictures in a loop using the index in the file name e.g. IMG0001.jpg, 

IMG0002.jpg, etc. then we can use formatted texts for this purpose also.  

You can use fprintf command to write formatted text to a file or to the command 

window, and sprintf command to save a formatted string. There is always a % sign in 

a formatted text, which indicates the variable to be formatted. We will have as many % 

signs in the text as many formatted numbers we needed. To customize the format, you 

can use the following specifiers: 

 %d – integer number 

 %s – string 

 %f – float - floating point number 

 %c – character 

 %u – unsigned integer 

 %e or %E – normal form e.g. 3.14e+00,  

 %g – compact form, i.e. the shorter from %f or %e, without the 

unnecessary zeros 

Before the specifier that determines the type, you can add: 

 + sign, to make it a signed value; 

 number of characters; 

 number of decimals;  

 0, it will fill with zeros the undefined characters. 

Let's try the following! The basic question is ’How old is the captain?’ 

 clc; disp(’How old is the captain?') 
 % some help: we know his birthday :) 
 % Octave has no datetime or between command! 
 % in Octave use this instead: y = 35; m = 5; d = 2; 
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 birth = datetime(1984,02,28) 
 today = datetime('now')   % (at 30.07.1997.) 
 age = between(birth, today) % 35y 5mo 2d 13h 58m 47.086s  
 [y,m,d] = datevec(age) % ev = 35  ho = 5  nap =  2 
 yd = y + m/12 + d/365;  
 fprintf('The captain is 35 years old') % does not insert a linebreak 
 fprintf('The captain is 35 years old'\r\n')% \r\n - linebreak  
 sprintf('The captain is 35 years old')   % results in text variable 
 sprintf('The captain is %d years,%d months and %d days',y,m,d) % 'The 

captain is 35 years, 5 months and 2 days' 
 sprintf('The captain is %f years old', yd) % 'The captain is 

35.422146 years old' 
 sprintf('The captain is %.2f years old', evt) % % 'The captain is 

35.42 years old' 
 sprintf('The captain is %8.2f years old', evt) % ’The captain is    

35.42 years old' 
 sprintf('The captain is %08.2f years old', evt) % 'The captain is 

00035.42 years old' 
 sprintf('The captain is %+6.2f years old', evt) % 'The captain is 

+35.42 years old' 

In the %+6.2f expression f denotes a floating point number, 6 means field width (6 

characters including decimal point and a sign), and .2 denotes 2 decimal places. 

The + sign means that the sign symbol will be displayed in case of positive numbers 

also. If 0 is included in the format, it will fill in the blank spaces with 0. If the result is 

longer than the field width, then the specified field width is ignored.  

Let's look at the following function, which calculates and displays decimal degree 

angles in degrees-minutes-seconds in ddd-mm-ss format (e.g. 192-03-12) 

 function str = dms(x); 
 % Calculates and displays decimal degree angles in  
 % degrees-minutes-seconds in ddd-mm-ss form used in geodesy  
   d = fix(x); 
   m = fix((x-d) .* 60); 
   s = round(((x-d).*60-m).*60); 
   str = sprintf('%3d-%02d-%02d', d, abs(m), abs(s)); 
 end 

The fix function always rounds towards 0 (this is important because of the negative 

angles), the round function rounds towards nearest integer, the floor function rounds 

towards minus infinity and ceil function rounds towards plus infinity. At the end, we 

take the absolute value of minutes and seconds so that the negative sign is written 

only at the first place, before the degree value.  

 a = 123.123, b = -123.123 
 dms(a)  % '123-07-23' 
 dms(b)  % '-123-07-23' 

Replace the fix command to floor in dms function when calculating degrees (d), then 

save it and run the dms(a) and dms(b) commands again! What's happening? 

DATA IMPORT/EXPORT 

In engineering work, we often have to process the results of some instrumental 

measurement. These results can be given in a text file in some specific format, so it is 

good to know how we can obtain the information or numeric data from these files. 
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Often, after a complex mathematical calculation, we have to present our result in 

another specific format for further use. Let's look at some examples of import and 

export commands to get a little acquainted with file operations. 

IMPORT DATA TOOL,  DATA TYPES 

One tool you can use to import files is Matlab's own 

import tool, which can be accessed by clicking the 

'Import Data' button on the Home tab. Let’s import 

the content of the marks.txt file into Matlab with this 

tool! 

Its use is simple enough, you just have to pay attention to the settings. You can specify 

the range of your data, whether it is in fixed-width columns, or separated by a specific 

character. What is important to take care of is the Output type, which is Table by 

default. Other types can be selected, e.g. Cell array, Numeric matrix. Leave now the 

default Table type and import the data by clicking on the green check mark (import 

selection). Then we can close the import window. 

 

 %% 'Import Data' tool  
 % jegyek.txt -> table forma 
 clc; marks 
 %   4×3 table 
 %           Name            Neptuncode    Mark 
 %    ___________________    __________    ____ 
 % 
 %    "Vilhelmina Smith "    " ABC123"      2   
 %    "Claudius Jones"       " CBA321"      5   
 %    "Desdemona Taylor"     " XYZ789"      4   
 %    "Leonidas Davies"      " ZYX987"      3   

These data will be in 'Table' type, which can store different types of data at the same 

time, including texts and numbers (as well as Structure and Cell array types). Each 

column can be named, and a column can be referenced with its name written after the 

name of the Table and a point. 

 marks(1:2,1:3) % first 2 rows 
 name = marks.Name % cella array of Names column 
 mark = marks.Mark % number vector of marks 
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A similar form is the 'structure' data type, where you can refer also to a field by its 

name. However, using this type it is not mandatory to have the same number of rows 

for each field as for the table. We can store different types of data in the Cell array 

also, but in this case, nothing is named. You can refer to each element in the same 

way as in matrices, using their indexes, but you have to use curly brackets {} instead 

of round brackets (). For example, names are stored in a cell array. Let's ask the 

second one! 

 name2 = name{2}  % 'Claudius Jones' 

BASIC IMPORT/EXPORT (LOAD, SAVE) 

Let us now look at an engineering example, again the stress-strain diagram (σ-ε) of a 

steel bar for reinforced concrete.  

ε [%] 0 0.2 2 20 25 

σ [N/mm2=Mpa] 0 300 285 450 350 

1. TABLE,  STRESS-STRAIN DIAGRAM OF A STEEL BAR FOR REINFORCED CONCRETE 

Our task is to produce a table that contains the strains and stresses from 0 to 25% 

relative deformation at every 0.1 percent. Now we will not enter the data manually, but 

will read it from the steel.txt file: 

0    0 
0.2  300 
2    285 
20   450 
25   350 

This file contains only numbers, in 2 columns and 5 rows. Of course, here, too, we 

could use the import data tool, but we should change the output type to numeric matrix. 

However, in case of text files containing only numbers in tabular format, there is a more 

simple and suitable solution, using the load command. In more complex formats, it can 

be worthwhile to read the data line by line and process every line separately.  

Now let's look at the load and save commands as the simplest data read/write 

commands. Copy the steel.txt file to the current directory and load its contents to 

Matlab with load command. There are two syntax forms, the command form, and the 

function form. In the command form there is no need for brackets or quotes. 

 load steel.txt 

Using function form: 

 data = load('steel.txt') 

Using the command form a variable with the same name as the filename (steel) will be 

created. In the second version, by calling load as a function, we can assign the result 

to a new variable, but we should use brackets and quotes. Let's use this method now. 

Check the size and type of the new variable using the whos command!  

 whos adat 
 size(data) 
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We got a matrix of 5x2 size. First, let’s separate the variables (let x be the deformation, 

y the stress) and plot the (σ-ε) diagram. 

 x = adat(:,1); % first column - strain 
 y = adat(:,2); % second column - stress 
 plot(x,y); 
 xlabel('\epsilon');ylabel('\sigma'); 

To solve the original problem, we should calculate the stress values for each 

deformation between 0-25% using 0.1 intervals. This will require interpolation. We will 

use a cubic first-order spline interpolation (the theory will be described in later 

chapters). First, let’s determine a vector between 0-25% (max. deformation) with 0.1 

intervals, then calculate the stress values at these points by interpolation using the 

interp1 command, with 'pchip' method (piecewise cubic Hermite interpolating 

polynomial)! 

 % cubic first-order spline 
interpolation 

 xi = 0:0.1:max(x); % calculate points 
between 0-25% 

 yi = interp1(x,y,xi,'pchip'); % 
interpolation 

Draw the calculated points to the previous figure., 

 hold on;  
 plot(xi,yi,'rx'); % 'rx' - red x-s 

If you want to save the plotted graph to an image for illustration purposes, you can do 

this either from the Figure/File menu or using print command. 

 print('steel.jpg','-djpeg') 

The variables xi and yi are row vectors (size: 1x271). We should save them to a text 

file in table format with the deformation in the first column and the stress in the second. 

To do this, we need to transpose the row vectors (') and then concatenate them with a 

simple matrix operation, since they have the same size. 

 data2 = [xi' yi']; 

We can use the save command to write the content to a file. By default, Matlab saves 

files in its own binary *.mat extension, which cannot be loaded into another program, 

only to Matlab.  

 save('steel2.mat','data2') 

To save the content to a text file, we should use the extra '-ascii' parameter. 

 save('steel2.txt','data2','-ascii'); 

Note: save can be used in command format also: 

 save steel2 data2 
 save steel2.txt data2 -ascii 

Let’s open the saved text file! 

   0.0000000e+00   0.0000000e+00 
   1.0000000e-01   5.2521666e+01 
   2.0000000e-01   1.0943166e+02 
   3.0000000e-01   1.6158083e+02 
   4.0000000e-01   1.9982000e+02 
   … 
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The save command uses scientific notation as number format. If we want to print the 

numbers in a different format, e.g. to 1 or 2 decimal places, we need to use formatted 

text when saving the data. 

FORMATTED FILE EXPORT (FPRINTF) 

Let’s create a text file from the interpolated strain-stress data, write the strain data to 

one decimal places and the stress data to 2 decimal places. For this you will need 

basic file management instructions like opening, writing, closing files. The basic file 

management instructions generally look like this: 

 open file (fopen) 

 read, write, append to file, process 

 close file (fclose) 

When using fopen, you can specify how to open the file, 'r' read-only (default if nothing 

is specified), 'w' write, 'a' append, e.g.: 

fileID = fopen (filename, 'w') - Open file for writing 

You can close files individually: fclose(fileID), or all at once: fclose(’all’). 

Write the data to a file using a for loop! Let’s use 4 characters to one decimal place for 

the deformation and 6 characters to 2 decimal places for the stress data. The length 

command returns the number of elements in the vector. 

 n = length(xi); % vector length 
 fid = fopen('diagramtable.txt','w'); 
 for i=1:n 
     fprintf(fid,'%4.1f %6.2f\r\n',xi(i),yi(i)); 
 end 
 fclose(fid); 

The problem can be solved without a loop by using the data2 variable: 

 fid = fopen('diagramtable2.txt','w'); 
 fprintf(fid,'%4.1f %6.2f\r\n',data2'); 
 fclose(fid); 
 type diagramtable2.txt % print the content of file to the screen 

Data2 variable has 2 columns and 271 rows, however with fprintf we should use its 

transposed form (2 rows and  271 columns) because fprintf reads the associated 

values per column. 

READING MEASUREMENT DATA LINE-BY-LINE (FGETL, FGETS)1 

In engineering work, it is often the case that measurements of a given instrument need 

to be processed, which include not only numbers but also texts. For processing, we 

need to be able to read this data and select the part that interests us. Let's now look at 

a navigation example! We have a GPS recorded route, stored in the NMEA 0183 

format used for navigation (hb_nmea.txt). Read the data and plot the route in a new 

figure. What vehicle had they used to record this data? 

$GPGLL,5156.9051,N,00117.1178,E*69 

                                            
1 Homework 
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$GPGLL,5156.9194,N,00117.1482,E*61 
… 

In the NMEA standard, the word $GPGLL at the beginning of the line means that it 

contains GPS Geographic Latitude, Longitude information (there are many different 

NMEA messages). In the file fix length fields are separated by commas, so this format 

is easy to read and process. For the geographic latitude, the first two characters are 

the degree values, followed by decimal minutes, in case of the longitude, the first three 

characters are the degree values, followed by decimal minutes (as the former extends 

to 90°, and the latter to 180°). For the latitude values N means North, S means 

South, in case of the longitude E stands for East and W stands for West. For example, 

5156.9051, N means north latitude 51° 56.9051'. 

This file has a more complex structure, the simple load function cannot be used. You 

should use Matlab’s low-level input/output functions. Before reading, you should open 

the file with fopen, and obtain a file identifier (fid). By default, fopen opens files for 

read access. When you finish processing the file, close it with fclose(fid). For the 

processing, in this case, it is useful to know the line-by-line file reading commands: 

fgetl, fgets. fgetl reads a line and cuts off the ending line character, while fgets keeps 

it. The result is stored in a string variable. To read the entire contents of the file, it will 

require a conditional loop (while) to read until we reach the end of the file (feof - end-

of-file). 

Lets read just the first line, and try to acquire the relevant data for the route.  Note: 

After opening the file, a file pointer monitors how many bytes of the file have been read, 

which can be queried with the ftell(fid) command. 

 fid=fopen('hb_nmea.txt'); 
 line=fgetl(fid) % read one line 
 % $GPGLL,5156.9051,N,00117.1178,E*69 

The result will be a string variable containing the first line. Filter out the information we 

are interested in, latitude (lat) and longitude (lon)! To do this, you need to know that 

characters #8-9 are the degree values, #10-16 are the minutes for latitude, #20-22 are 

the degree values, and #23-29 are the minutes for longitude. A certain indexed element 

in a string could be acquired the same way as an indexed element in a vector because 

strings are character vectors in Matlab! 

 lat_deg = line(8:9);   lat_min = line(10:16); 
 lon_deg = line(20:22); lon_min = line(23:29); 

Let's convert the values into decimal degrees! First, you need to convert the strings to 

numbers with the str2num command. 

 lat = str2num(lat_deg)+str2num(lat_min)/60  % 51.9484 
 lon = str2num(lon_deg)+str2num(lon_min)/60  % 1.2853 

Now read in the N/S and E/W characters to determine on which hemisphere is the 

coordinate: character #18 stands for N (north) or S (south), #31 stands for E (east) or 

W (west). Letter S and W gives a negative sign to the relevant coordinate. If needed, 

change the sign using if conditional structure. 

 NS = line(18);   if NS=='S'; lat=lat*-1; end; 
 EW = line(31);   if EW=='W'; lon=lon*-1; end; 
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This way, for example, it is possible to extract the relevant information from a more 

complex structure. There are of course a lot of additional built-in functions in MATLAB 

to handle different inputs/outputs, if you are interested in, just check the help guide for 

further details using the help iofun command. 

Now let's process the whole file in one go. This will require a condition-controlled loop 

(while loop). In this case, the condition is to check whether the process reached the 

end of the file or not? The feof(fid) variable is 1 at the end of the file and 0 before it. 

Therefore if feof (fid) == 0 the loop will run. You will need two more vector variables 

(LAT,LON) where you can store the acquired coordinates. You should initialize them 

at the beginning as empty vectors, and in every loop simply append the acquired 

coordinates. Put semicolons (;) at the end of the lines to avoid displaying each sub-

result! The whole process: 

 LAT = []; LON = []; 
 fid=fopen('hb_nmea.txt'); 
 while feof(fid)==0 
   line=fgetl(fid); % read a line 
   % aquire latitude, longitude 
   lat_deg = line(8:9);   lat_min = line(10:16); 
   lon_deg = line(20:22);  lon_min = line(23:29); 
   % convert to decimal degree 
   lat = str2num(lat_deg)+str2num(lat_min)/60; 
   lon = str2num(lon_deg)+str2num(lon_min)/60; 
   % signs 
   NS = line(18);   if NS=='S'; lat=lat*-1; end; 
   EW = line(31);   if EW=='W'; lon=lon*-1; end; 
   % append subresults to LAT,LON vectors 
   LAT = [LAT; lat]; LON = [LON; lon]; 
 end 
 fclose(fid); 

Plot the route in a new figure with a thick red line!  

 figure(2) 
 plot(LON, LAT,'r','LineWidth',3) 

Based on the figure, it would be difficult to decide where 

the vehicle was going, to facilitate the 

localization we will also plot the coastlines in 

blue.   

 coast = load('coastline.txt'); 
 hold on; 

plot(coast(:,1),coast(:,2),'b') 

What kind of vehicle could it be? 

Alternative plot: 
 figure 
 worldmap([0 70],[-110 40])  % 

worldmap('World') 
 load coastlines 
 plotm(coastlat,coastlon) 
 hold on 
 plotm(LAT, LON,'r','LineWidth',3)  



Numerical Methods for Civil Engineers with Matlab 2. MATLAB basics 2. 

 13 Piroska Laky, 2019 

NEW BUILT-IN FUNCTIONS USED IN THE CHAPTER 

== - Equality, logical operator 

~= - Inequality, ’not equal’, logical operator 

&& - Logical AND 

|| - Logical OR 

disp - Print string or string variable contents to Command Window 

if, elseif, else, end - Two-way conditional branch 

switch, case - Multi-directional branch 

for - Counting controlled loop 

while - Conditional controlled loop 

size - The number of rows, columns of a matrix 

length - The number of elements of a vector, or the larger size of a matrix 

numel - Total number of elements in a matrix/vector 

randi - Generate random integers 

fprintf - Write formatted texts to a file or screen 

sprintf - Write formatted texts to a string variable or screen 

\r\n - End of line symbol for formatted text 

fix - Rounding function, rounds towards 0 

round - Rounding function, rounds towards nearest integer 

floor - Rounding function, rounds towards minus infinity 

ceil - Rounding function, rounds towards plus infinity 

load - Loading data (from Matlab file (*.mat) or plain text file) 

save - Save data (to Matlab file (*.mat) or plain text file) 

print - Save the content of the figure to a file 

interp1 - One-variable interpolation 

fopen - Open file 

fclose - Close file 

type - List the contents of a text file in the Command window 

fgetl - It reads a line and cuts the end of line character from it. 

fgets - It reads a line and retains the end of line character. 

feof - End-of-file 

ftell - Pointer to check how many bytes of the file have been read 

str2num - Converts text to number 

atan, atan2 - Inverse tangent function, result in radians. 

sind, cosd, tand, 

atand, atan2d 
- Trigonometric functions working with degrees 
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Computational errors 
Exercise: Is 0.3 = 0.3 according to MATLAB? 

A = 0.3 

B = 0.1 + 0.1 + 0.1 

Is A equal to B? 

 

How are numbers represented in the computer? 

 The default and most common form of storing numbers is the floating point format (double 

precision floating point). 

 Standardized format by the IEEE (IEEE 754). 

 Each number is stored in binary format using 64 bits (0-63). 

 

 

 

 

 

 

Conversion from decimal to double precision 

Let’s convert 1055.125 to double precision! 

1. Convert to binary: 10000011111.001 

2. Normalize: 1.00000111110011 x 210 ads 

3. Calculate the exponent: 10 + 1023 = 1033 (10000001001) 

4. Sign: 0 ( 0 – positive, 1 - negative), Mantissa: 111110011 

1055.125 = 0  10000001001  00000111110011000…000 

So what is the problem with 0.3? 

0.3 in binary → 0.010011001100… (infinite) 

0.1 in binary → 0.000110001100011… (infinite) 

Adding up an infinite fraction three times results in a round-off error, thus the two values will not be 

exactly equal with the precision used by the representation. 

The machine epsilon 

 In MATLAB, the variable eps and the function eps() can be used to query the value of the 

machine epsilon. 

A == B → 0 (false) 

ሺ−1ሻ𝑠 ∙ 𝑚 ∙ 2ሺ𝑒−1023ሻ Representation of a number: 

63 52 0 

1 bit 
sign (s) 

11 bits 

exponent (e) 

52 bits 

mantissa (m) 

51 
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 eps by default is ≈ 2 ∙ 10−16 

a = 2 

b = 2 + 2 ∙ 10−17 (which is less than the machine epsilon) 

a == b  → 1 (True) 

eps(1e6) ≈ 1 ∙ 10−10 

eps(1e10) ≈ 2 ∙ 10−6 

As we go higher up the number line, the separation between two distinct numbers gets bigger. 

 In other words, you can’t add a very small number (smaller than the machine epsilon) to a 

very big number because in our limited floating-point representation the two numbers will 

be the same! 

 Because of the machine epsilon, we can have a cancellation error as well, when we are 

subtracting almost equal numbers: 

x1 = 4e-15; y1 = 4e-14; 

x = 10+x1(14 zeroes before digit 4, just above the machine epsilon) 

y = 10+y1 (13 zeroes before digit 4, above the machine epsilon) 

(y – 10.0)/(x – 10.0) = 11.5 (not the expected result, which would be 10) 

realmin, realmax – the biggest and smallest representable numbers 

Truncation error 

 Happens when we are using numerical approximation of mathematical expressions instead 

of their exact value. 

 E. g. using the Taylor-series representation (to some degree) of a function: 

Built-in MATLAB function for the function 𝑒𝑥 at x = 1: 

f = exp(1) 

Approximation using the Taylor-series with four terms: 

g = 1 + 𝑥 + 𝑥2 +
𝑥2

2!
+
𝑥2

3!
 

 

 

Absolute and relative error 

 In most cases, the floating-point representation of a decimal number will differ from the 

exact value of the number due to the rounding and truncation errors. 

 Absolute error: Δ = |𝑥 − 𝑥̃| 

 𝑥 is the exact value and 𝑥̃ is the approximation 

The total error = round-off error + truncation error 
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 Relative error: 𝜀 =
|𝑥−𝑥̃|

|𝑥|
 

 The relative error is the absolute error with respect to the exact value of the number. 

It better describes the scale and impact of the error. 

Stability and condition number 

 Due to the system used to represent numbers, our calculations will most likely contain 

numerical errors. How can we rely on the results then? 

 Condition number (of a mathematical problem): good condition means that a small change 

to the input of the calculation will only cause a small change in the output or result. 

 Stable (algorithm): an algorithm is called numerically stable, if a small change to the input will 

only cause a small change in the output or result. 

 In the opposite case, we talk about ill-conditioned/weakly conditioned problems and 

unstable algorithms. 

Instable algorithm example 

Quadratic equation: 𝑥2−100.0001+0.01=0 

The exact solutions are: 𝑥1=100 and 𝑥2=0.0001 

MATLAB solution: 

 

 

 

 

The value of the second solution is not exact. The reason for this is that in that case, two very close 

numbers were subtracted resulting in a cancellation error. 

In many of these cases, we can change the algorithm, to achieve a stable solution. 

For example, changing the formula for the second solution the following way: 

𝑥2 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
∙
−𝑏 + √𝑏2 − 4𝑎𝑐

−𝑏 + √𝑏2 − 4𝑎𝑐
=

2𝑐

−𝑏 + √𝑏2 − 4𝑎𝑐
 

 

 

Stable algorithm example 

Let’s calculate the value of 𝑒−𝑥 using two different approaches: 

1. 𝑓ሺ𝑥ሻ = 𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2!
−
𝑥3

3!
+⋯ 

2. 𝑔ሺ𝑥ሻ = 𝑒−𝑥 =
1

𝑒𝑥
=

1

1+𝑥+
𝑥2

2!
+
𝑥3

3!
+⋯

 

format long; 
a = 1; b = -100.0001; c = 0.01; 
D = sqrt(b^2 - 4*a*c) % 99.999899999999997 

xl = (-b + D)/(2*a) % 100 
x2 = (-b - D)/(2*a) % 1.000000000033197e-04 

x2m = (2*c)/(-b+D) % 1.000000000000000e-04 
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Calculate the value of 𝑒−8.3 using the built-in function and our custom one: 

 

 

 

 

 

 

The speed of convergence is different, but both algorithms give the right answer after a certain 

number of steps.  

Condition number of a problem 

Consider the following linear system of equations: 

6𝑥1 − 2𝑥2 = 1011.5𝑥1 − 3.85𝑥2 = 17 

In matrix form (𝐴 ∙ 𝑥 = 𝑏): 

[
6 −2
11.5 −3.85

]
⏟        

𝐴

[
𝑥1
𝑥2
]

⏟
𝑥

= [
10
17
]

⏟
𝑏

 

Solve the system in MATLAB: 

 

 

 

 

 

Adjust the coefficient for 𝑥2 by a very small amount (-3.85 → -3.84) and see the results again: 

 

 

 

 

 

There is significant change in the results, even though the input was only slightly changed! 

 The transformations given by some matrices are very sensitive to the change of input. 

 This can be measured by the condition number of the matrix: 

The condition number: 

format short 
% Built-in function 
exp(-8.3) % = 2.4852e-04 

  
% Custom function with different number of terms 

[f, g] = emx(8.3, 10) % 10 terms, = 188.0344 & 3.1657e-04 
[f, g] = emx(8.3, 20) % 20 terms, = 0.2833 & 2.4856e-04 
[f, g] = emx(8.3, 30) % 30 terms, = 2.5151e-04 & 2.4852e-04 

A = [6, -2; 11.5, -3.85]; b = [10; 17]; 

% Solution 
sol = inv(A)*b % or A\b 
sol = 
    45.0000 

   130.0000 

A = [6, -2; 11.5, -3.84]; b = [10; 17]; 
% Solution 
sol = inv(A)*b % or A\b 

sol = 
   110.0000 
   325.0000f 



5 
 

𝜅 = |

𝑓ሺ𝑥ሻ − 𝑓ሺ𝑥̃ሻ
𝑓ሺ𝑥̃ሻ
𝑥 − 𝑥̃
𝑥̃

| = |
𝑥̃

𝑓ሺ𝑥̃ሻ
∙
𝑓ሺ𝑥ሻ − 𝑓ሺ𝑥̃ሻ

𝑥 − 𝑥̃
| = |

𝑥̃ ∙ 𝑓′ሺ𝑥̃ሻ

𝑓ሺ𝑥̃ሻ
| 

 

Using MATLAB to get the condition number of a matrix: 

 

 

 

The grater the condition number is, the bigger the impact of a small change in the inputs has on the 

results. This effect has to be taken into account in case of engineering problems where the input data 

are measurements which can often be approximations or values containing errors. 

 

 

 

A = [6, -2; 11.5, -3.84]; b = [10; 17]; 
% Condition number of matrix A 
cond(A); % = 4.6749e+03 



Finding the roots of non-linear equations

(Translation, modification: Bence Ambrus, original hungarian material: Piroska Laky)

Non-linear equations are equations in the form of

At first, we may have a problem different than , however, we can always convert it to the form above
by subtracting the right-hand side from both sides. For example, given the following non-linear equations:

we can achive the form above by converting them:

The solutions of equations are also called the roots of the equation. If we substitute the root back into the
equation, we get zero, or at least a value close to zero (remember the rounding error from the last practical)
within some tolerance level or threshold. If we think about it graphically, the root is where the graph of the
equation intersects the x-axis. Depending on the form of the equation, we can have four different possibilities
for the roots:

In many practical cases, the root or roots can only be aquired numerically as opposed to the case when
there is a symbolic solution (e.g. in the case of the quadratic equation). These methods use iterations to get
closer and closer to a solution, until a certain tolerance is met. In other words, instead of solving , we

solve , where Δ is a usually small value called the tolerance. There are two main types of algorithms
for solving non-linear equations: the closed interval methods and the open interval methods.
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Example for a non-linear problem

We will use the following hydraulical problem as an example for the major part of this live script:

Depending on the shape, material and slope of a channel and given the height of the water in the channel,
the flow of water can be derived using the following formula:

where Q is the flow of water in ( ), S is the slope of the channel, n is the Gaucker-Manning coefficient
(depending on the material), b is the width of the channel in m and h is the height of the water in m. Let's
answer the following two questions:

1. How much is the flow of water if the height of the water in the channel is 2 m?
2. How much is the height of the water, if the flow of water is 3 ?

The following data is given about the channel:

• The slope is 0.08% ( )
• The Gaucker-Manning coefficient is 0.02 ( )
• The width of the channel is 2 m ( )

The first question is a simple substitution into the equation. First we have to define the variables in MATLAB,
but before we do that, it is always useful to clear out all variables that might exist already and close all figures
that might be open:

clear all; close all;
S = 0.0008;
n = 0.02;
b = 2;

We can define the equation with an anonymous or inline function with h as the variable and using the
constants that we have already created.

Q = @(h) sqrt(S)/n * (b * h).^(5/3) ./ (b + 2*h).^(2/3);
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Next, we can substitute 2 into h to get the answer to the first question.

Q(2)

ans = 4.3170

The answer is 4.317 .

In order to answer the second question, we would have to somehow transform the equation and solved
for h. However, it is not possible using equivalent transformations, in other words, the equation cannot be
solved for h. The answer can only be given numerically. Before we take a look at the solutions, let's graph the
equation between 0 and 2:

figure(1);
fplot(Q, [0, 2], 'Color', 'r', 'LineWidth', 2); % red color, 2 point line width
line([0, 2], [3, 3], 'Color', 'b'); % plot of a simple line with endpoint coordinates (0, 3) and (2, 3)
title('Flow of water in channel as a function of the height of water'); % title for the plot
xlabel('Height of water [m]');   % label for the x-axis
ylabel('Flow of water [m^3/s]'); % label for the y-axis

We can already see, that the solution will be somewhere between 1.4 and 1.6. To use a numerical algorithm
to find the place where the red graph intersects the blue line, we have to transform the equation into the
following form:
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As we want to the find the h value where Q is equal to 3, right now we have the following equation: .
In order to transform this into the correct form, we simply have to subtract 3 from both sides:

We define a new anonymous function that gives us the above form and graph it:

f = @(h) Q(h) - 3;
 
figure(2);
fplot(f, [0, 2], 'Color', 'r', 'LineWidth', 2);
line([0, 2], [0, 0], 'Color', 'b');

Finding the solution for the problem or the root of the equation can be done using several algorithms, but all
of them can be put into two categories: open interval methods and closed interval methods.

Closed interval methods

When talking about closed interval methods, we give an [a, b] interval which contains the solution. (The
beginning and the end of the interval can come from a guess just like the one we did with the graph.) If the
root is inside this interval, the signs of the function values in the beginning and the end of the interval differ,
that is:  as the function must intersect the 'zero-line' (that is, the x-axis) while going from a to b.
If f is continous in the interval, than there is surely a point c which is the root of f. We steadily shrink the
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interval and check the function values at the sides of the interval until the function values get closer and
closer to zero and reach zero within a certain tolerance, or if the interval becomes smaller than a certain
tolerance. There are multiple closed interval algorihtms, the difference between them is how they shrink the
interval.

There are some restrictions for the initial interval used to start the algorithm:

1. There should be at least one (and preferably one) solution in the interval.
2. The function has to defined at the ends of the interval.
3. The sign of the function value must differ at the ends of the interval.

Bisection method

In the case of the bisection method, we halve the initial interval (point c) and see whether the function value
in the half point is negative or positive. If it's negative, we change the previous negative end of the interval to
the new point, if it is positive, we do the same to the positive side. In other words, we carry out the following
steps:

1.
Calculate point c by .

2. Check if the function value at c is less than the tolerance. If , the algorithm ends.
3. Check if , if so, then the new b is changed to c, if not, then the new a is changed to c.

Regula falsi method

This method is more efficient then the bisection method, meaning that it converges to the solution faster. In
this algorithm, point c is calculated by checking where the line between a and b intersect the x-axis.
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 Point c can be calculated by taking the slope of the line between a and b, multiplying it by the value of the
length between c and a and adding it to the function value at point a. This expression has to equal to zero.

If we solve this expression for c:

The steps of the algorithm are exactly the same as with the bisection formula, only the way c is calculated
changes.

The bisection and the regula falsi methods are not implemented in MATLAB, however, we can
write our own custom function to find the root of a non-linear equation using these methods. Check
the bisection.m and regulafalsi.m files for possible implementations. 

Solving the channel problem using closed interval method

Solution using the custom bisection function. The first output of the function is the solution, the second is the
number of iterations:

[xb, ib] = bisection(f, 1.4, 1.6, 1e-9, 100) % arguments: function to solved, start of interval, end of interval, tolerance, maximum iterations

xb = 1.4929
ib = 28

Solution using the regula falsi method:

[xr, ir] = regulafalsi(f, 1.4, 1.6, 1e-9, 100)

xr = 1.4929
ir = 4
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We can see from the results, that the regula falsi method converged much faster than the bisection method,
and its solution is much closer to zero. Let's check the results by substituting them into the equation:

f(xb), f(xr)

ans = -4.5629e-10
ans = -1.3299e-10

We can also plot the solution on our second figure

figure(3);
hold on;
g3 = fplot(f, [0, 2], 'Color', 'r', 'LineWidth', 2);
g2 = line([0, 2], [0, 0], 'Color', 'b');
sol = plot(xr, f(xr), 'go', 'MarkerFaceColor', 'g');

 

Open interval methods

Newton-Raphson method
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The Newton-Raphson method (or sometimes only called Newton's method) can be used in the case when

the function is continous and differentiable and we have an initial value ( ) for the solution which is suitably
close to final solution. The steps of the first iteration of the algorithm are the following:

    1. We compute the derivative of  at the initial value , where i is zero at first. This gives us the slope

of the line that is tangent to the graph of the function at .

    2. Using this line, we calculate a new  value, which is the x-coordinate of the intersection of the line in
step 1 and the x-axis. The formula for this: 

        From this expression, we calculate the next x value, which is  in this case:

  

 

Secant method

The secant method is a simplified form of the Newton-Raphson method, where we approximate the
derivative of  (the slopes of the tangents to the function) using secant lines:

This means that the formula for calculating the new  becomes:

This method is viable when we do not know the derivative of  or computing it would cost too many
computational resources. The downside is that it usually converges slower and it needs to initial guesses in
order to start.

8



 

Custom Newton-Raphson algorithm in MATLAB

If we open the newton.m file, we can see a custom implementation of the Newton-Raphson algorithm.

Solving the channel problem using the custom Newton-Raphson algorithm

The algorithm requires the derivative of the function whose roots we want to find. Using the symbolic
capabilities of MATLAB, we don't need to calculate the derivative by hand, rather we can use symbolic
differentiation.

First, we convert the anonymous function  into a symbolic function:

sf = sym(f)

sf = 

Next, we differentiate the symbolic function:

sdf = diff(sf, 'h') % h is the variable of the function

sdf = 

In order to be able to use this in the custom algorithm, we have to convert it back into a anonymous MATLAB
function.

df = matlabFunction(sdf)

df = function_handle with value:
    @(h)sqrt(2.0).*1.0./(h.*2.0+2.0).^(2.0./3.0).*(h.*2.0).^(2.0./3.0).*(1.0e1./3.0)-sqrt(2.0).*1.0./(h.*2.0+2.0).^(5.0./3.0).*(h.*2.0).^(5.0./3.0).*(4.0./3.0)
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Now, we have all the input for the Newton-Raphson algorithm:

[xnew, inew] = newton(f, df, 1.6, 1e-9, 100)

xnew = 1.4929
inew = 3

The result is of course the same, but the number of iterations shows the efficiency of the method. The
downside is that we had to find the derivative of the function which can be much more complicated in certain
cases.

Solution using built-in MATLAB function fzero

Solving non-linear equations is an everyday task for a mathematical programming environment such as
MATLAB, so there are built-in solutions for such a task. The built-in fzero function uses a combination
of methods that contains the so-called Brent-Dekker method (the original Brent mehod was improved by
Dekker), which is also called the inverse quadratic interpolation.

The algorithm kicks off by having 3 initial guesses in an [a, b] interval that contains the root. The coordinates
of the points are given in an inversed order:  and therefore, the function value becomes the
unknown variable. We fit a quadratic polynomial onto these three points:

which means that we calculate the coefficients of the polynom. Then, we substitute 0 into the polynomial (as
we are looking for the x-value where f becomes 0), which gives us the c point that we can use to update the
search interval and start again.

Solving the channel problem using the built-in fzero function

We can call the function using two initial values or just one.

x = fzero(f, [1.4, 1.6])

x = 1.4929

x = fzero(f, 1.6)
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x = 1.4929

If we would like more information about the steps taken to find the solution or wish to control the method
by specifying a tolerance value, we can do so by using the optimset function. First, we create some control
options using the function.

opt = optimset('Display', 'iter', 'TolFun', 1e-9) % show iterations and set the tolerance to 1e-9

opt = struct with fields:
                   Display: 'iter'
               MaxFunEvals: []
                   MaxIter: []
                    TolFun: 1.0000e-09
                      TolX: []
               FunValCheck: []
                 OutputFcn: []
                  PlotFcns: []
           ActiveConstrTol: []
                 Algorithm: []
    AlwaysHonorConstraints: []
           DerivativeCheck: []
               Diagnostics: []
             DiffMaxChange: []
             DiffMinChange: []
            FinDiffRelStep: []
               FinDiffType: []
         GoalsExactAchieve: []
                GradConstr: []
                   GradObj: []
                   HessFcn: []
                   Hessian: []
                  HessMult: []
               HessPattern: []
                HessUpdate: []
          InitBarrierParam: []
     InitTrustRegionRadius: []
                  Jacobian: []
                 JacobMult: []
              JacobPattern: []
                LargeScale: []
                  MaxNodes: []
                MaxPCGIter: []
             MaxProjCGIter: []
                MaxSQPIter: []
                   MaxTime: []
             MeritFunction: []
                 MinAbsMax: []
        NoStopIfFlatInfeas: []
            ObjectiveLimit: []
      PhaseOneTotalScaling: []
            Preconditioner: []
          PrecondBandWidth: []
            RelLineSrchBnd: []
    RelLineSrchBndDuration: []
              ScaleProblem: []
       SubproblemAlgorithm: []
                    TolCon: []
                 TolConSQP: []
                TolGradCon: []
                    TolPCG: []
                 TolProjCG: []
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              TolProjCGAbs: []
                  TypicalX: []
               UseParallel: []

x = fzero(f, 1.6, opt)

 
Search for an interval around 1.6 containing a sign change:
 Func-count    a          f(a)             b          f(b)        Procedure
    1             1.6      0.274131           1.6      0.274131   initial interval
    3         1.55475      0.157999       1.64525      0.390694   search
    5           1.536      0.110027         1.664      0.439097   search
    7         1.50949     0.0423222       1.69051      0.507665   search
    8           1.472    -0.0531432       1.69051      0.507665   search
 
Search for a zero in the interval [1.472, 1.69051]:
 Func-count    x          f(x)             Procedure
    8           1.472    -0.0531432        initial
    9         1.49271  -0.000458365        interpolation
   10         1.49289   4.30326e-08        interpolation
   11         1.49289   -3.6593e-13        interpolation
   12         1.49289   4.44089e-16        interpolation
   13         1.49289   4.44089e-16        interpolation
 
Zero found in the interval [1.472, 1.69051]
x = 1.4929

Roots of single-variate algebraic polynomial

In many common cases, the non-linear equation we have solve is an algebraic polynomial, meaning that it
only contains powers of the unknown variable multiplyed by some constants and can be given in the form:

The  coefficients are real numbers and n is the order of the polynomial.

Finding the roots of a function in the form above can be done in multiple ways in MATLAB. One of these
ways is the roots function, which numerically solves for the polynomials roots by giving it the vector of
coefficients (e.g.  for the polynomial ). Another method is the solve function,
which calculates the symbolic (in other words, exact) solutions.

Finding principal stresses and axes

An example from mechanics would be finding the principal stress values and their axes from the Cauchy
stress tensor. The tensor expresses the stresses in a point in the following way (shown on the figure):
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The principal axes would be where there is only normal stress, in other words the tensor looks like this:

, where .

Mathematically, this is considered a eigenvalue-eigenvector problem. The form of the solution for calculating
the principal stresses and the principal axes can be given as follows:

The non-trivial solutions are given where the determinant of the coefficient matrix is equal to 0:

Consider an example, where the stress matrix is following:

We can use MATLAB to find the determinant symbolically of matrix F:

F = [50, 20, -40; 20, 80, -30; -40, -30, -20] % stress matrix

F = 3×3
    50    20   -40
    20    80   -30
   -40   -30   -20

syms ps % create a symbolic variable called 'ps'
eq = det(F - eye(3) * ps) % the determinant of the coefficient matrix

eq = 
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This is the so called characteristic equation of the matrix, which happens to be an algebraic polynomial. We
can use the roots function to find its solutions if we give the vector of coefficients as an input fo the solver:

pssr = roots([-1, 110, 1500, -197000])

pssr = 3×1
  106.7674
  -41.3691
   44.6017

We can also use the solve function to find the symbolic solutions of the symbolic expression above:

sol1 = solve(eq)

sol1 = 

We have to convert this double in order to see the numeric values:

sol2 = double(sol1)

sol2 = 3×1
  -41.3691
   44.6017
  106.7674

Checking the solution can be done by substituting them into the original equation, however, we must first
convert the symbolic expression into an anonymous function:

eq2 = matlabFunction(eq);
eq2(sol2)

ans = 3×1
     0
     0
     0

Plot the equation and the solutions:

figure(4)
hold on;
g4 = fplot(eq, [-50, 150], 'Color', 'r', 'LineWidth', 2);
g5 = line([-50, 150], [0, 0]);
plot(sol2, eq2(sol2), 'ko');
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Systems of Linear Equations I.

In applied mathematics, systems of linear equations carry great importance as many engineering problems
can be modelled using these systems. Working with systems of linear equations tends to be less complicated
and therefore favored when compared to other methods. Moreover, many real physics problems can be
considered linear in the close vicinity of the state we are investigating, which means that linear model not
only supplies with a simple solution but also that the solution adequately approximates the real physical
phenomenon.

In numerical methods, many other tools can be traced back and simplified to solving systems of linear
equations (such as interpolation or regression). Solving systems of linear equations means doing many
matrix operations which can be efficiently carried out using numerical environments such as MATLAB.

Example problem for a system of linear equations

For a construction we need the following materials:

• Sand: 4800 
• Fine gravel: 5810 
• Coarse gravel: 5960 

Three mines supply the materials needed. The transported materials from each mine have the following
composition:

1. mine: Sand: 52% - Fine gravel: 30% - Coarse gravel: 18%
2. mine: Sand: 20% - Fine gravel: 50% - Coarse gravel: 30%
3. mine: Sand: 25% - Fine gravel: 20% - Coarse gravel: 55%

Question: How much material should be transported from each mine to satisfy the material needs of the
contruction?

Let  denote the amount of materials in  units transported from each mine. Each x value is positive
of course. The system of equations denoting the materials supplied by all of the mines:

This system of equations can be written in matrix form as the following:
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This is of course a far simpler problem than what usually arises. It is not uncommon in engineering problems
that we have to solve equations resulting matrices with thousands of rows and columns. It is because of this
fact that we always have to consider the efficiency of the algorithms as well.

Existence of the solution for a linear system of equations

In general form, every system of linear equations can be given using a coefficient matrix (  with size m x n),

a vector of unknowns (  with size n x 1) and right-hand side vector (  with size m x 1):

We can talk about homogeneous systems when the vector b is equal to zero ( ) and inhomogeneous

systems when the vector . In the homogeneous case, there is a non-trivial solution (when ) only,

when the determinant of A is zero ( ), in other words, the matrix A is singular. If there is a non-trivial
solution, it means that there are infinitely many solutions (as we can just multiply any solution by an arbitrary
number and still get 0).

In the inhomogeneous case, we have no solutions if the rank of matrix A( ) is less then the rank of
augmented coefficient matrix (when we concatenate the right-hand side vector b to the right of matrix A, that
is, we have ), or in mathematical terms . This basically means, that we cannot
construct the right-hand side vector from the linear combination of the columns of A, in other words, the right-
hand side vector does not lie in the column space of A. In these cases we may still have an approximate
solution, which does not solve the equations exactly, but strives to tries to solve them with the least amount
of residuals (least squares solution). If the number of rows of the coefficient matrix is bigger than the number
of columns, we say that the problem is overdetermined (more equations than unknowns).

When we do have a solution, we can have to cases. Firstly, having a solution means, that the rank of the
coefficient matrix is equal to the rank of the augmented coefficient matrix, that is .
In this case, the right-hand side vector lies in the column space of A and therefore, the augmented matrix
has the same rank as the original matrix because the vector b is not linearly independent of the columns
of A (it can be constructed from the columns of A). We have an exact solution when the coefficient matrix is
full rank, meaning , where n is the number of columns and the determinant of the matrix is not
zero. If the determinant is zero, that is the matrix is singular, we cannot invert is which means we cannot
find the solution. (Singular matrices can be inverted as well, more on that later.) If  , then we
have infinitely many solutions as there is at least one linearly dependent column in A. In this case, we can
talk about an underdetermined system, when A has less rows than columns, in other words, there are more
unknowns than equations, therefore there have to be dependent uknowns and hence the infinite number of
solutions. The other case is when A is a square matrix, if this happens, we say that A is rank deficient. When
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having and infinite number of solutions, we can always find a solution which has the smallest norm (least
norm solution). The solution possibilities are visualized in the figure below:

Existence of solution for our example

Let's check if a solution exists for the example problem. The problem is inhomogeneous as .

Defining the variables:

clear all; close all;
A = [0.52, 0.20, 0.25; 0.30, 0.50, 0.20; 0.18, 0.30, 0.55]

A = 3×3
         0.52          0.2         0.25
          0.3          0.5          0.2
         0.18          0.3         0.55

b = [4800; 5810; 5960]

b = 3×1
        4800
        5810
        5960

Create the augmented coefficient matrix:

aug = [A, b] % concatenate matrix A and vector b

aug = 3×4
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         0.52          0.2         0.25         4800
          0.3          0.5          0.2         5810
         0.18          0.3         0.55         5960

Check if the rank of A is equal to the rank of :

rank(A) == rank(aug) % logical equality operator: is rank(A) equal to rank(aug)?

ans = logical
   1

The answer is logical 1 (meaning yes). The ranks of the two matrices are equal, therefore we have a solution.
Let's check if A is full rank or rank deficient, in other words, whether we have an exact solution of infinitely
many:

[rownum, colnum] = size(A) % if the size function only has one input, it returns two outputs

rownum = 
     3
colnum = 
     3

rownum = size(A, 1) % only the number of rows (the 1st dimension)

rownum = 
     3

colunm = size(A, 2) % only the number of columns (the 2nd dimension)

colunm = 
     3

The rank of the matrix is equal to the number of columns which means that we have one solution. Does the
solution exist? We have to check the determinant of A to find out:

det(A)

ans = 
        0.086

The determinant is not zero and therefore our one solution exists.

Let's solve the system using multiple built-in methods:

% computing the inverse of A directly
x1 = inv(A)*b

x1 = 3×1
       3744.8
       7071.7
       5753.5
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% using the '\' operator
x2 = A\b

x2 = 3×1
       3744.8
       7071.7
       5753.5

% using the linsolve function
x3 = linsolve(A, b)

x3 = 3×1
       3744.8
       7071.7
       5753.5

All methods give the same solution naturally, but let's check if they truly solve the system. The easiest way
is to calculate the left-hand side , subtract is from the right-hand side b and calculate the norm of the
resulting vector. If this is zero, than the solution clearly solves the system.

res = A*x1 - b

res = 3×1
     0
     0
     0

norm(res)

ans = 
     0

Matrix decompositions

When solving systems of linear equations by hand, we use the Gaussian elimination method (or maybe the
Gauss-Jordan elimination, where we mutiply the rows of the augmented coefficient matrix by constants and
subtract them from each other until we get an upper triangular matrix. For example, we have an augmented
coeff. matrix:

From the third row:

    

From the second row:
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From the first row:

    

Sometimes, we have to solve multiple systems of linear equations that have the same coefficient matrices
and only the right-hand side changes. In out example, we can imagine that we are simulating using the same
mine for different constructions with different material needs. As most of the work during the elimination is
done on the matrix A, it would be efficient, if we could save the steps of the elimination and just reuse them
each time. This is where matrix decompositions come into the picture.

LU decomposition

The LU decomposition splits the matrix into an upper triangular matrix  and a lower triangular matrix L, in
such a way that:

where P is a permutation matrix denoting the row switches in the matrix (if there were any). The upper
triangular matrix contains the form after the Gaussian elimination and the lower triangular matrix contains the
operations needed to get there.

We can create the LU decomposition of the coefficient matrix the following way:

[L, U, P] = lu(A)

L = 3×3
            1            0            0
      0.57692            1            0
      0.34615          0.6            1
U = 3×3
         0.52          0.2         0.25
            0      0.38462     0.055769
            0            0         0.43
P = 3×3
     1     0     0
     0     1     0
     0     0     1

To solve the system using the decomposition, we first have to permute both sides of the equation using the
matrix P.

Then, we can substitute :

Let , then we get . Now we only have to solve the two equations.

d = P * b % permuted b vector

d = 3×1
        4800
        5810
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        5960

opt1.LT = true; % create an option for the solver telling it that the matrix we are using is lower triangular
y = linsolve(L, d, opt1)

y = 3×1
         4800
       3040.8
         2474

opt2.UT = true % telling the solver that now we have an upper triangular matrix

opt2 = struct with fields:
    UT: 1

xLU = linsolve(U, y, opt2)

xLU = 3×1
       3744.8
       7071.7
       5753.5

norm(A * xLU - b) % checking the solution

ans = 
     0

Cholesky decomposition

The Cholesky decomposition is similar to the LU decomposition but now the matrix A is split into a upper
triangular matrix L in such a way that:

Using this decomposition, the solution becomes: .

• , where  is a lower triangular matrix.
• , where L is an upper triangular matrix.

The Cholesky decomposition can only be done if the following criteria are met:

• The matrix A is symmetric, that is  and
• The matrix A is positive definite, that is every eigenvalue of the matrix is greater than

0: .

Let us check if A in our example meets the criteria:

norm(A' - A) % A is definitely not symmetric

ans = 
       0.1578
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The norm is not 0, therefore the matrix is not symmetric. We can also see this by simply looking at the values
in the matrix.

Consider a different example, let the coefficient matrix be a matrix of binomial coefficients and let's have an
arbitrary right-hand side vector vector:

B = pascal(4) % creates a 4x4 matrix of binomial coefficients

B = 4×4
     1     1     1     1
     1     2     3     4
     1     3     6    10
     1     4    10    20

r = rand(4, 1) % random 4x1 vector

r = 4×1
      0.65574
     0.035712
      0.84913
      0.93399

Check if our new coefficient matrix is symmetric and positive definite:

norm(B' - B) % symmetry check

ans = 
     0

[V, D] = eig(B) % eigenvectors and eigenvalues of the matrix

V = 4×4
      0.30869     -0.78728      0.53037     0.060187
     -0.72309      0.16323      0.64033      0.20117
      0.59455      0.53211      0.39183      0.45808
     -0.16841     -0.26536      -0.3939      0.86375
D = 4×4
     0.038016            0            0            0
            0      0.45383            0            0
            0            0       2.2034            0
            0            0            0       26.305

min(diag(D)) > 0 % the eigenvalues are in the diagonal of matrix D, check if the minimum if greater than 0

ans = logical
   1

Our new matrix B meets the criteria, so we can use the Cholesky decomposition:

L = chol(B)

L = 4×4
     1     1     1     1
     0     1     2     3
     0     0     1     3
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     0     0     0     1

norm(L'*L - B) % check the decomposition

ans = 
     0

opt1.LT = true; % first we compute with L' which is lower triangular
y = linsolve(L', r)

y = 4×1
      0.65574
     -0.62003
       1.4334
       -2.162

opt1.UP = true; % now we are working with L which is upper triangular
xchol = linsolve(L, y)

xchol = 4×1
       4.8712
      -9.9729
       7.9194
       -2.162

norm(B * xchol - r) % check the correctness of the solution

ans = 
   9.7554e-15

Infinite number of solutions (underdetermined system)

Sometimes we have fewer equations than unknowns and therefore an underdetermined system. We
discussed before that in these cases, the system of equations has infinitely many solutions but we can
always find one particular solution which has the smallest norm of all the possibilites.

If we have more unknowns than equations, than some unknowns can be arbitrarily chosen and the values of
the other unknows vary depending on these. Mathematically, this can happen, when ,

but . We might have a square coefficient which is rank deficient, for example:

 is rank deficient

The other case would be the underdetermined system. We can achieve the least norm solution
( using the following formula:
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Let's solve the following system and calculate the least norm solution:

,      

Check the number of solutions:

A = [7, 2, 0, 2; 1, 8, 1, 8]

A = 2×4
     7     2     0     2
     1     8     1     8

b = [1; 2]

b = 2×1
     1
     2

rank(A)

ans = 
     2

rank([A, b])

ans = 
     2

size(A, 2)

ans = 
     4

We can clearly see that the rank of the coefficient matrix is equal to the rank of the augmented matrix, which
means there is a solution, however, the rank is less than the number of columns of the matrix, which means
infinitely many solutions. Let's calculate the least norm solution:

x = A' * inv(A * A') * b

x = 4×1
     0.074546
      0.11954
     0.012736
      0.11954

norm(A*x - b) % checking the solution

ans = 
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     0

norm(x)

ans = 
      0.18521

The solution vector does solve the system and norm of the solution vector is 0.1852. This solution has the
smallest norm of all the possible solutions. 

Calculating the inverse is usually slower than using a matrix decomposition. The problem is that we cannot
use the LU and Cholesky decompositions on a rectangular matrix as they only work on square matrices. The
problem can only be solved other decompositions, such as the QR decomposition and the Singular Value
Decomposition (SVD).
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Systems of linear equations II.

During the previous practical, we looked at systems of linear equations which have either one unique
solution, or an infinite number of solutions. In the latter case, we can still find a unique solution, namely if we
prescribe the constrict of , where x is the solution vector.

As we saw, the computation of the inverse of the coefficient matrix used to solve the system of equations can
be very computationally expensive, especially as the size of the matrix increases. Moreover, depending on
the algorithm used, the result of the algorithm can be numerically less precise, which in certain cases (for
example, when calculating the inverse multiple times) can lead to unintended round-off errors. It is always
recommended to use some kind of decomposition or factorization of the coefficient matrix when solving linear
systems, however, the LU and Cholesky decompositions that we have studied only work on square matrices
(with even more constrictions in the case of the Cholesky decomposition). If our matrix is rectangular, as in
the case of underdetermined or overdetermined systems, we may use the QR factorization or the Singular
Value Decomposition (SVD).

QR factorization

The QR factorization uses the fact that every matrix A, independent of its shape, can be decomposed
into the product of an orthonormal matrix Q and an upper rectangular matrix R, such that . The

orthonormality of matrix Q means that , that is, the inverse of Q is equal to its transpose.

The original  system becomes:
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.

We can multiply from the left by  (because Q is orthonormal), so we don't have to use invertion.

The second step is solving the  equation, but because R is an upper rectangular matrix, we can
simply solve this by back-substitution.

There are multiple algorithms to compute this factorization, such as using the Gram-Schmidt process to find
the orthonormal basis of the column vectors of A, the Household-transformation and more. Calculating the
QR factorization using the Gram-Schmidt process is the simplest way, however, it tends to be numerically
unstable in certain cases and therefore usually other methods are implemented in numerical algorithms.

Let's solve the example from the previous practical:

,      

Remember that the example has infinitely many solutions as the rank of the coefficient matrix is only 2. As
the coefficient matrix is rectangular, we have to use the QR factorization to decompose it.

clear all; close all; format short
A = [7, 2, 0, 2; 1, 8, 1, 8]; b = [1; 2];
rA = rank(A) % rank of A

rA = 2

[Q, R] = qr(A) % QR factorization

Q = 2×2
   -0.9899   -0.1414
   -0.1414    0.9899
R = 2×4
   -7.0711   -3.1113   -0.1414   -3.1113
         0    7.6368    0.9899    7.6368

norm(Q' * Q) % checking if Q is orthonormal

ans = 1

norm(A - Q*R) % checking the correctness of the factorization

ans = 8.8818e-16

Calculate the new right side of the system:

B = Q' * b
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B = 2×1
   -1.2728
    1.8385

Solve the second step using the fact that R is an upper rectangular matrix:

opts.UT = true

opts = struct with fields:
    UT: 1

x = linsolve(R, B, opts)

x = 4×1
    0.0741
    0.2407
         0
         0

norm(A*x - b) % checking the solution

ans = 0

norm(x) % norm of the solution vector

ans = 0.2519

The solution is correct, but its norm is not the same as the norm of the solution from the end of the previous
practical (0.1852). The solution by QR factorization does not give us the solution with the least norm, rather it
gives us the solution with the most zero entries. Depending on the concrete problem, one or the other might
be more suitable.

Singluar Value Decomposition (SVD)

The SVD is another form of decomposition that can be used arbitrarily shaped matrices. It is very similar to
the eigendecomposition which is used in the case of square matrices:

• Eigenvalues: matrix A (with size m x m) has an eigenvalue λ is we can find a vector v ( )

such, that . In this case, the vector v is called an eigenvector of A corresponding
to the eigenvalue λ. The eigenvalues can be found using the characteristic polinomial of the
matrix . In MATLAB, we can use the eig function: [V, D] = eig(A).

• Singular values: the singular values of a matrix A (with size m x n) are the squares of the non-

zero eigenvalues of the product  ( , where  is the i-th singular value and  is

the i-th eigenvalue of the product ). In MATLAB, we can compute the SVD by using
the svd function: [U, S, V] = svd(A).

The SVD decomposes the matrix A (m x n) into the product of three matrices:
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where:

• U is an orthonormal matrix ( ) with size m x m, the first r columns of which are the

eigenvectors of the product .
• S is a diagonal matrix with size m x n that contains the singular values of A on its diagonal.
• V is a orthonormal matrix ( ) with size n x n, the first r columns of which are the eigenvectors

of the product .

When using the SVD of a matrix to solve a linear system of equations, the great thing about it is that the
inverse of matrix A can be very easily computed because of the structure of the resulting matrices:

Because of the orthogonality of U and V:

, which can be rewritten as .

We can see, that only the matrix S has to be inverted, which is really simple as S is a diagonal matrix:

Let's solve the previous example using the SVD:

[U, S, V] = svd(A) % SVD of matrix A

U = 2×2
   -0.3979    0.9174
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   -0.9174   -0.3979
S = 2×4
   12.1209         0         0         0
         0    6.3312         0         0
V = 4×4
   -0.3055    0.9515    0.0368   -0.0015
   -0.6712   -0.2130   -0.0933   -0.7039
   -0.0757   -0.0629    0.9943   -0.0406
   -0.6712   -0.2130   -0.0356    0.7092

Check the resulting properties of the matrices:

norm(A - U*S*V') % matrix A is correctly factored

ans = 2.6295e-15

norm(U' * U) % U is an orthonormal matrix

ans = 1.0000

V' * V - eye(4) % V is an orthonormal matrix

ans = 4×4

10-15 ×
    0.2220    0.2220    0.0139   -0.0538
    0.2220         0         0    0.0796
    0.0139         0   -0.1110    0.0139
   -0.0538    0.0796    0.0139         0

Compute the inverse using the results of the SVD:

invS = (1./S)' % take the diagonal elements of S and take the reciprocal of each element

invS = 4×2
    0.0825       Inf
       Inf    0.1579
       Inf       Inf
       Inf       Inf

invS(invS == Inf) = 0 % make every Inf element in invS equal to 0

invS = 4×2
    0.0825         0
         0    0.1579
         0         0
         0         0

invA = V * invS * U' % inverse of matrix A calculated using the SVD matrices

invA = 4×2
    0.1479   -0.0367
   -0.0088    0.0642
   -0.0066    0.0097
   -0.0088    0.0642

Solve the system of equations:
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x = invA * b

x = 4×1
    0.0745
    0.1195
    0.0127
    0.1195

norm(A*x - b) % check correctness of the results

ans = 9.1551e-16

norm(x) % norm of the solution

ans = 0.1852

The norm of the solution is the same as norm from the last practical, in other words, the SVD solution
calculates the least norm solution as well.

The inverse matrix calculated with the SVD is also called the pseudo-inverse or generalized inverse. When
the matrix is not singular ( ), the generalized inverse is the same as the normal inverse, but in the

case of a singular matrix ( ), only the pseudo-inverse can be calculated.

Apart from solving systems of linear equations, the SVD is a widely used method in applied mathematics,
computer vision, statistics and signal analysis. Some of its applications include data approximation (when
working with very big matrices), dimensionality reduction, trend analysis and forecasting (recommendation
services for companies like Netflix, Amazon etc.).

Built-in functions for solving systems of linear equations with
rectangular coefficient matrix

The built-in pinv command uses the SVD of the matrix to calculate its generalized inverse when the matrix
is rectangular. If the matrix is square and non-singular, the pinv function shouldn't be used to calculate the
inverse (it is computationally expensive).

x = pinv(A)*b % solution using the built-in pinv function

x = 4×1
    0.0745
    0.1195
    0.0127
    0.1195

The results are the same as from the 'manual' calculation.

The other built-in functions for solving systems of linear equations:

• The \ operator (mldivide) uses the LU or the Cholesky decomposition for square matrices and the
QR factorization for rectangular matrices.
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• The linsolve uses the same methods as the \ operator, but it can be parametrized using
preliminary knowledge about the structure of the matrix (upper/lower triangular nature).

Overdetermined System (no solution exists)

In most engineering problems, we are using some kind of measurement and calculating parameters values
using some form of mathematical model of the given physical phenomenon. It often happens that in order to
minimize the effect of measurements errors (at least those, that cannot be eliminated by choosing a specific
configuration), we make more measurements than there are unknowns in the mathematical model. If the
model is linear, then what we end up with is an overdetermined system of linear equations where we have
more equations than unknowns.

As the measurements are never perfect and there are always random fluctuations in the values, we have
very little hope of finding an exact solution. However, we can still find a solution which minimizes the sum of
the squares of the discrepancies ( , where  is difference between the i-th unknown computed

value and its theoretical true value (also called error). This is more commonly called the least-squares
solution.

Take a look at an example from surveying. In surveying we almost always have more measurements than
what is absolutely necessary, in order to compensate for measurements errors and eliminate blunders.
Consider the following levelling network:

We measured the height differences along levelling lines 1-7. We also have three benchmarks (points with
known elevations) in the area, A, B and C. Our goal is to calculate the elevation of points D, E and F using all
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the available measurements. As we have 7 measurements and 3 uknown elevations (m > n in matrix A), we
can only find an optimal solution when the sum of the squared errors of the elevations are minimalized. (The
arrows in the figure show the direction of rise in the lines.)

Our system of equations looks like the following:

In matrix form:

  

Instead of typing the matrix and the vector into MATLAB, we can use the already existing levelling.txt file
that contains the values:

clear all
Ab = load('levelling.txt') % loading the values from a text file, gives back 7 x 4 matrix

Ab = 7×4
    1.0000         0         0  189.6410
   -1.0000    1.0000         0    8.3430
         0    1.0000         0  197.9670
   -1.0000         0    1.0000    1.3940
         0   -1.0000    1.0000   -6.9690
         0         0    1.0000  190.9500
         0    1.0000         0  197.9580

A = Ab(:, 1:3) % the first 3 columns are the matrix A

A = 7×3
     1     0     0
    -1     1     0
     0     1     0
    -1     0     1
     0    -1     1
     0     0     1
     0     1     0

b = Ab(:, 4) % the 4th column is the vector b

b = 7×1
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  189.6410
    8.3430
  197.9670
    1.3940
   -6.9690
  190.9500
  197.9580

Check the existence of the solution:

rA = rank(A)

rA = 3

rAug = rank([A, b])

rAug = 4

The rank of A is smaller than the rank of the augmented matrix, which means that no exact solution exits.
As we have an overdetermined system, what we can be looking for, is the solution with least error, that is,
the least-squares solution. Mathematically this is a solution with the constraint . It can be
derived, that this solution is the following:

In MATLAB:

x = inv(A' * A) * A' * b

x = 3×1
  189.6153
  197.9588
  190.9830

As calculating the inverse is computationally expensive, this method is not commonly used in numerical
solutions. We can instead use the QR factorization and the SVD decomposition:

Solution using the QR decomposition:

[Q, R] = qr(A) % QR decomposition of A

Q = 7×7
   -0.5774   -0.1741   -0.3077    0.6243    0.2670   -0.0164   -0.2835
    0.5774   -0.3482    0.0615    0.0684    0.5971    0.2659   -0.3312
         0   -0.5222   -0.2462   -0.3761   -0.1927   -0.5809   -0.3882
    0.5774    0.1741   -0.3693    0.5559   -0.3301   -0.2823    0.0478
         0    0.5222   -0.4308   -0.2879    0.5782   -0.3442    0.0776
         0         0   -0.6770   -0.2680   -0.2481    0.6265   -0.1254
         0   -0.5222   -0.2462    0.0198    0.1737   -0.0292    0.7970
R = 7×3
   -1.7321    0.5774    0.5774
         0   -1.9149    0.6963
         0         0   -1.4771
         0         0         0
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         0         0         0
         0         0         0
         0         0         0

B = Q' * b % new righ side vector

B = 7×1
 -103.8676
 -246.0788
 -282.1006
    0.0344
    0.0083
   -0.0357
   -0.0050

opts.UT = true; % R is upper triangular
xQR = linsolve(R, B, opts) % solution using linsolve and the upper triangular options

xQR = 3×1
  189.6153
  197.9588
  190.9830

The heights of the unknown points are:

•

•

•

norm(A*xQR - b) % the total error of the solution is ~5cm

ans = 0.0506

This means that the errors (random or otherwise) in our measurements only permit us to have a solution
where the sum of the squared errors in the solution is around 5 cm. If we had to submit our results,
we couldn't really vouch for a precision of millimeters, as far as the heights of the unknown points are
considered.

Solution using SVD:

[U, S, V] = svd(A) % SVD of matrix A

U = 7×7
   -0.1494   -0.3536    0.5577    0.6243    0.2670   -0.0164   -0.2835
    0.5577    0.3536   -0.1494    0.0684    0.5971    0.2659   -0.3312
    0.4082   -0.0000    0.4082   -0.3761   -0.1927   -0.5809   -0.3882
    0.0000    0.7071   -0.0000    0.5559   -0.3301   -0.2823    0.0478
   -0.5577    0.3536    0.1494   -0.2879    0.5782   -0.3442    0.0776
   -0.1494    0.3536    0.5577   -0.2680   -0.2481    0.6265   -0.1254
    0.4082   -0.0000    0.4082    0.0198    0.1737   -0.0292    0.7970
S = 7×3
    2.1753         0         0
         0    2.0000         0
         0         0    1.1260
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         0         0         0
         0         0         0
         0         0         0
         0         0         0
V = 3×3
   -0.3251   -0.7071    0.6280
    0.8881   -0.0000    0.4597
   -0.3251    0.7071    0.6280

invS = (1./S)' % inverse of S is the reciprocal of the entries and the transpose of the matrix

invS = 3×7
    0.4597       Inf       Inf       Inf       Inf       Inf       Inf
       Inf    0.5000       Inf       Inf       Inf       Inf       Inf
       Inf       Inf    0.8881       Inf       Inf       Inf       Inf

invS(invS == Inf) = 0 % change the Inf values inside the matrix to 0

invS = 3×7
    0.4597         0         0         0         0         0         0
         0    0.5000         0         0         0         0         0
         0         0    0.8881         0         0         0         0

invA = V * invS * U' % inverse of A using the SVD matrices

invA = 3×7
    0.4583   -0.2917    0.1667   -0.2500    0.0417    0.2083    0.1667
    0.1667    0.1667    0.3333   -0.0000   -0.1667    0.1667    0.3333
    0.2083   -0.0417    0.1667    0.2500    0.2917    0.4583    0.1667

xSVD = invA * b % solution vector

xSVD = 3×1
  189.6153
  197.9588
  190.9830

norm(A * xSVD - b) % sum of the squares of the error

ans = 0.0506

The solution and the error are exactly the same, the difference can be found in the computational time. If we
had to solve the problem for example a 1000 times, the QR factorization would be reasonably faster.

Solution using built-in functions

Let's solve the system 10.000 times using the \ operator and the SVD and time the results:

% the 'tic' keyword starts the timer, the 'toc' keyword ends it
% inside the for loop, the system is solved 1000 times using the \ operator
tic
for i = 1:10000
    x1 = A\b;
end
toc
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Elapsed time is 0.045602 seconds.

Solution using the SVD:

tic
for i = 1:10000
    x2 = pinv(A)*b;
end
toc

Elapsed time is 0.213193 seconds.

We can see that the time it takes to find the solution using pinv is significantly longer (and gets even worse
with larger matrices).

Checking the solutions:

norm(A*x1 - b)

ans = 0.0506

norm(A*x2 - b)

ans = 0.0506

Both solutions give the same errors of course.

Iterative methods of solving systems of linear equations

Apart from direct solutions, we can also employ iterative methods to solve systems of linear equations. In
many cases, especially with sparse coefficient matrices, these solutions can be significantly more efficient.
Let's see an example for these types of solutions:

We have a system of 5 reactors and we want to determine the amount of concentration in each reactor. The
figure of the connection of the reactors is the following:
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As a simplification, the rate of amalgamation in the reactors is considered perfect (the concentration is
perfectly equal in every part of the reactor). We have volumetric flow (Q) into and out of every reactor and
as the amalgamation is perfect, we can use the fact that the sum of the mass flow (concentration times
volumetric flow) into a reactor and out of a reactor is zero. We will use the convention that the outflow is
positive. Consider the first reactor for example on the left side: We have 5 units of inflow with concentration

of 10 units from an outside source and 1 unit of inflow from reactor 3 with concentration . We also

have an outflow of 3 units with concentration  to reactor two and an outflow of 3 units with the same

concentration  to reactor 5. The sum of the incoming and outgoing mass flow is zero (with the outgoing
being positive as convention now):

Similarly, the whole system can be written as the following:

In matrix form:
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The coefficient matrix A contains many zero entries and therefore can be considered a sparse matrix.
Iterative methods are typically used when the coefficient matrix is sparse and the entries are mostly located
along the diagonal and close to it. These type of matrices are called diagonally dominant. 

Iterative methods work differently than direct methods as we first have to supply the algorithms with initial
guesses for the unknown which values are then iteratively changed as the solutions start to converge. (If they
converge.) As an example, let's see the following system:

 

The initial guesses can be substituted into the right-hand side of the equations and we can calculate a new
solution. These are then substituted in the second iteration and so on... We can stop when the changes
in the solutions (the differences between two iterations) become adequately small (smaller than some
tolerance). The formula of iteration in the example above would be the following:

This is basically the equation of the Jacobi iterative method.

We take a look at two iterative methods:

• Jacobi method
• Gauss-Seidel method

The main difference between the two methods is that the Jacobi method changes the values of all the
unknowns at the end of an iteration, while the Gauss-Seidel method changes the value of each unknown
right after they are calculated and uses these new values inside the same iteration. This means, that in the

second method, when we refresh the value of , we use this new value to calculate the new  values
in the same iteration. We can derive the iterative formulas using matrix notation starting from the well known
form .

Add  and subtract  from the left-hand side of the equation. Depending on the choice of matrix B, we
will have the different methods:

Rearrange the equation:

Multiply from the left side by :
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Group the coefficients of x on the right-hand side:

This gives us the formula to compute the k+1-th iteration of vector x:

Let Ai denote  and bi denote , then we can write the equation in a more concise form:

We can create a separate function which handles the iterative solution in the above form given some
matrix Ai, some vector bi, a vector of initial guesses, a tolerance value for the stop condition and a value for
the maximum number of iterations. Find this function in iterative.m.

Solution using the Jacobi method

In case of the Jacobi method, the matrix B contains the diagonal elements of matrix A, which means that it is
very simple to calculate the inverse of B. We can use a vector of ones as the initial guess. First, let's load the
data and check if the solution exists:

Ab = load('waterplant.txt')

Ab = 5×6
     6     0    -1     0     0    50
    -3     3     0     0     0     0
     0    -1     9     0     0   160
     0    -1    -8    11    -2     0
    -3    -1     0     0     4     0

A = Ab(:, 1:end-1)

A = 5×5
     6     0    -1     0     0
    -3     3     0     0     0
     0    -1     9     0     0
     0    -1    -8    11    -2
    -3    -1     0     0     4

b = Ab(:, end)

b = 5×1
    50
     0
   160
     0
     0

size(A)

ans = 1×2
     5     5

rankA = rank(A)
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rankA = 5

rankAug = rank([A, b])

rankAug = 5

The solution exits and as the matrix A is full-rank, we have a unique solution. We first compute the matrix B,
which is now the diagonal elements of A:

B = diag(diag(A)) % the first diag gets the diagonal elements from A as a vector, the second creates a matrix with these diagonal elements

B = 5×5
     6     0     0     0     0
     0     3     0     0     0
     0     0     9     0     0
     0     0     0    11     0
     0     0     0     0     4

x0 = ones(5, 1) % vector of initial guesses

x0 = 5×1
     1
     1
     1
     1
     1

Ai = eye(5) - B\A % new coefficient matrix

Ai = 5×5
         0         0    0.1667         0         0
    1.0000         0         0         0         0
         0    0.1111         0         0         0
         0    0.0909    0.7273         0    0.1818
    0.7500    0.2500         0         0         0

bi = B\b % new right-hand side vector

bi = 5×1
    8.3333
         0
   17.7778
         0
         0

X = iterative(Ai, bi, x0, 1e-9, 100)

X = 5×20
    1.0000   11.3148   11.3148   11.4537   11.5058   11.5058   11.5084   11.5094
    1.0000    8.5000   11.3148   11.3148   11.4537   11.5058   11.5058   11.5084
    1.0000   17.8889   18.7222   19.0350   19.0350   19.0504   19.0562   19.0562
    1.0000   13.2828   14.9874   16.5741   16.9295   16.9610   16.9904   16.9970
    1.0000    6.6250   10.6111   11.3148   11.4190   11.4928   11.5058   11.5078

iters = size(X, 2)

iters = 20
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Seems like it took 20 iterations for the algorithm to reach the tolerance. Check the results:

norm(A*X(:,end) - b)

ans = 1.0922e-09

We can see, that the check only gives zero with the tolerance specified. Plot the convergence of the
solutions:

figure(1)
plot(X', '*-') % the plot functions works by going through columns, so we have to transpose the matrix, we use '*' as the marker and connect the markers with a solid line

Solution using the Gauss-Seidel method

In order to solve the system using the Gauss-Seidel method, we only have to change the matrix B. In this
case, it becomes the lower triangular part of matrix A.

B = tril(A) % lower triangular part of A

B = 5×5
     6     0     0     0     0
    -3     3     0     0     0
     0    -1     9     0     0
     0    -1    -8    11     0
    -3    -1     0     0     4
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Ai = eye(5) - B\A % new coefficient matrix

Ai = 5×5
         0         0    0.1667         0         0
         0         0    0.1667         0         0
         0         0    0.0185         0         0
         0         0    0.0286         0    0.1818
         0         0    0.1667         0         0

bi = B\b % new right-hand side vector

bi = 5×1
    8.3333
    8.3333
   18.7037
   14.3603
    8.3333

X = iterative(Ai, bi, x0, 1e-9, 100)

X = 5×9
    1.0000   11.4537   11.5084   11.5094   11.5094   11.5094   11.5094   11.5094
    1.0000   11.4537   11.5084   11.5094   11.5094   11.5094   11.5094   11.5094
    1.0000   19.0504   19.0565   19.0566   19.0566   19.0566   19.0566   19.0566
    1.0000   16.4415   16.9880   16.9981   16.9983   16.9983   16.9983   16.9983
    1.0000   11.4537   11.5084   11.5094   11.5094   11.5094   11.5094   11.5094

iters = size(X, 2) % number of iterations

iters = 9

norm(A*X(:, end) - b)

ans = 4.3947e-12

Now, it only took 9 iterations to reach at least the desired tolerance. The convergence of the Gauss-Seidel
method is significantly better than the Jacobi method. Plot the convergence:

figure(2)
plot(X', '*-')
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We can see from the figure, that after 3 iterations, the changes to the solutions become very small. If we
want to use the built-in function to solve the system iteratively, we can use the gmres command:

[x, flags, relres, iter, resvec] = gmres(A, b)

x = 5×1
   11.5094
   11.5094
   19.0566
   16.9983
   11.5094
flags = 0
relres = 4.5153e-17
iter = 1×2
     1     4
resvec = 5×1
  167.6305
  114.7905
   34.1596
   26.1821
    0.0000

norm(A*x - b)

ans = 5.0494e-14

The gmres function can give us information about the solution method: flags store the exit code of the
algorithm (if it is not zero, the algorithm couldn't reach an adequate solution), relres returns the residual
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norm, iter returns the number of outer and inner iterations and the resvec returns the amount of residual
norms at each inner iteration.

If we are working with large sparse matrices, it is better to use the sparse function to efficiently store the
matrix.
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Nonlinear Systems of Equations

In civil engineering practice there are multiple problems that can be only be modeled by systems of nonlinear
equations. For example in surveying, many positioning tasks are carried out by finding the intersection of
curves that are defined by nonlinear functions of the unknown coordinate values, but other examples can be
given from soil mechanics and so on.

Let's look at the following typical problem represented by a nonlinear system. We have 3 cell towers dealing
with mobile phone traffic. If we can measure the distance of the device from each tower (using the signal
strength for example) and we know the positions of the towers (their coordinates for example) then we can
find the position of the device as the intersection of the three circles drawn around the cell towers. The radii
of the circles represent the distance of the device from each of the towers. See the figure below.

The equations of the circles are given in the form of quadratic equations and therefore the three
circles give us a nonlinear system where x and y denote the unknown coordinates of our mobile

phone,  and  represent the known coordinates of the cell towers and  are the
distances of our device from the towers (the radii of the circles). One equation can be written as the following:

Squaring both sides and rearranging so that on the right side we have 0:
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Our system is then the following:

If we first start with only two equations instead of three, we have to find the roots of a polynomial of the fourth
degree, which we could solve by hand, but our aim is now to automate the task and harness the power of
numerical algorithms to quickly and easily find all solutions.

Vector Notation of Nonlinear Systems

When solving nonlinear systems numerically, we have to use the vector notation to represent the systems.
This is mostly due to the fact that the algorithms developed to efficiently solve these problems also use the
vector notation as it makes it much simpler to work with the equations and the solutions as vectors instead
of individual objects. This means that for example, instead of having each solution as , we have a

solution vector x, the entries of which are the individual solutions: .

The general case is when we have as many equations as unknowns. The equations are given in the form:

We create a vector to represent the equations and a vector to represent the solutions:

Using vector notation, the system becomes (where 0 is the null vector):

When we were solving a single nonlinear equation, we had to supply the algorithm with a single initial guess.
Now, as we have n equations, we have to give the algorithms a vector of initial guesses that contains the
initial values for each of the n unknowns.

Visualizing the Mobile Positioning Problem

Let's first use only two cell towers and visualize the problem. The coordinates of the cell towers and their
distances from the device (in kilometers) are the following:

1.       
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2.       

First, we define the two implicit equations as shown above, using anonymous functions:

clear all; close all;
 
f1 = @(x, y) (x-1).^2 + (y-1).^2 - 5^2;
f2 = @(x, y) (x-10).^2 + (y-8).^2 - 8^2;

We can use the MATLAB function fimplicit to plot the functions:

figure(1)
fimplicit(f1, [-5, 20, -5, 20], 'b-') % second argument is the range
hold on
fimplicit(f2, [-5, 20, -5, 20], 'r--')
axis equal % to make the axis have the same lengths

When we only had one equations, we could use the Newton-Raphson method for instance to iteratively find
the solution. However, the Newton-Raphson method can also be generalized to solve systems of nonlinear
equations.

Newton-Raphson Method for Solving Nonlinear Systems
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In case of the Newton-Raphson method for a single equation, we used the initial guess and the derivative of
the function to find the next iteration of the solution. As the solution got updated, we got closer and closer to
0 for the function value:

where  is the initial guess. Generalizing to a system of equations using the vector notation, we can write:

where f is the vector of equations,  is the vector of initial guesses and J is the Jacobian-matrix of the
system. The Jacobian contains the partial derivatives of the equations with respect to each unknown at the
values of the initial guesses. Each row corresponds to one equation:

Let's see the following example:

The Jacobian of the system contains the partial derivatives of the equations:

We want to solve the following system of equations:

If we rearrange the system and solve for  to find the next iteration of the unknowns, we get:

We can solve this, if the Jacobian can be inverted (not singular). However, as we have seen in the case of
linear systems, computing the inverse of a matrix directly is not very computationally efficient, we resort to
another way of solving this. Use the  notation for the original equation:

This gives us a linear system in the form of , which we can solve very efficiently using the methods

mentioned in previous practicals. If we find , we can then find  as well:
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During each iteration, we solve the following two problems:

1. Calculation of the update of  from  (using QR decomposition for example).
2. Updating the value of  and calculating the new solutions: .

The iterations continue until the function values become zero with some tolerance or if the solutions become
close to each other with some tolerance.

Multivariate Newton-Raphson Method in MATLAB

We can create a custom function in MATLAB that solves a given system of nonlinear equations using the
multivariate Newton-method:

function [x1, n] = newtonsys (f, J, x0, eps, nmax)
        dx = J(x0)\-f(x0);  % first iteration
        x1 = x0 + dx;       % first iteration
        n = 1;
        while norm(x1-x0)>eps && n<=nmax
            x0 = x1;
            dx = J(x0)\-f(x0);
            x1 = x0 + dx;
            n = n + 1;
        end
end

Solution using the custom function

Let's solve the system of two equations that we visualized using the custom function above (located
in newtonsys.m). We first have to find the Jacobian of the system. We can use symbolic derivation to find it
automatically:

First, we create two symbolic variables:

syms x1 x2

Then, we define our functions as symbolic functions using our new symbolic variables in order to be able to
differentiate symbolically:

fs1 = f1(x1, x2)

fs1 = 

fs2 = f2(x1, x2)

fs2 = 
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The Jacobian-matrix can be found using the jacobian function:

js = jacobian([fs1; fs2], [x1, x2]) % the first input is the vector of the equations, the second one is the vector of the unknowns we want to differentiate with respect to

js = 

This gives us the Jacobian-matrix as a symbolic objects. We need to convert this into an anonymous function
in order to be able to calculate with it:

J = matlabFunction(js)

J = function_handle with value:
    @(x1,x2)reshape([x1.*2.0-2.0,x1.*2.0-2.0e1,x2.*2.0-2.0,x2.*2.0-1.6e1],[2,2])

We can use this form, to calculate the value of the Jacobian at any  point, for example:

J(2, 3)

ans = 2×2
     2     4
   -16   -10

The final task before we can find the solutions is the vectorization of the equations and the Jacobian. This
means that we want to have only one input variable, so instead of  we only want to have x (a vector), the

entries of which are  and :

f = @(x) [f1(x(1), x(2)); f2(x(1), x(2))] % we substitute the first and second entries of x into the equations

f = function_handle with value:
    @(x)[f1(x(1),x(2));f2(x(1),x(2))]

J = @(x) J(x(1), x(2))

J = function_handle with value:
    @(x)J(x(1),x(2))

Now, we can use our custom function to find the solutions. First we define the initial guesses (using the figure
above).

The first solution:

x01 = [2; 5];
[x1, i1] = newtonsys(f, J, x01, 1e-9, 100)

x1 = 2×1
    2.3005
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    5.8279
i1 = 5

The second solution:

x02 = [5; 0];
[x2, i2] = newtonsys(f, J, x02, 1e-9, 100)

x2 = 2×1
    5.9995
    1.0721
i2 = 5

Check the correctness of the solutions:

norm(f(x1))

ans = 1.4648e-14

norm(f(x2))

ans = 3.5527e-15

Let's visualize the solutions:

plot(x1(1), x1(2), 'ko')
plot(x2(1), x2(2), 'ko')
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What happens if we have  (the coordinates of the first tower) as our initial guess?

x03 = [1; 1];
[x3, i3] = newtonsys(f, J, x03, 1e-9, 100)

Warning: Matrix is singular to working precision.
Warning: Matrix is singular, close to singular or badly scaled. Results may be inaccurate. RCOND = NaN.
x3 = 2×1
   NaN
   NaN
i3 = 2

The Jacobian becomes singular and solution doesn't converge. This illustrates that we have to choose our
initial guesses carefully when solving systems of nonlinear equations.

Solution Using Built-in MATLAB method fsolve

The built-in fsolve method uses a combination of algorithms to find the optimal solution of the system.
Similarly to the fzero function used for one equation, it can be parametrized to show each iteration step
or to have certain tolerance values of the function values and the differences between each iteration of the
unknowns. Similarly to the multivariate Newton-method, we have to run the function twice with different initial
guesses to find both solutions. Supplying the Jacobian is not necessary however.

First, we give the solver some options to show us the iterations and also specify the tolerance for the function
values:

opts = optimset('TolFun', 1e-9, 'Display', 'iter');
x1 = fsolve(f, x01, opts)

                                         Norm of      First-order   Trust-region
 Iteration  Func-count     f(x)          step         optimality    radius
     0          3             145                           160               1
     1          6         1.77485       0.970584           12.4               1
     2          9     0.000981063       0.148822          0.284            2.43
     3         12     3.63457e-10     0.00367156       0.000173            2.43
     4         15     5.56836e-23    2.23746e-06       7.13e-11            2.43

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the selected value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>
x1 = 2×1
    2.3005
    5.8279

x2 = fsolve(f, x02, opts)

                                         Norm of      First-order   Trust-region
 Iteration  Func-count     f(x)          step         optimality    radius
     0          3             689                           384               1
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     1          6         65.1904              1            104               1
     2          9        0.100068       0.472951           3.09             2.5
     3         12     3.61907e-06      0.0366768         0.0184             2.5
     4         15     4.94207e-15    0.000223254        6.8e-07             2.5
     5         18               0    8.25795e-09              0             2.5

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the selected value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>
x2 = 2×1
    5.9995
    1.0721

The solutions are the same of course.

The method fsolve can be used to solve other types of nonlinear systems as well that contain trigonometric,
exponential and other kinds of expression. It can also be used to solve a single equation, however, in that
case fzero is much more efficient.

Symbolic Solution Using the Built-in solve method

If our problem can be formulated as an algebraic polynomial, we can also use the solve method. The
advantages are that we don't have to given an initial guess to the algorithm and we can get back every
solution at once. The downside is that we get the solution in algebraic form so we have convert them into
numeric values to be able to work with them afterwards.

To use solve, we have to specify the equations in symbolic form. We have already done this for the
computation of the Jacobian:

xs = solve([fs1, fs2])

xs = struct with fields:
    x1: [2×1 sym]
    x2: [2×1 sym]

Symbolic values of the solutions:

xs.x1

ans = 

xs.x2

ans = 

9



If we convert them into double precision floating point values, we get the same values as with the previously
demonstrated methods:

xs = [double(xs.x1), double(xs.x2)]

xs = 2×2
    5.9995    1.0721
    2.3005    5.8279

Additional Example

Solution using fsolve

Let's practice the solution of nonlinear systems by solving the following two equations:

First, let's define and plot the two functions to get an idea of the solutions:

clear all; close all;
f1 = @(x, y) 1.2*sin(x).*y - 1;
f2 = @(x, y) 0.8*sin(y).*x - 1;
fimplicit(f1, [0, 6, 0, 6])
hold on;
fimplicit(f2, [0, 6, 0, 6], 'r')

Using the figure, we can find the initial guesses, let the first one be (2, 1) and the second one be (3, 2.5):

x01 = [2; 1];
x02 = [3; 2.5];

We have to vectorize each function and represent the system as a vector of these functions:

f = @(x) [f1(x(1), x(2)); f2(x(1), x(2))];

First solution:

opts = optimset('TolFun', 1e-9, 'Display', 'iter');
x1 = fsolve(f, x01, opts)

                                         Norm of      First-order   Trust-region
 Iteration  Func-count     f(x)          step         optimality    radius

10



     0          3         0.12827                         0.399               1
     1          6      0.00306652       0.325813         0.0658               1
     2          9     6.53151e-06      0.0742465        0.00366               1
     3         12     1.29533e-12     0.00193483       1.33e-06               1
     4         15      1.3807e-24    1.54508e-06        1.7e-12               1

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the selected value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>
x1 = 2×1
    1.6810
    0.8384

x2 = fsolve(f, x02, opts)

                                         Norm of      First-order   Trust-region
 Iteration  Func-count     f(x)          step         optimality    radius
     0          3          0.5229                          1.92               1
     1          6     0.000820245        0.25809         0.0869               1
     2          9     5.53249e-09      0.0099228       0.000215               1
     3         12      5.9541e-19    2.84676e-05       2.02e-09               1
     4         15     9.86076e-32    3.26353e-10       7.58e-16               1

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the selected value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>
x2 = 2×1
    2.8258
    2.6834

Correctness of the solution and plotting them:

norm(f(x1))

ans = 1.1750e-12

norm(f(x2))

ans = 3.1402e-16

plot(x1(1), x1(2), 'ko')
plot(x2(1), x2(2), 'ko')
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Using the custom newtonsys.m function

We first define the symbolic variables and the symbolic functions:

syms x1 x2
xs = [x1, x2]

xs = 

fs = f(xs)

fs = 

Calculating the Jacobian using symbolic derivation and convert it to an anonymous function:

js = jacobian(fs)

js = 
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J1 = matlabFunction(js);

Vectorizing the Jacobian:

J = @(x) J1(x(1), x(2));

Computing the solutions using the custom function:

[x1, i1] = newtonsys(f, J, x01, 1e-9, 100)

x1 = 2×1
    1.6810
    0.8384
i1 = 5

[x2, i2] = newtonsys(f, J, x02, 1e-9, 100)

x2 = 2×1
    2.8258
    2.6834
i2 = 4

Correctness of the solutions:

norm(f(x1))

ans = 2.2204e-16

norm(f(x2))

ans = 3.1402e-16
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Regression

Regression and interpolation
In engineering practice, countless physical phenomena are measured and examined using digital instruments

and the measurements values are stored discreet values. A typical civil engineering example could be the

tensile test, when a certain material or structural element is tested to substantiate its tensile strength.

In the case of regression, we already have knowledge about the function (or model) of the physical

phenomenon examined and we would like to determine the parameters of the function from our measured

values. For example, if the phenomenon can be modelled using a quadratic function in the form , we

can use the measured values to determine the parameters  and c. Usually, we have more measurements

then parameters, so these problems lead to overdetermined systems which are also many times linear. The

overdetermined nature also means that our resulting function will not go through any of the measurement

points, but it will try to get as close to all of them as possible.

As for interpolation, we would like to have values where we have no measurements. This can mean values

between measured points (interpolation) or values beyond our measurement interval (extrapolation). In these

cases, we are trying to find a function that has the measured values as its function value at the measured points

and adequately describes the behaviour between the points.

Goodness of fit parameters
During regression, we are trying to find the parameters of the function so that our function has the best fit to

the measurement points. How can we determine the goodness of fit of a function? The most typical solution is

to use the sum of the residuals, that is, the sum of the differences between the measurement values and the

function values at each measured point: , where  is the measurement value at  and

 is the function value of the resulting regression model.

However, only summing the residuals might not work well in all cases. If we have similar positive and negative

residuals, they will cancel out in the summation which will result in a very high goodness of fit, but falsely. We

could instead use the absolute value of the residuals, but this would result in an ambiguous solution, that is,

more than one parameter set of a certain model would have the same best fit. The best solution is to use the
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sum of the squares of the residuals, as this way the solution will be unique (only parameter set of a certain

model can have lead to the best fit to the data).

Local goodness of fit can therefore be measured using the residuals, while globally we can use the standard

deviation of the residuals:

where n is the number of measurements and  is the number of parameters in the regression model.

Sometimes, the  is also called the number of surplus measurements (the number of measurements

beyond what is absolutely needed to solve the problem).

Regression line
Let's take a look at an example from structural engineering, the tensile test. In the example, we will use the

data from the tensile test of a steel rod. In the tensile test, stress on the material is increased until it reaches

its maximum, after which the stress declines and in the end the material ruptures. On the figure below, which

shows the stress-strain diagram from a tensile test, we can identify certain points:

1. shows the ultimate tensile strength of the material (the maximum of the stress values).

2. shows the yield strength, before which the deformations are completely recoverable.

3. shows the proportional limit stress, up to which the stress-strain diagram is basically linear.

4. shows the point where the material ruptures.

5. shows the offset strain which is typically set as 0.2%)

Our task will be to determine the following:

1. the ultimate tensile strength of the material,
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2. the strain of the material at the point of rupture,

3. the Young's modulus of the material from the linear part of the diagram,

4. to determine the stress corresponding to the offset strain.

The data is located in the tensiletest.txt file, so first, we have to load it and separate the stress and the

strain values into variables. The stress values are in MPa, the strain values are in %.

clear all; close all
data = load('tensiletest.txt');
x = data(:, 1);
y = data(:, 2);

Plot of the data points:

fig1 = figure(); hold on;
plot(x, y, '.')

The answers to the first and second questions are easily found. The ultimate tensile strength of the material is

the maximum of the stress values, while the strain at the point of rupture is the maximum of the strain values:

uts = max(y)

uts = 
                  668.3606

max_strain = max(x) % or x(end), the last strain value

max_strain = 
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                    0.2644

The ultimate tensile strength is around 668 MPa and the maximum strain is around 26%.

In order to determine the Young's modulus, we first have to find the measurement points corresponding to the

linear part of the diagram. Then, we can use those points to fit a regression line, the slope of which will tell

us the value of the modulus. To better see the points at the linear part of the diagram, we can zoom in (either

interactively or by changing the axes limits):

axis([0, 0.006, 0, 400]);

From the figure above, we can see that at the beginning of the test the diagram is not linear due to the

inaccuracy of the instrument used. Therefore, these measurements have to be discarded before the line fitting.

We also have to find the top of the linear part. We can use the data cursor to interactively find the x-values for

the beginning and the end of the linear part (0.02% and 0.15% can do for now).

First, we create a logical array that contains our filter:

filter = x > 0.0002 & x < 0.0015; % && - logical AND
xf = x(filter);
yf = y(filter);
plot(xf, yf, 'r*')
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We can check if our assumption hold and the filtered points are truly located along a line (that is, the connection

between them is linear). To do this, we have to calculate the linear correlation coefficient:

In MATLAB, we can use the corr2 command:

r = corr2(xf, yf)

r = 
         0.980487015777272

The closer the value of the correlation coefficient to 1 the more linear the connection is between the values. We

got 0.98, so we can assume linearity and fit a line to the data. The equation of a line is the following:

where a is the slope of the line and b is the y-intercept.

We filtered 75 points, so we have 75 line equations from which we can find the same a and b parameters:
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 or in matrix form: 

This is an overdetermined linear system (with more equations than unknowns) and we would like to solve it, to

minimize the sum of the residual squares. We can use the QR decomposition or the SVD.

First, we create the coefficient matrix:

A = [xf, ones(length(xf), 1)] % first column is x, second column is just ones

A = 75×2
                  0.000295                         1
                  0.000215                         1
                  0.000268                         1
                  0.000349                         1
                  0.000322                         1
                  0.000242                         1
                  0.000295                         1
                  0.000215                         1
                  0.000242                         1
                  0.000322                         1

We get the parameters of the line by solving the linear system:

line = A\yf;
a = line(1)

a = 
          165626.174495478

b = line(2)

b = 
         -32.6778764824923

Create the function for the line and plot the results into the figure:

l = @(x) a*x + b;
fplot(l, [0, 0.0015], 'g', 'LineWidth', 3)
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The value of the Young's modulus is the slope of the regession line:

fprintf('Young''s modulus: %.5f MPa\n', a)

Young's modulus: 165626.17450 MPa

Regression polynomial
Determining the stress value of the offset strain cannot be adequately done using the diagram itself as the

material doesn't have a well defined yielding stress. In these cases, we can use the typical value of the offset

strain (0.2%), draw a parallel line with the linear part of the diagram starting at 0.2% strain and find out where it

intersects with the measurements.

It would be best to fit a curve to the data after the linear part and find the intersection of the curve and the line

parallel to the linear part of the diagram. In order to do this, let us now filter the data points that are located

between 0.15% and 0.60%:

filter2 = x > 0.0015 & x < 0.006;
xf2 = x(filter2);
yf2 = y(filter2);
length(xf2)

ans = 
    23

We have filtered 23 points. Let's fit a parabola to the data points in the form of: .
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      in matrix form: 

Again, we first create the coefficient matrix:

A = [ones(length(xf2), 1), xf2, xf2.^2]

A = 23×3
                         1                   0.00153                2.3409e-06
                         1                  0.001584              2.509056e-06
                         1                  0.001664              2.768896e-06
                         1                  0.001772              3.139984e-06
                         1                  0.001772              3.139984e-06
                         1                  0.001879              3.530641e-06
                         1                  0.002013              4.052169e-06
                         1                   0.00204                4.1616e-06
                         1                  0.002067              4.272489e-06
                         1                  0.002309              5.331481e-06

Solve the linear system:

c = A\yf2

c = 3×1
          69.3456670880163
           115829.75939882
         -11790386.3230783

The equation of the parabola:

par = @(x) c(1) + c(2)*x + c(3)*x.^2

par = function_handle with value:
    @(x)c(1)+c(2)*x+c(3)*x.^2

Plotting the parabola into the figure:

fplot(par, [0.0015, 0.006], 'g', 'LineWidth', 3)
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Now, we have to define the function of the line that starts at 0.2% strain and is parallel to the linear part of

the diagram. This basically means that we have to create a new line with the same slope as the previous one

starting at .

l2 = @(x) a*(x - 0.002)

l2 = function_handle with value:
    @(x)a*(x-0.002)

fplot(l2, [0.002, 0.006], 'r--')
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To find the answer to our initial question, the stress corresponding to the offset strain, we only have to find the

intersection of the green parabola and the red dashed line. This means that the two function have to equal:

First, we can define the equation using the already found regression models and then use fzero to find the

root. We can find an initial value using the figure, let it be 0.004:

inters = @(x) par(x) - l2(x)

inters = function_handle with value:
    @(x)par(x)-l2(x)

xi = fzero(inters, 0.004)

xi = 
       0.00408794769464755

The stress value at this point:

offset_stress = par(xi)

offset_stress = 
          345.818789211111

Plot the intersection:

plot(xi, offset_stress, 'ko', 'MarkerFaceColor', 'k')
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Polynomial fit using MATLAB's built-in functions
In the example above, we first fitted a line to the first part of the diagram and a quadratic function to the second

part. The regression line is basically a polynomial of degree 1, while the quadratic function is a polynomial of

degree 2. We could of course fit higher degree polynomials to the data as well but we always have to be careful

when increasing the degree of the regression polynomial. As the degree increases, the global error of the fit will

become smaller as the polynomial starts getting closer and closer to the data points, however, between the data

points, oscillation will occur (as we will see with the interpolations).

In MATLAB, there is an easier way to fit polynomials to a set of data points using the built-in polyfit and

polyval functions. The polyfit function determines the coefficients of a regression polynomial of an arbitrary

degree (as long as it is feasible given the data) for an input dataset. The polyval function on the other hand

calculates the value of a polynomial given its coefficients at any point x.

Let's see the above example using the two built-in functions. First we fit a degree 1 polynomial to the linear part

of the diagram:

c1 = polyfit(xf, yf, 1) % inputs: x data, y data, degree

c1 = 1×2
          165626.174495478         -32.6778764824923

The coefficients are given back sorted by the degree of their terms. The first is always the highest degree, which

in this case is the slope of the line. The second is the y-intercept in this case.
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Fit a quadratic polynomial to the second half of the diagram:

c2 = polyfit(xf2, yf2, 2)

c2 = 1×3
         -11790386.3230783           115829.75939882          69.3456670880163

We can define two functions that evaluate these polynomials at a given x value using the polyval function:

p1 = @(x) polyval(c1, x); % first input is the vector of coefficients (from the highest degree to the lowest), second is the variable where we want to evaluate the polynomial
p2 = @(x) polyval(c2, x);

Create the same plot as before using these new functions:

figure(2); hold on;
plot(x, y, 'b*');
fplot(p1, [0, 0.0015], 'r', 'LineWidth', 3);
fplot(p2, [0.0015, 0.006], 'r', 'LineWidth', 3);
axis([0, 0.006, 0, 400])

Nonlinear regression using linearization
Many physical phenomena cannot be accurately modelled using only polynomials and therefore we have to use

more complex nonlinear functions. For example, when trying to model air density ( ) as a function of height

(h), we have to use an exponential function in the form of  , where k and m are parameters of the

model. When trying to fit some kind of model to our data, the simples way to do it is to have models that are
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linear in their parameters. In this section, we deal with nonlinear models that can be linearized in terms of their

parameters using some kind of transformation.

The following very common nonlinear models can be easily linearized:

• power functions: 

• exponential functions:  or 

•
reciprocal functions: 

The linearization is done using new variables that are connected to the original parameters of the regression

model. For example, when linearizing a power function, we can take the natural logarithm of both sides:

If we introduce some new variables: , , , , we can rewrite the expression as a

linear model in terms of  and :

After fitting the model and having found  and , we can find the original parameters of the original model

using the relationship between those and the introduces variables:

       

Let's see an example for this calculation. We have height (m) and air density ( ) measurements in the file

airdensity.txt.

clear all; close all;
data = load('airdensity.txt');
h = data(:, 1);
r = data(: ,2);
figure(1)
plot(h, r, 'r+')
hold on
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We are trying to fit the function  to our data, so we will use the linear form  given above

where , , , .

Y = log(r); % in MATLAB, the log function calculates ln and the log10 calculates logarithm with base 10
X = h;

The coefficient matrix:

A = [X, ones(length(X), 1)]

A = 6×2
           1           1
        4000           1
        8000           1
       12000           1
       16000           1
       20000           1

Calculating the coefficients from the linear system:

c = A\Y

c = 2×1
     -0.000130223698859203
         0.304918840089502

Calculating the parameters of the original model and defining the function of the original model:

m = c(1);
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k = exp(c(2));
rho = @(h) k * exp(m * h);

Plotting the function with the data points:

fplot(rho, [0, 20000], 'b')

Using our fitted model for calculation, how much would be the air density on the top of Mount Everest (at ~8850

m)? How high do we have to go in order to reach an air density of 1 ?

The answer to the first question is a simple substitution:

r8850 = rho(8850)

r8850 = 
         0.428458714355692

The air density would be 0.4285  on Mount Everest according to our measured data.

As for the second question, we have to solve the following equation:

We can define this as a new function and find its root by using the fzero function:

rho1 = @(h) rho(h) - 1;
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h1 = fzero(rho1, 2000) % 2000 meters is the initial guess

h1 = 
          2341.50037789341

We would have to go to 2315 meters to reach an air density of 1 .

Let's calculate the residuals of the regression model and the square root of the residuals to get an idea about

the global goodness of fit. First, we have to calculate the difference between the data point values and the

function values of the model at the data points:

res = r - rho(h)

res = 6×1
        -0.131338265023467
        0.0142453242681089
        0.0463907376967921
        0.0247114530494624
     -0.000864216163136117
      -0.00830345508555295

An ideal way to visualize these would be a bar plot:

figure(2);
bar(h, res);

The sum of the residual squares:

S = sum(res.^2)
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S = 
        0.0202851198146807

We have to calculate the difference in the number of measurements and the number of model parameters and

then we can find the standard deviation of the residuals:

n = length(r) % the number of measurements is the length of the data vector

n = 
     6

np = 2; % our model had two parameters (m, k)
std = sqrt(S/(n - np))

std = 
        0.0712129198507559

Table of the linearization of common nonlinear models
When using some of the most common nonlinear models, the following table shows the transformations we can

apply to make the models linear.

Choosing the type of linear regression model for our data
In the previous examples, we initially had models that we wanted to fit to the data points. In can be the case

sometimes that we do now have information about the actual model to use. When this happens, we try finding

a nonlinear model by plotting our data as finding out which transformation of the data points cause them to be

located along a straight line.
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For the sake of example, let's imagine that we do not know what exact model to fit to our height-air density data.

We can try transforming the data points according to the table above and see which transformation linearizes

the data best.

figure(3)

x = h; y = r; % data values (heights and air density values)
subplot(2, 2, 1) % 2 x 2 subplot, using the first plot now
plot(log(x), log(y), 'r*') % doesn't seem to be linear

subplot(2, 2, 2) % second subplot
plot(x, log(y), 'r*') % seems linear

subplot(2, 2, 3) % third subplot
plot(x, log10(y), 'r*') % seems linear

subplot(2, 2, 4) % fourth subplot
plot(x, 1./y, 'r*') % not linear

The second and the third transformation caused the data points to be linear, therefore our best choice would

be to use the models in the second and the third rows of the table above. So, even if we didn't have prior

knowledge about the actual model, it would still be a good idea to use the exponential model for the regression.
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Interpolation

In case of regression, we were looking for the optimal value of the parameters of a certain function that
represents our data points in such a way that it minimizes the sum of the squared residuals between the
function value and the data point values.

When we talk about interpolation, we mean a function that exactly returns the data values in the data
points and can adequately be used to approximate values at unmeasured points. We do not have any prior
knowledge about the interpolating function and therefore multiple different choices can give us good results.
Depending on the actual problem, we may prefer one or the other.

We will look at two different kind of interpolation:

• Global interpolation: using only one function (a polynomial) to interpolate the data.
• Local interpolation: using multiple functions (lines or splines) to interpolate between certain points of

the dataset.

Global interpolation using a polynomial

The generic form of a polynomial of degree n can be given as:

where  are real valued coefficients and n is a nonnegative number. A degree 1 polynomial is
a simple line, a degree 2 is a parabola and so on. Polynomials of a higher degree are represented by some
sort of curve, the higher the degree, the more inflection points the curve has.

If our dataset has n number of points, we can use a polynomial of degree  to approximate the

data. When we use a polynomial whose degree is less than , we are creating a regression function.

When the polynomial has degree , we are interpolating the data and the function will go through every
data point. This is a global interpolation, as only a single function is used to represent the dataset.
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Example 1

The performance of wind turbines is a function of the wind speed. We measured the wind speed (in km/h)
and the performance (W) of a turbine and got the following dataset (located in windturbine.txt).

clear all; close all;
data = load('windturbine.txt');
s = data(:, 1);
p = data(:, 2);
plot(s, p, 'r*');
hold on

The dataset contains 5 measurements, so we can fit a degree 4 polynomial to the points. We should answer
the following questions using the interpolation function:

• How much is the performance of the turbine at wind speeds of 42 and 68 km/h?
• What is the wind speed at 400 W?

A degree 4 polynomial can be given in the form of . The coefficient can be
calculated from a linear system of equations:
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→

                

The coefficient matrix containing the powers of the x-values from the highest degree to the lowest is called
the Vandermonde matrix.

Instead of solving the linear system manually, we can use the built-in polyfit and polyval commands to
find the coefficients and to evaluate the polynomial at any x-value.

c = polyfit(s, p, 4)

c = 1×5
    0.0001   -0.0171    0.5627   12.0190  -62.0517

polyfit returns the coefficients from the highest degree to the lowest, that is .
Using the polyfit function, we can determine the performance at 42 km/h and 68 km/h wind speeds.

polyval(c, 42)

ans = 531.7853

fp = @(x) polyval(c, x);
fp(68)

ans = 476.5008

fplot(fp, [min(s), max(s)])
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In order to determine the wind speed at 400 W, we have to solve the  equation
with, for example, using fzero:

h = @(x) fp(x) - 400;
s400 = fzero(h, 30)

s400 = 27.1296

The turbine reaches a performance of 400 W at a wind speed of ~27 km/h.

To find the coefficients of the interpolating function, we have to solve a linear system of  equations
(in case of a degree n polynomial) where the coefficient matrix of the system contains the powers of the x-
values. As the degree of the polynomial gets higher, the matrix becomes ill-conditioned as it will contain
very large and comparably small numbers as well. We can check the condition number of our Vandermonde
matrix:

A = vander(s)

A = 5×5
      234256       10648         484          22           1
     1500625       42875        1225          35           1
     5308416      110592        2304          48           1
    13845841      226981        3721          61           1
    29986576      405224        5476          74           1

cond(A)
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ans = 1.5378e+09

Even though our polynomial is only degree 4, the condition number is already in the order of , which is
very high. To ensure numeric stability, interpolating polynomials can be formulated in two other ways than the
one seen above, namely the Lagrange and the Newton polynomials.

Lagrange polynomials

The Lagrange polynomials give us the same interpolation polynomial as the one seen before but it can
formulated using only the coordinates of the data points and we can avoid solving a linear system to find the
coefficients. The general form of the Lagrange polynomials is the following:

where  are called the Lagrange polynomials. Using two data points, the interpolating polynomial

will look like the following:

For three points:

Advantage of the Lagrangian form: we do not have to solve a linear system, we can simply use the
coordinates of the data points.

Disadvantages: it is somewhat cumbersome to work with as the whole expression has to be written for
each approximation of a new data point, we can't just simply use the calculated coefficients. Each time
we measure a new data point and want to include it in the interpolation, we have to calculate the whole
Lagrange polynomial again.

Newton polynomials

The Newton form for the interpolation polynomial lets us the polynomial in a recursive way using the so-
called divided differences. The polynomial can be given in the following form:

Using two points, the coefficients are:

For more points, we first have to define the divided differences between two points as the following:

5



For three points, we can define the second order divided difference  which is the difference

of the two first order divided differences divided by , for three points, this will become

the  coefficient:

Similarly, for four points, we have the third order divided difference, which is the difference between the two
third order differences divided by  and so on:

 , where  and 

Advantages of the Newton form are that we only have to determine the coefficients once and after that we
can use them to determine any point of the interpolations polynomial. Moreover, if our dataset receives
a new measurement, we don't have to recompute the previously found coefficients, only the coefficient
corresponding to the new point.

Example 2

The following dataset represents the characteristic curve of a water reservoir. Given a certain water level (H)
in the reservoir in cm, using the characteristic curve, we can find the volume (V) of the water in the reservoir
in  and the area of the water surface (F) in . The dataset is located in the reservoir.txt file.

Plot the water level vs volume curve and use an interpolation function to find the following:

• the volume corresponding to a water level of 15 m,
• the water level corresponding to a volume of 12 million .

clear all; close all;
data = load('reservoir.txt');
H = data(:, 1);
V = data(:, 2);
F = data(:, 3);
figure(1);
plot(V, H, 'r*');
hold on;
xlabel('Volume [10^6 m^3]');
ylabel('Water level [cm]');
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We can determine a polynomial of degree , which means, that with 9 data points we will have a degree
8 polynomial.

n = length(V); % number of data points
a1 = polyfit(V, H, n-1);

Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the
polynomial, or try centering and scaling as described in HELP POLYFIT.

p1 = @(x) polyval(a1, x);

fplot(p1, [0, max(V)]);
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It is obvious that something is not correct with the interpolation function above. MATLAB is also warning
us that the condition number of the Vandermonde matrix is very high and therefore the polynomial is badly
conditioned. Because the degree of the polynomial is very high, it starts to oscillate at the end of the dataset.
This oscillation is called the Runge's phenomenon. This shows us that increasing the degree of the
interpolation polynomial is not always a suitable way to go forward and we will have to find another solution
to the problem.

We can check the condition number of the Vandermonde matrix to reassure our presumption:

A = vander(V);
cond(A)

ans = 2.7260e+10

It is in the order of  which is obviously very large.

Local interpolation - Splines

Instead of using one global interpolation function, if we have a larger dataset, it is better to use multiple lower
degree polynomials. Each of these polynomials will only use a small number of data points and therefore will
only interpolate the dataset between those points. This is why these methods are called local interpolation
methods as the coefficients of each interpolation function are only determined by the points in the section
surrounding the function. Each of the interpolation polynomials have the same number of coefficients only
their values differ.
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The simplest local interpolation we can think of is when we connect the points using lines (linear
polynomials). We can also use quadratic or third-degree curves (splines). The degree of a spline tells us
the number of coefficients in the function, that is, a spline of degree n has at most n number of coefficients. It
is often desirable for the interpolation function to be not only continuous at the connecting points (vertices),
but also be smooth. The order of the spline therefore tells us which order differential of the adjacent splines
are made equal. For example, a first order spline of degree 2 is a quadratic polynomial whose first order
derivatives are equal at the vertices (data points).

The most common type of spline is the second order cubic spline, which means that we have cubic
polynomials between the points and first and second order derivatives of each spline section are equal in the
vertices. Sometimes, the so-called Hermite splines are also used, these are first order cubic splines.

Linear interpolation

Given n data points, we can have  linear interpolation functions between the points. Each function is in
the following form:

In MATLAB, we can use the interp1 command carry out any kind of spline interpolation. Let's use lines first
to interpolate the dataset:

sp = @(x) interp1(V, H, x, 'linear'); % the 'linear' keyword can be omitted
figure(2)
plot(V, H, 'r*'); hold on;
fplot(sp, [min(V), max(V)])
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Using linear interpolation, our function is continous but not smooth. If smoothness is required, we have to use
higher order splines.

Second order cubic spline interpolation

We fit cubic polynomials between the points. Each polynomial can written in the form:

At the vertices, the first and second order derivatives of the adjacent splines are set to be equal.
Given n number of points, we have  sections and we have to compute a spline for each section. Each

spline has 4 unknown coefficients, which results in  uknowns. We can use the following
equations determined by the contraints:

• Each spline has to go through the starting and the end point of the section. This gives

us  equations in the following form: .
• There are  central points (not counting the starting and the end point). At each of

these points, the first order differentials ( ) of the adjacent splines are set

equal: .
• At each of the central points, the second order differentials ( ) are also set

equal: .

These give us  equations to solve for  unknowns, so we still have to set two constraints. One
possibility is to set the second order differentials at the end and the starting points to zero, in this case, we
get the so-called natural cubic spline. The other choice can be the "not-a-knot" solution, which means that at
the end and the starting points, the third order differentials are set equal as well.

Let's fit a second order cubic spline to the reservoir dataset. We can use the interp1 command, but now we
have to specify the spline keyword:

sp2 = @(x) interp1(V, H, x, 'spline');
fplot(sp2, [min(V), max(V)])
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For spline fitting, we can use the spline command, which can only fit a second order cubic spilne but
otherwise works exactly the same way the interp1.

sp2 = @(x) spline(V, H, x);

Let us answer the question concerning the example. The water level corresponding to the volume of 12
million :

H12 = sp2(12)

H12 = 2.1741e+03

Answer: 2174 cm.

The volume corresponding to a water level of 15 m:

f = @(x) sp2(x) - 1500;
V1500 = fzero(f, 5)

V1500 = 4.6699

Answer: 4.6699 million .
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First order cubic spline interpolation

In some cases, it is beneficial to use the Hermite splines for interpolation, let's see an example for that.

The density ( ) of the Earth is a function of the distance (radius, ) from the center of
the planet. The dataset in earth_density.txt contains corresponding values of radii and density
measurements. Using the data, determine the density at the radius of 3200 km and find the radius that

corresponds to 4000 .

clear all; close all;
data = load('earth_density.txt');
r = data(:, 1);
rho = data(:, 2);
figure(1);
plot(r, rho, 'r*'); hold on;

Let's try to fit a second order cubic spline to the data first:

sp1 = @(x) interp1(r, rho, x, 'spline');
fplot(sp1, [min(r), max(r)], 'b');
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We can see that setting the second order derivatives equal at the vertices causes the splines to oscillate
between the points. Better results can be achieved if only the first order derivatives are set equal:

sp2 = @(x) interp1(r, rho, x, 'pchip'); % pchip = piecewise Hermite interpolation polynomial
figure(2);
plot(r, rho, 'r*'); hold on;
fplot(sp2, [min(r), max(r)], 'b');
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We can answer the questions using the Hermite interpolation:

rho3000 = sp2(3200)

rho3000 = 1.0361e+04

The density at 3200 km is 10361 .

f = @(x) sp2(x) - 4000;
R4000 = fzero(f, 5500)

R4000 = 5.9589e+03

The density is equal to 4000  at a radius of approximately 6000 km.
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2D Interpolation and regression
In the previous practicals, we looked at regression models, as well as global and local one dimensional
interpolation of data, such as using a polynomial, linear sections or splines. In many cases, our problem is
two dimensional in nature, so we cannot use one dimensional regression or interpolation, but luckily, many
previously studied methods can be extended into higher dimensions as well.

Interpolation of parametric curves
Most of the curves, that are used to model some data in practice, cannot be described using a single
mathematical function, as there exist values of the independent variable (x, for example) where the curve has
two distinct "function values". For example, when modelling a path or road using measured data points along
the path, if it turns back on itself or loops, it cannot be modelled by a single function. In these cases, we use
parametric curves consisting of independent functions for the different coordinates, where the parameter can
be the number of points or the arc length along the curve.

As an example, let's see the following problem. We used a GPS to measure a path between two points.
The GPS measured and saved data (with a certain frequency) as we went along the path resulting in a data
matrix containing the x and y coordinates of the points. 

close all; clear all; format longG;
data = load('path.txt');
x = data(:, 1);
y = data(:, 2);
figure(1);
plot(x, y, 'b-');

We would like to find the coordinates of the point that is 500 meters from the beginning of the path using
cubic, second order spline interpolation. Our parameter will be the arc length along the path which we can
approximate by using the distances between the measured points. As the path cannot be modelled by a
single function, we have to use a different spline interpolation for the x and the y coordinates:

We first have to calculate the distances between the points, to approximate the arc length along the curve.
To do this, we can use the built-in diff command that calculates the differences between points in a vector.
If we have n number of points, we get back a vector containing n-1 values:

dx = diff(x)

dx = 24×1
          84.3399999999674
          46.4600000000792
          31.5299999999115
          40.7100000000792
          24.5499999999302
          24.3399999999674
         0.200000000069849
         -19.9500000000698
         -40.7099999999627
         -9.97999999998137
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dy = diff(y)

dy = 24×1
         -42.4800000000396
          -22.929999999993
         -22.1500000000233
          -61.859999999986
          -12.570000000007
          15.1600000000326
          27.3399999999674
          25.9400000000023
          39.1199999999953
           27.140000000014

Now we can compute the distances between the points using the differences. The first distance is 0, as the
first point is to 0 distance from itself.

d0 = [0; sqrt(dx.^2 + dy.^2)]

d0 = 25×1
                         0
          94.4340298832887
          51.8103898847233
          38.5326277328117
          74.0537892346146
           27.580924567475
          28.6750972099381
          27.3407315190769
          32.7243960983684
          56.4595297535908

If we cumulatively sum up the distances using the cumsum function, we get the distance of each point from
the starting point:

d = cumsum(d0)

d = 25×1
                         0
          94.4340298832887
          146.244419768012
          184.777047500824
          258.830836735438
          286.411761302913
          315.086858512851
          342.427590031928
          375.151986130297
          431.611515883887
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We can use the built in spline command to define the spline interpolations using the d variable as our
independent variable:

xs = @(u) spline(d, x, u);
ys = @(u) spline(d, y, u);
hold on;
fplot(xs, ys, [0, d(end)], 'r--')

The coordinates of the 500 meter marker:

x500 = xs(500)

x500 = 

          645989.003262212

y500 = ys(500)

y500 = 

          272114.837059394

plot(x500, y500, 'ko', 'MarkerFaceColor', 'r');

2D interplation of data given on a regular grid
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If we have data points that are located in a regular grid, the simplest form of interpolation we can use the so-
called bilinear interpolation. The interpolation incorporates three computational steps:

1. We linearly interpolate along  and calculate .
2. We linearly interpolate along  and calculate .
3. We linearly interpolate along x, between  and  and find the value .

If we introduce more points to the interpolation process, we can use higher order polynomials as well (such
as the bicubic interpolation).

As an example let's look at terrain heights measured in a grid. The layout of the measurements, with their x
and y coordinates, is given in the following figure:

The matrix containing the measurements are located in the terrain.txt file. Let's load them:

clear all; close all;
x = [0, 60, 140, 200, 300];
y = [190, 120, 50, 10, 0];
Z = load('terrain.txt');
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The built-in function calculating the interpolation works on matrices, so we first have to create a regular grid
from the vectors of the x and y coordinates. We can use the built-in meshgrid command for this.

[X, Y] = meshgrid(x, y)

X = 5×5
     0    60   140   200   300
     0    60   140   200   300
     0    60   140   200   300
     0    60   140   200   300
     0    60   140   200   300
Y = 5×5
   190   190   190   190   190
   120   120   120   120   120
    50    50    50    50    50
    10    10    10    10    10
     0     0     0     0     0

Now, using the X, Y and Z matrices, we have 3 dimensional coordinates for each terrain height. For two
dimensional interpolation, we can use the interp2 command, similarly to the interp1 from the previous
practical. The interp2 command can only work with data given in a regular grid (the grid points don't
necessarily have to be equidistant). We specify different methods for the interpolation:

• nearest - nearest neighbor interpolation,
• linear - 2D linear interpolation (bilinear),
• spline - cubic spline,
• cubic - 2D cubic interpolation (bicubic).

F = @(u, v) interp2(X, Y, Z, u, v, 'spline');
figure(1);
fsurf(F, [min(x), max(x), min(y), max(y)]);
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Using our interpolation, we can answer the following questions:

1. What is the height in (100, 100)?
2. What does an West-East section in this point look like?
3. How much cut and fill is needed if we want to level the surface at 135 meters?

The answer to the first question can be found by a simple query using the interpolation:

F(100, 100)

ans = 

          137.807868245719

The W-E section at (100, 100) can be drawn by creating two vectors corresponding to the coordinates in the
section. The x coordinates go from 0 to 300 with some resolution (let's say, 10 meters) and the y values are a
constant 100:

xs = 0:10:300; % x coordinates at every 10 meters from 0 to 300
ys = 100*ones(1, length(xs)); % y coordinates are always 100
zs = F(xs, ys); % terrain height from the interpolation
figure(2);
plot(xs, zs);

6



To answer the third question, the amount of cut and fill can be calculated using 2D integration (covered in
subsequent practicals). If we calculate the volume between the terrain and a 0 reference level and then
subtract it from the volume under the horizontal surface at 135 m, we get the total amount of cut and fill
needed. The volume under the terrain can be calculated using the following integral:

VT = integral2(F, 0, 300, 0, 190)

VT = 

          7614016.55348964

The volume under the level surface at 135 m:

VS = 135 * 300 * 190

VS = 

     7695000

The sum of the cut and the fill volumes:

V = VS - VT

V = 
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          80983.4465103578

2D regression of data given on an irregular grid
When our data is not located on a regular grid, interpolating it becomes somewhat harder. In case of
polynomial regression however, data location can be arbitrary, although, as the degree of the polynomial
gets higher, we see similar oscillation as in the one dimensional case (Runge's phenomenon). Moreover, in
the two dimensional case, the number of coefficients grows very rapidly as the degree goes up, which means
that higher degree polynomials require a lot more data points.

Let's look at the following example. The catchment area (the source of water) of the section of the Danube
in Hungary is located in Austria and Bavaria. Depending on the precipitation in these areas, and the water
level of the Danube in Budapest at the same time, we can forecast the height of the flood wave at Budapest
caused by the precipitation.

Our data matrix located in flood.txt contains 3 columns:

1. The precipitation in the catchment area that caused flood waves on the Danube, in mm.
2. The water level of the Danube at Budapest during the precipitation, in cm.
3. The height of the flood wave at Budapest caused by the precipitation in cm.

Let's load the data and visualize it:

clear all; close all;
data = load('flood.txt');
x = data(:, 1);  % precipitation in the catchment area [mm]
y = data(:, 2); % water level in BP during the precipitation [cm]
z = data(:, 3); % forecast flood wave height in BP [cm]
figure(1);
scatter3(x, y, z, 'filled'); % 3D scatter plot
xlabel('Precipitation [mm]');
ylabel('Water level in BP [cm]')
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The simplest regression polynomial we can use is a regression plane:

The generic form of a more complicated, 2D quadratic regression polynomial:

Our task is to approximate the height of the flood wave in Budapest, if the precipitation in the catchment area
was 100 mm and the water level in Budapest at that time was 400 cm. In order to do this, we can use a 2D
quadratic polynomial to model the data and query the value of the model at the given values.

The regression polynomial can be written in matrix form (where n is the number of data points):

               

In MATLAB:

n = length(x); % number of data points
A = [ones(n, 1), x, y, x.^2, x.*y, y.^2]

A = 19×6
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           1          58         405        3364       23490      164025
           1          52         450        2704       23400      202500
           1         133         350       17689       46550      122500
           1         179         285       32041       51015       81225
           1          98         330        9604       32340      108900
           1          72         400        5184       28800      160000
           1          72         550        5184       39600      302500
           1          43         480        1849       20640      230400
           1          62         450        3844       27900      202500
           1          67         610        4489       40870      372100

c = A\z

c = 6×1
         -1339.90488568953
          17.1883973493066
          4.95723840977286
       -0.0372951053113031
       -0.0179199642155538
      -0.00333877203214026

We can also solve the fitting of the regression model using the built-in regress function. The function can
give us back the 95% confidence intervals the residual values at the points as well:

[c2, int95, res] = regress(z, A)

c2 = 6×1
         -1339.90488568954
          17.1883973493066
          4.95723840977287
       -0.0372951053113031
       -0.0179199642155538
      -0.00333877203214028
int95 = 6×2
         -3269.18333399781          589.373562618741
          2.34025664610191          32.0365380525113
         -1.31208695454193          11.2265637740877
       -0.0702443913017601       -0.0043458193208462
       -0.0397719281370144       0.00393199970590674
      -0.00860910072975285        0.0019315566654723
res = 19×1
          19.3390597341336
          71.6254030419311
          1.70162083411185
         0.720015424926714
          30.8593786732861
          3.08123311450356
          -41.193900243456
         -50.5908496868752
          22.8976885737432
         -3.46942828393469

We can define the regression surface using the coefficients:

f = @(x, y) c(1) + c(2)*x + c(3)*y + c(4)*x.^2 + c(5)*x.*y + c(6)*y.^2;
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Visualizing the model using a contour plot first:

figure(2);
cont = fcontour(f, [min(x), max(x), min(y), max(y)]);
cont.LevelList = 450:50:800; % contour lines between 450 and 800

3D visualization:

figure(1); hold on;
fsurf(f, [min(x), max(x), min(y), max(y)])

Forecasting the height of the flood wave at 100 mm of precipitation and 400 cm of water level:

xfw = 100;
yfw = 400;
flood_wave = f(xfw, yfw)

flood_wave = 

          737.877066272642

plot3(xfw, yfw, flood_wave, 'ro', 'MarkerFaceColor', 'r');
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2D interpolation of data on an irregular grid
When interpolating data on an irregular grid, we have multiple methods to choose from:

• the nearest neighbor method, when the interpolated point gets the value of the closest data point,
• kriging, when the distance from data point gets taken into account with some weighting,
• radial basis functions, when multiple basis functions are fitted to the data points,
• division of the irregular grid with simpler elements.

In MATLAB, the built-in griddata function uses the last method, the so-called Delaunay
triangulation. The method creates triangles between the data points in such a way that if we drew
the circumcircle for each triangle, no data points would be inside the circles. When choosing
the linear option for the griddata command, the surface of the triangles are used for the interpolation.
The griddata command can also use other types of interpolations, such as the nearest (nearest
neighbor), or the cubic (bicubic spline).

The following two figures show the Delaunay triangulation of the data points from the previous example.

tri = delaunay(x, y); % creates a Delaunay triangulation from the data points
 
figure(); 
triplot(tri, x, y); hold on; % plot of the triangles
plot(x, y, 'ro');
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figure();
trisurf(tri, x, y, z); % 3D plot of the triangles
hold on;
scatter3(x, y, z, 'ro', 'filled')
plot(x, y, 'ro');
triplot(tri, x, y);
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How much is the predicted height of the flood wave if the precipitation was 100 mm and the water level was
400 cm, using linear and cubic interpolation?

In order to answer the question, we first have to define the interpolating functions:

zlin = @(u, v) griddata(x, y, z, u, v, 'linear');
zcub = @(u, v) griddata(x, y, z, u, v, 'cubic');

Using the linear interpolation, the answer is:

flood_lin = zlin(100, 400)

flood_lin = 

          724.737732656514

From the cubic interpolation, we get:

flood_cubic = zcub(100, 400)

flood_cubic = 

          735.393860996604

Using the regression polynomial, the answer is ~738 cm.
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In order to better see the difference between the two types of interpolations, we can plot the corresponding
surfaces. First, we create 1000 points between the smallest and largest x and y values and then we use
these vectors to create a mesh grid.

xv = linspace(min(x), max(x), 1000);
yv = linspace(min(y), max(y), 1000);
[xq, yq] = meshgrid(xv, yv);

We can query the value of the interpolation at each of these points. By default, the griddata function
does not extrapolate, so if our query point is out of the convex perimeter of the dataset, we get a NaN (not a
number) value.

zql = zlin(xq, yq)

zql = 1000×1000
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN

zqc = zcub(xq, yq);

Now, using the new variables, we can plot the interpolating surfaces. In case of the linear interpolation, we
get the same surface as in the Delaunay triangulation plot:

% Linear interpolation
figure();
scatter3(x, y, z, 'ro', 'filled');
hold on;
mesh(xq, yq, zql);
plot3(100, 400, flood_lin, 'bo', 'MarkerFaceColor', 'k');
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% Cubic interpolation
figure();
scatter3(x, y, z, 'ro', 'filled');
hold on;
mesh(xq, yq, zqc);
plot3(100, 400, flood_cubic, 'ko', 'MarkerFaceColor', 'k');
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Numerical differentiation

Differentiation of a quantity makes us able to track its change with respect to some variable. The most
common example is the calculation of velocity from the function of position. If the position is given as a
function  of time, the velocity is calculated as the derivative of this function

and the acceleration can be calculated as the second derivative of the velocity function:

The derivative can also be used to find the minimum or maximum of a function. Analytic (symbolic in
MATLAB) derivation can be used when the function can be given in analytic form that is somewhat easy to
differentiate. If the function is given as a set of data points or if it is not possible to differentiate it analytically,
numeric differentiation is the only option. Numeric differentiation also plays a very important role in solving
differential equations.

If the function is acquired as a set of data points, the differential can be approximated by finite differences
or another option can be to first approximate the function using some form of interpolation or regression and
then differentiate this resulting analytic (and mostly simple) function.

       

Finite difference approximation

Let's suppose that we can only acquire the function values in a limited set of data points. In such a case,
we can approximate the differential by the slope of the lines connecting the points. This can be done in two
ways:

• using the right side or forward difference:
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• using the left side of backward difference:

As the errors of the forward and backward differences usually have the opposite sign, it is better to take the

average of the two. If the spacing of the data points is homogeneous and , this will
result in the central difference:

Generally, the central difference is a better approximation of the derivative then the other two. As the spacing
of the points becomes smaller, the accuracy further increases.

Errors of finite difference approximations

Taylor series can be used to approximate the truncation errors corresponding to the forward and backward
differences:

where c is an unknown value between x and . Let  and  and solve the equation

for :
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The formula above is the one used to calculate the forward difference with an extra subtraction on the left

side, the error term . That is, the magnitude of the truncation error is  (big Ordo h). If we

change h to  in the formula, we get the truncation error of the backward difference. The error of the central
difference can be computed using third order Taylor series:

where  and . Subtract the two equations from each other and solve it for :

which shows that the truncation error of the central difference is , which results in a much better
approximation if h can be reduced.

We can approximate the differential using even more points, using 5 points for example gives us a central

formula with 

The forward and backward difference can also be made better by involving more points. Using three points,
the formulas for the forward and the backward differences become:

Higher order differentials

Similar numeric formulae can be derived for higher order derivatives as well. For example, the second
derivative using central difference and 3 points:

Central differences for higher order derivatives will always have an error term that is proportional to .

The second order derivatives using forward and backward differences:
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How can these formulae be derived? Let's take a look at the 3 point forward difference formula. We can start
from the Taylor series of the function at the three data points used ( ):

The above is a linear system of equations with 3 unknowns and 3 equations. We need to figure out a
linear combination of the rows that cancel out all the term except the second derivatives. If we denote the

coefficients (the multiplicators) of the lines as , we can write:

The first row corresponds to the first column of the previous system (the column for ), the second row to

the column containing  and the third row to the column containing . As in the end we only need
the second derivative, we equate every row except the last with 0. By making the last row equal to one, we

find a combination which will results in  (+ the error term).

(Similarly, if we wanted to find the approximation of the first derivative, we would need to make the second
row - and only the second row - equal to 1.)

Writing the system using matrix notation:

If we solve this using Gauss elimination for example and find the values of the coefficients, we
get: . In other words:

(The sign of the  is arbitrary as it only symbolizes the proportion of the error term to the step size h.)

Numeric differentiation is practice
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The following table contains the launch data of the space shuttle:

The task is to find the velocity function of the shuttle as a function of time. We can load the data from
the shuttle.txt file and plot the data first:

data = load('shuttle.txt');
t = data(:, 1);
h = data(:, 2);
figure(1);
plot(t, h, 'r*-');
title('Height vs Time');
xlabel('Time [s]');
ylabel('Height [m]');

The velocity function is the first derivative of the position function (height in our case). The central difference
formula can only be used from the second point to the next to last point, as it takes into account the point
to the left and to the right of the current data point as well. In the first point, we can only use a forward
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difference and in the last point only a backward difference. Let's create a custom function that takes care of
this calculation for us:

function dx = derivative(x, y)
% Numeric differentiation using finite differences
    
    n = length(x);
    dx(1) = (y(2)-y(1))/(x(2)-x(1)); % forward difference
    
    for i = 2:n-1
        dx(i) = (y(i+1)-y(i-1))/(x(i+1)-x(i-1)); % central difference
    end
    
    dx(n) = (y(n)-y(n-1))/(x(n)-x(n-1)); % backward difference
 
end

 

This function is located in the derivative.m file. Let's use it to calculate the velocity function and plot its
graph:

v = derivative(t, h);
figure(2);
plot(t, v, 'b*-');
xlabel('Time [s]');
ylabel('Velocity [m/s]');
title('Velocty vs Time');
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The built-in diff command can also be used to calculate the finite differences. We can first compute the
differences in time and height and divide the two to get the finite differences for approximating the derivative:

dh = diff(h);
dt = diff(t);
dhdt = dh./dt;

The calculation of the forward and backward differences are essentially the same. The forward differences
can be computed until the next to last point, while the backward differences can be computed from second
point:

figure(2);
hold on;
plot(t(1:end-1), dhdt, 'ro-');
plot(t(2:end), dhdt, 'ms-');

From the figure, we can see that the central differences give a somewhat smoother curve that the other two.

The applied derivative.m function approximated the derivative from the second point to the next to

last point an error of , while the error is  in the first and the last point. We could make the
approximation more accurate by using 3 point approximations in the first and the last point as well, giving an

error of . Using the previously mentioned formula for the 3 point forward and backward differences:

v1 = (-3*h(1) + 4*h(2) - h(3))/(t(3) - t(1))
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v1 = -12.8000

vn = (h(end-2) - 4*h(end-1) + 3*h(end))/(t(end) - t(end-2))

vn = 617.7000

Numeric differentiation by function approximation

Let's look at the other approach for approximating the derivative. In this case, we first fit a function to the
data points, preferably one that can be differentiated easily, and we compute the analytic derivative of that
function. Let's use a quadratic polynomial as our model:

c = polyfit(t, h, 2)

c = 1×3
    3.0470   10.1151  -89.3626

p = @(x) polyval(c, x);
figure(1);
hold on;
fplot(p, [min(t), max(t)]);

We can see that the quadratic polynomial fits the data really well.
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If we defined the polynomial in symbolic form, we could use the same diff command to differentiate the
function symbolically. In the case of polynomials, we can also use the built-in polyder command and if we
use this, we don't even have to define the polynomial symbolically. Let's take a look at both solutions:

syms x
ps = c(1)*x.^2 + c(2)*x + c(3)

ps = 

v2 = diff(ps, x) % using symbolic derivation

v2 = 

v2 = matlabFunction(v2)

v2 = function_handle with value:
    @(x)x.*6.093906093906094+1.011508491508492e1

c1 = polyder(c) % using the polyder command which takes the coefficient of the original polynomial as input

c1 = 1×2
    6.0939   10.1151

v2 = @(x) polyval(c1, x)

v2 = function_handle with value:
    @(x)polyval(c1,x)

figure(2);
fplot(v2, [min(t), max(t)], 'g', 'LineWidth', 2);
legend('central diff.', 'forward diff.', 'backward diff.', 'derivative of fitted polynomial', 'Location', 'best');
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The derivative function became even smoother, resulting in a line.

Example - Evaporation and leakage losses of irrigation water reservoir

Let's look at the following example. We have a water storage used for irrigation that suffers losses due to

evaporation and leakage. Our task is to approximate the quantities of these losses ( ) as a

function of time if we know the value of the inlet ( ) the value of the outlet (the water used for

irrigation, ), the level of water inside the reservoir ( ) and the characteristic curve of the
reservoir. The inlet, the outlet and the water level are all given as time series and are hence functions of time.
The equation determining the volume of water inside the reservoir:

where  is the change in the water level and  is the area of the water inside the reservoir for a given

water level (it can be determined from the characteristic curve of the reservoir):
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The figure above shows the characteristic curve of a reservoir for both water surface and the
volume as function of the water level. The data for the  function for our reservoir is available in

the irrigation.txt file. The water levels are given in m and the water surface values are given in .  Let's
load the data and plot the characteristic curve.

clear all; close all;
data = load('irrigation.txt');
z = data(:, 1);
A = data(:, 2);
figure(1);
plot(z, A, 'r*-');
title('Characteristic curve of the reservoir');
xlabel('Water level [m]');
ylabel('Water surface [m^2]');
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In the example, we will use cubic, second order splines to interpolate the data.

F = @(x) spline(z, A, x);
hold on;
fplot(F, [min(z), max(z)], 'b')
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Data for the inlet ( ), the water level ( ) and the outlet ( ) are also available for a 30-day period
in the timeseries.txt. The first column represents the number of the days, the second the inlet, the third
the water level and the fourth the outlet. The water level is given in m, while the inlet and outlet values are

given in . Let's load this data into MATLAB as well:

data = load('timeseries.txt');
t = data(:, 1);
Qin = data(:, 2);
z = data(:, 3);
Qout = data(:, 4);

We can create two plots showing the inlet/outlet and the change in the water level:

figure(2); hold on;
plot(t, Qin, 'b');
plot(t, Qout, 'r');
legend('Inlet', 'Outlet');
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figure(3);
plot(t, z, 'b');
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Using the data of the characteristic curve, let's compute the water surface values (A) at each water level
value (z):

Az = F(z)

Az = 30×1

107 ×
    0.6312
    0.6288
    0.6261
    0.6235
    0.6209
    0.6183
    0.6157
    0.6131
    0.6105
    0.6090

Our equation for the reservoir is the following:

We know the ,  and  time series. In order to find the  function, we have to compute

the first derivative of the water level, . Because the water level values are measured at the beginning of
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each day, the effect of change in the water level during a day will only visible in the data for the next day.
This means that we have to use forward differences. We can create a new custom function that calculates
the derivative using only forward differences (one backward difference at the very last point), or we can use
the diff command.

First, we convert the time values from day to second, as all the other values are given in :

ts = t*24*3600;
dz = diff(z)./diff(ts); 
dz = [dz; dz(end)] % derivative using forward differences (the last value is copied)

dz = 30×1

10-4 ×
   -0.0016
   -0.0017
   -0.0017
   -0.0017
   -0.0017
   -0.0017
   -0.0017
   -0.0017
   -0.0010
    0.0014

Now, we can use the equation above to find the loss function:

dV = Az.*dz;
Qloss = Qin - Qout - dV;

Plotting the loss function:

figure(4);
plot(ts, Qloss, 'b-');
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The evaporation ( ) is proportional to the water surface and is usually given in mm/day. The values of the

loss function are now in , but we can change this to mm/day:

where 86400 is the number of seconds in a day and we multiply by 1000 to give the results in mm and not in
m. Let's plot the transformed evaporation function (it's value is generally under 10 mm/day for our conditions
and its value can be negative in case of precipitation):

evap_mm = Qloss * 86400 * 1000 ./ Az

evap_mm = 30×1
    5.5137
    6.4805
    6.4448
    6.4088
    6.3726
    6.3362
    6.2996
    6.2628
    0.2258
  -19.6615

figure(5);
plot(t, evap_mm, 'b');
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title('Loss due to evaporation [mm/day]');
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Numerical integration
Numerical integration is the approximation of the definite integral of a function . The definite

integral  is equal to the area under the function's graph in the interval . Some of the methods

used to numerically approximate the integral will try to approximate this area under the function instead.
Many engineering problems use integrals, the most common ones include area/volume calculation, arc
length calculation or solving differential equation.

The trapezoidal rule
One of the most common numerical methods to approximate the integral is the trapezoidal rule. We take the
function of the graph in an interval  and approximate the area under the function using a trapezoid:

where  is the length of the interval (the "height" of the trapezoid). As using just one big trapezoid is

very inaccurate, we have to divide the interval into  (n being the number of dividing points in the
interval) smaller intervals, calculate the area of the corresponding trapezoids and then sum up these areas:

It is not necessary to have equally spaced data points, but if this condition is met, the above formula
simplifies to:

where h is the distance between two data points along the x-axis.

Let's take a look at the following example:

The density of the Earth ( ) is a function of the distance from its center (the radius, R). The data points
describing this relationship are located in the earth_density.txt file. Let's load the data and compute the
approximate mass of the Earth using the following integral:

The radii are given in km and the density values are given in , which means that we have to change
the radii into m as well:

data = load('earth_density.txt');
R = data(:, 1) * 1000;
rho = data(:, 2);
figure(1);
plot(R, rho, 'r*-');
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First, we need to calculate the values of the function that we want to integrate, so let's compute the function
values for the given R and  values:

fx = 4 * pi * rho .* R.^2;

MATLAB has a built-in command to approximate the integral using the trapezoidal rule,
the trapz command:

M = trapz(R, fx) % 1st argument is variable with respect to which we integrate, second is 

M = 

      6.02609577351443e+24

% the function values

The approximation seems to be OK as the current estimate for the mass of the Earth

is .

Numerical integration using Simpson's rule
The trapezoidal rule basically uses a line between the function values to approximate the function. Simpson's
rule improves this approximation by using quadratic or cubic polynomials (Simpson's 1/3 rule, Simpson's 3/8
rule).
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In case of the 1/3 rule, that uses quadratic polynomials, we compute the function values in 3 points and fit a
degree 2 polynomial to the points. We can do this easily using the Lagrange or the Newton form. Let's use
the Newton form is our case:

The coefficients  are as follows (computed using the divided differences):

                  

If we have equally spaced points, with a distance h between them:

                   

As the function is approximated using this polynomial, we approximate the integral of the function by the
integral of the polynomial:

In a general form:

Let's have n equally spaced points in the interval . This means that  and . The n number of

points divide the interval into  parts. Simpson's rule uses 3 point to fit the parabola to the function,
so we always have to divide the integral into even number of parts:

The approximation using Simpson's rule:

As an example, let's compute the mass of the Earth from the previous exercise using Simpson's rule as
well. In MATLAB, we can use the quad function to estimate the integral using Simpson's rule. However,
in this case, we have to supply a function as an input to the algorithm and not a vector of data points. This
means, that we first have to approximate the data points using either a form of interpolation or some form
of regression. Previously we have looked at this dataset and found that it is best approximated using cubic
Hermite interpolation (only the first derivatives are equal at the internal points).

We can fit the Hermite spline using the interp1 command and specifying the pchip method:

rho_cubic = @(x) interp1(R, rho, x, 'pchip');
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figure(1);
hold on;
fplot(rho_cubic, [0, 6370000], 'g');
legend('Original data points', 'Hermite spline interpolation');

Now, we can use the quad command to estimate the integral:

fx_cubic = @(R) 4 * pi * rho_cubic(R) .* R.^2;
M2 = quad(fx_cubic, 0, 6370000)

Warning: Maximum function count exceeded; singularity likely.

M2 = 

      5.96575465878443e+24

We can see that the estimation is a lot better, that is closer to the currently accepted value.

Remark: a method called Richardson's extrapolation can be used to further improve the estimation. The
method uses the combination of two less accurate results to improve the approximation by one order of
magnitude. Due to time constraints, we do not cover this in the class.

Estimation of multidimensional integrals or a regular grid
It is common to have two or three dimensional integrals in many engineering problems. A two dimensional
definite integral is given in the following form:
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The computation of such an integral can be done in two parts, an inner and an outer integral. Numerically,
we can start the computation of the outer integral with one of the methods above, but every function value
inside results from a numerical estimation of the inner integral. This way, we can generalize the integral of a
univariate function to higher dimensions (more variables), when the limits of the integrals can be given on a
regular grid (rectangular area, volume etc.)

In MATLAB, if the integral has to be computed on a regular grid, we can use the integral2 for 2D and
the integral3 for the estimation of 3D integrals:

q = integral2(fun, xmin, xmax, ymin, ymax)
q = integral3(fun, xmin, xmax, ymin, ymax, zmin, zmax)

Previously we have looked at an example where we used 2D integration and computed the volume below the
terrain given on a regular grid.

If the limits of the integral are defined by an irregular shape, we have to use a different approach.

Multidimensional integral on irregular shapes
In such a case, we can use the so called Monte Carlo method. This method is stochastic, which means that
it evaluates the function in random points as opposed to a regular grid. The method is most commonly used
to estimate area or volume of irregular shapes.

Let's look at the following example. We have the area of a water reservoir defined by the coordinates of its
vertices. The coordinates are located in the reservoir.txt file. First, let's load the data and plot the area:

clear all; close all;
data = load('reservoir.txt');
x = data(:, 1);
y = data(:, 2);
figure(1);
hold on;
plot(x, y, 'r-', 'LineWidth', 2);
axis equal

If we want to estimate the area of the reservoir using the Monte Carlo method, we have to do the following:

1. We need to define the rectangular area that covers the whole reservoir.
2. We have to generate N number of random points in this rectangular area.
3. We have to count how many points fall inside the area of the reservoir. Let this number be n. We can

calculate the proportion of the points that are inside the area of the reservoir to the total number of

points: .

4. If we know the area of the rectangle containing the reservoir, let it be , then the estimated
area of the reservoir is given by the following equation:
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Let's compute this in MATLAB. First, we have to define the rectangle containing the reservoir:

a = max(x) - min(x)

a = 

        6669

b = max(y) - min(y)

b = 

       13169

rectangle('Position', [min(x), min(y), a, b]);

Next, we have to generate 2 dimensional random points. One way to do this would be to call
the rand function, another is use the so called Halton points (haltonset command). The Halton points
are based on the van der Corput series and are generally cover an area more homogeneously. Both will
result in points between . Let's generate 1000 points with both methods:

% Pseudo-random points
xyr = rand(10000, 2);
figure(2);
plot(xyr(:, 1), xyr(:, 2), 'r.');
title('Pseudo-random points');
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% Halton points
hs = haltonset(2); % this command generates the 2D Halton sequence
xyh = net(hs, 1000); % we sample the sequence 1000 times
figure(3);
plot(xyh(:, 1), xyh(:, 2), 'r.');
title('Halton points');

7



For further computation, we will use the Halton points as they cover the area a bit more homogeneously.

As the points are currently given in the  interval, we have to first transform them to our actual interval:

xh = xyh(:, 1)*a + min(x);
yh = xyh(:, 2)*b + min(y);
figure(1);
plot(xh, yh, 'b.');

Now, we have to count the number points that are inside our polygon. To do this, we can use
the inpolygon command in MATLAB. The result will be a vector that contains one in the rows
corresponding to points that are inside the polygon and zeros for the ones that outside. We can count the
number of nonzero elements by just summing up the elements in the vector, or using the nnz command:

k = inpolygon(xh, yh, x, y)

k = 1000×1 logical array
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0
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plot(xh(k), yh(k), 'r*');

n = nnz(k)      % number of points inside the polygon

n = 

   280

N = length(k)   % total number of points

N = 

        1000

T = a*b         % area of the rectangle containing the polygon

T = 

    87824061

t = T*n/N       % estimated area of the polygon

t = 

               24590737.08
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The Monte Carlo estimate can be improved by using more points. When estimating integrals over irregular
shapes, the greatest advantage of the Monte Carlo method is that it can be generalized to any kind of
function.

Generalized Monte Carlo method for integration
The general form of the Monte Carlo method for integration can be given as follows: let  be defined on

an  region. We wish to compute the definite integral of  on a subregion :

The average of the function over the subregion can be computed as:

But it can also be estimated by:

where  and n is the number of points inside the subregion. Equating the formulae for the average:

If we solve for the integral, we get:

The estimated value of the subregion  can be computed as follows. If the randomly distributed points
follow a homogeneous distribution, as the number of points increases, the number of points inside the

subregion  divided by the total number of points  will be proportional to the areas of the two regions:

where n is the number of points inside the subregion and N is the total number of points. The estimation of
the integral:
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In other words, the integral can be estimated by taking the sum of the function values at the points inside the
subregion and multiplying it by the area of the whole region containing the subregion, divided by the total
number of points.

Estimating total precipitation using the Monte Carlo method
Weather stations were set up in the reservoir from the previous example that measure the precipitation in the
area. Given the data of the weather stations, how much was the total precipitation in the whole reservoir?

The precipitation values in the area of the reservoir were estimated using the data from the weather stations
and the following 2D quadratic polynomial:

To find the total precipitation in the area of the reservoir, we have to compute the integral of the polynomial
above the area of the reservoir. First, we can define the function and plot its contour lines:

f = @(x, y) 0.005 + 6e-7*x + 3e-7*y - 1e-10*x.^2 - 2e-11.*x.*y + 2e-11*y.^2;
figure(4);
h = ezcontour(f, [min(x), max(x), min(y), max(y)]);
set(h, 'Show', 'on');
hold on;
plot(x, y);
axis equal

We already have 1000 random points in the area from the previous example, so we can reuse those. Next,
we can proceed in two ways. We can compute the average precipitation value from the function values of the
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points inside the reservoir and multiply it by the area of the reservoir, as we have already computed it from
the previous example:

xb = xh(k);
yb = yh(k);                 % coordinates of points inside the reservoir
n = length(xb);             % number of points inside the reservoir
N = length(xh);             % total number of points
p = 1/n * sum(f(xb, yb))    % average precipitation from the points inside

p = 

       0.00861282022495253

sum_p = p * t               % total precipitation from the average and the area

sum_p = 

          211795.597669114

Or we can use the generalized Monte Carlo method. In this case, we needn't have calculated the area of the
reservoir, what is required is the area of the rectangle containing the reservoir, the total number of points and
the function values at the points inside the reservoir:

p2 = T/N * sum(f(xb, yb))

p2 = 

          211795.597669114

 As an example, if our region is regular, for instance, we would like to compute the integral of the function
above the rectangular area, we can use the integral2 in 2D:

p_rectangle = integral2(f, min(x), max(x), min(y), max(y))

p_rectangle = 

          719767.774288615
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Optimization
Mathematical optimization means that we have an objective function , where x is a vector of

inputs ( ) and we want to find the place where the function value reaches minimum or
maximum. There are many variations of optimization problems, but the majority of the methods that have
been developed are looking for the minimum of the objective function:

If our problem is to find the maximum of some function , we can turn this into a minimization problem

by taking the function multiplied by -1, that is . By finding the minimum of , we have found the

maximum of .

Optimization problems are always defined on a certain interval of the input variables. In this interval there can
be either

• local minima or maxima, or
• a global minimum or maximum.

Local minima or maxima are places where the function value is smaller than in any arbitrarily close point. If
we have multiple local minima or maxima in the interval, the one with the smallest (or largest) value is the
global minimum or maximum in the interval. In the figure below, P1 and P3 are local minima, while P2 would
be the global minimum of the interval.

Optimization problems can also be classified by fact whether they are constrained or unconstrained.
Constrained optimization means that apart from the objective function that we are minimizing, we have
certain linear or nonlinear equations or inequalities that the input variables have to satisfy. For example,
one of the most common linear inequality constraint is setting the input variables positive. Different methods
exist for different types of constrained optimization problems, whether the constraints are linear or nonlinear,
whether there are inequalities and so on. The methods include Lagrange multipliers, the penalty method,
the Karush-Kuhn-Tucker conditions and more. In the following, we are only dealing with unconstrained
optimization problems, where we only have one objective function that has to be minimized.

Finding the minimum of a univariate function
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Let's look at the following example: we have a fixed I-beam with a linearly distributed load according to the
following figure:

The specifications of the beam and the load are as follows:

• length of the beam, 
• moment of inertia of the beam, 
• Young's modulus of the beam, 
• The maximum of the distributed load, 

The deflection of the beam is given by the following function:

The questions are the following:

1. How much is the deflection (in mm) at 1 m and at 2 m?
2. Where is the maximum (along the x-axis) of the deflection (in mm)?

First, we have to define the variables:

format longG
E = 70000;
I = 5.29e7;
q0 = 15;
L = 3000;

Next, we can define the function of the deflection. Our only variable is the x distance:

y = @(x) q0/(120*L*E*I) * (x.^5 - 5*L*x.^4 + 7*L^2*x.^3 - 3*L^3*x.^2);

We can visualize the function to get a better idea about the deflection:

figure(1);
fplot(y, [0, 3000]);
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To find the answers to the first question, we just simply have to substitute the x values into the deflection
function. As we have defined everything in mm, the results are in mm as well:

y(1000)

ans = 

         -0.36006841299847

y(2000)

ans = 

        -0.315059861373661

Before we can answer the second question, we have to take a look at some optimization methods that will
help us find the minimum of the deflection function.

Interval methods -- Ternary search algorithm
The interval methods are very similar to the ones used to find the roots of functions. We have to specify
a certain closed interval [a, b] that contains one minimum of the function (in other words, the function
is unimodal in the interval), but instead of calculating only one function value inside the interval, we will
calculate two ( ).
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As the function only has one minimum in the interval, its value is monotonically decreasing until the minimum

and then it is monotonically increasing. If the function value in  is smaller than that in , it means that the

minimum is in the interval [a, ]. Similarly, if the function value in  is smaller than the function value in ,

then the minimum has to be in the interval [ , b]. Therefore, we have shrunk the interval and found our new

a and b values. We can find a new  and  in this new interval and continue the algorithm while the interval
is bigger than some tolerance value or we have reached a certain number of iterations.

As long as the function is unimodal in the interval, the method will converge. The more interesting question

is, that how should we define the  and  values to be most efficient (that is, to find the minimum with

the least amount of computations)? One approach is to distribute the points equally,  will be in the 1/3

mark of the interval and  will be in the 2/3 mark. This is called the ternary search algorithm, which can be
implemented in MATLAB using the following code:

function [x, i] = interval(f, a, b, tol)
 
 i = 1;
 x1 = a + 1/3*(b-a);
 x2 = b - 1/3*(b-a);
 while abs(x2-x1) > tol 
   if f(x1) < f(x2)
     b = x2;
   else
     a = x1;
   end
   i = i+1;
   x1 = a + 1/3*(b-a);
   x2 = b - 1/3*(b-a);
 end  
 x = (x1+x2)/2;
end

Let's use this algorithm to find the maximal deflection (which is a minimum value of the deflection function, as
the deflection is negative). From the figure we can see that the minimum is inside the [1000, 2000] interval,
so we can use that as our initial interval:

[x1, i1] = interval(y, 1000, 2000, 1e-6)
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x1 = 

          1425.91478062954

i1 = 

    50

It took 50 iterations for the algorithm to find the minimum which turned out to be at ~1426 mm. It's value is:

y(x1)

ans = 

        -0.429347419445165

-0.4293 mm.

Golden-section search
The golden-section method improves upon the interval method and uses the golden ratio to

distribute  and  inside the search interval. We can find the golden ratio by diving the length of the interval

into two parts ( ) in such a way, that  is proportional to L the same way as  is to :

If we rearrange the equation and solve for  and :

     and     

Substitute  and  into :

Dividing this by L and bringing everything to the left side:

The positive solution of this quadratic equation is the golden ratio:

If we choose the place of  and  according to the golden ratio, that is,  is  from b and  is

symmetrically  from a, then what happens is that as we decrease the interval between [a, ]

or [b, ], one of the internal points of the new, decreased interval will already be given, as it will be the

same as . In other words, we only have to compute the function value inside one other point in the new
[a, b] interval, the place of which is chosen according to the golden ratio. This results in relatively faster
convergence and a lot less function evaluations.
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In MATLAB, we could use the following code to do the golden-section search:

function [x, i] = goldensect(f, a, b, tol)
 
i = 1;
R = (sqrt(5)-1)/2;
x1 = b - R*(b-a);
x2 = a + R*(b-a);
f1 = f(x1); f2 = f(x2);
while abs(x2-x1) > tol 
  if f1 < f2
     b = x2;
     x2 = x1; f2 = f1; % f2 comes from the previous iteration!
     x1 = b - R*(b-a);
     f1 = f(x1);    
  else
     a = x1;
     x1 = x2; f1 = f2; % f1 comes from the previous iteration!
     x2 = a + R*(b-a);
     f2 = f(x2); 
  end
  i = i+1;
end  
x = (x1+x2)/2;

 and  only have to be computed in the first iteration and in all of the subsequent ones, only one of them
will be updated. Let's use the golden-section search to find the maximum of the deflection:

[x2, i2] = goldensect(y, 1000, 2000, 1e-6)

x2 = 

          1425.91478565744

i2 = 
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    42

y(x2)

ans = 

        -0.429347419445165

Instead of 50 iterations, the algorithm only needed 42 now. However, what is more important is that instead
of the previous  function evaluations, the new algorithm only carried out  function
evaluations, which is a huge gain when it comes to complicated functions.

Newton's method for optimization
If we can easily compute the derivative of the objective function, then we can use a modified version of
Newton's algorithm that we used to find roots of nonlinear functions. The trick is, that we are looking for
the roots of the first derivative of the function now as those are the places where the function can have a
minimum or a maximum. The iteration formula for the regular Newton's method was the following:

If instead we are looking for the root of the derivative function, the iteration formula becomes:

This means, that we have to be able to calculate the first and the second derivative of the objective function.
In the case of a problem like the one above, it is not too much work, even without using the computer. We
can of course use MATLAB to do the work for us:

First, we have to convert the function into a symbolic expression. If we do not want to lose precision, it is
better to define the symbolic function using only symbolic variables (for E, I, q0 and L as well):

syms E I L x
ys = q0/(120*E*I*L) * (x.^5 - 5*L*x.^4 + 7*L^2*x.^3 - 3*L^3*x.^2)

ys = 

Now, we can use symbolic derivation. As the second argument, we define the variable with respect to which
we differentiate:

dx = diff(ys, x)

dx = 

ddx = diff(dx, x)
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ddx = 

To substitute the numeric values into the symbolic expression, we first have to define the variables again and
then use the subs command:

E = 70000; I = 5.29e7; L = 3000; q0 = 15;
dx = subs(dx);
ddx = subs(ddx);

Convert the expressions back to anonymous functions:

dxf = matlabFunction(dx)

dxf = function_handle with value:

    @(x)x.*(-1.822846340804753e-6)+x.^2.*2.126654064272212e-9-x.^3./1.4812e12+x.^4./1.77744e16

ddxf = matlabFunction(ddx)

ddxf = function_handle with value:

    @(x)x.*4.253308128544423e-9-x.^2.*2.025384823116392e-12+x.^3./4.4436e15-1.822846340804753e-6

Solution using Newton's method:

[xn, in] = newton(dxf, ddxf, 2000, 1e-6, 100)

xn = 

          1425.68322611289

in = 

     3

y(xn)

ans = 

        -0.429347398633028

It only took 3 iterations to reach a similar tolerance. We can see from this that this method has a much faster
convergence rate, if it converges.

MATLAB's built-in algorithm
There are of course built-in methods in MATLAB to solve optimization problems. One of the function that
works for unconstrained optimization is fminsearch, which uses the Nelder-Mead simplex algorithm. Let's
use it on the same problem:

xmin = fminsearch(y, 2000)
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xmin = 

           1425.9147644043

y(xmin)

ans = 

        -0.429347419445165

The function can also be called with extra outputs that provide information about the procedure:

[xmin, fval, exitflag, output] = fminsearch(y, 2000)

xmin = 

           1425.9147644043

fval = 

        -0.429347419445165

exitflag = 

     1

output = struct with fields:

    iterations: 25
     funcCount: 50
     algorithm: 'Nelder-Mead simplex direct search'
       message: 'Optimization terminated:↵ the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04 ↵ and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-04 ↵'

Multivariate function optimization
In many cases, the objective function that have to be optimized have multiple input variables. For example,
finding the highest or lowest point of a surface, minimizing the distances from a road intersection etc. For
unconstrained multivariate optimization, we can use the multivariate Newton's method, the gradient method
or the Nelder-Mead simplex method.

Finding the position in an overdetermined case
Previously we have looked at a positioning problem where distances are measured from three cell towers
and the coordinates of the point at the intersection of the circles (represented by the distances) have to
be found. In the case when we have more than 3 distances to more than 3 cell towers (an overdetermined
case), due to the perturbation in the data, we cannot hope to find a single point of intersection. Instead,
we can only find a point in which the sum of the squared distances from the given circles (the sum of the
squared residuals) is minimal. We have seen this least squares problem before in the case of regression and
solved it by linearizing the data. However, it can also be solved by minimizing the objective function (the sum
of the squared residuals), which we wil do now.

We have the following data for 4 cell towers (x, y - coordinates of the tower [m], r - distance from the tower
[m]):
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The equation of each circle around the towers can be given in the following explicit form:

Let's define the data for the towers and the measurements first:

xt = [561, 5203, 5067, 1012];
yt = [487, 4625, -5728, 5451];
rm = [2130, 5620, 6040, 5820];

We can use a for loop to plot the position of the towers and circles around them. First, we define the equation
of the circles in a general form:

circle = @(x, y, xi, yi, ri) (x - xi).^2 + (y - yi).^2 - ri.^2

circle = function_handle with value:

    @(x,y,xi,yi,ri)(x-xi).^2+(y-yi).^2-ri.^2
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We can convert the equations into symbolic form by substituting a symbolic x and y variables and the data for
each tower:

syms x y
Eqs = circle(x, y, xt, yt, rm)

Eqs

= 

 
figure(2); hold on;
for i = 1:length(Eqs)
    plot(xt(i), yt(i), 'r*')
    fimplicit(Eqs(i), [-5000, 15000, -5000, 10000], 'b-')
end
axis equal;

Zoom in on the figure to better see the intersection:

axis([2000, 3000, -500, 100])
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We can clearly see that there is no defined point of intersection, we have to find the optimal point by
minimizing the sum of the squared residuals. This objective function can be defined as follows:

Define the objective function and plot it:

f = sum(circle(x, y, xt, yt, rm).^2)

f

= 

ff = matlabFunction(f)

ff = function_handle with value:

    @(x,y)((x-5.61e2).^2+(y-4.87e2).^2-4.5369e6).^2+((x-5.203e3).^2+(y-4.625e3).^2-3.15844e7).^2+((x-1.012e3).^2+(y-5.451e3).^2-3.38724e7).^2+((x-5.067e3).^2+(y+5.728e3).^2-3.64816e7).^2

figure(3);
fsurf(ff, [2000, 3000, -500, 100])
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To find the lowest point of the surface (the minimum of our objective function), we can use the following
method.

Multivariate Newton's method
In the univariate case, the iteration formula for the optimization was the following:

In the multivariate case, instead of the first derivative of the function, we have to use the gradient vector
of the function ( ), which contains the partial derivatives with respect to each variable (x and y in our
case). In place of the second derivative, we use the function Hessian matrix, that contains the second partial
derivatives:

             

The iteration formula becomes the following:
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The variables have to given in vector form of course. An example for the multivariate Newton's algorithm is
given below:

function [x i X] = gradmulti(grad, hesse, x0, eps, nmax)
 
x1 = x0 - pinv(hesse(x0))*grad(x0);
i=1;
X=[x0 x1];
 
% Stop conditions: 
% 1. the step size is smaller than the given eps value, or
% 2. the maximum number of iterations has been reached
while and(norm(x1 - x0) > eps, i < nmax)
 x0 = x1;
 x1 = x0 - pinv(hesse(x0))*grad(x0);
 i = i + 1;
 X = [X x1];
end
x = x1;

Before we find the minimum of the function, we can visualize the gradient vectors of the surface. In MATLAB,
we can calculate the gradient both numerically and symbolically. In order to calculate it numerically, we first
have to create a mesh grid and evaluate the function on it:

[X, Y] = meshgrid(2000:100:3000, -500:50:100);
Z = ff(X, Y);

We can use the gradient function to compute the gradients in the points of the mesh grid and
the quiver function to plot the vectors:

[gx, gy] = gradient(Z);
figure(4); hold on;
fcontour(ff, [2000, 3000, -500, 100]);
quiver(X, Y, gx, gy)
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To use our multivariate Newton's algorithm, we have to supply the gradient and the Hessian in vector form. If
we have our function in symbolic form, we can use the gradient and the hessian functions:

g = gradient(f)

g = 

h = hessian(f)

h = 
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Convert these to anonymous functions:

gf = matlabFunction(g)

gf = function_handle with value:

    @(x,y)[(x.*2.0-1.122e3).*((x-5.61e2).^2+(y-4.87e2).^2-4.5369e6).*2.0+(x.*2.0-1.0406e4).*((x-5.203e3).^2+(y-4.625e3).^2-3.15844e7).*2.0+(x.*2.0-2.024e3).*((x-1.012e3).^2+(y-5.451e3).^2-3.38724e7).*2.0+(x.*2.0-1.0134e4).*((x-5.067e3).^2+(y+5.728e3).^2-3.64816e7).*2.0;(y.*2.0-9.74e2).*((x-5.61e2).^2+(y-4.87e2).^2-4.5369e6).*2.0+(y.*2.0-9.25e3).*((x-5.203e3).^2+(y-4.625e3).^2-3.15844e7).*2.0+(y.*2.0-1.0902e4).*((x-1.012e3).^2+(y-5.451e3).^2-3.38724e7).*2.0+(y.*2.0+1.1456e4).*((x-5.067e3).^2+(y+5.728e3).^2-3.64816e7).*2.0]

hf = matlabFunction(h)

hf = function_handle with value:

    @(x,y)reshape([(x-5.61e2).^2.*4.0+(x-1.012e3).^2.*4.0+(x-5.067e3).^2.*4.0+(x-5.203e3).^2.*4.0+(y-4.87e2).^2.*4.0+(y-4.625e3).^2.*4.0+(y-5.451e3).^2.*4.0+(y+5.728e3).^2.*4.0+(x.*2.0-1.122e3).^2.*2.0+(x.*2.0-2.024e3).^2.*2.0+(x.*2.0-1.0134e4).^2.*2.0+(x.*2.0-1.0406e4).^2.*2.0-4.259012e8,(x.*2.0-1.122e3).*(y.*2.0-9.74e2).*2.0+(x.*2.0-2.024e3).*(y.*2.0-1.0902e4).*2.0+(x.*2.0-1.0406e4).*(y.*2.0-9.25e3).*2.0+(x.*2.0-1.0134e4).*(y.*2.0+1.1456e4).*2.0,(x.*2.0-1.122e3).*(y.*2.0-9.74e2).*2.0+(x.*2.0-2.024e3).*(y.*2.0-1.0902e4).*2.0+(x.*2.0-1.0406e4).*(y.*2.0-9.25e3).*2.0+(x.*2.0-1.0134e4).*(y.*2.0+1.1456e4).*2.0,(x-5.61e2).^2.*4.0+(x-1.012e3).^2.*4.0+(x-5.067e3).^2.*4.0+(x-5.203e3).^2.*4.0+(y-4.87e2).^2.*4.0+(y-4.625e3).^2.*4.0+(y-5.451e3).^2.*4.0+(y+5.728e3).^2.*4.0+(y.*2.0-9.74e2).^2.*2.0+(y.*2.0-9.25e3).^2.*2.0+(y.*2.0-1.0902e4).^2.*2.0+(y.*2.0+1.1456e4).^2.*2.0-4.259012e8],[2,2])

Write them using vector notation:

gv = @(x) gf(x(1), x(2));
hv = @(x) hf(x(1), x(2));

We can choose an initial guess from the figure and find the minimum:

x0 = [2400; -300];
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[s, i, S] = gradmulti(gv, hv, x0, 1e-6, 100)

s = 2×1
          2454.65697065448
           -246.9483059606

i = 

     4
S = 2×5
                      2400          2452.89756162567          2454.65599642035
                      -300         -247.608991028719         -246.948598495572

Plot the solution:

plot(s(1), s(2), 'r*')

Built-in methods in MATLAB
There are two main algorithms in MATLAB for solving multivariate optimization:

• fminsearch that uses the Nelder-Mead simplex method and
• fminunc that uses the quasi-Newton algorithm.

If the derivatives cannot be computed efficiently, then it is recommended to use the simplex method. In this
case, we use a simplex (a polytope of n+1 vertices in n dimensions, i.e. a triangle in two dimensions) and by
operating on the simplex (streching, shrinking, mirroring) we change the location of the vertices in such a way
that they always conform to the shape of the surface. This causes the simplex to move towards the minimum

17



of the function. A GIF showing the movement of the simplex can be found at: https://en.wikipedia.org/wiki/
File:Nelder-Mead_Himmelblau.gif.

In order to solve the problem using the simplex method, we have to define our function using the vector
notation:

fv = @(x) ff(x(1), x(2))

fv = function_handle with value:

    @(x)ff(x(1),x(2))

sol = fminsearch(fv, x0)

sol = 2×1
           2454.6569708984
         -246.948306492714

figure(3); hold on;
plot3(sol(1), sol(2), ff(sol(1), sol(2)), 'r.', 'MarkerSize', 10)
view([-42 43])

The distances of the solution from each of the circles:

ex = xt - sol(1);
ey = yt - sol(2);
er = rm - sqrt(ex.^2 + ey.^2)
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er = 1×4
          99.0847284941651          26.3187696519035         -31.7595282253087

Remark: All the methods shows above are for finding local minima or maxima. They will generally (not
always) converge to the closes minimum or maximum from the initial guess. If we have multiple minima or
maxima in the interval and our goal is to find the global minimum for example, we have to find each of the
local minima or maxima and compare their function values. There are stochastic methods that can be used
to find global minima or maxima on a given interval (genetic algorithms, simulated annealing, particle swarm
etc.), but due to time constraints, we do not cover these in class.
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Ordinary Differential Equations - Initial value problems

Differential equations

Differential equations are equations containing a function  and its derivatives. The ordinary
differential equations (ODEs) contain a univariate function and its derivatives. The order of the ODE
equals the highest order of derivatives in the equation. As opposed to an ODE, there are partial differential
equations (PDEs) as well that contain a multivariate function's partial derivatives. 

The solution for a differential equation is not a number but a function. In order for the solution to be unique,
some constraints have to be met by the solution function. One constraint can be that the function and
its derivative take some value at the beginning of the interval of interest, hence the initial value problem.
Another constraint would be that at least one of the values the function or its derivative takes is given at the
end of the interval.

Generally, we have a solution set for a given differential equation. For example, take the following

ODE: . We are looking for a function that solves this equation. All the functions in the figure below

solve the equation, so they make up the solution set for the equation. The figure below is also called the
trajectory or direction field of the ODE.

If we specify the initial conditions for the function and derivative's value at the beginning of our search
interval, e.g. the function has to go through the point , that we have reduced the solution to
a specific solution, that is the function given by the red line below:
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There are linear ODE's and nonlinear ones. In a linear ODE, the linear expression of the unknown function
and its derivatives are given. For example:

  -- This is a linear ODE.

  -- This is a nonlinear ODE.

In the case of many differential equations and systems (especially if they are nonlinear), the solution function
can only be found numerically. The numeric solution give us the data points of the function computed using
numeric integration. The aim of these algorithms is to accurately approximate the data points of the solution
function using as few steps and function evaluations as possible.

Ordinary Differential Equations - The initial value problem

The general form of a first order ODE with the independent variable t:

In the univariate case, we have one independent variable (t) and one dependent variable (y). The derivative
of the function y is given by . In the case of the initial value problem, we know that the solution goes

through the ( ) point:

Euler's method

We wish to find the values of the solution function on a given interval using a predefined step size (h). We
suppose that the slope of the function (m) on the interval defined by the h step size is constant. If we know
the functions value at the beginning of the interval and the value of its derivative (which denotes the slope of
the function) than we can approximate the value of the function at the end of the h step size using a line with
slope m.
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In case of Euler's method, we suppose that the  value is constant for each subinterval

( ) where we integrate and its value is given at the beginning of the interval.

where m is the slope at the beginning of each subinterval and its value is constant on the subinterval. The
local error of the method is , its global error is  meaning that it is a first-order method.

Let's look at an example custom code that implements Euler's method in MATLAB:

function [t,y] = euler (f, y0, a, b, h)
n = round((b - a)/h);
t(1) = a;
y(1) = y0;
for i = 1 : n - 1
    y(i + 1) = y(i) + h*f(t(i), y(i));
    t(i + 1) = t(i) + h;
end

The inputs to the function above:

1. f - the handle of the function that defines the right-hand side of the ODE.
2. y0 - the initial value of the solution function at the beginning of the search interval.
3. a - the beginning of the search interval.
4. b - the end of the search interval.
5. h - the step size for the computation.

Solving an ODE using Euler's method

Let's look at the following example. A spherical water tank with radius  is drained using a hole on

its bottom at  height. The hole has a radius . The contains approximately 4000  of water.

At the beginning of the draining ( ), the height of the water inside the tank is 17.44 m. The coefficient of

contraption of the hole is .
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The water level inside the tank, measured from the bottom is given by the following first-order ODE:

where . We have two questions:

1. How high will be the water level in the tank after 12 hours?
2. How much time does it take to completely drain the tank?

Solving a differential equation always starts with rearranging the equation into a form where we have the
derivative on side and all the other variables and constant on the other. In our case, the ODE is already given
in this form, so we can skip this step. The function that is equal to the derivative will be our f function.

We have to define the function in MATLAB and solve it using Euler's method and a step size of 60 seconds.
It is possible that the derivative function f itself does not contain the independent variable t. Nevertheless, we
still have to define the function in MATLAB using the independent variable t as well.

Definition of the constants:

R = 10;
r = 0.05;
g = 9.81;
mu = 0.85;

The derivative function:

f = @(t, h) -mu*r^2*sqrt(2*g*h)/(2*h*R - h.^2) % Note that the expression is given as a function of t and h, even though t is not present in the actual expression

f = function_handle with value:
    @(t,h)-mu*r^2*sqrt(2*g*h)/(2*h*R-h.^2)

Defining the initial value, the interval of the solution and the step size:

h0 = 17.44; % initial water level
t0 = 0; % 0 hours is the beginning of the interval
t1 = 12*3600; % 12 hours is the end of the interval (given in seconds)
s = 60; % step size in seconds

The solution using Euler's method:

[T, H] = euler(f, h0, t0, t1, s);

Plotting the solution:

figure(1);
plot(T, H);
xlabel('Time [s]');
ylabel('Water level [m]');
title('Change in water level through time');
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As the computation was carried out to 12 hours, the last element inside the vector H will give us the answer to
the first question:

H(end)

ans = 2.7810

The water level after 12 hours is ~2.78 m. The method used is a first-order method ( ). Before we try to
answer the second the question, let's see if we can do better than just a first-order approximation.

Improvements of Euler's method (Heun's method, midpoint method, Runge-Kutta method)

A similar approach is used to estimate the function values in all of the methods mentioned in the section title,
the difference lies in the way of approximating the slope of the function.

In Euler's method, the slope is calculated at the beginning of the step.

In Heun's method, the slope is calculated at the beginning  and at the end of the step interval  as
well. The final value of the slope that is used is the average of the two computed values. In order to
be able to calculate the slope at the end of the step size, we have to know the function value there

as . To be able to achieve this, a so-called predictor step is carried out first using Euler's
method and the result of the predictor step is used to compute the final slope value:

1. Predictor step (Euler's method): 

2. Corrector step: ,  
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3.
Final slope value: 

The local error of the method is , its global error is , which means that the method is a second-
order method and is a magnitude more accurate than Euler's method.

In case of the midpoint method, the derivative is computed in the midpoint of the step and its value will be
considered constant for the given step. To achieve this, the preliminary value of the function is computed for
the midpoint using Euler's method and then the value of the slope is calculated:

1.
Function value at the midpoint (Euler's method): 

2.
Slope in the midpoint:    

3. Function value at the end of the step: 

Euler's method can be further improved if we use even more points to compute the slope and use the
weighted average of these values. The most common of these methods is the fourth-order Runge-Kutta

method which has a global truncation error of . In MATLAB, we can use the built-in ode45 command.
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The function value at  is computed from the formula:

where:

•   - the slope at the beginning of the step size, point A is computed using this slope,
•

  - the slope in point A, point B is calculated using this slope,

•
  - the slope in point B, point C is computed using this slope,

•   - the slope in point C.

The steps of the computation:

1.

2.

3.

4.

5.

Solution of a first-order ODE using the Runge-Kutta method

In MATLAB, we can use the fourth-order Runge-Kutta method in the following form:
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[T, Y] = ode45(odefun, tspan, y0)

where T and Y are the output of the independent variable and the solution, odefun is the function handle
for the derivative function, tspan is the interval of the independent variable and y0 is the initial value of the
function at the start of the interval. The value of tspan can be given in two ways:

• as a vector of the start and the end of the interval, in this case, the ode45 algorithm decides the step
size automatically,

• as a vector of the values of the independent variable, in this case, we decide the step size and define
it explicitely.

Solution using ode45:

% Letting the algorithm deicde the step size
[T1, H1] = ode45(f, [0, 12*3600], h0);
H1(end) % water level after 12 hours

ans = 2.7779

% Defining the step size explicitely
[T2, H2] = ode45(f, [0:60:12*3600], h0);
H2(end)

ans = 2.7713

Plotting the results:

figure(1);
hold on;
plot(T1, H1, 'r');
plot(T2, H2, 'g');

The difference in the values is very minor, only a couple of millimeters. It is worth noting however, that when
the algorithm decided the step size, it wasn't constant throughout the whole interval:

figure(2);
plot(diff(T1));
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The step sized varied between 995 and 1165 seconds. Smaller step sizes can usually make the
approximation more accurate, however, it increases the number of function evaluations. The algorithm
itself tries to decide when to use a smaller and when to use a bigger step size, depending on the difference
between the function values.

Let's anwer the second question now: how much time is needed to completely drain the tank?

To answer this, we first have to compute the function values using a longer period than 12 hours, as we have
seen that after 12 hours, the water level is still higher than 2 meters. Let's use 14 hours (in seconds) for the
end of our interval. We have to be careful, because of the square root inside the formula, the results become
complex after the  line is passed. We first have to convert the complex into real ones, fit a spline to our

solution data and find the intersection of our spline and the horizontal line at :

[T3, H3] = ode45(f, 0:60:14*3600, h0);
figure(1);
H3 = real(H3); % ignoring the imaginary parts
plot(T3, H3, 'k');

Fitting of a spline to the data:

sp = @(t) spline(T3, H3, t);
fplot(sp, [min(T3), max(T3)])
rl = refline(0, 0);
rl.Color = 'r';
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Findig the intersection of the two lines (solution of  equation), the initial guess is from the figure:

h_0 = fzero(sp, 50000)

h_0 = 4.9192e+04

In hours:

h_0 / 3600

ans = 13.6644

What does the draining of the tank looks like if we have different initial water levels? We can visualize this
by creating the trajectory or direction field of the ODE by solving it using initial values from 1 m to 20 m for
example:

figure(3);
hold on;
 
for i = 20:-1:1 % go from 20 to 19, 18, ... 1
    [T, H] = ode45(f, [0, 14*3600], i);
    plot(T, real(H), 'b');
end
axis([0, 14*3600, 0, 20])
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Solution of a system of first-order ODEs

In many cases the phenomenon we are investigating is dependent on multiple variables that can alter each
other. In such cases we have to solve not a single ODE but a system of ODEs. Let the dependent variables
be  and the independent variable be t. In a general form, the system of first-order ODEs can be
written as:

The initial values on the interval :

Some systems of ODEs can be solved using the generalized forms of the explicit methods mentioned
before: , in case of Euler's method for example:
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The improved methods can be similarly generalized. Let's see the following simple example. We are looking
for the solution in the interval  using a step size of .

       

We have two equations,  denotes the derivative of the first variable with respect to t and  denotes the
same for the second variable. Let's use the Runge-Kutta method to solve the system. We have to use vector
notation when specifying the variables, for example we can use , so that  and .

If the system is not too complicated, we can define it as an anonymous function in MATLAB:

clear all; close all;
odesys = @(t, v) [v(1)*t - v(2); v(2)*t + v(1)];

Before we can solve it, we have to define the interval, the step size and the initial values.

t = 0:0.4:1.2;
init = [1; 0.5];
[T, Y] = ode45(odesys, t, init);
figure(1);
hold on;
plot(T, Y(:, 1), T, Y(:, 2));
legend('x(t)', 'y(t)', 'Location', 'best');
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If the system is more complicated, it is better practice to define it in a separate file as a regular function. Let's
do this for the above example. We can create a function file called sysdiff.m and define the system:

function dvdt = sysdiff(t, v)
  f1 = v(1)*t - v(2);
  f2 = v(2)*t + v(1);
  dvdt = [f1; f2];
end

If our system is defined in a separate function file, we have to put an "@" symbol before its name when
referring to it in the solver:

[T, Y] = ode45(@sysdiff, t, init)

T = 4×1
         0
    0.4000
    0.8000
    1.2000
Y = 4×2
    1.0000    0.5000
    0.7868    0.9207
    0.4655    1.4676
   -0.2130    2.2870

Second-order ODEs
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Second-order ODEs with independent variable t and dependent variable y can be given in the following
general form:

The equation can be solved on the interval  if we have two know values. If these values are given at the
beginning of the interval, than we call it an initial value problem. The two initial values that have to be given

are the value of y and  at the beginning of the interval. Let these initial values be denoted using A and B:

        and         

This type of second-order ODE can be transformed into a system of two first-order ODEs that can be solved
similarly to the previous case. The first step of the solution is to rearrange the equation in such a way that the

second derivative is expressed as a function of the other variables and constants . Of course,

it can be the case that the second derivative is not dependent on all of the variables. As t is the independent

variable, it always has to be specified in MATLAB. We can substitute new variables instead of y and :

       and         

Now, we have to write to equations for the first derivatives of the two new variables and give their initial
values:

        

Using these new definitions, the second-order equation is given as a system of two first-order ODEs.

Solution of a second-order ODE in MATLAB

Let's look at the following example. We are simulating the suspension of a vehicle using the following simple
model, where the vehicle travels through an obstacle with height A. 
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In the modell, m is the mass of the vehicle, k is the spring constant (the force in the spring is proportional to
the displacement), c is the dampening factor (the dampening force is proportional to the velocity of the mass).
The following data is used:

•

•

•

•

Summing up the forces in the dampened system, we get the following second-order ODE:

where x is the vertical position of the vehicle,  is the position's first derivative with respect to time (the

vertical velocity of the vehicle) and  is the second derivative of the position (the vertical acceleration of the
vehicle). Defining the equation in the vehicle's coordinate system:

The initial values are the vertical displacement of the vehicle at the begining of our interval and the initial
verical velocity at the beginning of the interval, both are zero:

        and         

The first step is to express the second derivative from the equation:

We have to transform this second-order equation into a system of two first-order ODEs. Before we do this,
let's introduce two substitutions:
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Using these substitutions, we can write two equations and their initial values:

         

We can create our system of ODEs in a separate function file vehicdiff.m. We can use the vector

notation , so that  is the vertical displacement and  is the vertical velocity.

function f = vehdiff(t, w)
    % Constants
    m = 1000; k = 1000; A = 0.1; c = 500;
    f1 = w(2);
    f2 = 1/m * (k*A - k*w(1) - c*k*w(2));
    f = [f1; f2];
end

Note that the variable t is given among the input variables, however, it is not usd explicitely in the equations.
Let's solve the system using the Runge-Kutta method (ode45 in MATLAB) specifying an absolute and a

relative tolerance of , on the interval 0-15 seconds.

Optional parameters can be specified for the ode45 solver similarly to previous solvers, using
the odeset() function. Some of the most relevant parameters:

• RelTol - scalar relative tolerance that is valid for each component of the function y, it measures the
error relative to the magnitude of each solution function;

• AbsTol - scalar or vector of tolerance values that is valid for all or some of the solution functions,
controls the step size of the solver; 

• MaxStep - the largest acceptable step size,
• InitialStep - recommended starting step size.

clear all; close all;
options = odeset('RelTol', 1e-4, 'AbsTol', [1e-4, 1e-4]);
x0 = 0; % initial position
v0 = 0; % initial vertical velocity
[T, W] = ode45(@vehdiff, [0, 15], [x0; v0], options);

The first column of the solution vector W contains the values of the position ( ), the second column

contains the values of the vertical velocity .

Important remark: always include the independent variable (t in our case) as a variable of the function
file that defines the system of ODEs. If the system is defined in a separate file, always include the '@'
symbol before its name.
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To visualize our results, we can plot the position and the velocity values as functions of time. We can also
plot the velocity as a function of the position (where time becomes a parameter of the curve), this is called
the phase portrait of the system of ODEs:

figure(1);
hold on;
x = W(:, 1);
v = W(:, 2);
plot(T, x, T, v);
legend('Position [m]', 'Velocity [m/s]', 'Location', 'best');
title('Position and velocity vs time');

figure(2);
plot(x, v);
xlabel('Position [m]');
ylabel('Velocity [m/s]');
title('Phase portrait of the system of ODEs');
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N-th order ODEs

When dealing with third-order, fourth-order to even higher order ODEs, let's assume an n-th order ODE,  the
solutions can be reduced to solving a system of n number of first-order ODEs by introducing new variables.
In order to solve such an equation, we need n initial values, e.g. in the third-order case 3, in the fourth-order
case 4.

The general form of an n-th order ODE:

     

The initial conditions:

,       ,        ,      
⋯

,        

If we introduce n new variables and their initial values, we can write the following system of ODEs:

18



                

As an example, let's solve the following third-order ODE on the interval :

The initial values:

The first step is to express the highest order derivative in the equation:

Next, we can introduce the new variables and write the system of 3 first-order ODEs:

              

In the new system of ODEs, we have to define the derivatives of the new variables:

             

The system is created in a separate file, diff3.m:

function dwdx = diff3(x, w)
    f1 = w(2);
    f2 = w(3);
    f3 = 2*x - 3*w(1) + 4*w(2) + x*w(3);
    dwdx = [f1; f2; f3];
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end

Solution in MATLAB:

clear all; close all;
 
% Initial values
w10 = 3; w20 = 2; w30 = 7;
 
% Solution
[X, W] = ode45(@diff3, [0, 1], [w10; w20; w30]);
 
% Plotting the results
figure(1);
plot(X, W(:, 1), X, W(:, 2), X, W(:, 3));
lgd = legend('y', 'dy/dx', 'd^2y/dx', 'Location', 'best');

N-th order systems of ODEs

Given an n-th order system of ODEs, the solution can be reduced similarly to the example shown above by
introducing new variables. For the sake of example, take the following general form of a second-order system
of ODEs:
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We have to define 4 new variables:

                    

Using these new variables, we can write a system of four first-order ODEs:

The solution is analogous to the previous example.
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Differential equations - Boundary Value Problems

Last time we studied initial value problems of ordinary differential equations (ODEs). In the first order case,
the value of the unknown function, in the second and higher order case, the value of the unknown function
and derivatives up to the order of the equation were given at the start of the solution interval.

In the case of boundary value problems, at least one of these given values are for the end of the solution
interval. As an example, let's look at the following second order ODE on the interval .

As this is a second order DE, we need two values to find a unique solution. If it is an initial value problem,
one of these is the value of the unknown function, the other is the value of the first derivative of the function
and both of these values are given at a (the start of the interval). 

However, in the case of the boundary value problem, there can be more than one option. If the value of the
function is given at the start and at the end of the interval as well, it is called a Dirichlet problem.

Another possibility is to specify the values of the first derivative on the boundaries, this is called the Neumann
problem:

Conditions specifying the value of the function and the derivative can be mixed as well, e.g. the function
value is given at the beginning of the interval and the derivative is given at the end of the interval.

We will deal with the general cases, when the problem can be transformed into an explicit system of ODEs.
In such a case, we have to solve the following system of ODEs:

On the two boundaries (  and ), the following values are given:

One method of solution is that we reduce the problem into solving an initial value problem multiple times.
This is called the shooting method.

Shooting method

The idea behind this method is that we solve the initial value problem for an arbitrarily

specified  value and check whether the  condition is satisfied (by solving the system of
ODEs numerically). If the condition is not met, we modify the value of u. Let's suppose that the connection

between the unknown  values and the  values are given by a function , that is:
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Given this function, the unknown initial values are given by finding the solutions of the following system
containing  number of equations:

Example for the shooting method

Let's look at the following example. We shoot a fireworks pellet into the air that explodes after 5 seconds.
The vertical movement of the pellet (omitting drag and other effects) is given by the following second order
ODE:

What is the needed initial velocity if we want the pellet to explode at exactly 40 meters from the ground?

First, we have to reduce the problem into solving a system of two first order ODEs, as seen in the previous
practical. In order to do this, we introduce two new variables ( ).  denotes the vertical

position of the pellet and  denotes the vertical velocity of the pellet. Now, the system of first order

ODEs is given by the derivatives of the new variables:

The boundary conditions:

That is, the vertical position at the time of launch is 0 m, after 5 seconds, when the pellet explodes, it is
40 m. The question is that what value should the first derivative have at the time of launch in order for
the  to be satisfied.

Let's first solve the system using the Runge-Kutta method and by defining different initial values for the

velocity. Let . Let the vector  is the vertical position and  is the
vertical velocity (the first derivative of the position).

The system can be given in a separate file (diff_pellet.m):

function F = diff_pellet(t, w)
    g = 9.81;
    f1 = w(2);
    f2 = -g;
    F = [f1; f2];
end

Or we can also define it as an anonymous function, given that the system is not too complex:

g = 9.81;
dwdt = @(t, w) [w(2); -g];
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To solve the system with the Runge-Kutta method, use the ode45 command in MATLAB (if the system is
defined in a separate file, the "@" symbol has to be used before the name of the file, when calling ode45).
Let's specify 20 m/s as the initial value of the velocity and  as our solution interval:

ta = 0;
tb = 5;
y0 = 0;
v0 = 20;
% if the system is defined in a separate file
% [T, W] = ode45(@diff_pellet, [ta; tb], [y0; v0]);
 
% if the system is defined as an anonymous function
[T, W] = ode45(dwdt, [ta; tb], [y0; v0]);

The vector T contains the steps of the independent variable on the interval . The matrix W contains two
columns and as many rows as there are elements in T. The first column of W contains the vertical position

values , the second column contains the vertical velocities . Let's visualize the results on a plot:

figure(1);
Y = W(:, 1);
V = W(:, 2);
plot(T, Y, 'b', T, V, 'r');
legend('Vertical position', 'Velocity');
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From the figure, we can see, that using 20 m/s as the initial velocity takes us very far from reaching the
desired height of 40 m after 5 seconds. Let's try to increase the initial velocity (to 30, 40 and 50 m/s) and plot
the vertical positions. Print the values of the position after 5 seconds for each initial velocity:

figure(2);
hold on;
for vi = 20:10:50
    [T, W] = ode45(dwdt, [ta; tb], [y0; vi]);
    fprintf('v0 = %d m/s -- y(5) = %.3f m\n', vi, W(end, 1));
    plot(T, W(:, 1));
end

v0 = 20 m/s -- y(5) = -22.625 m
v0 = 30 m/s -- y(5) = 27.375 m
v0 = 40 m/s -- y(5) = 77.375 m
v0 = 50 m/s -- y(5) = 127.375 m

refline(0, 40);
legend('v0 = 20', 'v0 = 30', 'v0 = 40', 'v0 = 50', 'y = 40');

From the figure and the printed values, we can see if the initial velocity is 30 m/s, the pellet fall under 40 m
when it explodes and when the initial velocity is 40 m/s, the explosion happens above 40 m. The solution is
somewhere between the two values.

Let the unknown initial velocity be u and define the position at the end of the 5 seconds as a function g of
this u unknown velocity. The value of this function has to be equal to 40:
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In other words, we are looking for the root of the  equation.

Let's first define this function g in a separate file, that is a function of the unknown initial velocity and name
it pellet_height.m. This will use the diff_pellet.m file inside:

function y = pellet_height(u)
    ta = 0;
    tb = 5;
    y0 = 0;
    [T, W] = ode45(@diff_pellet, [ta; tb], [y0; u];
    y = W(end, 1); % the final position is given in the 
                   % last element of the first column of W
end

Plot the final heights as a function of the initial velocity between 20 and 50 m/s:

figure(3);
fplot(@pellet_height, [20, 50], 'r');

Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your
function to return an output with the same size and shape as the input arguments.

hold on;
refline(0, 40);
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According to the figure, the solution is somewhere between 30 and 35 m/s. Let our initial guess be .

h = @(u) pellet_height(u) - 40;
v0 = fzero(h, 32)

v0 = 32.5250

Let's plot the solution using dashed line on figure 2:

[T, W] = ode45(@diff_pellet, [ta; tb], [y0; v0]);
figure(2);
plot(T, W(:, 1), 'k--');
legend('v0 = 20', 'v0 = 30', 'v0 = 40', 'v0 = 50', 'y = 40', ...
    sprintf('v0 = %.3f', v0), 'Location', 'best');
title('Determining the initial value of the fireworks pellet');

There are many other methods for solving boundary value problems (minimizing global/local residuals,
homotopy method, finite difference method etc). Due to time constraints, we do not deal with these now.

Using the built-in solver in MATLAB

MATLAB contains a built-in method for solving ODEs with boundary value problems, the bvp4c command
(bvp = boundary value problem). In the following, we will look at an example using this method:
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A 4m long beam is given with supports at both ends and a constant load  on top. For large deflections, the

value of the deflection  along the beam can be computed using the following ODE:

with the boundary values  and . The constants in the equation:

• EI  - flexural rigidity: 
• q  - constant load: 

Determine the function of the deflection with respect to x using the built-in solver in MATLAB. Plot the results
and the first derivative as well. How much is the deflection at 1.35 m? What is the maximum deflection? At
which x value is the deflection exactly 1 mm?

The built-in bvp4c command uses the following syntax:

SOL = bvp4c(ODEFUN, BCFUN, SOLINIT)

The command has one output, which is a structure containing the independent variable (sol.x), the function
values and the derivatives as well (sol.y). The command takes three inputs:

• ODEFUN: the system of first order ODEs (as a function handle),
• BCFUN: the boundary values given as a function,
• SOLINIT: the interval of the solution and the approximated average values of the function and its

derivatives (can be given using the bvpinit command).

Definition of the system of first order ODEs (ODEFUN)

Similarly to when using the ode45 command, we first have to define the system of first order ODEs the
second order equation is reduced to. To do this, we have to express the second derivative from the equation
first:
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Then, we can introduce our new variables and reduce the equation into a system of first order ODEs.

Let  and . Our system of first order ODEs look like the following:

We can define the system of equations in a separate file called diff_beam.m:

function F = diff_beam(x, w)
   EI = 1.4e7;
   q = 10e3;
   L = 4;
   f1 = w(2);
   f2 = ((1 + w(2)^2)^(3/2)*(1/2)*q*(L*x - x^2))/EI;
   F = [f1; f2];
end

Definition of the boundary values as a function (BCFUN)

The boundary values for the problem are the following:

In order to use bvp4c, these boundary values have to be given as a function as well (BCFUN). The boundary

conditions on the interval  have to be given as a vector  and vector . The vector  contains the

conditions for the start of the interval, while  contains the conditions for the end of the interval. The first

elements of these vectors ( ) are the values of the unknown function ( ) at the start/end

of the interval, the second elements are the values of the first derivatives  at the start/end of the

interval and so on.

In the case of our problem, only the function values are given, therefore  and  only contain one value:

        

Let the function of the boundary value be denoted by g. The function of the boundary value can be defined
similarly to when searching for the root of an equation, its expression has to have zero on one of the sides:

These functions in essence define the residuals. If these are 0, the solution functions satisfies the given
criteria. In our case, as the boundary values are 0 for both boundaries the above equations simplify to:
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For the sake of example, if the boundary value at the beginning of the interval for the first derivative is 2 and
the boundary value at the end of the interval for the function value is 3, then our functions would look like the
following:

We can define the boundary conditions in a separate file called beam_bv.m:

function G = beam_bv(wa, wb)
   g1 = wa(1);
   g2 = wb(1);
   G = [g1; g2];
end

Definition of the solution interval and the approximating the average values (SOLINIT)

The third input to the bvp4cm command is the interval of the solution and the approximated average values
of the function and its derivatives (as constants, specified using the bvpinit command). Let our solution
interval be  in this case and the step size be 10 cm.

x0 = 0:0.1:4;

Now, we have to approximate the average value of the function. As we only have values on the boundaries,
that are both zero, let our approximated average be zero as well for both the function and its first derivative.
(If we had different boundary values, the average could be the mean of those two values.)

% Approximated averages
w10 = 0;
w20 = 0;
 
% Solution interval and approx. averages using the bvpinit command
solinit = bvpinit(x0, [w10; w20]);

Solution using the bvp4c command

Before we solve the ODE, specify a relative tolerance of . Now, this is specified by the bvpset command
(and not the odeset):

opts = bvpset('RelTol', 1e-4);

The solution of the ODE:

sol = bvp4c(@diff_beam, @beam_bv, solinit, opts);
X = sol.x;
W = sol.y;

Plot of the solution:

figure(4)
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plot(X, W(1, :), 'b', X, W(2, :), 'r');
legend('Deflection', 'Derivative', 'Location', 'best');

One of the question asked about the value of the deflection at . Another question was that at
which value of x is the deflection exactly 1 mm?

These could be answered by interpolating the data points of the function using splines for example,
but we can also use the deval command. The command evaluates the solution from the bvp4c solver
at any arbitrary point (in the solution interval). This command can also be used in the case of ode45.
The deval command cannot be used for extrapolation!

Let's first answer the first question, that is, the value of the deflection at :

e1 = deval(sol, 1.35)    % this will return the value of the function and its derivative as well

e1 = 2×1
   -0.0021
   -0.0009

e2 = deval(sol, 1.35, 1) % this will only return the value of the function

e2 = -0.0021

The deflection is 2.1 mm at .

We can define a new function called defl as an anonymous function using the deval command to compute
the deflection at any point:
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defl = @(x) deval(sol, x, 1);

The second question can be answered by defining a new function  and solving the following equation
(remember, the deflections are negative values!):

Before we do that, let's look at the figure to get an idea about the initial guesses:

figure(5);
plot(X, W(1, :), 'r')
rl = refline(0, -0.001);

% initial guesses
x01 = 0.5;
x02 = 3.5;
 
% definition of h(x)
h = @(x) defl(x) + 0.001;
 
% solution
x1 = fzero(h, x01);
x2 = fzero(h, x02);

Plotting the solutions:
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figure(5);
hold on;
plot(x1, defl(x1), 'ro');
plot(x2, defl(x2), 'ro');

The last question was the position of maximum deflection. As the load was symmetric, we can already
tell that the maximum deflection happened in the middle of the beam. Let's verify this numerically. As the
deflection values are negative, we can use the optimization command fminsearch to find the minimum of
the function. For the initial guess, we can use 2:

xmax = fminsearch(defl, 2)

xmax = 2

dmax = defl(xmax)

dmax = -0.0024

figure(5);
plot(xmax, dmax, 'go')
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For the sake of example, let's look at how our first exercise could be solved using the built-
in bvp4c command:

clear all; close all;
 
% Solution interval
t0 = 0:0.1:5;
 
% Approximated averages for the function value and its derivative
w10 = 20; % average function value (0+40)/2
w20 = 0;  % average value of the derivative
solinit = bvpinit(t0, [w10; w20]);
 
% Solution using the bvp4c command
opts = bvpset('RelTol', 1e-4); % relative tolerance
sol = bvp4c(@diff_pellet, @pellet_bv, solinit, opts);
X = sol.x;
W = sol.y;
 
% Plotting the solution
plot(X, W(1, :));
xlabel('Time [s]');
ylabel('Height [m]');
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Practice example

Solve the following boundary value problem on the interval :

Rearranging the expression:

The given boundary conditions:

At the beginning of the interval, the value of the function is given, at the end of the interval, the value of the
derivative is specified. We can reduce this equation into a system of first order ODEs by introducing two new

variables:  and :
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The boundary conditions using the new variables, in the form required by the bvp4c solver:

        

Rearranging the boundary conditions:

        

The solution in MATLAB:

clear all; close all;
 
% Solution interval (the step size is arbitrary)
x0 = 0:0.1:1;
 
% Approximating the function value and its derivative
w10 = 1;
w20 = 2;
solinit = bvpinit(x0, [w10; w20]);
 
% Solution
sol = bvp4c(@diff_practice, @practice_bv, solinit);
X = sol.x;
W = sol.y;
 
% Plotting the solution
plot(X, W(1, :), 'b', X, W(2, :), 'r');
legend('y', 'dy/dx');
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