Tartók statikája II

Tartórácsonk számítása

Dr. Hortobágyi Zsolt

Modellalkotás

Magasépítési tartórácsonk
Hídépítési tartórácsonk

Számítási elvek

Gépi számítás: mátrix módszer
Kézi számítás: közelítő feltételezések

Közelítő feltételezések:
merőleges rúdcsatlakozások
csavarásmentes kapcsolódások ($G_{cs} \approx 0$)

Leonhardt-féle közelítő számítás

Közelítő feltételezések:
• merőleges rúdcsatlakozások
• csavarásmentes kapcsolódások ($G_{cs} \approx 0$)
• egy kereszttartó, ami a főtartó felében van
• hídépítési tartórácsonk
Leonhardt-féle közelítő számítás
Több kereszttartó redukálása egy kereszttartóvá

<table>
<thead>
<tr>
<th>n</th>
<th>1-2</th>
<th>3-4</th>
<th>≥5</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1,0</td>
<td>1,6</td>
<td>2,0</td>
</tr>
</tbody>
</table>

n: kereszttartók száma
α: merevségi szorzó

Leonhardt-féle közelítő számítás
Kapcsolati rugóállandók meghatározása

Tartórácsook számítása

Leonhardt-féle közelítő számítás
Kereszteloszlási tényezők

A kereszteloszlási tényező az a \(q_{jk} \) erő, amely a \(k \)-adik főtartó felett a kereszttartón álló egységerőből az \(i \)-adik főtartóra jut.
A teher szétosztásának mérőszáma a kereszteloszlási tényező.

Leonhardt-féle közelítő számítás
Kereszteloszlási tényezők

\[\eta(A): \text{Rugalmas támasztású folytatolagos több-támaszú kereszttartó támaszerő hatásábrája} \]

\[\sum_{j=1}^{n} q_{jk} = 1 \quad k = 1 \ldots n \]
Igénybevételi ábrák meghatározása

- Terhelt főtartó:
 \[C_k^i = C_{K,0}^i (1-q_{ii}) B_i C_{K,L/2} \]

 \[C_{K,0} \text{: a kéttámaszú főtartón a kül-
 ső teherből (Q) keletkező igénybevétel a K km-ben} \]

 \[C_{K,L/2} \text{: a kéttámaszú fő-
 tartón a középső km-
 ben álló egységerő-
 ből ébredő igénybe-
 vétel a K km-ben} \]

- Terheletlen főtartó:
 \[C_k^k = q_{ki} B_i C_{K,L/2} \]

- Hatásfelületek meghatározása

 \[\eta(C_k^i) = \eta(C_{K,0}^i) (1-q_{ii}) \eta(B_i) \eta(C_{K,0}^i)_{L/2} \]

 \[\eta(C_{K,0}^i) \text{: a kéttámaszú főtartó K km-i igénybevételi hatásábrája} \]

 \[\eta(B_i) \text{: a háromtámaszú főtartó középső fix támaszának reakcióerő hatásábrája} \]

 \[A K keresztmetszetet NEM tartalmazó főtartó: \]

 \[\eta(C_k^k) = q_{ik} \eta(B_k) \eta(C_{K,0}^i)_{L/2} \]
Számpélda - hatásfelület

\[EI_1 = EI_4 = 4 \cdot 10^4 \text{ kNm}^2 \]
\[EI_2 = EI_3 = 2 \cdot 10^4 \text{ kNm}^2 = EI_0 \]
\[EI_k = 1 \cdot 10^4 \text{ kNm}^2 \]

Számpélda - rugóállandók

\[\rho_1 = \rho_4 = \frac{L^3}{48EI_i} = \frac{24^3}{48 \cdot 2 \cdot EI_0} = 7,2 \cdot 10^{-3} \text{ m/kN} \]
\[\rho_2 = \rho_3 = \frac{L^3}{48EI_i} = \frac{24^3}{48 \cdot 1 \cdot EI_0} = 14,4 \cdot 10^{-3} \text{ m/kN} \]

Számpélda – kereszt tartó vizsgálata

\[E_2 \eta(a_{21}) = -z_{21} \eta(a_{10}) - z_{22} \eta(a_{20}) \]

\[A = \begin{bmatrix} 180 & -127 \\ -127 & 180 \end{bmatrix} \]

\[Z = A^{-1} = \begin{bmatrix} 0,011062 & 0,007805 \\ 0,007805 & 0,011062 \end{bmatrix} \]

Számpélda – kereszt tartó vizsgálata

\[\eta(X_1) = \eta(A_{10}) + \eta(A_{12}) \eta(X_1) + \eta(A_{22}) \eta(X_2) \]

\[\eta(X_2) = \sum_{j=1}^{4} q_{jk} = 1 \quad k = 1, 4 \]

\[\eta(A_{11}) = \eta(A_{10}) + \eta(A_{12}) \eta(X_1) + \eta(A_{22}) \eta(X_2) \]

\[\eta(A_{21}) = \eta(A_{20}) + \eta(A_{22}) \eta(X_1) + \eta(A_{22}) \eta(X_2) \]

\[\eta(A_{22}) = \eta(A_{20}) + \eta(A_{22}) \eta(X_1) + \eta(A_{22}) \eta(X_2) \]

\[\eta(A_{31}) = \eta(A_{30}) + \eta(A_{32}) \eta(X_1) + \eta(A_{32}) \eta(X_2) \]

\[\eta(A_{32}) = \eta(A_{30}) + \eta(A_{32}) \eta(X_1) + \eta(A_{32}) \eta(X_2) \]

\[\eta(A_{41}) = \eta(A_{40}) + \eta(A_{42}) \eta(X_1) + \eta(A_{42}) \eta(X_2) \]

\[\eta(A_{42}) = \eta(A_{40}) + \eta(A_{42}) \eta(X_1) + \eta(A_{42}) \eta(X_2) \]

\[\eta(A_{51}) = \eta(A_{50}) + \eta(A_{52}) \eta(X_1) + \eta(A_{52}) \eta(X_2) \]

\[\eta(A_{52}) = \eta(A_{50}) + \eta(A_{52}) \eta(X_1) + \eta(A_{52}) \eta(X_2) \]

\[\eta(A_{61}) = \eta(A_{60}) + \eta(A_{62}) \eta(X_1) + \eta(A_{62}) \eta(X_2) \]

\[\eta(A_{62}) = \eta(A_{60}) + \eta(A_{62}) \eta(X_1) + \eta(A_{62}) \eta(X_2) \]

\[\eta(A_{71}) = \eta(A_{70}) + \eta(A_{72}) \eta(X_1) + \eta(A_{72}) \eta(X_2) \]

\[\eta(A_{72}) = \eta(A_{70}) + \eta(A_{72}) \eta(X_1) + \eta(A_{72}) \eta(X_2) \]

\[\eta(A_{81}) = \eta(A_{80}) + \eta(A_{82}) \eta(X_1) + \eta(A_{82}) \eta(X_2) \]

\[\eta(A_{82}) = \eta(A_{80}) + \eta(A_{82}) \eta(X_1) + \eta(A_{82}) \eta(X_2) \]

\[\eta(A_{91}) = \eta(A_{90}) + \eta(A_{92}) \eta(X_1) + \eta(A_{92}) \eta(X_2) \]

\[\eta(A_{92}) = \eta(A_{90}) + \eta(A_{92}) \eta(X_1) + \eta(A_{92}) \eta(X_2) \]

\[\eta(A_{10}) = \eta(A_{10}) + \eta(A_{12}) \eta(X_1) + \eta(A_{22}) \eta(X_2) \]

\[\eta(A_{12}) = \eta(A_{10}) + \eta(A_{12}) \eta(X_1) + \eta(A_{22}) \eta(X_2) \]

\[\eta(A_{20}) = \eta(A_{20}) + \eta(A_{22}) \eta(X_1) + \eta(A_{22}) \eta(X_2) \]

\[\eta(A_{22}) = \eta(A_{20}) + \eta(A_{22}) \eta(X_1) + \eta(A_{22}) \eta(X_2) \]

\[\eta(A_{30}) = \eta(A_{30}) + \eta(A_{32}) \eta(X_1) + \eta(A_{32}) \eta(X_2) \]

\[\eta(A_{32}) = \eta(A_{30}) + \eta(A_{32}) \eta(X_1) + \eta(A_{32}) \eta(X_2) \]

\[\eta(A_{40}) = \eta(A_{40}) + \eta(A_{42}) \eta(X_1) + \eta(A_{42}) \eta(X_2) \]

\[\eta(A_{42}) = \eta(A_{40}) + \eta(A_{42}) \eta(X_1) + \eta(A_{42}) \eta(X_2) \]

\[\eta(A_{50}) = \eta(A_{50}) + \eta(A_{52}) \eta(X_1) + \eta(A_{52}) \eta(X_2) \]

\[\eta(A_{52}) = \eta(A_{50}) + \eta(A_{52}) \eta(X_1) + \eta(A_{52}) \eta(X_2) \]

\[\eta(A_{60}) = \eta(A_{60}) + \eta(A_{62}) \eta(X_1) + \eta(A_{62}) \eta(X_2) \]

\[\eta(A_{62}) = \eta(A_{60}) + \eta(A_{62}) \eta(X_1) + \eta(A_{62}) \eta(X_2) \]

\[\eta(A_{70}) = \eta(A_{70}) + \eta(A_{72}) \eta(X_1) + \eta(A_{72}) \eta(X_2) \]

\[\eta(A_{72}) = \eta(A_{70}) + \eta(A_{72}) \eta(X_1) + \eta(A_{72}) \eta(X_2) \]

\[\eta(A_{80}) = \eta(A_{80}) + \eta(A_{82}) \eta(X_1) + \eta(A_{82}) \eta(X_2) \]

\[\eta(A_{82}) = \eta(A_{80}) + \eta(A_{82}) \eta(X_1) + \eta(A_{82}) \eta(X_2) \]

\[\eta(A_{90}) = \eta(A_{90}) + \eta(A_{92}) \eta(X_1) + \eta(A_{92}) \eta(X_2) \]

\[\eta(A_{92}) = \eta(A_{90}) + \eta(A_{92}) \eta(X_1) + \eta(A_{92}) \eta(X_2) \]
Számpélda – főtartó vizsgálata
A K keresztmetszetet tartalmazó főtartó:
\[\eta(C_K) = \eta(C_{K0}) \cdot (1 - q_{ii}) \cdot \eta(B_i) \cdot \eta(C_{K0})^L_{/2} \]
A K keresztmetszetet NEM tartalmazó főtartó:
\[\eta(C_K) = q_{ik} \cdot \eta(B_i) \cdot \eta(C_{K0})^L_{/2} \]

\[\alpha = 0.25 \]
\[\beta = 0.5 \]
\[\gamma = 0.6875 \]
\[\delta = 0.400 \]
\[\epsilon = 0.6875 \]

Számpélda – végereedmény

VÉGE
Köszönöm a figyelmet!

Összeállította: Dr. Hortobágyi Zsolt
BME Tartószerkezetek Mechanikája TSZ