
Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 1 Piroska Laky, 2023

3. NUMERICAL ERRORS

INTORDUCTION TO NUMERICAL METHODS

Certain tasks and problems cannot be solved using traditional analytical mathematical

methods, or can only be solved with great difficulty. In these cases, numerical methods

can be used. Analytical solutions are exact solutions, where the variables included in

the task can be expressed with closed formulas. Such is the formula for solving a

quadratic equation. The numerical solution is only an approximate numerical value of

the real solution. Although the numerical solution is only an approximation, its value

can be very accurate. Most numerical methods are local, iterative procedures where

the solution is gradually approximated until the desired accuracy is reached. Let's look

at a civil engineering example, which cannot be solved easily analytically!

The design of a channel is a common task in hydraulics. Depending on the shape,

material, slope, width and water level of the open-surface channel, the amount of

transported water can be deduced. For example, let's look at the formula for the water

flow rate of a channel with a free surface and a rectangular cross section!

𝑄 =
√𝑠

𝑛
∙

(𝑏 ∙ ℎ)
5
3

(𝑏 + 2 ∙ ℎ)
2
3

where Q – water flow rate, n –

Manning’s coefficient, s - slope, b –

channel width, h – water flow depth.

This is an exact formula for Q, but if

we are interested in the water depth at which the standard Q at that area can flow

through, then we can no longer express it explicitly. Previously, different tables or

graphs were used for this task. Although we cannot produce the solution analytically,

since the spread of modern computers, we can give an approximate value of the

solution with a predetermined accuracy using numerical methods. This means that if

we substitute back the solution for the height to the equation for Q, we will not get back

the exact value of the water flow rate (Q), but we will be very close to it.

Numerical techniques for solving such problems have been developed for centuries,

but their application was very complicated before the spread of today's computers.

Calculations made by hand or with a mechanical calculator were very time-consuming

and easy to miscalculate. These techniques could only spread with the emergence of

computer technology, since it is no longer a problem to perform many repetitive,

complicated calculations in a short time.

When solving an engineering problem, the task, variables, and conditions (boundary

values, initial values) must first be defined. After that, the physical model must be set

up for the problem, it can be the water flow formula, mass attraction, Newton's laws,

etc. It must be decided whether the task can be solved analytically or only numerically.

It must be investigated whether acceptable simplifications (e.g. linearization) can be

made for the analytical solution. Sometimes, even in the case of numerical

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 2 Piroska Laky, 2023

calculations, simplifications must be used if the model is too complicated to solve the

task within a foreseeable time (see, for example, weather forecasts).

Even when using numerical calculations, it is necessary to choose which method to

use. We can choose from a wide variety of developed methods for each type of task.

The methods may differ in accuracy, computational requirements, and programming

complexity. The selected algorithm must also be implemented in the programming

language we use. When using Matlab/Octave, in most cases we do not have to

program the algorithms, since there are many built-in numerical methods in these

softwares, but it is also advisable to get to know their background so that we can apply

them correctly.

After solving the task, we have to check the solution in some way. In the case of a non-

linear equation, this can be done, for example, by back substitution. In more

complicated cases, for example when solving differential equations, the numerical

solution can be compared with a known solution of a similar problem, or it can be

solved using different methods and their differences can be examined.1

ROUND-OFF ERROR, FLOATING POINT NUMBER REPRESENTATION

Since we will solve our tasks with the help of a computer, we need to know the

limitations of computers, we need to know how numbers are stored, what errors can

arise from the storage method or the choice of algorithms. Let's look at the following

simple examples!

Let's try the following in Matlab:

 x1 = 0.3, x2 = 0.1+0.1+0.1

Are these two numbers equal? Obviously, yes. Let's check it in Matlab!

 x1==x2

In response, we received 0 (false)! What could be the reason? Why can't Matlab solve

such an obvious, simple example? To understand, let's examine how the computer

stores the numbers!

 The default and most common form of storing numbers is double precision

floating point.

 This is IEEE standardized format (IEEE 754).

 All numbers are stored in binary format using 64 bits (0-63).

Number representation:

(−1)𝑠 ∙ 𝑚 ∙ 2(𝑒−1023),

1 See: Amos Gilat, Vish Subramaniam (2011): Numerical Methods, An Introduction with Applications
Using MATLAB (SI Version), John Wiley & Sons (Asia)

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 3 Piroska Laky, 2023

where s is the sign bit (1 bit), m is the mantissa (significant digits stored in 52 bits) and

e is the exponent (11 bits) (s+m+e=>1+11+52 = 64 bits).

It is not possible to accurately represent all the real numbers (because there are

infinite). Let's see the number e.g. 0.1 in the binary number system! In this system, 0.1

is an infinite periodic fractional number, of which only the first 52 bits are used, the rest

are discarded. This is the round-off error.

1

10
=

1

24
+

1

25
+

1

28
+

1

29
+

1

212
+

1

213
+

1

216
+ ⋯

0.1 in binary → 0.0001100110011… (infinite periodic fraction)

Added up this infinite periodic fraction three times will result in a round-off error, so the

two values will not be exactly the same within the precision used in the number

representation.

Let's see what the value of 𝑡𝑎𝑛 (
𝜋

2
) is in Matlab? The tangent function is not interpreted

at
𝜋

2
, it goes to infinity. What happens if we want to calculate this in Matlab? Are we

getting an error message?

 tan(pi/2)

What was the result in Matlab? 1.6331∙1016, which is not infinite, just a very large

number. Why? Because due to the round-off error, we cannot represent the value of
𝜋

2

exactly.

What exactly is round-off error (𝛿)?

1 = 1 + 𝛿, 𝑖𝑓 𝛿 < 𝜀𝑚,

where 𝛿 is the round-off error and 𝜀 is the machine precision or machine epsilon.

Machine precision is the smallest representable distance between 1 and the next

smallest number. In Matlab, it can be queried with the eps variable or the eps()

function.

 eps

By default, its value is ≈ 2 ∙ 10−16. Let’s add 10-17 to 1 (which is less than machine

epsilon)!

 a = 1
 b = 1 + 1 ∙ 10−17 % (less than machine epsilon))
 a == b % -> 1 (true)

Now add 10-14 (which is greater than the machine epsilon) to two different numbers,

the first should be 1, the second 12345.

 a = 1; b = 12345; c = 1e-14;
 a == a+c % 0 (false)

63 52 0

1 bit
sign (s)

11 bits

exponent (e)
52 bits

mantissa (m)

51

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 4 Piroska Laky, 2023

 b == b+c % 1 (true)

Why is it that in one case a value greater than the machine epsilon could be added to

the number, but not in the other case? The answer to this is that the default value of

machine precision is the distance from 1, but its value varies with the magnitude of the

number. Let's look at it!

 eps(a) % 2.2204e-16
 eps(b) % 1.8190e-12
 eps(1e20) % 16384

This means that the smallest number that can be stored after 1020 is 16384 larger. If

we add a number 16384/2=8192 or less to 1020, the value of the number does not

change, if it is greater, it does (due to rounding, if we add a number greater than

16384/2, it is already rounded up).

 1e20 == 1e20+8192 % true
 1e20 == 1e20+8193 % false

CANCELLATION ERROR, OVERFLOW ERROR

Let's look at another typical rounding error, the cancellation error, when numbers of

nearly the same magnitude are subtracted from each other and this may cause

extreme loss of accuracy. Let's look at the following example in Matlab:

 x1 = 10.000000000000004 % 14 zeros after the decimal point before the
digit 4

 y1 = 10.00000000000004 % % 13 zeros after the decimal point before
the digit 4

 % or: x1 = 4e-15 + 10; y1 = 4e-14 + 10;
 (y1-10)/(x1-10) % expected result: 10

The expected result: 0.000000000000004 / 0.00000000000004 = 10, but the result is:

11.5! The cancellation error caused a very large loss of accuracy in this case.

We have seen the round-off errors resulting from machine precision, but it is also

important to know the range of numbers that can be represented, because exceeding

this can also lead to serious errors! This is called an overflow error.

 realmin % 2.2251e-308
 realmax % 1.7977e+308

Why is it important to know about numerical errors? It is worth looking at some cases

among the disasters caused by numerical errors! During the Gulf War in 1991, a Patriot

anti-aircraft missile missed an Iraqi Scud missile, killing 28 people. The reason was a

numerical error. The system multiplied the times measured in tenths of a second by

1/10 to get seconds. Since 1/10 could not be accurately represented in binary format,

a small round-off error occurred and the error accumulated after performing the

operation several times. In the case of 100 hours of operation, the difference was 0.34

seconds, during which a Scud missile travels more than half a kilometer (at a speed of

1,676 m/s).

A numerical error (an overflow error) caused the explosion of ESA's Ariane 5 rocket 40

seconds after its launch in 1996! („Famous number computing errors” -

https://blog.penjee.com/famous-number-computing-errors/, „Disasters due to rounding

error” - https://web.ma.utexas.edu/users/arbogast/misc/disasters.html). It might also

https://blog.penjee.com/famous-number-computing-errors/
https://web.ma.utexas.edu/users/arbogast/misc/disasters.html

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 5 Piroska Laky, 2023

be interesting to look at the following website, which contains a larger collection of

problems caused by software bugs (many of which are numerical errors):

https://www5.in.tum.de/persons/huckle/bugse.html

TRUNCATION ERROR

We have already seen the effect of the round-off error resulting from the finite

representation of numbers, and also that it is important to avoid subtracting numbers

of nearly the same size if possible.

Another important error occurs when, instead of the exact mathematical expression,

its approximation is used during numerical calculations, for example: Taylor series

approximation, using a difference quotient instead of a derivative, etc. The error caused

by the approximation is the truncation error. The problem usually arises when a

complicated problem that cannot be solved symbolically is replaced by a simpler

problem that can be handled more easily with a computer.

A good example of this is the Taylor series approximation, where the more terms we

take into account, the smaller the truncation error will be. Now let's look at the

approximation of ex with a Taylor series with 4 terms: 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!

 x=1
 f = exp(x) % 2.7183 – real value
 g = 1 + x + x^2/2 + x^3/6 % 2.6667 – value with a truncation error

Rounding and truncation errors together give the total error!

round-off error + truncation error = total error

ABSOLUTE AND RELATIVE ERROR

Errors can be grouped in several ways, the actual deviation from the exact value is

called an absolute error, but in reality it is often not the best way to represent the

magnitude of the error, it is advisable to introduce the concept of relative error as well.

Let the approximation of a real number x be �̃�.

We call the actual deviation the absolute error: ∆= |𝑥 − �̃�|

The relative error is the absolute error divided by
the value of x: 𝜀 =

|𝑥 − �̃�|

|𝑥|

When x is a value around one, there is no significant difference between the two errors,

however, when x>>1, the relative error better reflects the significance of the error. Let's

look at an example of this! Let there be two distances (𝑡1, 𝑡2) that we estimate (𝑡1̃, 𝑡1̃).

𝑡1 = 1000 𝑚; 𝑡1̃ = 900 𝑚;

∆= 100 𝑚; 𝜀 = 10 %;

𝑡2 = 200 𝑚; 𝑡1̃ = 100 𝑚;

∆= 100 𝑚; 𝜀 = 50 %;

The absolute error is 100 m in both cases, but it is obvious that the first estimate is

much more accurate than the second and this is also reflected in the size of the relative

errors (10% and 50%).

https://www5.in.tum.de/persons/huckle/bugse.html

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 6 Piroska Laky, 2023

STABILITY AND CONDITION NUMBER

Having seen that we have to live with numerical errors in calculations, the next

important question is how do we deal with them? Can we trust the results? For this,

we need to get to know two more concepts, the sensitivity/condition number of a

specific problem and the stability of the algorithm.

 A mathematical problem is well-conditioned if the result changes slightly due to

small change in the input parameters.

 An algorithm is numerically stable if the result changes slightly due to small

change in the input parameters.

The accuracy depends on the conditionality of the problem and the stability of the

algorithm. Applying a stable algorithm to an ill-conditioned problem or applying an

unstable algorithm to a well-conditioned problem can cause inaccuracy.

CONDITION NUMBER

Let's solve the following system of linear equations!

6𝑥1 − 2𝑥2 = 10

11.5𝑥1 − 3.85𝑥2 = 17

The system of equations is in matrix form (𝐴 ∙ 𝑥 = 𝑏):

𝐴 = (
6 −2

11.5 −3.85
) ; 𝑏 = (

10
17

)

Let's solve this problem in Matlab. The solution is: 𝑥 = 𝐴−1 ∙ 𝑏 . In Matlab, the inv

command calculates the inverse of a matrix. Let's solve the task!

 A = [6,-2; 11.5,-3.85]; b = [10; 17];
 x = inv(A)*b % 45.0000; 130.0000

The solution was 45 and 130. Let's slightly change the coefficient of 𝑥2 in the second

equation from -3.85 to -3.84 and solve the problem again!

 A = [6,-2; 11.5,-3.84]
 x = inv(A)*b % 110.0000; 325.0000

Now the solution is 110 and 325. We only changed the system of equations a little, but

the change in the final result was huge! We would have expected that since the two

inputs are very close to each other, the solutions would be similar. It didn't happen that

way. What could have caused this?

There are matrices that are very sensitive to

small changes in the input. This sensitivity

can be measured by the condition number

of the matrix. The condition number (κ)

establishes a relationship between the

relative error of the output and the relative

error of the input. The larger this number is,

the greater the change in the output will be

for a small change in the input.

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 7 Piroska Laky, 2023

𝜅 = |

𝑓(𝑥) − 𝑓(�̃�)
𝑓(�̃�)
𝑥 − �̃�

�̃�

| = |
�̃�

𝑓(�̃�)
∙

𝑓(𝑥) − 𝑓(�̃�)

𝑥 − �̃�
| = |

�̃� ∙ 𝑓′(�̃�)

𝑓(�̃�)
|

Let's look at the condition number of this matrix!

 cond(A) % 4.6749e+03

The result was 4674.9. The larger this number, the more uncertain the solution,

because a small error in the input is magnified by the same amount in the output This

is very important in engineering, where input measurements and constants are mostly

only approximations and may contain errors.

EXAMPLE OF AN UNSTABLE ALGORITHM

Let's look at the solution of the following quadratic equation!

𝑥2 − 100.0001 𝑥 + 0.01 = 0

The exact solution is: 𝑥1 = 100; 𝑥2 = 0.0001 (with Vieta’s formulas2). A solution can

also be given with the well-known quadratic formula:

𝑥1 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
; 𝑥2 =

−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
;

Let's solve it in Matlab! For more accurate results, change the display to more decimal

places!

 format long;
 a = 1; b = -100.0001; c = 0.01;
 D = sqrt(b^2 - 4*a*c) % 99.999899999999997
 xl = (-b + D)/(2*a) % 100
 x2 = (-b - D)/(2*a) % 1.000000000033197e-04

We did not get an exact result for 𝑥2 due to the rounding error. Since b is negative, so

in this case two very close values had to be subtracted from each other in the

numerator, the canceling error occurred here as well!

In many cases, when the mathematical expression contains the difference between

two close expressions, the problem can be transformed into a form that is less sensitive

to rounding errors. In case of the formula for 𝑥2, we can do this by multiplying the

equation by (−𝑏 + √𝑏2 − 4𝑎𝑐)/(−𝑏 + √𝑏2 − 4𝑎𝑐):

𝑥2 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
∙

−𝑏 + √𝑏2 − 4𝑎𝑐

−𝑏 + √𝑏2 − 4𝑎𝑐
=

2𝑐

−𝑏 + √𝑏2 − 4𝑎𝑐
 ;

Let us now use the latter expression for the solution:

 x2m = (2*c)/(-b+D) % 1.000000000000000e-04

Now we got the expected result.

2 Vieta’s formulas for 𝑎 ∙ 𝑥2 + 𝑏 ∙ 𝑥 + 𝑐 = 0 are: 𝑥1 + 𝑥2 = −𝑏/𝑎; 𝑥1 ∙ 𝑥2 = 𝑐/𝑎

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 8 Piroska Laky, 2023

EXAMPLE OF A STABLE ALGORITHM

Let's look at another example of the importance of choosing an algorithm! We can

approximate the value of 𝑒−𝑥 in two ways:

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2!
−

𝑥3

3!
+ ⋯ = 𝑓(𝑥)

𝑒−𝑥 =
1

𝑒𝑥
=

1

1 + 𝑥 +
𝑥2

2! +
𝑥3

3! + ⋯
= 𝑔(𝑥)

Let's calculate the value of the function at x = 8.3 using the two methods given above!

First check the emx.m function, which gives two outputs for the two approximations for

n members, at x locations!

 function [f g] = emx(x,n)
 f = 1; % first approximation: 1 - x + x^2/2 - x^3/6 + ...
 p = 1; % first approximation to the denominator (1 + x + x^2/2 +

x^3/6 + ...)
 for i=1:n
 s = x^i/factorial(i);
 f = f +(-1)^i*s;
 p = p + s;
 g = 1 / p;
 end
 end

The exact value of the solution is: exp(-8.3) = 2.4852e-04

Let's try the previous function in the case of n = 10, 20, 30! Let's use a format with

fewer digits, that will be enough for now.

 format short
 megoldas = exp(-8.3) % Exact value: 2.4852e-04
 [f g] = emx(8.3,10) % approx. for 10 members: f=188.0344,

g=3.1657e-04
 [f g] = emx(8.3,20) % approx. for 20 members: f=0.2833,

g=2.4856e-04
 [f g] = emx(8.3,30) % approx. for 30 members: f=2.5151e-04,

g=2.4852e-04

The results:

exact: 2.4852e-04 n=10 n=20 n=30

f (approximation) 188.0344 0.2833 2.5151e-04

g (approximation) 3.1657e-04 2.4856e-04 2.4852e-04

We see that the second of the two algorithms approaches the exact value much faster,

so it really does matter which method we use to solve the problem!

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 9 Piroska Laky, 2023

TOTAL ERROR

Let's look at an example where both truncation and rounding errors occur. Not only the

Taylor series approximation contains a truncation error, but also the numerical

integration or the approximation of the derivative with the difference quotient. Let's look

at an example of the latter:

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

The upper limit of the truncation error can be

estimated. Determine the upper limit of the

truncation error in the case of approximating

the derivative of the following function3 with

the difference quotient, at x=2!

𝑦 = 𝑥3

Let's approximate the derivative numerically with the difference quotient!

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
=

(2 + ℎ)3 − 23

ℎ

The truncation error can be estimated based on the Taylor series approximation:

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝑓′(𝑥) ∙ ℎ +
𝑓′′(𝜉)

2
 ∙ ℎ2

, where 𝑥 < 𝜉 < 𝑥 + ℎ. Therefore, rearranging the equation, the following is true:

|
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
− 𝑓′(𝑥)| ≤

𝑓′′(𝜉)

2
 ∙ ℎ

On the left-hand side of the equation above, we find the truncation error (the difference

between the approximation and the actual value), and on the right-hand side there is

an upper limit for this, at which the error will certainly be smaller. Let us denote this

error by R, and the upper limit by ε. In our case, we know exactly the first and the

second derivative (𝑦′ = 3 𝑥2 = 12 and 𝑦′′ = 6𝑥), so the following is true for the

truncation error

𝑅(ℎ) = |
(2 + ℎ)3 − 23

ℎ
− 12| ≤

𝑓′′(𝜉)

2
 ∙ ℎ =

6 𝜉 ℎ

2
= 3 𝜉 ℎ

The largest error in the estimation occurs when 𝜉 = 𝑥 + ℎ, in the case of 𝑥 = 2, the

estimated upper limit of the truncation error as a function of the step interval h will be

as follows:

𝜀(ℎ) = 3 (2 + ℎ) ℎ

From the formula above, it can be seen, as expected, that the smaller the step h is

used to divide the function for the calculation of the difference quotient, the smaller the

truncation error will be.

3 Based on Béla Paláncz's collection of examples of numerical methods

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 10 Piroska Laky, 2023

Let's plot the estimated upper limit of the approximation of the previous derivative and

calculate the actual error as a function of the change in the step interval! Let’s use the

following step intervals:

ℎ𝑖 = 1, 10−1, 10−2, ⋯ , 10−15

 format long
 n = 0:-1:-15, hi = 10.^n

Enter both the estimated upper limit and the actual error as a one-line, anonymous

function! (Pay attention to the use of .*, ./, .^ operators, as element-by-element

operations on vectors are now required.)

 e = @(h) 3*(2 + h).*h; % estimated upper limit
 R = @(h) abs(((2 + h).^3 - 8)./h - 12) % actual error

Let's calculate the value of the two functions for the different step intervals and plot the

results in the log-log coordinate system (this can be done with the loglog command)!

 figure(1)
 loglog(hi,e(hi)); hold on
 loglog(hi,R(hi))
 legend('Approximated upper bound of the error','Actual error',...
 'Location','SE')

What do we see in the figure above? As the step interval decreases, so does the

estimated upper limit of the truncation error and for a while the actual error accordingly.

But after a point (somewhere around 10-8) the actual error suddenly starts to increase

again. What could be the reason for this? This results from the fact that the total error

is the sum of the truncation and rounding errors. The truncation error dominates up to

a value of roughly 10-8, after which the rounding error starts to increase strongly. This

phenomenon plays a very important role, for example, in the numerical solution of

differential equations!

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 11 Piroska Laky, 2023

Of course, similarly to what we saw before, here you can also choose an algorithm that

is less sensitive to rounding errors, since the main error here is also the cancellation

error. In the numerator of the difference quotient, two nearly identical numbers are

subtracted from each other, the smaller the step interval h, the smaller the difference

between the two numbers. Now we can easily simplify the difference quotient:

(2 + ℎ)3 − 23

ℎ
= 12 + 6 ℎ + ℎ2

Based on this, the corrected error is:

𝑅(ℎ) = |12 + 6 ℎ + ℎ2 − 12| = |6 ℎ + ℎ2|

 R2 = @(h) abs(6*h+h.^2);
 fgr1 = loglog(h,R2(h),'g--','LineWidth',2)
 legend(fgr1,'Total error - after correction')

Here we simplified the difference ratio manually, of course such simplifications are also

possible in Matlab, but they already belong to the topic of symbolic calculations, which

is part of the Symbolic Math Toolbox.

During symbolic calculations, we do not calculate with numbers, but with variables. To

do this, you must first define the symbolic variables in Matlab, with the syms command.

If we call a function with symbolic variables, we get a symbolic expression that can be

simplified with the simplify command. The result of the simplify command will be a

symbolic expression into which numbers cannot be substituted, only if we convert the

expression back into a Matlab function with the matlabFunction command.

 syms h
 Rsym = simplify(R(h)) % Rsym = abs(h*(h + 6))
 R2 = matlabFunction(Rsym) % R2 = @(h)abs(h.*(h+6.0))

We can also see in Workspace that the value of Rsym is symbolic. Let's see what

happens if we try to substitute a specific value into a function or a symbolic expression!

 R2(1e-1) % 0.610000000000000
 Rsym(1e-1)

Subscript indices must either be real positive integers or logicals.

Numerical Methods for Civil Engineers with Matlab 3. Numerical errors

 12 Piroska Laky, 2023

In the second case, we receive an error message, since a value can only be substituted

into a symbolic expression using the subs command.

 subs(Rsym,1e-5) % 600001/10000000000

NEW FUNCTIONS USED IN THE CHAPTER

eps - Magnitude of machine epsilon/machine accuracy

realmin -
The smallest number that can be represented (in the case of
double type)

realmax -
The largest number that can be represented (in the case of
double type)

factorial - Factorial, n!

inv - Matrix inverse

cond - Condition number

loglog - Representation on a logarithmic scale (on both axes)

syms - Defining symbolic variables and expressions

simplify - Simplifying symbolic expressions

matlabFunction - Converting symbolic expressions into functions

	3. Numerical errors
	Intorduction to numerical methods
	Round-off error, floating point number representation
	Cancellation error, overflow error

	Truncation error
	Absolute and relative error
	Stability and condition number
	Condition number
	Example of an unstable algorithm
	Example of a stable algorithm

	Total error
	New functions used in the chapter

