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4. ROOTS OF NONLINEAR EQUATIONS 

The numerical solution of the equation 𝑓(𝑥) = 0 (finding its roots/zeros) often arises as 

a task to be solved in connection with engineering works. 

𝑓(𝑥) = 0 

The solution of this equation is also called the root of the equation. It is possible that 

our basic problem differs from the form 𝑓(𝑥) = 0, but in many cases we can trace the 

solution of the problem back to this form by eliminating the right side. Let's look at some 

examples! 

Finding the intersection of two univariate functions can also be traced back to finding 

the roots of a non-linear equation, after rearrangement! 

3.5 ∙ 𝑒𝑥2
= 12 cos (𝑥)   3.5 ∙ 𝑒𝑥2

− 12 cos(𝑥) = 0 

 

It can be solved similarly if we look for where a function takes a certain value: 

sin2(𝑥) = 0.36   sin2(𝑥) − 0.36 = 0 

 

The solution x satisfies the equation when substituted back, the value of the equation 

will be zero or approximately zero (within a given tolerance, see the round-off errors 

learned earlier). Graphically, the solution is the point where the function intersects the 

x-axis. Depending on the shape of the function, several cases are possible: there is no 

solution, there is 1 solution or there are several solutions. 
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In many cases, the solution of the equation 𝑓(𝑥) = 0 is only possible numerically, with 

iterations. In this case, during each iteration, we get closer and closer to the solution, 

until we are below a given error limit Δ (tolerance): 𝑓(𝑥) ≤ ∆. In such cases, instead of 

the equation 𝑓(𝑥) = 0 , we actually solve the equation 𝑓(𝑥) ≤ ∆ , where ∆ is the 

tolerance, which is mostly a small value. 

Most of the solution methods are so-called local methods, when the iteration requires 

one or more initial values. Various algorithms have been developed for the solution. 

The characteristic of the algorithms is that they allow the determination of only one root 

at a time. In the case of several roots, they must be run with several initial values. The 

two main groups of root-finding algorithms are closed and open interval methods. 

CIVIL ENGINEERING EXAMPLE OF SOLUTION OF A NONLINEAR EQUATION 

In hydraulics the design of a channel is a common task. Depending on the shape, 

material, slope, width and water level of the open-surface channel, the amount of 

transported water can be deduced. For example, let's look at the formula for the water 

flow rate of a channel with an open surface and a rectangular cross-section!  

𝑄 =
√𝑆

𝑛
∙

(𝑏 ∙ ℎ)
5
3

(𝑏 + 2 ∙ ℎ)
2
3

 

where Q – water flow rate (discharge), n - 

Manning's roughness coefficient, S - slope, b – 

channel width, h – water depth in the channel.  

We would like to get answers to two questions: 

1) How much discharge corresponds to a water depth of 1 and 2 meters?  

2) Determine the height of the water in the channel, h, in the case of a standard 

water flow rate of 3 m3/s (𝑄 = 3 𝑚3

𝑠⁄ )! 
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We know that 

 The slope is 0.8 ‰ (𝑆 = 0.0008),  

 0.02 is the Manning roughness coefficient (𝑛 = 0.02) and 

 2 m is the channel width (𝑏 = 2 𝑚). 

The first part of the task, how much discharge (water flow rate) belongs to a water 

depth of 1 and 2 meters, is easy to answer, it just means a simple substitution. First, 

enter the values of the variables and define the discharge (Q) as a function of the water 

depth (h). 

 clear all; clc;close all; 
 % Assigning values to variables 
 S = 0.0008; n = 0.02; Q = 3; b = 2; 
 % Discharge as an inline function: h independent variable 
 Q=@(h) sqrt(S)/n*(b*h).^(5/3)./(b+2*h).^(2/3) 

How much discharge corresponds to a water depth of 1 and 2 m? 

 Q(1), Q(2) %  1.7818 and 4.3170 m^3/s 

The second question was what the water depth would be for a water flow rate of Q=3 

m3/s. Since we cannot express h from the equation as a function of Q, only an 

approximate, numerical solution can be considered here. Based on the two substituted 

values, 1 m has a water flow rate of 1.78 m3/s, and 2 m has a water flow rate of 4.31 

m3/s, so the required water depth will be somewhere between 1 and 2 meters for the 

standard discharge of 3 m3/s. Let's plot the function on the range 0-2 m and also draw 

the desired value Q=3 m3/s! Functions can be displayed with the fplot command, and 

related pairs of points with the plot command. 

 % Representation of the function on the interval [0;2]. 
 figure(1); hold on; 
 fplot(Q, [0 2],'Color','k','LineWidth',2); 
 % Draw the line y=3 on the interval [0 2] specifying two points 
 line([0,2],[3,3],'Color','r') 
 % of course, the plot command can also be used for this 
 plot([0,2],[3,3],'r') 
 % or we can also use the xlim (figure x-direction limits) command 
 plot(xlim,[3,3],'r') 
 % Starting from version R2018b of Matlab, the yline command can also 

be used for the same 
 yline(3) 
 % labels and title 
 title('Channel design'); 
 xlabel('Water depth [m]'); 
 ylabel('Water flow rate [m^3/s]'); 
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The figure shows that the solution, Q=3, will be somewhere between 1.4 and 1.6. 

Algorithms that can be used to find the solution, on the other hand, always look for the 

zero point/root, that is, where the function intersects the x-axis, not where it takes a 

specific y value. Therefore, we must rearrange the equation in this form! 

𝑄(ℎ) = 3       →        𝑓(ℎ) = 𝑄(ℎ) − 3 = 0 

 % Rearrange the equation 
 f = @(h) Q(h)-3 
 figure(2);  
 fplot(f, [0 2],'Color','b','LineWidth',2); 
 % Draw the line y=0 on the interval [0 2] specifying two points 
 hold on; line([0,2],[0,0],'Color','m') 

 

The solution, root or zero point can be determined using several methods, the two main 

types of which are the closed and open interval methods.  

CLOSED INTERVAL METHODS 

In the case of closed interval methods, we specify an interval [a,b] that contains the 

solution (and only one solution!). In this case, the function values will have opposite 

signs at the two endpoints of the interval, therefore 𝑓(𝑎) ∙ 𝑓(𝑏) < 0. Since the function 

changes sign between the two endpoints of the interval, it passes through zero. In this 

case, a zero point (c) can certainly be found within the interval, if f(x) is continuous. In 

this case, we gradually narrow the size of the interval, examining the function values 

of the end points, until the value of the function is either very close to 0 (within the 

specified tolerance), or the interval itself becomes very small. There are several types 

of closed interval methods, the difference between them is the method used to narrow 

the size of the interval. Closed interval methods always lead to results, only some 

methods are slower and others are faster. 

There are a few conditions that must be met in order to choose a good starting value: 

1) There must be at least one (if chosen correctly, exactly one) solution in the 

interval. 

2) The function must be continuous in the interval and interpreted at the endpoints. 

3) The sign of the function values of the endpoints must be opposite. 
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BISECTION METHOD 

By halving the initial interval, we examine the 

function values at the end points. Where the sign 

is different, that will be the new interval to deal 

with, and this is repeated until the desired Δ 

accuracy is reached. 

1. 𝑐 = (𝑎 + 𝑏)/2  

2. if |𝑓(𝑐)| < ∆ → end 

3. if 𝑓(𝑎) ∙ 𝑓(𝑐) < 0, then 𝑏 = 𝑐, else 𝑎 = 𝑐 

 

REGULA FALSI METHOD 

The regula falsi method is a more efficient solution than the bisection method (it usually 

converges faster). Here, the intersection point of the line connecting the points (a,f(a)) 

and (b,f(b)) with the x axis is determined as a new approximate value. The intersection 

of the line with the x axis (y=0) can be calculated from similar triangles: 

𝑏 − 𝑎

𝑓(𝑏) − 𝑓(𝑎)
=  

𝑐 − 𝑎

0 − 𝑓(𝑎)
 

1. The solution x=c: 

𝑐 =
𝑎 ∙ 𝑓(𝑏) − 𝑏 ∙ 𝑓(𝑎)

𝑓(𝑏) − 𝑓(𝑎)
 

2. if |𝑓(𝑐)| < ∆ → end 

3. if 𝑓(𝑎) ∙ 𝑓(𝑐) < 0, then 𝑏 = 𝑐, else 𝑎 = 𝑐 

 

BISECTION AND REGULA FALSI METHOD IN MATLAB 

Let's see how we can write our own Matlab/Octave function for the bisection method! 

It will be necessary to specify a tolerance Δ (expected accuracy) and a maximum 

number of iterations to stop the condition controlled loop (while loop). Here it will be 

necessary to use a logical AND to test the two conditions together, this can be specified 

in Matlab in several ways: condition1 && condition2 or and(condition1, condition2). 

 function [c, i] = bisection(f, a, b, delta, N) 
 % Bisection method 
     c = (a+b)/2;    % 1st iteration 
     i = 1;          % number of iteration 
     % Stopping Criteria:  
     %  error is smaller then the given tolerance, or the maximum 

iteration number is reached 
     while abs (f(c)) > delta && i <= N 
         if f(c)*f(a) < 0 
             b = c; 
         else 
             a = c; 
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         end; 
         i = i + 1; 
         c = (a+b)/2; 
     end; 
 end 

The regula falsi method can be implemented in the same way, only the calculation of 

c is different in the first and subsequent iterations, instead of c=(a+b)/2: 

 c = (a*f(b) - b*f(a))/(f(b) - f(a)); 

EXAMPLE FOR APPLICATION OF CLOSED INTERVAL METHODS 

Let's use the functions we wrote (bisection.m and regulafalsi.m) to solve the channel 

design task. As a check of the solution, we should calculate the value of the function 

at the location of the solution and plot it in the figure as well. To be able to use our own 

functions (bisection.m, regulafalsi.m), they must be in the same working directory as 

our script! 

 [xbi, ibi]= bisection(f, 1.4, 1.6, 1e-9, 100) % bisection 
 % xbi = 1.4929, ibi = 28 
 [xreg, ireg]= regulafalsi(f, 1.4, 1.6, 1e-9, 100) % regulafalsi 
 % xreg = 1.4929, ireg = 4 
 % Check  
 f(xbi), f(xreg) %   -4.5629e-10,  -1.3299e-10 
 % Plot 
 plot(xreg, f(xreg), 'rd','MarkerFaceColor','r'); 

 

Let's evaluate the results! Are the solutions the same? Which was the faster algorithm? 

Which gave the more accurate result? 

OPEN INTERVAL METHODS 

In the case of open interval methods, instead of a closed interval, we only need to enter 

one initial guess (x0) to search for the root. The convergence of these methods are 

usually much faster than that of the closed interval methods, if they converge! They 

require stricter convergence conditions and do not always reach the result. There are 

several open interval methods, for example the gradient-type Newton and secant 

methods. Another solution is the fixed-point method, which does not require a gradient, 

and its further developed form, the Wegstein method (transforming the equation f(x)=0 

into the form g(x)=x). 
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NEWTON'S METHOD 

The Newton method (or Newton-Raphson method) can be applied if the function is 

continuous and differentiable and we know that the problem has a solution near a given 

initial value. First the method calculates the value of the function (f(x0)) and its 

derivative (f’(x0)) at the initial point x0, and determines the point of intersection of the 

tangent line at this point with the x axis. This will be the next approximate value of the 

solution, x1. The method continues until the value of f(x) is smaller than a given 

tolerance Δ or the given maximum number of iterations is reached.  

The slope of the tangent (f’(x)) can be 

calculated based on the figure with the 

following formula: 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖) − 0

𝑥𝑖 − 𝑥𝑖+1
  

The iteration formula of Newton's 

method can be derived from this:  

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 

 

The Newton method can also be derived from the Taylor series approximation of the 

function, taking into account the first two terms (from the linearization of the function): 

𝑓(𝑥) ≈ 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖) ∙ (𝑥𝑖+1 − 𝑥𝑖) = 0, where 𝑓(𝑥) = 0. 

Newton's method, if it converges to a solution, usually converges quickly. However, we 

see that the derivative of the function must also be known in order to apply the method. 

This runs into difficulties in some cases, e.g. it can be too complicated to calculate the 

derivative. In this case, we can use the secant method, which is an approximation of 

the Newton method. 

SECANT METHOD1 

The secant method is a finite difference approximation of the Newton method. It can 

be used if we do not know the derivative of the function (or it would be difficult to 

calculate it). It usually converges more slowly (see the same example in the two 

figures) and at the beginning requires two initial guesses x0 and x1 in the figure (but 

unlike the closed interval methods, the solution does not have to lie between the two 

points).  

                                            

1 Supplementary material 
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Let’s use the finite difference 

approximation of the derivative: 

𝑓′(𝑥𝑖) ≈
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)

𝑥𝑖 − 𝑥𝑖−1
 

Substituting back this to the Newton's 

method, the iteration formula of the 

secant method can be derived: 

𝑥𝑖+1 = 𝑥𝑖 − 𝑓(𝑥𝑖) ∙
𝑥𝑖 − 𝑥𝑖−1

𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)
 

 

NEWTON’S METHOD IN MATLAB 

For Newton's method, it is also necessary to know the derivative of the function (df), if 

this is available, we can solve the problem with the following function (newton.m): 

 function [x2, i] = newton(f, df, x0, delta, N) 
 % Newton method 
 % Input parameters: 
 %   f - single variate function 
 %   df - the derivative 
 %   x0 - initial guess 
 %   delta – tolerance of the error, stopping criteria 
 %   N - maximal iteration number, stopping criteria 
 % 
 % Outputs: 
 %   x2 - location of the zero point - the solution 
 %   i - number of iterations 
  
     x1 = x0; 
     x2 = x1 - f(x1)/df(x1); 
     i = 1; 
     while abs(f(x2))>delta && i<=N 
         x1 = x2; 
         x2 = x1 - f(x1)/df(x1); 
         i = i + 1; 
     end 
 end 

EXAMPLE OF APPLICATION OF NEWTON’S METHOD  

Let's solve the channel design problem with Newton's method! Determine the 

derivative of the function f with respect to h symbolically! To do this, we can use the 

diff command after converting the function f into symbolic expression with the sym 

command. or we can define h, as a symbolic variable with the syms command, then 

using this in an equation, the equation will also be a symbolic expression. Symbolic 

Toolbox must be installed for this task! 

 % Symbolic derivation 
 s=diff(sym(f),'h') 
 % s = (10*2^(1/2)*(2*h)^(2/3))/(3*(2*h + 2)^(2/3)) - 

(4*2^(1/2)*(2*h)^(5/3))/(3*(2*h + 2)^(5/3)) 
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 % Or defining first h, as a symbolic variable 
 syms h % defining  h, as a symbolic variable 
 eqs =  f(h)  % this will also be a symbolic expression 
 s = diff(eqs)  

However, the result is not a function but a symbolic expression into which concrete 

values cannot be substituted. Let's define it as a function so that we can work with it 

later! One solution to this is to simply copy the result after the function definition, or you 

can also use the matlabFunction command, which generates a function from a 

symbolic expression. 

 % function from symbolic expression: definition then CTRL+C,CTRL+V  
 df = @(h) (10*2^(1/2)*(2*h)^(2/3))/(3*(2*h + 2)^(2/3)) - 

(4*2^(1/2)*(2*h)^(5/3))/(3*(2*h + 2)^(5/3)) 
 % another solution: use matlabFunction 
 df = matlabFunction(s) 

Let's solve it with Newton's method too! 

 % solution with Newton’s method 
 [xnew, inew]= newton(f, df, 2, 1e-9, 100) 
 % xnew = 1.4929, inew = 3 

The root is of course the same as before. We can see that even with a starting value 

of 2 meters which is far from the solution, the procedure converged faster than any 

closed interval method, only 3 iterations were sufficient. A disadvantage of the method 

is that the derivative of the function had to be determined as well. 

BUILT-IN MATLAB FUNCTION - FZERO 

The previous algorithms presented the basics of numerical calculations very well. It 

matters a lot what algorithm we use and what starting value we choose. Depending on 

the above, we get a result faster or slower at the end of an iteration procedure (if there 

is a solution at all and the method converges). Finding the roots of a nonlinear equation 

is a basic task that comes up very often during our calculations. Of course, Matlab also 

has its own built-in function (fzero), which is a combination of several methods and is 

called the Brent-Dekker algorithm. 

BRENT METHOD (INVERSE QUADRATIC INTERPOLATION)2 

It is also called the Brent-Dekker method, since Dekker's earlier method was further 

developed by Brent. An efficient and robust method that combines the bisection 

method, regula falsi method and inverse quadratic interpolation. This is used by the 

built-in fzero function too. 

For the inverse quadratic interpolation, 

we need to specify 3 points in the 

interval [a, b]. The coordinates of the 

points will be used in reversed order 

( 𝑓(𝑥𝑖), 𝑥𝑖 ) so now the independent 

                                            

2 Supplementary material 
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variable will be the function value. These 3 points are used to fit a quadratic polynomial. 

𝑥(𝑓) =  𝛼2 ∙ 𝑓2 + 𝛼1 ∙ 𝑓 + 𝛼0 

When fitting the polynomial, the values of 𝛼2, 𝛼1, 𝛼0  can be determined, then, 

substituting back the value f=0, we immediately get the location x=c, where the function 

intersects the axis. 

𝑐 = 𝑥(0) = 𝛼0 

EXAMPLE TO USE THE FZERO FUNCTION 

Let's solve the channel design task using the fzero command! The fzero command 

can be called with two types of initial values. We can use one initial value or specify an 

interval. In the case of two starting values, an interval must be chosen that contains 

the solution, so the function changes sign (closed interval method). 

 % call with two initial values 
 x = fzero(f,[1.4, 1.6]) % x = 1.4929 
 % call with one initial value 
 x = fzero(f,1.6) % x = 1.4929 

If it is called with one initial value, the fzero function starts by searching for an interval 

around the initial value where the signs at the endpoints are different. After finding the 

interval, fzero will solve the problem using a closed interval method, the Brent-Dekker 

algorithm. The individual iteration steps can also be displayed using the optimset 

parameter. We can specify whether the iterations should be displayed ('Display','iter'), 

and what the calculation precision should be (using 'TolFun' or 'TolX', the tolerance of 

the function value or the independent variable). 

 % call with one initial value, with additional options 
 x = fzero(f,1.6, optimset('Display','iter','TolFun',1e-9)) 
 % Search for an interval around 1.6 containing a sign change: 
 %  Func-count    a          f(a)             b          f(b)        

Procedure 
 %     1             1.6      0.274131           1.6      0.274131   

initial interval 
 %     3         1.55475      0.157999       1.64525      0.390694   

search 
 %     5           1.536      0.110027         1.664      0.439097   

search 
 %     7         1.50949     0.0423222       1.69051      0.507665   

search 
 %     8           1.472    -0.0531432       1.69051      0.507665   

search 
 %   
 % Search for a zero in the interval [1.472, 1.69051]: 
 %  Func-count    x          f(x)             Procedure 
 %     8           1.472    -0.0531432        initial 
 %     9         1.49271  -0.000458365        interpolation 
 %    10         1.49289   4.30326e-08        interpolation 
 %    11         1.49289   -3.6593e-13        interpolation 
 %    12         1.49289   4.44089e-16        interpolation 
 %    13         1.49289   4.44089e-16        interpolation 
 %   
 % Zero found in the interval [1.472, 1.69051] 
 % x = 1.4929 
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INTERSECTION OF TWO UNIVARIATE FUNCTION 

Finding the intersection of two univariate functions can also be traced back to finding 

the roots of a univariate function. Let's find the intersection point of the following two 

functions on the interval [-2,4]! 

𝑓(𝑥) = (𝑥 − 3)3 + 20 

𝑔(𝑥) = −5 𝑥 + 6 

At the point of intersection, the values of the two functions are equal to each other: 

𝑓(𝑥) = 𝑔(𝑥) 

et's rearrange this to 0:  

𝑓(𝑥) − 𝑔(𝑥) = 0 

Assign a new function to the 0-ordered form of the equation: 

ℎ(𝑥) = 𝑓(𝑥) − 𝑔(𝑥) 

The roots of the above function h can be determined using one of the previous 

methods. 

 clc; clear all; close all; 
 f = @(x) (x-3).^3 + 20 
 g = @(x) -5*x+6 
 figure(3); hold on; 
 fplot(f,[-2,4]);  
 fplot(g,[-2,4]) 
 h = @(x) f(x)-g(x) % rearrange the equation to 0 
 x = fzero(h,0.5)  % 0.4636 - solution for x 
 plot(x,f(x),'ko') 
 legend('f(x)=(x-3)^3 + 20','g(x)=-5*x+6','Location','best') 
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ROOTS OF A UNIVARIATE ALGEBRAIC POLYNOMIAL 

A common problem is that the non-linear equation whose roots we are looking for is 

an algebraic polynomial, i.e. it contains only integer powers of x. 

The general form of an algebraic polynomial is: 

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 

The coefficients 𝑎𝑛, 𝑎𝑛−1, ⋯ , 𝑎1, 𝑎0 are real numbers, and n is a non-negative integer, 

the degree of the polynomial. 

There are two commands in Matlab that can be used to determine all the roots of an 

algebraic polynomial at the same time without specifying initial values. One is the roots 

command, which numerically determines the roots of a univariate polynomial. The 

coefficients of the polynomial must be given in a vector from the term of the highest 

degree backwards. For example, the coefficients of the polynomial 3𝑥3 − 4𝑥2 − 23 =
0 are [3, 4, 0, -23]. The other command is solve, it solves the task symbolically and 

provides exact values for the solution. 

Let's look at an example of this from solid mechanics! Such an example is the 

determination of the roots of the characteristic polynomial in eigenvalue problems. 

DETERMINATION OF PRINCIPAL STRESSES, SOLUTION OF AN EIGENVALUE 
PROBLEM  

A common task in mechanics is to determine the principal stresses and principal stress 

axes from the Cauchy stress tensor! The tensor consists of nine components that 

completely define the state of stress at a point inside 

a material, see figure below3. Let F be the stress 

tensor.  

𝐹 =  (

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧

), 

Principal axes are the axes where only normal 

stresses occur, but no shear stresses (𝐹𝑓). 

𝐹𝑓(1,2,3) =  (
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

), where σ1 ≥ σ2 ≥ σ3. 

From a mathematical point of view, the principal stress and principal axis problem can 

be considered an eigenvalue problem. The stress vector 𝜌𝑣  can be written in the 

direction of the v principle unit vector by the product of the principle stress 𝜎𝑓 and the 

unit vector v: 𝜌𝑣  =  𝜎𝑓 ∙ 𝑣, or by the projection of the stress tensor F in the v direction: 

𝜌𝑣  = 𝐹 ∙ 𝑣. Equating the two (multiplying the first by identity matrix): 𝐹 ∙ 𝑣 =  𝜎𝑓 ∙ 𝐼 ∙ 𝑣, 

the following formula can be derived: (𝐹 − 𝜎𝑓 ∙ 𝐼) ∙ 𝑣 = 0 

                                            

3 figure: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=591829 

https://commons.wikimedia.org/w/index.php?curid=591829


Numerical Methods for Civil Engineers with Matlab 4. Roots of nonlinear equations 

 13 Piroska Laky, 2023 

where I is the identity matrix. Let's solve the equation above: 

(

𝜎𝑥 − 𝜎𝑓 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦 − 𝜎𝑓 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧 − 𝜎𝑓

) ∙ (

𝑣𝑥

𝑣𝑦

𝑣𝑧

) = (
0
0
0

) 

The above equation is a homogeneous system of linear equations (there are only zeros 

on the right side), where we are looking for a different solution than the trivial one (v=0). 

A non-trivial solution only exists if the determinant of the coefficient matrix is 0, i.e. 

𝑑𝑒𝑡(𝐹 − 𝜎𝑣 ∙ 𝐼) = 0. The determined v vectors are the eigenvectors in the direction of 

the principal axes, and the 𝜎𝑓 values are the eigenvalues, the principal stresses. Let's 

expand the determinant, this will be the characteristic equation. 

𝑑𝑒𝑡(𝐹 − 𝜎𝑓 ∙ 𝐼) = |

(𝜎𝑥 − 𝜎𝑓) 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 (𝜎𝑦 − 𝜎𝑓) 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 (𝜎𝑧 − 𝜎𝑓)

| = 0 

Now let the stress tensor F be the following: 𝐹 = [
50 20 −40
20 80 −30

−40 −30 −20
]  𝑀𝑃𝑎 

Let's find the corresponding principal stresses, solve the equation a  𝑑𝑒𝑡(𝐹 − 𝜎𝑓 ∙ 𝐼) =

0! Express the determinant symbolically (det command)! This will be the characteristic 

equation, where L has denoted the principal stresses a  𝜎𝑓 , which are actually the 

eigenvalues: 

 F = [50, 20, -40; 20, 80, -30; -40, -30, -20]; 
 syms L 
 eq = det(F-eye(3)*L) % eq = - L^3 + 110*L^2 + 1500*L - 197000 

It is an algebraic polynomial of third degree, the roots of which give the eigenvalues:  

𝑒𝑞 = −𝜎𝑓
3 + 110 𝜎𝑓

2 + 1500 𝜎𝑓 − 197000 = 0 

Convert the symbolic expression back into a function and plot the function on the 

interval  [-50,150]. 

 eq1 = matlabFunction(eq)  
 %  @(L) L.*1.5e3+L.^2.*1.1e2-L.^3-1.97e5 
 figure(3); fplot(eq1,[-50,150]) 
 % Plot the line y=0 on the interval [-50,150]. 
 hold on; plot([-50,150],[0,0]) 

We can find the roots of the third degree 

polynomial, e.g. with the fzero function. Based 

on the figure, there are 3 eigenvalues, so fzero 

must be called with 3 different starting values to 

find all the solutions. Initial values can be taken 

from the figure, where the function intersects 

the x-axis! Let these be x=120, 50, -40! 

 % Solution with fzero 
 L1 = fzero(eq1,120) % 106.7674 
 L2 = fzero(eq1,50) %  44.6017 
 L3 = fzero(eq1,-40) % -41.3691 
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The result are the three eigenvalues, the three principal stresses: 𝜎1 = 106.7674, 𝜎2 =
44.6017, 𝜎3 = −41.36. Finding the three roots required 3 function calls. However, there 

are special algorithms for polynomials that provide all solutions in one step and do not 

even need initial values. One of these is the solve command, which can be used with 

symbolic expressions. Let's use the solve command to solve the equation 'eq = - fo^3 

+ 110*fo^2 + 1500*fo – 197000'! 

 sol1 = solve(eq) 
 %  root(z^3 - 110*z^2 - 1500*z + 197000, z, 1) 
 %  root(z^3 - 110*z^2 - 1500*z + 197000, z, 2) 
 %  root(z^3 - 110*z^2 - 1500*z + 197000, z, 3) 
 sol2 = real(double(sol1)) 
 %   -41.3691 
 %    44.6017 
 %   106.7674 

As a result of the solve command we got symbolic expressions, not concrete numbers. 

We must convert them into numbers with the double command. However, the resulting 

numbers may contain numerically negligible complex parts that can be omitted with 

the real command. We can specify the whole process in one line and get all three 

solutions at once: 

 sol = real(double(solve(eq))) 

Another command that can be used for algebraic polynomials is roots, which solves 

the equation numerically. This also provides all the solutions in one step and there is 

no need to enter an initial value here either. Here, on the other hand, the coefficients 

of the polynomial must be collected in a vector starting from the term of the highest 

degree back to the constant term. Our equation is: 𝑞 = −𝜎𝑒
3 + 110 𝜎𝑒

2 + 1500 𝜎𝑒 −
197000. In such a simple case, we can also manually enter the vector of coefficients: 

 % vector of coefficients 
 c = [-1, 110, 1500, -197000] 

Or we can use the sym2poly command, which extracts the coefficients from a 

symbolic polynomial: 

 % other solution 
 c = sym2poly(eq)  
 % c = [-1  110 1500 -197000] 

Let's solve it with the roots command and plot 

the results in the diagram! 

 L = roots(c) 
 %   106.7674 
 %   -41.3691 
 %    44.6017 
 plot(L,eq1(L),'r*') 

As we saw, there was no need to enter initial values here either, and we got all the 

roots at the same time. Of course, the directions of the principal axes could also be 

determined by substituting the principal stresses back into the original system of 

equations. However, we can also use the many built-in functions of Matlab, there is 

also a solution to the eigenvalue and eigenvector problem, as this is a very common 

task, the name of this command is: eig. 
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 [V D]=eig(F) 
 % V = 
 %     0.3647    0.7722    0.5203 
 %     0.1664   -0.6038    0.7795 
 %     0.9162   -0.1977   -0.3487 
 %  
 % D = 
 %   -41.3691         0         0 
 %          0   44.6017         0 
 %          0         0  106.7674 

Here we called the eig command with two outputs and got all the eigenvalues (in the 

diagonal of matrix D) and their corresponding eigenvectors (columns of matrix V) at 

the same time! 

NEW FUNCTIONS USED IN THE CHAPTER 

and(cond1, cond2), 
cond1 && cond2,   

- Logical AND 

diff - Symbolic derivation 

sym - Converting expressions into symbolic expressions 

syms - Defining symbolic variables 

fzero - Finding the roots of a univariate equation numerically 

det - Determinant of a matrix 

solve - Algebraic polynomial roots symbolically 

roots - Algebraic polynomial roots numerically 

double - 
Convert a number specified as a symbolic expression to a 
floating point number 

real - Real part of a complex number 

sym2poly - 
Extract vector of all numeric coefficients from symbolic 
polynomial 

eig - Determination of matrix eigenvalues and eigenvectors 
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