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Basic eq. of 1D transport
C…concentration,

v…velocity,

D…turbulent diff. coeff.



How to calculate D (diffusion)?   
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How to calculate D (diffusion)?   
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First step:

Is this conservative?



How to calculate D (diffusion)?   
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An impulse-response function describes the evolution of the variable of interest 

along a specified time horizon after a shock in a given moment (1D).
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C=C(x,t)…concentration response to mass impulse (at x distance from pollution, in time t,

G…mass [g] of pollution (mass impulse),

Dx…longitudinal diffusion coeff.

x…distance from pollution,

t…time,

A…cross-section area (A=const)

vx…velocity along river (assumed to be constant in time)

Under simplified conditions

(regular geometry, and constant diff. coefficient: 

Analytical solution of 1D transport eq. can be found:
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Input: pollutant concentration is time dependent (time serie)

Solution is based on the eq:
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The input load [g/s] is given:
iM

•

i=1,…n for each time interval

Then tMG ii =
•

if →→ nt ,0

The input load time serie is segmented into time

intervals

Drawing board!
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The term convolution refers to both the result function and to the process of computing it. 
It is defined as the integral of the product of the two functions after one is reversed and 

shifted. The integral is evaluated for all values of shift, producing the convolution function

Convolution integral for the response function

of an input pollutant time series: 





Perfectly mixed reactor

The Case of sudden impulse

(0D)

In Out
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Dirac impulse Impulse response function



Perfectly mixed reactor

The Case of a wide pulse (0D)

In Out

t

M

t

Wide pulse Response function g(t)=?

?

Convolution integral !



Perfectly mixed reactor

The Case of a wide pulse (0D)

In Out
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Cross-section integrated 1D model



i i+1 i+2   ...(i=1,...,n)    

Qe (discharger)

Q(i) Q(i+1) Q(i+2)

Dx Dx Dx

C(i,,j) C(i+1,,j) C(i+2,,j)
Q(i-1)
C(i-1,,j)

C

t

C

t

concentration responseMass-impulse

                 Response function

Reactor serie

  REACTOR SERIE

f(Dx)

Ce
Ce

Qe 



Response function (C(t)) to unit impulse

Reactors in serie (n reactors)

Concentration in 1st reactor

After unit mass impulse

Changes of concentration in all reactors

Asumptions: 

Q=const

A=const

Conservative substance

The continuous stirred-tank reactor, also known as vat- or backmix reactor, 

mixed flow reactor, or a continuous-flow stirred-tank reactor, is a common model for a 

chemical reactor in chemical engineering and environmental engineering.

Click hier
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Diffusion equation f(Pe)
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Optimal number of reactors

• Using the Peclet-number

• dimensionless

• rate of convection and diffusion



Convolution: linear model
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Outflow concentration (C(t)) 

to pollutant load time series

Reactors in serie (n reactors)

Concentration in 1st reactor:

pollutant load time series

Changes of concentration in all reactors

Asumptions: 

Q=const

A=const

Conservative substance

Load time series upstream



Hydraulics
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Iterativ method starting of from downstream: 

upstream=downstream as initial conditions

1−iA

During iteration (starting from upstream):
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and

Parameters are being updated (R is hydraulic radius) 
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River D(m2/ s) H(m) B(m) K(-)
Sabine River 311 2 103 3100

Powel River 9,3 0.83 33.6 200

Clinch River 53,4 2,1 59 245

Coachella River 9.2 1.53 23.7 140

Nooksack River 34,6 0,74 63 170

John Day River 64,4 2,46 34 146

Yadkin River 108 2.31 69 470
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1

2

3

water level elevation 

comp. by 1D hydrodynamic

h(x)

Reactor 1Reactor 2Reactor 3

Dx Dx Dx

river reach

x

z

downstream boundary

river reach

model



Reactor

discharger Qe,Ce

Dx

Q(i-1)

Q(i)

river reach

Dx...computed from diffusion model

(Q(i-1),Q(i), h, V...computed from hydrodynamic model

Qe, Ce ...load data

Reactor

Dx

Q(i-1) Q(i)

h

V (volume)

Le(j,i)=Qe,Ce(j,i)

C(j,i-1)
C(j,i)

(pollutant influent)
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Simplified:
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Reactors in serie (n reactors)
Changes of concentration in all reactors

Asumptions: 

Q=const

A=const

Impulselike BOD load upstream

Response function (DO(t)) to unit impulse

Modelling of dissolved oxygen (DO)- unit impulse

Concentration in 1st reactor

as a result of unit impulse of 

organic pollutant



Optimization/calibration



Optimization/calibration

PARAM1 PARAM2

Hibafelület
Error



Local minima/maxima 

Can be characterized by:

• space

• time complexity

Search types:

• global

• local

Iterative methods

Eg: 

• Gradients descent

• stochasztic method

(Monte-Carlo)

• Evolutionary algorithm



Best algorithm?



Blind algorithm

• Stochastic interval narrowing



Genetic algorithm
What is genetic algorithm?

- global search method

- starting from many points(individuals) who are

progressing (cross breeding) into many directions,

according to the location probability distribution

of the best species.



Genetic algorithm

The genetic algorithm is a method for solving optimization problems that

is based on natural selection, the process that drives biological evolution.

The genetic algorithm repeatedly modifies a population of individual

solutions. At each step, the genetic algorithm selects individuals from the

current population to be parents and uses them to produce the children

for the next generation.

Over successive generations, the population "evolves" toward an optimal

solution.



Genetic algorithm

Thinking abstract:

Dimension of the search space defines the individuals

(parameter coordinates= DNA)

Start: 

-We make a binary code according to the appended

decimal numbers

- Random initialization



The genetic algorithm uses three main

types of rules at each step to create the

next generation from the current

population:

•Selection rules select the individuals,

called parents, that contribute to the

population at the next generation. The

selection is generally stochastic, and can

depend on the individuals' scores.

•Crossover rules combine two parents to

form children for the next generation.

•Mutation rules apply random changes to

individual parents to form children.



Genetic algorithm

A1

A2

A3

A4



• Every individual has a 

fitness value

• Fitness= 1/Error
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A2

A3

A4
Fitness=50

Fitness=40

Fitness=66Fitness=35

Genetic algorithm



• Recombination of the 

best
A1
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A3

A4
Fitness=50

Fitness=40

Fitness=66Fitness=35

Genetic algorithm
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A3

A4
Fitness=50
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A2’A1’

Genetic algorithm



• Population size

remains the same, by

removing the worst

individual(s)

A1

A2

A3

A4
Fitness=50

Fitness=40

Fitness=66

Fitness=35

A2’A1’

Fitness=72

Genetic algorithm
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Genetic algorithm



• After certain

generations we can

observe many

individuals at best

locations

• To avoid stucking at

local minima we

introduce random 

mutation

A1

A2

Fitness=50

Fitness=66
A2’A1’

Fitness=72

Genetic algorithm



Genetic algorithm



Lens problem



-Is it fully random?

- Crossbreeding is random.

- Mutation is random. 

- Selection non random.

Not a Monte Carlo algorithm

Lens problem



Forrás: Thomas Geijtenbeek

https://www.youtube.com/channel/UCOwZa5EtffJa7we4dfMUdng

