Concentration response to mass impulse: 1D
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How to calculate D (diffusion)?
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How to calculate D (diffusion)?

First step:
Is this conservative?
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How to calculate D (diffusion)?
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Under simplified conditions
(regular geometry, and constant diff. coefficient:
Analytical solution of 1D transport eq. can be found:
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C=C(x,t)...concentration response to mass impulse (at x distance from pollution, in time t,
G...mass [g] of pollution (mass impulse),

D,...longitudinal diffusion coeff.

x...distance from pollution,

t...time,

A...cross-section area (A=const)

v,...velocity along river (assumed to be constant in time)



1D concentration response functions



Input: pollutant concentration is time dependent (time serie)

Solution is based on the eq:
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The input load [g/s] Is given: m, i=1,...n for each time interval

e

The input load time serie is.segmented into time
Intervals

Then G =M:-At

T At—>0, n—>w

Drawing board!
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The term convolution refers to both the result function and to the process of computing it.
It is defined as the integral of the product of the two functions after one is reversed and
shifted. The integral is evaluated for all values of shift, producing the convolution function



Reactor theory



Dirac impulse Impulse response function
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Wide pulse Response function g(t)="

Convolution integral !



The Case of a wide pulse (OD)

Perfectly mixed reactor
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Cross-section integrated 1D model
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REACTOR SERIE
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Reactors in serie (n reactors)
Changes of concentration in all reactors

longitudinal changes in concentration in time M spar
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Response function
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Optimal number of reactors
 Using the Peclet-number
* dimensionless
* rate of convection and diffusion
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Convolution: linear model
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Reactors in serie (n reactors)
Changes of concentration in all reactors

Concentration C[i.{) (i=1.....n]

reactors in series (i=1,...n) ; n=7

Asumptions:

Q=const

A=const

Conservative substance
Load time series upstream

inflow concentration in time outflow concentration in time

Concentration in 1st reactor:

pollutant load time series Outflow concentration (C(t))
to pollutant load time series







H(downstream)
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Iterativ method starting of from downstream:
upstream=downstream as initial conditions

During iteration (starting from upstream):

Ai_l and
Ki—1 — Ai—lkRi—12/3

Parameters are being updated (R is hydraulic radius)
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downstream boundary
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water level elevation
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(pollutant influent)
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V (volume)

@ (Q(i-1),Q(i), h, V...computed from hydrodynamic model
@ Dx...computed from diffusion model
@ Qe, Ce ...load data
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Simplified:
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Modelling of dissolved oxygen (DO)- unit impulse

Reactors in serie (n reactors) ™
Changes of concentration in all reactors

longitudinal changes in concentration in time and space DO concentration DO(i,Y) (i=1.....n)
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reactors in series (i=1,....n) ; n=17

Impulselike BOD load upstream

inflow concentration in time outflow concentration in time

Concentration in 1st reactor
as a result of unit impulse of Response function (DO(t)) to unit impulse

organic pollutant



Optimization/calibration
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Optimization/calibration

~— Observed Values D) o (R
Model: (1, 1) Error | 7 o -
—— Model: (1, 2) i /
A = Model: (1, 3) ,
. ~— Model: (2, 1) . Hiba
A Il B ~— Model: (2, 2) W oo
7\ | Model: (2, 3) oty
| v I \/ = Model: (3, 1) Ora-re
- 4 N ' s Oes7-72
/ N I Model: (3, 2) Moo
" .‘ ; Model: g
7 /’ .4 55
N7 . W
N 43
T
‘ ‘ mwodell pararéle 1 _'4" N
1 - R el el persmel = 2
| / 87
2 n ) 10
B . 100
E = E (i — yi}
i=1

00:00 12:00




_ocal minima/maxima




Best algorithm?
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Blind algorithm

» Stochastic interval narrowing

el Data Parameter
INPUT/OUTPUT ON GRID

527403.69
359969.84
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number of independent vars.




Genetic algorithm

What is genetic algorithm?
- global search method

- starting from many points(individuals) who are
progressing (cross breeding) into many directions,
according to the location probability distribution
of the best species.
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Genetic algorithm

Thinking abstract:

Dimension of the search space defines the individuals
(parameter coordinates= DNA)

Start:

-We make a binary code according to the appended
decimal numbers

- Random initialization



The genetic algorithm uses three main
types of rules at each step to create the
next generation from the current
population:

*Selection rules select the individuals,
called parents, that contribute to the
population at the next generation. The
selection is generally stochastic, and can
depend on the individuals' scores.

Crossover rules combine two parents to
form children for the next generation.

Mutation rules apply random changes to
individual parents to form children.




Genetic algorithm

A1 [1]0]0[1]1[0]||Gene
A2 Chromosome
A3 [0]1]0[1]0]0]

A4 [0]1[1]o]0][1] |Population
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Genetic algorithm

Fitness=50
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Genetic algorithm
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Genetic algorithm
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Genetic algorithm

Fitness=50
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Genetic algorithm

Fitness=50

AL

B A4 Fitness=40

12~

10 -




Genetic algorithm
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Genetic algorithm




Lens problem




Lens problem

-Is it fully random?
- Crossbreeding is random.
- Mutation is random.

- Selection non random.

Not a Monte Carlo algorithm
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