Concentration response to mass impulse: 10

$$
\begin{aligned}
& \frac{\partial(h \cdot C)}{\partial t}+\frac{\partial}{\partial x}\left(h \cdot v_{x} C\right)+\frac{\partial}{\partial y}\left(h \cdot v_{y} C\right)= \\
& \frac{\partial}{\partial x}\left(h \cdot D_{x} \frac{\partial C}{\partial x}\right)+\frac{\partial}{\partial y}\left(h \cdot D_{y} \frac{\partial C}{\partial y}\right) \\
& \frac{\partial C}{\partial t}+v_{x} \frac{\partial}{\partial x} C=D_{x} \frac{\partial^{2} C}{\partial x^{2}}
\end{aligned}
$$

Basic eq. of 1D transport

How to calculate D (diffusion)?

How to calculate D (diffusion)?

How to calculate D (diffusion)?

$$
\sigma^{2}=M\left((\xi-M(\xi))^{2}\right)
$$

$$
\begin{gathered}
\sigma_{x}=\sqrt{2 D t} \\
\frac{1}{1} \\
D=\frac{1}{2} \frac{\partial \sigma^{2}}{\partial t}
\end{gathered}
$$

Under simplified conditions
(regular geometry, and constant diff. coefficient:
Analytical solution of 1D transport eq. can be found:
$\frac{\partial C}{\partial t}+v_{x} \frac{\partial}{\partial x} C=D_{x} \frac{\partial^{2} C}{\partial x^{2}}$

$\mathbf{C}=\mathbf{C}(\mathbf{x}, \mathrm{t}) \ldots$ concentration response to mass impulse (at x distance from pollution, in time t, G...mass [g] of pollution (mass impulse),
$D_{x} \ldots$..longitudinal diffusion coeff.
x ...distance from pollution,
t...time,
A...cross-section area (A=const)
$\mathbf{v}_{\mathbf{x}} \ldots$ velocity along river (assumed to be constant in time)

1D concentration response functions

Input: pollutant concentration is time dependent (time serie)

Solution is based on the eq:
$C=\frac{G}{2 A \sqrt{D_{x} \Pi t}} \exp \left(\frac{-\left(x-v_{x} t\right)^{2}}{4 D_{x} t}\right)$
The input load $[\mathrm{g} / \mathrm{s}]$ is given: $\dot{M}_{i} \quad \mathrm{i}=1, \ldots \mathrm{n}$ for each time interval
Then $\quad G_{i}=\dot{M}_{i} \cdot \Delta t \quad$ The input load time serie is segmented into time
if $\Delta t \rightarrow 0, n \rightarrow \infty$

Drawing board!

Convolution integral for the response function of an input pollutant time series:

The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reversed and shifted. The integral is evaluated for all values of shift, producing the convolution function

Reactor theory

The Case of sudden impulse (OD)

Dirac impulse
Impulse response function

The Case of a wide pulse (0D)

Wide pulse
Response function $\mathrm{g}(\mathrm{t})=$?
Convolution integral !

The Case of a wide pulse (0D)

Perfectly mixed reactor

$$
(f * g)(t):=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

Cross-section integrated 1D model

$$
\frac{\partial(A \cdot C)}{\partial t}+\frac{\partial}{\partial x}\left(A \cdot v_{x} C\right)=\frac{\partial}{\partial x}\left(A \cdot D_{x} \frac{\partial C}{\partial x}\right)
$$

$$
C=\frac{G}{2 A \sqrt{D_{x} \Pi t}} \exp \left(\frac{-\left(x-v_{x} t\right)^{2}}{4 D_{x} t}\right)
$$

REACTOR SERIE

Response function

Mass-impulse

Reactors in serie (n reactors)

Changes of concentration in all reactors

Concentration in 1st reactor After unit mass impulse

Response function $(\mathrm{C}(\mathrm{t}))$ to unit impulse

[^0]
Response function

$$
\frac{C}{C_{0}}=\frac{n}{(n-1)!}\left(\frac{t}{t^{*}}\right)^{n-1} \exp \left(-\frac{t}{t^{*}}\right)
$$

$$
t^{*}=V / Q
$$

Average residence time in reactor

Optimal number of reactors

- Using the Peclet-number
- dimensionless
- rate of convection and diffusion

$$
P e=\frac{Q L}{A D} \quad n \cong \frac{P e}{2}
$$

$$
\begin{aligned}
& h(t)=\frac{C}{C_{0}}=\frac{n}{(n-1)!}\left(\frac{t}{t^{*}}\right)^{n-1} \exp \left(-\frac{t}{t^{*}}\right) \\
& \qquad C_{0}=\frac{M}{n V} \\
& \text { Convolution: linear model }
\end{aligned}
$$

$$
X(T)=\int_{0}^{T} I(T-\tau) h(\tau) d \tau
$$

Reactors in serie (n reactors)

Changes of concentration in all reactors

Concentration in 1st reactor: pollutant load time series

Outflow concentration ($\mathrm{C}(\mathrm{t})$) to pollutant load time series

Hydraulics

$$
z_{i}+\frac{Q_{(i)}^{2}}{A_{(i)}^{2} 2 g}+\frac{Q_{(i)}^{2} \text { friction }}{K_{c}^{2}} D x(i)=z_{i-1}+\frac{Q_{(i)}^{2}}{A_{(i-1)}^{2} 2 g}
$$

$$
\begin{gathered}
z_{i}+\frac{Q_{(i)}^{2}}{A_{(i)}^{2} 2 g}+\frac{Q_{(i)}^{2}}{K_{c}^{2}} D x(i)=z_{i-1}+\frac{Q_{(i)}^{2}}{A_{(i-1)}^{2} 2 g} \\
\frac{Q^{2}}{K^{2}} D x=\frac{v^{2}}{C^{2} R} D x=\frac{Q^{2}}{A^{2} C^{2} R} D x \Rightarrow K=A C \sqrt{R}=A k R^{1 / 6} \sqrt{R}=A k R^{2 / 3} \\
(i-1) \\
=B_{(i-1)} H_{(i-1)}+\frac{1}{2} r_{(i-1)} H_{(i-1)}^{2} \quad H_{(i-1)}=z_{(i-1)}-z S_{(i-1)}
\end{gathered}
$$

$$
z_{i}+\frac{Q_{(i)}^{2}}{A_{(i)}^{2} 2 g}+\frac{Q_{(i)}^{2}}{K_{c}^{2}} D x(i)-\frac{Q_{(i)}^{2}}{A_{(i-1)}^{2} 2 g}=z_{i-1}
$$

Iterativ method starting of from downstream: upstream=downstream as initial conditions

During iteration (starting from upstream):

$$
\begin{aligned}
& A_{i-1} \quad \text { and } \\
& K_{i-1}=A_{i-1} k R_{i-1}^{2 / 3}
\end{aligned}
$$

Parameters are being updated (\mathbf{R} is hydraulic radius)

$$
\begin{aligned}
& n \cong \frac{P e}{2} \\
& P e=\frac{Q L}{A D}
\end{aligned}
$$

$D_{x}=d_{x} \cdot u_{*} \cdot R$

$$
\frac{F}{K}
$$

parameter

$$
\sqrt{g R I}
$$

$$
d_{x} \cong 6
$$

$$
\begin{gathered}
D_{x}=d_{x} \cdot u_{*} \cdot R=d_{x} \sqrt{g R I} \cdot R \\
D_{x}=d_{x} \sqrt{g R \frac{U^{2}}{C^{2} R}} \cdot R=d_{x} \sqrt{g \frac{U^{2}}{C^{2}}} \cdot R \\
D_{x}=d_{x} \frac{U}{C} \sqrt{g} \cdot R=d_{x} \sqrt{g} \cdot U \frac{R}{k_{s t} R^{1 / 6}}
\end{gathered}
$$

$$
\begin{aligned}
& D=\frac{K}{k} U h^{5 / 6} \Rightarrow D x=\frac{2 K h^{5 / 6}}{k} \\
& k_{s t} \\
& (R \cong h) \\
& n=\frac{Q L}{2 A D} \Rightarrow \frac{L}{n}=D x=\frac{2 A D}{Q}=\frac{2 D}{U} \\
& n \cong \frac{P e}{2} \\
& P e=\frac{Q L}{A D}
\end{aligned}
$$

discharger
Qe,Ce
(pollutant influent)
river reach

$$
\begin{aligned}
& \frac{d}{d t}\left(V_{(i)} C_{(j, i)}\right)=C_{(j, i)} \frac{d V_{(i)}}{d t}+V_{(i)} \frac{d C_{(j, i)}}{d t}=L_{(j, i)}-Q_{(i)} C_{(j, i)}+V_{(i)} S_{(j, i)} \\
& \quad(\mathrm{j}=1, \ldots, \mathrm{~m} ; \mathrm{i}=1, \ldots, \mathrm{n})
\end{aligned}
$$

$$
\mathrm{L}(\mathrm{j}, \mathrm{i})=\mathrm{Q}(\mathrm{i}-1)^{*} \mathrm{C}(\mathrm{j}, \mathrm{i}-1)+\mathrm{Le}(\mathrm{i}, \mathrm{j})
$$

$$
\frac{d V(i)}{d t}=Q_{(i-1)}-Q_{(i)}+Q_{e(i)}
$$

Simplified:

$$
\begin{aligned}
& \frac{d V_{(i)}}{d t}=0 \quad \frac{d C_{(j, i)}}{d t}=0 \\
& \frac{L_{(j, i)}}{V_{(i)}}-\frac{Q_{(i)}}{V_{(i)}} C_{(j, i)}+S_{(j, i)}=0 \\
& C_{(j, i)}=\frac{L_{(j, i)}}{Q_{(i)}}+\frac{S_{(j, i)}}{Q_{(i)}} V_{(i)}
\end{aligned}
$$

$$
\begin{gathered}
C_{(j, i)}=\frac{L_{(j, i)}}{Q_{(i)}}+\frac{S_{(j, i)}}{Q_{(i)}} V_{(i)} \\
\frac{V_{(i)}}{Q_{(i)}}=t_{a(i)} \\
C_{(j, i)}=\frac{L_{(j, i)}}{Q_{(i)}}+S_{(j, i)} t_{a(i)}
\end{gathered}
$$

Modelling of dissolved oxygen (DO)- unit impulse

Reactors in serie (n reactors)
Changes of concentration in all reactors

Concentration in 1st reactor as a result of unit impulse of organic pollutant

Response function ($\mathrm{DO}(\mathrm{t})$) to unit impulse

Optimization/calibration

Optimization/calibration

Local minima/maxima

Can be characterized by:

- space
- time complexity

Search types:

- global
- local

Iterative methods

Eg:

- Gradients descent
- stochasztic method (Monte-Carlo)
- Evolutionary algorithm

Best algorithm?

Blind algorithm

- Stochastic interval narrowing

Genetic algorithm

What is genetic algorithm?

- global search method
- starting from many points(individuals) who are progressing (cross breeding) into many directions, according to the location probability distribution of the best species.

Genetic algorithm

Thinking abstract:

Dimension of the search space defines the individuals (parameter coordinates= DNA)

Start:

-We make a binary code according to the appended decimal numbers

- Random initialization

The genetic algorithm uses three main types of rules at each step to create the next generation from the current population:
-Selection rules select the individuals, called parents, that contribute to the population at the next generation. The selection is generally stochastic, and can depend on the individuals' scores.
-Crossover rules combine two parents to form children for the next generation.
-Mutation rules apply random changes to individual parents to form children.

Genetic algorithm

A11 0 0 1 1 0							Gene Chromosome
A2	0	0	1	1	1		
A3	0	1	0	1			
A4	0	1		0	0		Population

Genetic algorithm

- Every individual has a fitness value
- Fitness= $1 /$ Error

Genetic algorithm

- Recombination of the
best

Genetic algorithm

Genetic algorithm

- Population size remains the same, by removing the worst individual(s)

Genetic algorithm

Genetic algorithm

- After certain generations we can observe many individuals at best locations
- To avoid stucking at local minima we introduce random mutation

Genetic algorithm

Lens problem

Lens problem
 -Is it fully random?

- Crossbreeding is random.
- Mutation is random.
- Selection non random.

Not a Monte Carlo algorithm

Flexible Muscle-Based Locomotion for Bipedal Creatures

SIGGRAPH ASIA 2013

Thomas Geijtenbeek
Michiel van de Panne
Frank van der Stappen

[^0]: The continuous stirred-tank reactor, also known as vat- or backmix reactor,
 mixed flow reactor, or a continuous-flow stirred-tank reactor, is a common moriel for a
 chemical reactor in chemicai engineering and environmental engineering.

