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7. SOLUTION OF NONLINEAR SYSTEM OF EQUATIONS 

Civil engineering problems often require the solution of nonlinear equations, for 

example when looking for the intersection of several nonlinear equations. Such 

examples are typically the various geodetic point determination tasks (arc intersection, 

intersection, resection etc.), but we also have to solve non-linear equation systems 

during the design of beam structures and retaining walls. Now let's look at a mobile 

phone positioning task where we measure the distances between the mobile phone 

and the surrounding cell phone towers. This is actually an arc intersection task. 

When determining the position of mobile phones, the 

distance between the device and cell towers is 

measured. The distances define a circle around the cell 

towers/base stations (see figure). In case of 2 

measured distances, the circles can be described by 2 

quadratic equations, and their intersection gives the 

possible positions of the mobile phone. The equations 

can be given in the following implicit form, in the case 

of two known bases: 

(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 = 𝑟1
2 

(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 = 𝑟2
2 

If at least 3 distances and the coordinates of the mobile towers are known, the x,y 

coordinates of the unknown location can be determined, but this will be an 

overdetermined task with 3 equations for 2 unknowns. In the case of 2 measured 

distances, we get 2 possible solutions for the position. We will now deal with the latter 

case, when we have 2 equations and 2 unknowns. 

Solving a two-variable equation system consisting of two quadratic algebraic 

polynomials can also be traced back to finding the roots of a 4th degree polynomial, 

but now we will deal with the solution of the general nonlinear equation system. 

VECTOR NOTATION OF A SYSTEM OF EQUATIONS 

For the general solution of nonlinear systems of equations, let's introduce the vector 

notation for the equations and unknowns. In this way, it will be easier to refer to them, 

and the built-in functions of Matlab also need to be entered in this form. 

We can usually find a solution to a system of equations when the number of unknowns 

is the same as the number of equations. Systems of equations are usually given in the 

following form: 

𝑓1(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  ) = 0 

𝑓2(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  ) = 0 

𝑓3(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  ) = 0 

⋮ 

𝑓𝑛(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  ) = 0 
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In the vector notation mode, the multiple variables are stored in a vector. Let this be 

the vector x whose elements are: 𝒙 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  ).The equations are also stored 

in a vector (f), whose elements are: 𝒇 = (𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛  ). With this notation, we can 

simply describe the system of equations. 

𝒇(𝒙) = 0 

In the univariate case, we have to use one initial value (𝑥0). In the multivariable case, 

it is necessary to specify initial values for all variables,  which are given in a vector 𝒙𝟎. 
The more variables we have, the more difficult it is to determine a good initial value for 

each one. In practice, however, we can utilize the engineering knowledge of the given 

problem, and based on these, we can often give good approximate values even for 

multivariable cases. If we can plot the equations (for example in the case of two 

variables), we can also determine the starting values based on the figure 

EXAMPLE FOR SYSTEM OF NONLINEAR EQUATIONS 

Our task will be position determination with a mobile phone. In the example, let's 

assume that we only know the distance from 2 mobile towers, so we will get two 

possible locations for the position. The coordinates of each base station (cell tower) 

and the distance measurements are summarized in the table below (in kilometers). 

Number of the cell 

tower (base) 

X coordinate  

 ix  

Y coordinate 

 iy  

Measured distances 

 ir  

1 1 1 5 

2 10 8 8 

The equations can be given in the following implicit form, where we look for the x,y 

coordinates: 

(𝑥 − 1)2 + (𝑦 − 1)2 = 52 

(𝑥 − 10)2 + (𝑦 − 8)2 = 82 

As a first step, we rearrange the equations to zero: 

(𝑥 − 1)2 + (𝑦 − 1)2 − 52 = 0 

(𝑥 − 10)2 + (𝑦 − 8)2 − 82 = 0 

These equations are not given in the usual explicit form: 𝑦 = 𝑓(𝑥), but they are given 

in implicit form: 𝑓(𝑥, 𝑦) = 0. There are different Matlab commands to plot functions in 

explicit form (fplot, ezplot) and curves in implicit form (fimplicit, ezplot). The fplot 

command can only be used to plot univariate functions given in explicit form 𝑦 = 𝑓(𝑥), 
it cannot be used to display implicitly specified curves. 

equation form recommended 
Matlab command 

other Matlab command (older 
Matlab versions and Octave also) 

𝑦 = 𝑓(𝑥) explicit form fplot ezplot 

𝑓(𝑥, 𝑦) = 0 implicit form fimplicit ezplot 
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First, we plot the two curves with the fimplicit command. Colors, line type, etc. can be 

entered similarly to the plot or fplot commands.  

 clear all; clc; close all;  
 f1 =@(x,y) (x-1).^2 + (y-1).^2 - 

5^2; 
 f2 =@(x,y) (x-10).^2 + (y-8).^2 - 

8^2; 
 figure(1);  
 g1=fimplicit(f1,[-5 20 -5 20]);  
 hold on; 
 fimplicit(f2,[-5 20 -5 20],... 
              '--r','LineWidth',2);  
 axis equal; 
 legend('1st tower','2nd 

tower','Location','SE') 
 title('Positioning with a mobile 

phone')  

How can we find the points of intersection of the two equations given in implicit form 

(𝑓(𝑥, 𝑦) = 0)? To plot these curves we define them as multivariate functions. In the 

univariate case (𝑓(𝑥) = 0 ), we searched for the roots of the nonlinear function 

rearranged to zero, for example using the Newton’s method. Newton's method can 

also be used in multivariable cases, with some modifications. Let's check this out! 

MULTIVARIATE NEWTON’S METHOD 

Let's take a detailed look at one of the most well-known methods, the multivariate 

Newton’s method for solving systems of nonlinear equations, to better understand a 

possible way of solving these systems. The multivariate method can be generalized 

from the univariate case. In the univariate case, Newton's method could be derived 

from the linearization of the function: 

𝑓(𝑥𝑖+1) ≈ 𝑓(𝑥𝑖) + 𝑓
′(𝑥𝑖) ∙ (𝑥𝑖+1 − 𝑥𝑖) = 0 

This resulted in the iteration formula of Newton's method: 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 

In the multivariate case, the iteration formula is very similar: 

𝒙𝐢+𝟏 = 𝒙𝒊 − 𝑱(𝒙𝒊)
−1 ∙ 𝒇(𝒙𝒊) 

where 𝒇(𝒙𝒊)  is the system of equations in a column vector, 𝒙𝒊 are the values of the 

variables in a vector, and 𝑱(𝒙𝒊)
−1  instead of 1/𝑓′(𝑥𝑖) is the inverse of the nn Jacobian 

matrix at 𝒙𝒊. The elements of the Jacobian matrix are the partial derivatives of the 

equations: 

𝐽 =

(

 
 
 
 
 

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓1
𝜕𝑥3

⋯
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

⋯
𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛)
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For example, the Jacobian matrix of the system of equations below is: 

3𝑥2 + 2𝑦 + 1 = 0 

−𝑥3 − 5𝑦 + 2 = 0 
→ 𝐽(𝑥) = [

6𝑥 2
−3𝑥2 −5

] 

The calculation of the multivariable iteration formula requires an inverse calculation 

instead of a simple reciprocal, which we mostly try to avoid because it is slow and 

numerically unstable and imprecise. How can we determine 𝒙𝐢+𝟏  without inverse 

calculation? Let's rearrange the iteration equation in a form where we can use the 

matrix decompositions! 

𝒙𝐢+𝟏 − 𝒙𝒊 = −𝑱(𝒙𝒊)
−1 ∙ 𝒇(𝒙𝒊) 

Let’s introduce the notation 𝚫𝒙 = 𝒙𝒊+𝟏 − 𝒙𝒊 and multiply both sides by 𝑱(𝒙𝒊)! In this way, 

we get a system of linear equations, which we can solve with matrix decomposition! 

𝑱(𝒙𝒊) ∙ ∆𝒙 = − 𝒇(𝒙𝒊) 

where 𝑱(𝒙𝒊) is the nxn Jacobian matrix at 𝒙𝒊,  −𝒇(𝒙𝒊) is an nx1 vector. We have seen 

several effective methods for solving systems of linear equations, all of which used 

different matrix decompositions. Let's now use the solution of the form 𝑥 = 𝐴\𝑏, which 

uses LU decomposition in case of square A matrix. Once the value of ∆𝒙 is known, xi+1 

can be calculated. 

The task to be solved in each iteration is therefore: 

 𝑱(𝒙𝒊) ∙ ∆𝒙𝒊 = − 𝒇(𝒙𝒊) solving a system of linear equations for ∆𝑥𝑖 

 Calculation of 𝒙𝒊+𝟏 = 𝒙𝒊 + ∆𝒙𝒊 until 𝒇(𝒙) ≈ 0  or ∆𝒙 ≈ 0  (until it is smaller than a 

given tolerance value). 

MULTIVARIATE NEWTON’S METHOD IN MATLAB 

Let's write a function that implements the multivariate Newton’a method! Let the 

function be called newtonsys. (Save the file in the newtonsys.m file!) The stopping 

criteria should now be that successive iteration solutions differ less than a specified 

tolerance. Also, the loop should stop when it has reached the specified maximum 

number of iterations. The input is the system of equations (f), the Jacobian matrix (J), 

the initial values (x0), tolerance () and maximum number of iterations. The function 

has two outputs, the solution and the number of iterations performed. 

 function [x1, n] = newtonsys (f, J, x0, eps, nmax) 
     dx = J(x0)\-f(x0)); % first iteration 
     x1 = x0 + dx;       % first iteration 
     n = 1; 
     while norm(x1-x0)>eps && n<=nmax 
         x0 = x1; 
         dx = J(x0)\-f(x0); 
         x1 = x0 + dx; 
         n = n + 1; 
     end; 
 end 
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SOLUTION WITH MULTIVARIATE NEWTON’S METHOD 

a) Determination of the Jacobian matrix 

As we have seen, the multivariable Newton’s method requires, in addition to the 

original equations and the initial values, the partial derivatives of the equations for the 

Jacobian matrix. We can produce this with symbolic calculations. The partial 

derivatives can also be determined one by one with the diff command, but Matlab has 

a command to directly generate the Jacobian matrix (jacobian). To use the jacobian 

command, let's now define the system of equations symbolically! 

 %% Solution with multivariate Newton’s method 
 syms x y 
 fs1 = (x-1).^2 + (y-1).^2 - 5^2 
 fs2 = (x-10).^2 + (y-8).^2 - 8^2 
 disp('Jacobian matrix') 
 js = jacobian([fs1; fs2]) 
 % [  2*x - 2,  2*y - 2] 
 % [ 2*x - 20, 2*y - 16] 

Let's define the Jacobian matrix as a function, instead of a symbolic expression! We 

can do this by copying each element to the appropriate places using 

CTRL+C/CTRL+V, or we can also use the matlabFunction command here, which 

generates a function from a symbolic expression (there may be cases where this does 

not work). 

 J=@(x,y) [2*x - 2,  2*y - 2; 2*x - 20, 2*y - 16] % or 
 J = matlabFunction(js) 

b) Vectorization of the system of equations and the Jacobian matrix 

For the solution, we have to use vector variables instead of x,y variables, where the 

unknowns are in the v vector (v1=x és v2=y) and the equations are in the f vector. 

  𝒗 = (
𝑥
𝑦); 𝑭 = (

𝑓1
𝑓2
) 

The same is required for the Jacobian matrix! Let's vectorize our equations and the 

Jacobian matrix!  

 % let’s define f and J with vector variables 
 F = @(v) [f1(v(1),v(2)); f2(v(1),v(2))]; 
 J = @(v) J(v(1),v(2)); 

c) Solution by Newton's method 

Let's solve the problem with the defined newtonsys function. For this, the 

newtonsys.m file must be in the same directory where the current script file is saved. 

For the numerical solutions, as mentioned earlier, it is necessary to enter an initial 

value. The closer the initial value is to the actual solution, the faster the solution will 

be, the more likely the method will converge. Initial values for the x and y coordinates 

of the intersection point can be selected from the figure.  
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 % Solution with Newton’s method 
 % initial values from the figure 
 x01 = [2; 5] % first intersection 
 x02 = [5; 0] % second intersection 
 [x1 i1] = newtonsys (f, J, x01, 1e-6, 100); % 

1st solution 
 [x2 i2] = newtonsys (f, J, x02, 1e-6, 100); % 

2nd solution 

 

Write the results in a formatted format and plot them in the figure! As a check, substitute 

back the obtained results into the implicit equations to see if we really get 0 (in the case 

of multiple variables, the norm of the residual vector can be calculated as a check, i.e. 

the length of the deviation vector)! 

 disp('Possible positions using Newton''s method:') 
 fprintf('1st solution: %.4f,%.4f, number of iterations: %d\n',x1, i1) 
 fprintf('2nd solution: %.4f,%.4f, number of iterations: %d\n',x2, i2) 
 % check 
 norm(f(x1)) % 1.4648e-14 
 norm(f(x2)) % 0 
 plot(x1(1),x1(2),'ko') 
 plot(x2(1),x2(2),'k*') 
 legend('1st tower','2nd tower',... 
     '1st solution', '2nd solution','Location','NW') 

The solutions are:  

Possible positions using Newton's method: 
1st solution: 2.3005,5.8279, number of iterations: 5 
2nd solution: 5.9995,1.0721, number of iterations: 5  

The error is considered to be 0 within the numerical 

accuracy. 

Let's look at the solution with another starting value (x=1 and 

y=1)! 

 % choosing another starting value 
 disp('Let''s enter another starting value!') 
 x0 = [1; 1] 
 [x3 i3] = newtonsys (f, J, x0, 1e-6, 100); 
 fprintf('3rd solution: %.4f,%.4f, number of iteration: %d\n',x3, i3) 

The solution in this case: 

Warning: Matrix is singular to working precision.  
Warning: Matrix is singular, close to singular or badly scaled. Results may 
be inaccurate. 
RCOND = NaN.  
3rd solution: NaN,NaN, number of iteration: 2 

What happened? Why don't we have a solution?  (NaN = Not a Number) 

Because the Jacobian matrix is singular. The geometric reason is that the initial value 

coincides with the coordinate of one of the cell towers, the center of the circle. It really 

does matter how we choose the starting value, and what method we use to solve the 

problem, because it is not certain that the solution will converge 

 



Numerical Methods for Civil Engineers 7. System of nonlinear equations 

 7 Piroska Laky, 2023 

SOLUTION NUMERICALLY WITH FSOLVE 

Of course, Matlab also has built-in functions for solving systems of nonlinear equations. 

Let's first look at the fsolve command, which uses a numerical nonlinear system solver 

command. Several algorithms are built into fsolve, based on these, the program tries 

to find the optimal solution by minimizing the sums of squares of the remaining 

differences (in single-variable cases, it is better to use the significantly faster fzero 

command). Let's use the same initial values as before. The system of equations must 

also be given in vector form, but the Jacobian matrix is not required, it is optional (its 

specification can speed up the algorithm). In order to find the two different solutions, 

we need to run the fsolve command twice, once with initial values close to first solution, 

and once with initial values close to the second solution. 

 % numerical solution - fsolve 

 x1 = fsolve(f,x01) % x1 = [2.3005;  5.8279] 
 x2 = fsolve(f,x02) % x2 = [5.9995;  1.0721] 

Of course, we got the same results as before. For numerical verification, let's substitute 

the obtained results back into the original system of equations and check the errors 

(the deviations from 0). 

 % check 
 norm(f(x1)) % 7.4621e-12 
 norm(f(x2)) % 7.0300e-08 

The error within the numerical accuracy can be considered 0. When using fsolve, the 

desired accuracy can be specified using the optimset variable, similar to fzero, with 

the variables 'TolFun' and 'TolX'. With 'TolFun' you can specify a tolerance for the 

function value, and with 'TolX' you can specify a tolerance for the differences of the 

successive solutions. The default value for both is 10-6. If we want to solve the task 

with 10-9 accuracy, then we can do it this way: 

 %  solution with 10^-9 precision 
 x1 = fsolve(f,x01,optimset('TolFun',1e-9)) 

The fsolve command can be called with multiple outputs, so that it also gives us the 

function values right away, without having to replace them back for checking, and by 

using optimset the individual iteration steps can also be displayed. 

 % function values and iteration steps 
 opt = optimset('TolFun',1e-9,'Display','iter'); 
 [X,FVAL] = fsolve(f,x01,opt) 

The solution: 

X = 2.3005 
    5.8279 
FVAL = 1.0e-11 *[0.5059  0.5485] 
                                         Norm of      First-order   Trust-
region 
 Iteration  Func-count     f(x)          step         optimality    radius 
     0          3             145                           160               1 
     1          6         1.77485       0.970584           12.4               1 
     2          9     0.000981063       0.148822          0.284            2.43 
     3         12     3.63457e-10     0.00367156       0.000173            2.43 
     4         15     5.56836e-23    2.23746e-06       7.13e-11            2.43 
 
Equation solved. 
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fsolve completed because the vector of function values is near zero 
as measured by the value of the function tolerance, and 
the problem appears regular as measured by the gradient. 

Of course, the fsolve command can be used to find the roots of a univariate nonlinear 

equation, like fzero, but the latter is much faster and more efficient (but it cannot be 

used in multivariate cases). In a similar way, with the help of fsolve, we can solve not 

only algebraic polynomials, but also other systems of equations containing 

trigonometric, logarithmic, exponential etc. functions. 

SOLUTION SYMBOLICALLY WITH SOLVE 

The example we solved is an algebraic polynomial. Algebraic polynomials usually have 

a symbolic solution. In this case, all solutions can be obtained at the same time without 

entering initial values, just like in the univariate case. Here, the command is also the 

same, this is the solve command. The solve command, unlike fsolve, can only be 

used for algebraic polynomials. 

To use solve, the equations must be entered symbolically, we have already done this 

during the generation of the Jacobi matrix (fs1 and fs2), let's use them here too! The 

result contains both solutions at the same time, in exact form, in the form of a symbolic 

structure (xs). The values of the actual variables can be queried by entering a dot after 

the name of the structure (xs). It is advisable to convert these into numbers with the 

double command. 

 xs = solve(fs1, fs2) 
 %    x: [2x1 sym] 
 %    y: [2x1 sym] 
 xs.x, xs.y % values of variables x,y symbolically 
 %  (77*39^(1/2))/260 + 83/20         69/20 - (99*39^(1/2))/260 
 %  83/20 - (77*39^(1/2))/260         (99*39^(1/2))/260 + 69/20 
 xs = [double(xs.x) double(xs.y)] % values of x,y numerically 
 %     5.9995    1.0721 
 %     2.3005    5.8279 

Both solve and fsolve gave the same solution. In the case of fsolve, the system of 

equations first had to be rearranged to zero, and vector variables had to be used. The 

fsolve command had to be called as many times with different initial values as many 

solutions we had. In the case of solve, the equations had to be rearranged to zero, but 

the equations had to be entered symbolically. The latter provided all the solutions in 

one step without an initial value, but it can only be used for algebraic polynomials. 

INTERSECTION OF A PARAMETRIC CURVE AND A FUNCTION 

So far, we have not dealt with curves given in parametric form or with polar coordinates, 

although many curves cannot be written with traditional Cartesian (x,y) coordinates, 

only with polar coordinates or in parametric form (e.g. spiral). There are also curves 

that can be written with traditional Cartesian coordinates (x,y) and in a parametric form 

as well (e.g. a circle). 

Equation of a circle with Cartesian coordinates: 

𝑥2 + 𝑦2 = 𝑎2 
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Parametric equation of a circle: 

𝑥 = 𝑎 ∙ cos(𝑡) 

𝑦 = 𝑎 ∙ sin (𝑡) 

Equation of a circle with polar coordinates: 

𝑟 = 𝑎 

Many interesting curves can be found collected, for example, on the following page: 

https://mathshistory.st-andrews.ac.uk/Curves/ 

Now let's solve a task in Matlab where we are looking for the intersection point of a 

parametric curve with a function. The parametric curve is given below. 

𝑋(𝑡) = 𝑡 ∙ cos(2 ∙ 𝜋 ∙ 𝑡) 

𝑌(𝑡) = 𝑡 ∙ sin(2 ∙ 𝜋 ∙ 𝑡) 

𝑡 ∈ [0,2] 

We look for the intersection of this with the following parabola:  

𝑦 = 𝑥2 − 1 

Let's find all their intersections! To do this, we first plot the curves. A parametric curve 

can be represented in Matlab in the following way: 

 fplot(funx,funy,tinterval) 

 

 % Plot the curves 
 clc; clear all; close all; 
 % Define parametric curve 
 xp = @(t) t.*cos(2*pi*t) 
 yp = @(t) t.*sin(2*pi*t) 
 % define a function to calculate coordinates using a parameter 
 XY = @(t) [xp(t),yp(t)]  
 figure(1); fplot(xp,yp,[0,2]) 
 % define parabola 
 f = @(x) x.^2-1 % explicit form -> fplot 
 hold on; fplot(f,[-2,2]) 
 grid on; title('Points of intersection') 

 

The solution can be obtained in different ways. One solution is to substitute the X,Y 

values given by the parametric equations into the equation of the parabola and thereby 

https://mathshistory.st-andrews.ac.uk/Curves/
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bring the problem back to the solution of a one-variable nonlinear equation. First, let's 

rearrange the equation of the parabola to zero: 

𝑥2 − 1 − 𝑦 = 0 

Substituting the parametric equations into the parabola, we get the following: 

(𝑡 ∙ cos(2 ∙ 𝜋 ∙ 𝑡))2 − 1 − (𝑡 ∙ sin(2 ∙ 𝜋 ∙ 𝑡)) = 0 

With this, we reduced the problem to finding the roots of a one-variable nonlinear 

equation. Let's plot the new equation in another figure and take the initial values from 

here! 

 % Intersection search 
 % rearranged parabola equation to zero: x^2-1-y=0, with substitution 
 g = @(t) (t.*cos(2*pi*t)).^2-1-t.*sin(2*pi*t) 
 % or we can simply use the previously defined functions: 
 g = @(t) (xp(t)).^2-1-yp(t) 
 figure(2); fplot(g,[0,2]); 
 hold on; plot(xlim,[0,0]); grid on; 

 

 % initial values from the figure, solution 
 t1 = 0.9; t2 = 1.1; t3 = 1.4; 
 sol1 = fzero(g,t1) % 0.8744  
 sol2 = fzero(g,t2) % 1 
 sol3 = fzero(g,t3) % 1.4267 
   
 % Coordinates and plot of intersection points 
 M1 = XY(sol1) % 0.6159   -0.6207 
 M2 = XY(sol2) % 1.0000   -0.0000 
 M3 = XY(sol3) % -1.2782    0.6338 
 figure(1) 
 plot(M1(1),M1(2),'mo')  
 plot(M2(1),M2(2),'rd') 
 plot(M3(1),M3(2),'kp') 
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Another way to solve the problem is to solve it as a system of equations with 3 

variables, where the three variables are x,y,t. When defining the system of equations, 

pay attention to the fact that the equations must be rearranged to 0 in the first step! In 

this case, we have to choose initial values for all three variables. For the variables x,y, 

the initial values can be read from the figure, for the parameter t, move the cursor in 

the first figure near the desired intersection over the spiral and use the approximate 

value displayed there by Matlab. 

The system of equations rearranged to zero: 

𝑥 − 𝑡 ∙ cos(2 ∙ 𝜋 ∙ 𝑡) = 0 

𝑦 − 𝑡 ∙ sin(2 ∙ 𝜋 ∙ 𝑡) = 0 

𝑦 − 𝑥2 + 1 = 0 

Let's find one of the intersection points using this method (initial values taken from the 

first figure): 

 % solution as a system of equations with 3 unknowns 
 F = @(x,y,t) [x-t.*cos(2*pi*t); 
                       y-t.*sin(2*pi*t); 
                       y-x.^2+1] 
  % another solution: 
  % F = @(x,y,t) [x-xp(t); y-yp(t); y-f(x)] 
  F = @(v) F(v(1),v(2),v(3)) 
  v01 = [-1; 1; 1.5] % initial value from the figure 
  sol1 = fsolve(F,v01) 
 %        -1.2782 
 %       0.63383 
 %        1.4267 
 plot(sol1(1),sol1(2),'b*') 
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NEW FUNCTIONS USED IN THE CHAPTER 

fimplicit - Plot implicit function f(x,y)=0 

axis equal - use equal data unit lengths along each axis 

jacobian - 
Calculation of the Jacobi matrix (partial derivatives of an 
equation) 

fsolve - Solving nonlinear systems of equations numerically 

solve - Solving symbolically a system of algebraic polynomials  
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