
Numerical Methods for Civil Engineers 7. System of nonlinear equations

 1 Piroska Laky, 2023

7. SOLUTION OF NONLINEAR SYSTEM OF EQUATIONS

Civil engineering problems often require the solution of nonlinear equations, for

example when looking for the intersection of several nonlinear equations. Such

examples are typically the various geodetic point determination tasks (arc intersection,

intersection, resection etc.), but we also have to solve non-linear equation systems

during the design of beam structures and retaining walls. Now let's look at a mobile

phone positioning task where we measure the distances between the mobile phone

and the surrounding cell phone towers. This is actually an arc intersection task.

When determining the position of mobile phones, the

distance between the device and cell towers is

measured. The distances define a circle around the cell

towers/base stations (see figure). In case of 2

measured distances, the circles can be described by 2

quadratic equations, and their intersection gives the

possible positions of the mobile phone. The equations

can be given in the following implicit form, in the case

of two known bases:

(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 = 𝑟1
2

(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 = 𝑟2
2

If at least 3 distances and the coordinates of the mobile towers are known, the x,y

coordinates of the unknown location can be determined, but this will be an

overdetermined task with 3 equations for 2 unknowns. In the case of 2 measured

distances, we get 2 possible solutions for the position. We will now deal with the latter

case, when we have 2 equations and 2 unknowns.

Solving a two-variable equation system consisting of two quadratic algebraic

polynomials can also be traced back to finding the roots of a 4th degree polynomial,

but now we will deal with the solution of the general nonlinear equation system.

VECTOR NOTATION OF A SYSTEM OF EQUATIONS

For the general solution of nonlinear systems of equations, let's introduce the vector

notation for the equations and unknowns. In this way, it will be easier to refer to them,

and the built-in functions of Matlab also need to be entered in this form.

We can usually find a solution to a system of equations when the number of unknowns

is the same as the number of equations. Systems of equations are usually given in the

following form:

𝑓1(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) = 0

𝑓2(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) = 0

𝑓3(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) = 0

⋮

𝑓𝑛(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) = 0

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 2 Piroska Laky, 2023

In the vector notation mode, the multiple variables are stored in a vector. Let this be

the vector x whose elements are: 𝒙 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛).The equations are also stored

in a vector (f), whose elements are: 𝒇 = (𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛). With this notation, we can

simply describe the system of equations.

𝒇(𝒙) = 0

In the univariate case, we have to use one initial value (𝑥0). In the multivariable case,

it is necessary to specify initial values for all variables, which are given in a vector 𝒙𝟎.
The more variables we have, the more difficult it is to determine a good initial value for

each one. In practice, however, we can utilize the engineering knowledge of the given

problem, and based on these, we can often give good approximate values even for

multivariable cases. If we can plot the equations (for example in the case of two

variables), we can also determine the starting values based on the figure

EXAMPLE FOR SYSTEM OF NONLINEAR EQUATIONS

Our task will be position determination with a mobile phone. In the example, let's

assume that we only know the distance from 2 mobile towers, so we will get two

possible locations for the position. The coordinates of each base station (cell tower)

and the distance measurements are summarized in the table below (in kilometers).

Number of the cell

tower (base)

X coordinate

 ix

Y coordinate

 iy

Measured distances

 ir

1 1 1 5

2 10 8 8

The equations can be given in the following implicit form, where we look for the x,y

coordinates:

(𝑥 − 1)2 + (𝑦 − 1)2 = 52

(𝑥 − 10)2 + (𝑦 − 8)2 = 82

As a first step, we rearrange the equations to zero:

(𝑥 − 1)2 + (𝑦 − 1)2 − 52 = 0

(𝑥 − 10)2 + (𝑦 − 8)2 − 82 = 0

These equations are not given in the usual explicit form: 𝑦 = 𝑓(𝑥), but they are given

in implicit form: 𝑓(𝑥, 𝑦) = 0. There are different Matlab commands to plot functions in

explicit form (fplot, ezplot) and curves in implicit form (fimplicit, ezplot). The fplot

command can only be used to plot univariate functions given in explicit form 𝑦 = 𝑓(𝑥),
it cannot be used to display implicitly specified curves.

equation form recommended
Matlab command

other Matlab command (older
Matlab versions and Octave also)

𝑦 = 𝑓(𝑥) explicit form fplot ezplot

𝑓(𝑥, 𝑦) = 0 implicit form fimplicit ezplot

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 3 Piroska Laky, 2023

First, we plot the two curves with the fimplicit command. Colors, line type, etc. can be

entered similarly to the plot or fplot commands.

 clear all; clc; close all;
 f1 =@(x,y) (x-1).^2 + (y-1).^2 -

5^2;
 f2 =@(x,y) (x-10).^2 + (y-8).^2 -

8^2;
 figure(1);
 g1=fimplicit(f1,[-5 20 -5 20]);
 hold on;
 fimplicit(f2,[-5 20 -5 20],...
 '--r','LineWidth',2);
 axis equal;
 legend('1st tower','2nd

tower','Location','SE')
 title('Positioning with a mobile

phone')

How can we find the points of intersection of the two equations given in implicit form

(𝑓(𝑥, 𝑦) = 0)? To plot these curves we define them as multivariate functions. In the

univariate case (𝑓(𝑥) = 0), we searched for the roots of the nonlinear function

rearranged to zero, for example using the Newton’s method. Newton's method can

also be used in multivariable cases, with some modifications. Let's check this out!

MULTIVARIATE NEWTON’S METHOD

Let's take a detailed look at one of the most well-known methods, the multivariate

Newton’s method for solving systems of nonlinear equations, to better understand a

possible way of solving these systems. The multivariate method can be generalized

from the univariate case. In the univariate case, Newton's method could be derived

from the linearization of the function:

𝑓(𝑥𝑖+1) ≈ 𝑓(𝑥𝑖) + 𝑓
′(𝑥𝑖) ∙ (𝑥𝑖+1 − 𝑥𝑖) = 0

This resulted in the iteration formula of Newton's method:

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)

In the multivariate case, the iteration formula is very similar:

𝒙𝐢+𝟏 = 𝒙𝒊 − 𝑱(𝒙𝒊)
−1 ∙ 𝒇(𝒙𝒊)

where 𝒇(𝒙𝒊) is the system of equations in a column vector, 𝒙𝒊 are the values of the

variables in a vector, and 𝑱(𝒙𝒊)
−1 instead of 1/𝑓′(𝑥𝑖) is the inverse of the nn Jacobian

matrix at 𝒙𝒊. The elements of the Jacobian matrix are the partial derivatives of the

equations:

𝐽 =

(

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓1
𝜕𝑥3

⋯
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

⋯
𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛)

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 4 Piroska Laky, 2023

For example, the Jacobian matrix of the system of equations below is:

3𝑥2 + 2𝑦 + 1 = 0

−𝑥3 − 5𝑦 + 2 = 0
→ 𝐽(𝑥) = [

6𝑥 2
−3𝑥2 −5

]

The calculation of the multivariable iteration formula requires an inverse calculation

instead of a simple reciprocal, which we mostly try to avoid because it is slow and

numerically unstable and imprecise. How can we determine 𝒙𝐢+𝟏 without inverse

calculation? Let's rearrange the iteration equation in a form where we can use the

matrix decompositions!

𝒙𝐢+𝟏 − 𝒙𝒊 = −𝑱(𝒙𝒊)
−1 ∙ 𝒇(𝒙𝒊)

Let’s introduce the notation 𝚫𝒙 = 𝒙𝒊+𝟏 − 𝒙𝒊 and multiply both sides by 𝑱(𝒙𝒊)! In this way,

we get a system of linear equations, which we can solve with matrix decomposition!

𝑱(𝒙𝒊) ∙ ∆𝒙 = − 𝒇(𝒙𝒊)

where 𝑱(𝒙𝒊) is the nxn Jacobian matrix at 𝒙𝒊, −𝒇(𝒙𝒊) is an nx1 vector. We have seen

several effective methods for solving systems of linear equations, all of which used

different matrix decompositions. Let's now use the solution of the form 𝑥 = 𝐴\𝑏, which

uses LU decomposition in case of square A matrix. Once the value of ∆𝒙 is known, xi+1

can be calculated.

The task to be solved in each iteration is therefore:

 𝑱(𝒙𝒊) ∙ ∆𝒙𝒊 = − 𝒇(𝒙𝒊) solving a system of linear equations for ∆𝑥𝑖

 Calculation of 𝒙𝒊+𝟏 = 𝒙𝒊 + ∆𝒙𝒊 until 𝒇(𝒙) ≈ 0 or ∆𝒙 ≈ 0 (until it is smaller than a

given tolerance value).

MULTIVARIATE NEWTON’S METHOD IN MATLAB

Let's write a function that implements the multivariate Newton’a method! Let the

function be called newtonsys. (Save the file in the newtonsys.m file!) The stopping

criteria should now be that successive iteration solutions differ less than a specified

tolerance. Also, the loop should stop when it has reached the specified maximum

number of iterations. The input is the system of equations (f), the Jacobian matrix (J),

the initial values (x0), tolerance () and maximum number of iterations. The function

has two outputs, the solution and the number of iterations performed.

 function [x1, n] = newtonsys (f, J, x0, eps, nmax)
 dx = J(x0)\-f(x0)); % first iteration
 x1 = x0 + dx; % first iteration
 n = 1;
 while norm(x1-x0)>eps && n<=nmax
 x0 = x1;
 dx = J(x0)\-f(x0);
 x1 = x0 + dx;
 n = n + 1;
 end;
 end

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 5 Piroska Laky, 2023

SOLUTION WITH MULTIVARIATE NEWTON’S METHOD

a) Determination of the Jacobian matrix

As we have seen, the multivariable Newton’s method requires, in addition to the

original equations and the initial values, the partial derivatives of the equations for the

Jacobian matrix. We can produce this with symbolic calculations. The partial

derivatives can also be determined one by one with the diff command, but Matlab has

a command to directly generate the Jacobian matrix (jacobian). To use the jacobian

command, let's now define the system of equations symbolically!

 %% Solution with multivariate Newton’s method
 syms x y
 fs1 = (x-1).^2 + (y-1).^2 - 5^2
 fs2 = (x-10).^2 + (y-8).^2 - 8^2
 disp('Jacobian matrix')
 js = jacobian([fs1; fs2])
 % [2*x - 2, 2*y - 2]
 % [2*x - 20, 2*y - 16]

Let's define the Jacobian matrix as a function, instead of a symbolic expression! We

can do this by copying each element to the appropriate places using

CTRL+C/CTRL+V, or we can also use the matlabFunction command here, which

generates a function from a symbolic expression (there may be cases where this does

not work).

 J=@(x,y) [2*x - 2, 2*y - 2; 2*x - 20, 2*y - 16] % or
 J = matlabFunction(js)

b) Vectorization of the system of equations and the Jacobian matrix

For the solution, we have to use vector variables instead of x,y variables, where the

unknowns are in the v vector (v1=x és v2=y) and the equations are in the f vector.

 𝒗 = (
𝑥
𝑦); 𝑭 = (

𝑓1
𝑓2
)

The same is required for the Jacobian matrix! Let's vectorize our equations and the

Jacobian matrix!

 % let’s define f and J with vector variables
 F = @(v) [f1(v(1),v(2)); f2(v(1),v(2))];
 J = @(v) J(v(1),v(2));

c) Solution by Newton's method

Let's solve the problem with the defined newtonsys function. For this, the

newtonsys.m file must be in the same directory where the current script file is saved.

For the numerical solutions, as mentioned earlier, it is necessary to enter an initial

value. The closer the initial value is to the actual solution, the faster the solution will

be, the more likely the method will converge. Initial values for the x and y coordinates

of the intersection point can be selected from the figure.

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 6 Piroska Laky, 2023

 % Solution with Newton’s method
 % initial values from the figure
 x01 = [2; 5] % first intersection
 x02 = [5; 0] % second intersection
 [x1 i1] = newtonsys (f, J, x01, 1e-6, 100); %

1st solution
 [x2 i2] = newtonsys (f, J, x02, 1e-6, 100); %

2nd solution

Write the results in a formatted format and plot them in the figure! As a check, substitute

back the obtained results into the implicit equations to see if we really get 0 (in the case

of multiple variables, the norm of the residual vector can be calculated as a check, i.e.

the length of the deviation vector)!

 disp('Possible positions using Newton''s method:')
 fprintf('1st solution: %.4f,%.4f, number of iterations: %d\n',x1, i1)
 fprintf('2nd solution: %.4f,%.4f, number of iterations: %d\n',x2, i2)
 % check
 norm(f(x1)) % 1.4648e-14
 norm(f(x2)) % 0
 plot(x1(1),x1(2),'ko')
 plot(x2(1),x2(2),'k*')
 legend('1st tower','2nd tower',...
 '1st solution', '2nd solution','Location','NW')

The solutions are:

Possible positions using Newton's method:
1st solution: 2.3005,5.8279, number of iterations: 5
2nd solution: 5.9995,1.0721, number of iterations: 5

The error is considered to be 0 within the numerical

accuracy.

Let's look at the solution with another starting value (x=1 and

y=1)!

 % choosing another starting value
 disp('Let''s enter another starting value!')
 x0 = [1; 1]
 [x3 i3] = newtonsys (f, J, x0, 1e-6, 100);
 fprintf('3rd solution: %.4f,%.4f, number of iteration: %d\n',x3, i3)

The solution in this case:

Warning: Matrix is singular to working precision.
Warning: Matrix is singular, close to singular or badly scaled. Results may
be inaccurate.
RCOND = NaN.
3rd solution: NaN,NaN, number of iteration: 2

What happened? Why don't we have a solution? (NaN = Not a Number)

Because the Jacobian matrix is singular. The geometric reason is that the initial value

coincides with the coordinate of one of the cell towers, the center of the circle. It really

does matter how we choose the starting value, and what method we use to solve the

problem, because it is not certain that the solution will converge

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 7 Piroska Laky, 2023

SOLUTION NUMERICALLY WITH FSOLVE

Of course, Matlab also has built-in functions for solving systems of nonlinear equations.

Let's first look at the fsolve command, which uses a numerical nonlinear system solver

command. Several algorithms are built into fsolve, based on these, the program tries

to find the optimal solution by minimizing the sums of squares of the remaining

differences (in single-variable cases, it is better to use the significantly faster fzero

command). Let's use the same initial values as before. The system of equations must

also be given in vector form, but the Jacobian matrix is not required, it is optional (its

specification can speed up the algorithm). In order to find the two different solutions,

we need to run the fsolve command twice, once with initial values close to first solution,

and once with initial values close to the second solution.

 % numerical solution - fsolve

 x1 = fsolve(f,x01) % x1 = [2.3005; 5.8279]
 x2 = fsolve(f,x02) % x2 = [5.9995; 1.0721]

Of course, we got the same results as before. For numerical verification, let's substitute

the obtained results back into the original system of equations and check the errors

(the deviations from 0).

 % check
 norm(f(x1)) % 7.4621e-12
 norm(f(x2)) % 7.0300e-08

The error within the numerical accuracy can be considered 0. When using fsolve, the

desired accuracy can be specified using the optimset variable, similar to fzero, with

the variables 'TolFun' and 'TolX'. With 'TolFun' you can specify a tolerance for the

function value, and with 'TolX' you can specify a tolerance for the differences of the

successive solutions. The default value for both is 10-6. If we want to solve the task

with 10-9 accuracy, then we can do it this way:

 % solution with 10^-9 precision
 x1 = fsolve(f,x01,optimset('TolFun',1e-9))

The fsolve command can be called with multiple outputs, so that it also gives us the

function values right away, without having to replace them back for checking, and by

using optimset the individual iteration steps can also be displayed.

 % function values and iteration steps
 opt = optimset('TolFun',1e-9,'Display','iter');
 [X,FVAL] = fsolve(f,x01,opt)

The solution:

X = 2.3005
 5.8279
FVAL = 1.0e-11 *[0.5059 0.5485]
 Norm of First-order Trust-
region
 Iteration Func-count f(x) step optimality radius
 0 3 145 160 1
 1 6 1.77485 0.970584 12.4 1
 2 9 0.000981063 0.148822 0.284 2.43
 3 12 3.63457e-10 0.00367156 0.000173 2.43
 4 15 5.56836e-23 2.23746e-06 7.13e-11 2.43

Equation solved.

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 8 Piroska Laky, 2023

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

Of course, the fsolve command can be used to find the roots of a univariate nonlinear

equation, like fzero, but the latter is much faster and more efficient (but it cannot be

used in multivariate cases). In a similar way, with the help of fsolve, we can solve not

only algebraic polynomials, but also other systems of equations containing

trigonometric, logarithmic, exponential etc. functions.

SOLUTION SYMBOLICALLY WITH SOLVE

The example we solved is an algebraic polynomial. Algebraic polynomials usually have

a symbolic solution. In this case, all solutions can be obtained at the same time without

entering initial values, just like in the univariate case. Here, the command is also the

same, this is the solve command. The solve command, unlike fsolve, can only be

used for algebraic polynomials.

To use solve, the equations must be entered symbolically, we have already done this

during the generation of the Jacobi matrix (fs1 and fs2), let's use them here too! The

result contains both solutions at the same time, in exact form, in the form of a symbolic

structure (xs). The values of the actual variables can be queried by entering a dot after

the name of the structure (xs). It is advisable to convert these into numbers with the

double command.

 xs = solve(fs1, fs2)
 % x: [2x1 sym]
 % y: [2x1 sym]
 xs.x, xs.y % values of variables x,y symbolically
 % (77*39^(1/2))/260 + 83/20 69/20 - (99*39^(1/2))/260
 % 83/20 - (77*39^(1/2))/260 (99*39^(1/2))/260 + 69/20
 xs = [double(xs.x) double(xs.y)] % values of x,y numerically
 % 5.9995 1.0721
 % 2.3005 5.8279

Both solve and fsolve gave the same solution. In the case of fsolve, the system of

equations first had to be rearranged to zero, and vector variables had to be used. The

fsolve command had to be called as many times with different initial values as many

solutions we had. In the case of solve, the equations had to be rearranged to zero, but

the equations had to be entered symbolically. The latter provided all the solutions in

one step without an initial value, but it can only be used for algebraic polynomials.

INTERSECTION OF A PARAMETRIC CURVE AND A FUNCTION

So far, we have not dealt with curves given in parametric form or with polar coordinates,

although many curves cannot be written with traditional Cartesian (x,y) coordinates,

only with polar coordinates or in parametric form (e.g. spiral). There are also curves

that can be written with traditional Cartesian coordinates (x,y) and in a parametric form

as well (e.g. a circle).

Equation of a circle with Cartesian coordinates:

𝑥2 + 𝑦2 = 𝑎2

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 9 Piroska Laky, 2023

Parametric equation of a circle:

𝑥 = 𝑎 ∙ cos(𝑡)

𝑦 = 𝑎 ∙ sin (𝑡)

Equation of a circle with polar coordinates:

𝑟 = 𝑎

Many interesting curves can be found collected, for example, on the following page:

https://mathshistory.st-andrews.ac.uk/Curves/

Now let's solve a task in Matlab where we are looking for the intersection point of a

parametric curve with a function. The parametric curve is given below.

𝑋(𝑡) = 𝑡 ∙ cos(2 ∙ 𝜋 ∙ 𝑡)

𝑌(𝑡) = 𝑡 ∙ sin(2 ∙ 𝜋 ∙ 𝑡)

𝑡 ∈ [0,2]

We look for the intersection of this with the following parabola:

𝑦 = 𝑥2 − 1

Let's find all their intersections! To do this, we first plot the curves. A parametric curve

can be represented in Matlab in the following way:

 fplot(funx,funy,tinterval)

 % Plot the curves
 clc; clear all; close all;
 % Define parametric curve
 xp = @(t) t.*cos(2*pi*t)
 yp = @(t) t.*sin(2*pi*t)
 % define a function to calculate coordinates using a parameter
 XY = @(t) [xp(t),yp(t)]
 figure(1); fplot(xp,yp,[0,2])
 % define parabola
 f = @(x) x.^2-1 % explicit form -> fplot
 hold on; fplot(f,[-2,2])
 grid on; title('Points of intersection')

The solution can be obtained in different ways. One solution is to substitute the X,Y

values given by the parametric equations into the equation of the parabola and thereby

https://mathshistory.st-andrews.ac.uk/Curves/

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 10 Piroska Laky, 2023

bring the problem back to the solution of a one-variable nonlinear equation. First, let's

rearrange the equation of the parabola to zero:

𝑥2 − 1 − 𝑦 = 0

Substituting the parametric equations into the parabola, we get the following:

(𝑡 ∙ cos(2 ∙ 𝜋 ∙ 𝑡))2 − 1 − (𝑡 ∙ sin(2 ∙ 𝜋 ∙ 𝑡)) = 0

With this, we reduced the problem to finding the roots of a one-variable nonlinear

equation. Let's plot the new equation in another figure and take the initial values from

here!

 % Intersection search
 % rearranged parabola equation to zero: x^2-1-y=0, with substitution
 g = @(t) (t.*cos(2*pi*t)).^2-1-t.*sin(2*pi*t)
 % or we can simply use the previously defined functions:
 g = @(t) (xp(t)).^2-1-yp(t)
 figure(2); fplot(g,[0,2]);
 hold on; plot(xlim,[0,0]); grid on;

 % initial values from the figure, solution
 t1 = 0.9; t2 = 1.1; t3 = 1.4;
 sol1 = fzero(g,t1) % 0.8744
 sol2 = fzero(g,t2) % 1
 sol3 = fzero(g,t3) % 1.4267

 % Coordinates and plot of intersection points
 M1 = XY(sol1) % 0.6159 -0.6207
 M2 = XY(sol2) % 1.0000 -0.0000
 M3 = XY(sol3) % -1.2782 0.6338
 figure(1)
 plot(M1(1),M1(2),'mo')
 plot(M2(1),M2(2),'rd')
 plot(M3(1),M3(2),'kp')

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 11 Piroska Laky, 2023

Another way to solve the problem is to solve it as a system of equations with 3

variables, where the three variables are x,y,t. When defining the system of equations,

pay attention to the fact that the equations must be rearranged to 0 in the first step! In

this case, we have to choose initial values for all three variables. For the variables x,y,

the initial values can be read from the figure, for the parameter t, move the cursor in

the first figure near the desired intersection over the spiral and use the approximate

value displayed there by Matlab.

The system of equations rearranged to zero:

𝑥 − 𝑡 ∙ cos(2 ∙ 𝜋 ∙ 𝑡) = 0

𝑦 − 𝑡 ∙ sin(2 ∙ 𝜋 ∙ 𝑡) = 0

𝑦 − 𝑥2 + 1 = 0

Let's find one of the intersection points using this method (initial values taken from the

first figure):

 % solution as a system of equations with 3 unknowns
 F = @(x,y,t) [x-t.*cos(2*pi*t);
 y-t.*sin(2*pi*t);
 y-x.^2+1]
 % another solution:
 % F = @(x,y,t) [x-xp(t); y-yp(t); y-f(x)]
 F = @(v) F(v(1),v(2),v(3))
 v01 = [-1; 1; 1.5] % initial value from the figure
 sol1 = fsolve(F,v01)
 % -1.2782
 % 0.63383
 % 1.4267
 plot(sol1(1),sol1(2),'b*')

Numerical Methods for Civil Engineers 7. System of nonlinear equations

 12 Piroska Laky, 2023

NEW FUNCTIONS USED IN THE CHAPTER

fimplicit - Plot implicit function f(x,y)=0

axis equal - use equal data unit lengths along each axis

jacobian -
Calculation of the Jacobi matrix (partial derivatives of an
equation)

fsolve - Solving nonlinear systems of equations numerically

solve - Solving symbolically a system of algebraic polynomials

	7. Solution of Nonlinear System of Equations
	Vector notation of a system of equations
	Example for system of nonlinear equations
	Multivariate Newton’s method
	Multivariate Newton’s method in Matlab
	Solution with multivariate Newton’s method

	Solution numerically with fsolve
	Solution symbolically with solve
	Intersection of a parametric curve and a function
	New functions used in the chapter

