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8. REGRESSION 

In engineering practice, several physical phenomena are measured and examined 

using digital instruments and the measurement values are stored at discrete points. A 

typical civil engineering example from solid mechanics could be the tensile test, when 

a certain material or structural element is tested to substantiate its tensile strength. 

Another example from geodesy, the measurements of a full-wave laser scanner which 

are stored at discrete values. 

In the case of regression, we already have knowledge about the function (or model) of 

the physical phenomenon examined and we would like to determine the parameters of 

the function from our measured values. For example, if the phenomenon can be 

modelled using a quadratic function in the form 𝑎 𝑥2 + 𝑏 𝑥 + 𝑐 , we can use the 

measured values to determine the parameters 𝑎, 𝑏  and 𝑐. Usually, we have more 

measurements then parameters, so these problems lead to overdetermined systems 

which are also many times linear. The overdetermined nature also means that our 

resulting function will not go through any of the measurement points, but it will try to 

get as close to all of them as possible. 

As for interpolation, we would like to have values where we have no measurements. 

This can mean values between measured points (interpolation) or values beyond our 

measurement interval (extrapolation). In these cases, we are trying to find a function 

that has the measured values as its function value at the measured points and 

adequately describes the behavior between the points. 

 

THE QUALITY OF REGRESSION 

In the case of regression, we seek for the 'best' fitting function. How can we define 

which is the best fitting one? For this we should determine the differences of each 

measured point, and the function value of the fitted function at the same location. 

These are called the residuals (ri):  

𝑟𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖) 

i=1..n, where 𝑦𝑖 is the measurement value at 𝑥𝑖 and 𝑓(𝑥𝑖) is the function value of the 

resulting regression model. 

The residuals should be minimized in some way by applying a single metric to all 

points. However, only summing the residuals might not work well in all cases. If we 
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have similar positive and negative residuals, they will cancel out in the summation 

which will result in a very high goodness of fit, but falsely. We could instead use the 

absolute value of the residuals, but this would result in an ambiguous solution, that is, 

more than one parameter set of a certain model would have the same best fit. The best 

solution is to use the sum of the squares of the residuals, as this way the solution will 

be unique (only one set of parameters provides the best fit for a model). The sum of 

squares of the residuals must be minimized: 

𝑆 =  ∑𝑟𝑖
2 =

𝑛

𝑖=1

∑(𝑦𝑖 − 𝑓(𝑥𝑖))
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𝑛
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Local goodness of fit can be measured with the individual residuals, while globally we 

can use the empirical standard deviation of the residuals: 
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where n is the number of measurements and np is the number of parameters in the 

regression model. Sometimes, 𝑛 − 𝑛𝑝  is also called the number of redundant 

measurements, surplus measurements or degree of freedom (f). Which means the 

number of measurements beyond what is absolutely needed to solve the problem.   

LINE FITTING 

Let's look at an example from solid mechanics! Measurements from a tensile test on 

concrete reinforcing steel bar must be processed (a highest strength steel). During the 

test, the stress continuously increases up to a maximum value, then decreases, and 

then the material is destroyed (breaks). See the stress-strain curve below! 

From the examination, we determine the following:  

1) Total elongation (strain) at fracture (4 in the figure) 

2) Ultimate tensile strength (1 in the figure) (UTS or Rm) 

3) Limit of elastic deformation (3 in the figure)1 

4) Modulus of Elasticity (Young-Modulus=slope) (E) 

5) 0.2% offset yield strength (2 in the figure), (YS or Rp0.2) 

Yielding occurs where the initial linear region transitions to 

the non-linear portion.  This transition does not occur always 

at a clearly visible well-defined point. The most common 

method is to draw a line parallel to the modulus line at an 

offset strain of 0.2% (5 in the figure). The intersection stress 

becomes what is defined at the “0.2% offset yield strength”. 

To solve the problem, first load our measurement data from the tensiletest.txt file. In 

this file, the first column contains the measured deformations, the strain (ε - %), and 

the second column contains the corresponding stress (σ - Mpa) values. 

                                            

1 With no permanent (plastic) deformation, the metal returns to its original shape. 
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 % Tensile test 
 clc; clear all; close all; 
 data = load('tensiletest.txt'); 
 x = data(:,1); % strain, epsilon 
 y = data(:,2); % stress, sigma 
 figure(1) 
 plot(x,y,'.') 

It is easy to answer to the first two questions. To 

determine where the total elongation where the 

material breaks, we have to take the last 

measurement result, which is also the maximum 

strain value. To determine the ultimate tensile 

strength, we need to find the maximum stress (σ). 

 disp('Total elongation at fracture:') 
 x(end) % same as max(x) => 0.2644 % 
 disp('Ultimate tensile strength:') 
 max(y) %  668.3606 Mpa 

So, the material broke at 26.4% relative 

deformation, and the maximum stress, the 

ultimate tensile strength, was 668 MPa. To 

determine the modulus of elasticity, we must 

find the limit of elastic deformation section 

where the relationship between the strain and 

the stress is linear (Hook's law), and we must fit 

a straight line to it. The slope of this line will be 

the value of the modulus of elasticity. To do this, 

let's zoom in on the figure a bit, up to 0.6% 

deformation and 400 MPa stress! 

 axis([0 0.006 0 400]) 

The figure above shows that at the beginning of the measurement, near the origin, the 

measurement cannot be considered linear due to the uncertainty of the instrument, so 

for a straight fit, the beginning of the data must be cut off. Now we cut it, which is less 

than 0.02 %. The upper end of the flexibility limit (proportionality limit) must also be 

found, let's take this as 0.15% from the figure. 

Note: the end of the linear section was determined based on the figure. By clicking on 

the 'data cursor' button , we can query the data of each point. Using logical 

indexing, we can select the points of the linear section where the x-coordinate is 

greater than 0.0002 and less than 0.0015! 

 cond1=and(x>0.0002,x<0.0015); % condition 
 xl = x(cond1); 
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 yl = y(cond1); 
 hold on;  
 plot(xl,yl,'r*'); 

Let's check whether there really is a linear 

relationship between the selected points. For 

this, we calculate the linear correlation 

coefficient: 

𝑟 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2∑ (𝑦𝑖 − 𝑦̅)2
𝑛
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𝑛
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 xs = xl-mean(xl) 
 ys = yl-mean(yl) 
 r = sum(xs.*ys)/sqrt(sum(xs.^2)*sum(ys.^2)) %  0.9805 

Or the same using Matlab's built-in corr2 command (from Image Processing Toolbox). 

 r = corr2(xl,yl) %  0.9805 

The closer the absolute value of the correlation coefficient is to 1, the more linear the 

relationship between the two variables. Since this value is now 0.98, we can consider 

the relationship linear and fit a straight line to it. For this, let's look at the equation of 

the line: 𝑦 = 𝑚 ∙ 𝑥 + 𝑏. There are two unknowns m, the slope of the line and the y-

intercept b, where the line intersects the y axis. Based on the selected measurements, 

we have 75 related x,y values, based on which we can write 75 equations, which are 

linear with regard to the unknowns (m,b): 

𝑚 ∙ 𝑥1 + 𝑏 = 𝑦1 
𝑚 ∙ 𝑥2 + 𝑏 = 𝑦2 
⋮ 
𝑚 ∙ 𝑥75 + 𝑏 =  𝑦75 

In matrix form 

(𝐴 ∙ 𝑥 = 𝐵): 
𝐴 = (

𝑥1 1
𝑥2 1
⋮ ⋮
𝑥75 1

) ; 𝐵 = (

𝑦1
𝑦2
⋮
𝑦75

) 

In the equation system above, there are two unknowns (m,b) and 75 equations, that 

is, we have 73 extra measurements. This is an overdetermined system of linear 

equations, where we want to obtain the solution with the smallest error by minimizing 

the sum of the squares of the remaining errors, the residuals. Based on the previous 

classes, we can use, for example, the x=A\B command, which uses QR decomposition 

in overdetermined cases, or x=pinv(A)*B, which uses SVD decomposition. 

First, we need to generate the matrix A, with the coefficients of the unknowns. In the 

first column, there will be the coefficients of m, in this case the values of xi (xi
1),  and in 

the second column, the coefficient of b, which is always 1, for the sake of simplicity, 

this can also be written as xi
0. 

 A = [xl.^1 xl.^0] 
 % or: A = [xl ones(size(xl)] 
 B = yl; 
 mb = A\B 
 % parameters of line 
 m = mb(1) 
 b = mb(2) 
 % equation of line 
 f = @(x) m*x+b 
 hold on; fplot(f,[0 0.0015],'g','LineWidth',3); 
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 axis([0 0.006 0 400]) 

The slope of the fitted line will be the value of the modulus of elasticity or Young-
modulus: 

 format long; 
 E = m % E = 165626.174495478 

In other words, the value of the elasticity modulus (E) is: 165 626 N/mm2 (MPa). 

Let's determine the accuracy of the fitting and 

the empirical standard deviation! For this, the 

residuals must first be calculated, and then the 

sum of squares of the residuals. Afterwards, 

the number of redundant measurements must 

also be determined (degree of freedom), i.e. 

the difference between the number 

measurements and the number of parameters 

to be determined (which is now 2: m,b). Let's 

plot the residuals on a bar chart! 

 % residuals 
 r = yl - f(xl); 
 figure(2); bar(r) 
 % sum of squares of the residuals  
 format shortG; 
 S = sum(r.^2) % 8935.9 
 % degree of freedom, f = n-np 
 n = length(xl) % 75 - number of 

measurements 
 np = length(mb) % 2 - number of 

parameters 
 f = n-np % degree of freedom 
 % empirical standard deviation  
 estd = sqrt(S/f) % 11.064 Mpa 

 

PARABOLA FITTING 

The determination of the yield strength in this case is not clear from the figure, this 

material does not have a clearly visible yield strength point. In such cases, it is 

customary to use the conventional Rp0.2 yield strength, which is the stress value 

corresponding to a 0.2% permanent deformation. This can be determined from the 

stress-strain diagram by drawing a line parallel to the modulus line at an offset strain 

of 0.2%. The intersection stress becomes what is defined at the “0.2% offset yield 

strength”. Let's define this line and plot it in the figure! 

 % 0.2% offset yield strength 
 line2 = @(x) E*(x-0.002) 
 figure(1); fplot(line2,[0 0.006]) 
 axis([0 0.006 0 400]) 
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How do we determine the intersection of this 

line and the measurements of the stress-

strain diagram? A good solution is to fit a 

function to the non-linear section, where the 

intersection point is also located, and find 

the intersection point of the two functions! 

To do this, select the points of the non-linear 

section shown in the figure, i.e. the points 

between x>0.0015 and x<0.006! 

 % Section between 0.0015 and 
0.006 

 cond2=and(x>0.0015,x<0.006); 
 xp = x(cond2); 
 yp = y(cond2); 
 plot(xp,yp,'m*') 

A total of 23 points meet the above condition. Now we fit a quadratic polynomial, a 

parabola to the points, in the form 𝑦 = 𝑐0 + 𝑐1 ∙ 𝑥 + 𝑐2 ∙ 𝑥
2! 

𝑦1 = 𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥1
2 

𝑦2 = 𝑐0 + 𝑐1𝑥2 + 𝑐2𝑥2
2 

⋮ 
𝑦𝑛 = 𝑐0 + 𝑐1𝑥𝑛 + 𝑐2𝑥𝑛

2 

In matrix form: 

𝐴 = (

1 𝑥1 𝑥1
2

1 𝑥2 𝑥2
2

⋮ ⋮ ⋮
1 𝑥𝑛 𝑥𝑛

2

) ; 𝑏 = (

𝑦1
𝑦2
⋮
𝑦𝑛

) 

To fit the parabola (quadratic polynomial), we have to create the appropriate coefficient 

matrix again (the coefficients of the unknown c0, c1 and c2) and solve an 

overdetermined system of linear equations! We have 3 unknowns and we can write 23 

equations, so we have a total of 20 extra measurements. 

 A = [xp.^0 xp.^1 xp.^2] 
 % or: A = [ones(size(xp) xp xp.^2] 
 b = yp; 
 % solution of an overdetermined system of linear equations 
 c = A\b 
 % equation of the fitted parabola 
 f2 = @(x) c(1) + c(2).*x + c(3)*x.^2 
 fplot(f2,[0.0015 0.006],'g','LineWidth',3) 
 axis([0 0.006 0 400]) 

Now we just need to find the intersection point! 

Based on our previous studies, we can do this 

easily. At the intersection point: f(x)=g(x). By 

rearranging the equation to zero, we can find 

the roots of the nonlinear equation h(x) = f(x)-

g(x) = 0, for example using the fzero built-in 

function! 

 % find 0.2% offset yield strength 
 % line2(x) = f2(x), so  

h(x) = line2(x) - f2(2)=0 
 h = @(x) line2(x) - f2(x) 
 sectionp = fzero(h,0.004) 
 YS = f2(sectionp) % 345.82 MPa 
 plot(sectionp, YS,'ro') 
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The conventional Rp0.2 yield strength, which is the stress value corresponding to a 0.2% 

permanent deformation was found to be 346 MPa in our measurement. 

Similarly, we can fit polynomials of a higher degree (third, fourth, etc.) to our data. 

However, we have to be careful with higher degree polynomials, because our 

coefficient matrix will be badly conditioned and our solution will be uncertain. The 

polynomial may fit perfectly to our measurement points, but oscillations may occur 

between them. We will see an example of this with interpolation.  

Let’s check the goodness of fitting in this case too, by calculating the empirical standard 

deviation! 

 % empirical standard deviation for parabola fitting 
 rp = yp-f2(xp); 
 Sp = sum(rp.^2); 
 n = length(xp) % 23 
 np = length(c) % 3  
 fp = n-np % 20 
 estdp = sqrt(Sp/fp) % 6.519 MPa 

POLYNOMIAL FITTING WITH MATLAB’S BUILT-IN FUNCTIONS  
(POLYFIT, POLYVAL) 

In order to determine the elasticity modulus, in the first part of the task, a line fitting 

was required, which corresponds to a first-degree polynomial, and in the second part 

of the task, we fitted a second-degree polynomial.  

In Matlab, there is a command (polyfit) that can be used to fit a polynomial of any 

degree to the measured points using the method of least squares. The result of the 

command will be a vector containing the coefficients of the polynomial from the term 

of the highest degree back to the constant term.  

There is another related command, polyval, which calculates the value of a polynomial 

at an arbitrary point, given the vector containing its coefficients. The polyval command 

can be called with a specific x coordinate, but it is often advisable to define a function 

with an independent variable x for further use. Let's see how we could have solved the 

polynomial fits from the previous task with these commands! 

 % line fitting (first degree polynomial) 
 a1 = polyfit(xl,yl,1) 
 p1 = @(x) polyval(a1,x) 
 % fitting a parabola (quadratic polynomial) 
 a2 = polyfit(xp,yp,2) 
 p2 = @(x) polyval(a2,x) 
   
 figure(3); plot(x,y,'r*'); hold on; 
 fplot(p1,[0 0.0015]);  
 fplot(p2,[0.0015 0.006]) 
 axis([0 0.006 0 400]) 
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DETERMINATION OF LINEAR PARAMETERS OF A GENERAL FUNCTIONS 

Of course, not only polynomial fits can be solved in the same way, solving many other 

problems also leads to linear regression. This is the case, for example, if we are looking 

for the amplitude of a harmonic vibration movement (a relationship that can be 

described by a sine-cosine function), or if we need to determine the linear parameters 

of any other function. Let's look at two examples of this, where the unknown 

parameters to be determined are 𝑎, 𝑏, 𝑐.  

𝑦 = 𝑎 ∙ sin(𝜋 ∙ 𝑥) + 𝑏 

𝑦 = 𝑎 ∙ |𝑥 − 0.5|
3
2 + 𝑏 ∙ cos(𝑥) + 𝑐 ∙ 𝑒𝑥 

Of course, these can also be solved with linear regression, as the parameters are in 

linear form! The x,y coordinates are known, so any function of them can be determined, 

the coefficients can be calculated. Let's look at the coefficient of unknowns in the above 

two cases! 

Unknown parameters: a b c 

Equations: Coefficients of parameters 

𝑦 = 𝑎 ∙ sin(𝜋 ∙ 𝑥) + 𝑏 sin(𝜋 ∙ 𝑥) 1 - 

𝑦 = 𝑎 ∙ |𝑥 − 0.5|
3
2 + 𝑏 ∙ cos(𝑥) + 𝑐 ∙ 𝑒𝑥 |𝑥 − 0.5|

3
2 cos(𝑥) 𝑒𝑥 

 

Let's look at the first example in practice, for 7 given points, with known x,y coordinates! 

x 0 0.25 0.5 0.75 1 1.25 1.5 

y 0 0.5 1 0.5 0 -0.5 -1 

The shape of our hypothesis function is as follows: 

𝑦 = 𝑎 ∙ sin(𝜋 ∙ 𝑥) + 𝑏 

Let's determine the parameters a,b with linear regression! Based on 7 points, we can 

write 7 linear equations for the parameters. 

𝑦1 = 𝑎 ∙ sin(𝜋 ∙ 𝑥1) + 𝑏 
𝑦2 = 𝑎 ∙ sin(𝜋 ∙ 𝑥2) + 𝑏 

𝑦3 = 𝑎 ∙ sin(𝜋 ∙ 𝑥3) + 𝑏 

𝑦4 = 𝑎 ∙ sin(𝜋 ∙ 𝑥4) + 𝑏 
𝑦5 = 𝑎 ∙ sin(𝜋 ∙ 𝑥5) + 𝑏 

𝑦6 = 𝑎 ∙ sin(𝜋 ∙ 𝑥6) + 𝑏 

𝑦7 = 𝑎 ∙ sin(𝜋 ∙ 𝑥7) + 𝑏 

In matrix form: 

𝐴 =

(

 
 
 
 
 

sin(𝜋 ∙ 𝑥1) 1

sin(𝜋 ∙ 𝑥2) 1

sin(𝜋 ∙ 𝑥3) 1

sin(𝜋 ∙ 𝑥4) 1

sin(𝜋 ∙ 𝑥5) 1

sin(𝜋 ∙ 𝑥6) 1

sin(𝜋 ∙ 𝑥7) 1)

 
 
 
 
 

; 𝑏 =  

(

 
 
 
 

𝑦
1
𝑦
2
𝑦
3
𝑦
4
𝑦
5
𝑦
6
𝑦
7)

 
 
 
 

 

Solution in Matlab: 

 x = [0 0.25 0.5 0.75 1 1.25 1.5] 
 y = [0 0.5 1 0.5 0 -0.5 -1] 
 figure(1); plot(x,y,'bo') 
 grid on; title('Regression') 
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 % x,y should be column vectors for 
the regression! 

 x = x'; y = y'; 
 % Coefficient matrix A 
 A = [sin(pi*x), ones(size(x))] 
 % parameters using the least squares 

method 
 c = A\y 
 a = c(1) %  0.8780 
 b = c(2) %  -0.0173 
 % plot function 
 f = @(x) a*sin(pi*x)+b 
 hold on; fplot(f,[0,3],'r')  

NONLINEAR REGRESSION TRANSFORMED INTO LINEAR FORM 

In reality, there are many physical phenomena where the relationship between 

quantities is not linear. For example, air density (𝜌) as a function of height (ℎ) can be 

modeled with an exponential function: 𝜌 = 𝑘 ∙ 𝑒𝑚 ℎ , the speed 𝑣 of a dropped object as 

a function of the distance 𝑥 can be described with the following function: 𝑣2 = 2 𝑔 𝑥. 

There are many nonlinear functions, but now we will only deal with those that can be 

transformed to find the parameters by solving a system of linear equations using the 

method of least squares. Such, among others, is 

 power function: 𝑦 = 𝑘 𝑥𝑚 

 exponential function: 𝑦 = 𝑘 𝑒𝑚 𝑥 or 𝑦 = 𝑘 10𝑚 𝑥 

 reciprocal function: 𝑦 =  
1

𝑚 𝑥+𝑐
 

Algebraic polynomials are also like this, we have already seen their fitting in the 

previous example. In each of the three examples mentioned above, there are two 

unknowns, 𝑘 and 𝑚, but these are mostly presented in non-linear form. The question 

is, how can we rewrite the above functions into a linear form in terms of the parameters 

we are looking for? 

Generally, by introducing new variables, we can transform the two-variable nonlinear 

equation into a linear one, so that the new variables (which can be derived from the 

original variables) are included in the equations in a linear form. Let's look at an 

example of this, let’s transform the power function into a linear form for fitting! To do 

this, first let’s take the natural base logarithm of both sides! 

ln(𝑦) = ln(𝑘 𝑥𝑚) = 𝑚 ln(𝑥) + ln(𝑘) 

Let's introduce new variables to get a linear form 𝑌 = 𝑐1 𝑋 + 𝑐2. The new variables 

should be: 𝑌 = ln(𝑦), 𝑋 = ln(𝑥), 𝑐1 = 𝑚, 𝑐2 = ln(𝑘): 

ln(𝑦) = 𝑚 ln(𝑥) + ln(𝑘)

𝑌 = 𝑐1 𝑋 + 𝑐2
 

The above form is suitable for linear regression to obtain the value of 𝑐1, 𝑐2. Then, 

based on 𝑐1, 𝑐2, the unknown parameters 𝑘 and 𝑚 can be easily determined: 

𝑚 = 𝑐1, 𝑘 = 𝑒𝑐2 
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Many other non-linear equations can be linearized in a similar way. Let's look at one 

of the examples mentioned in the introduction! 

Air density (𝜌) as a function of height (ℎ ) can be modeled with an exponential 

function: 𝜌 = 𝑘 ∙ 𝑒𝑚 ℎ . The following table shows air density values measured at 

different heights 

ℎ [𝑚] 1 4000 8000 12000 16000 20000 

𝜌 [𝑘𝑔/𝑚3] 1.225 0.820 0.525 0.309 0.168 0.092 

 

We would like to get answers to two questions: 

1) What will be the air density on the 8850 m high Mount Everest? 

2) At what height will the air density be 1 kg/m3? 

Using linear regression, determine the coefficients 𝑘 and 𝑚 for the best fitting function! 

Let's examine locally and globally the curve fitting errors as well! For the solution, load 

the airdensity.txt file, which contains the above data. 

 % air density as a function of altitude 
 clear all; close all; clc; 
 data = load('airdensity.txt') 
 % p=k*e^(m*h) - exponential function,  

m,k = ? 
 h = data(:,1) % height 
 p = data(:,2) % airdensity 
 figure(1) 
 plot(h,p,'r*') 

Let's transform the 𝜌 = 𝑘 ∙ 𝑒𝑚 ℎ exponential function 

into linear form! 

ln(𝜌) = 𝑚 ℎ + ln(𝑘)

𝑌 = 𝑐1 𝑋 + 𝑐2
 

 Y = log(p) 
 X = h 
 % In the form A*x=b 
 A = [X.^1 X.^0] 
 b = Y 
 % solutions: 
 c = A\b % c1 = m, c2 = ln(k) 

The parameters we are looking for: 𝑚 = 𝑐1, 𝑘 = 𝑒
𝑐2 

 % fitted parameters 
 m = c(1) 
 k = exp(c(2)) 
 % fitted function 
 f = @(h) k*exp(m*h) 
 % plot 
 hold on; 
 fplot(f,[0 20000]) 

Let's answer the questions. Using the equation, what will be the air density on the 8850 

m high Mount Everest? At what height will the air density be 1 kg/m3? The first question 
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can be answered with a simple substitution, for the second, the equation f(x)=1 must 

be transformed into the form g(x)=f(x)-1=0 and the roots of this nonlinear equation must 

be found. For this, it is also necessary to specify a starting value, which can be taken 

from the figure as approximately 2000-nek (0.2x104). 

 % air density at 8850 m 
 p8850 = f(8850)  % 0.4285 
 % At what height will the air density be 1 kg/m^3? 
 g = @(h) f(h)-1 
 h06 = fzero(g,2000) % 2341.5 m 

So the density of the air at Mount Everest is 0.4285 kg/m3, and at 2342 m the density 

will be exactly 1 kg/m3. 

Let's look at the size of the residuals! Plot them on a bar chart and calculate the sum 

of squares of the residuals and the empirical standard deviation of the residuals. 

 % residuals 
 r = p - f(h) 
 % bar chart 
 figure(2); bar(h,r) 
 % sum of squares of the residuals 
 S = sum(r.^2) %  0.0203 
 % empirical standard deviation 
 n = length(h) % number of data 
 np = 2 % number of parameters: k, m 
 estd = sqrt(S/(n-np)) % 0.0712 

Let's summarize some nonlinear equations in a table, which could be similarly solved 

with linear regression! 

Nonlinear 
equation 

Linearization 
In linear form:  

𝑌 = 𝑐1 𝑋 + 𝑐2 
Searched 

parameters 

Values for linear 
regression (its 

image is 
straight) 

𝑦 = 𝑘 𝑥𝑚 
ln(𝑦)
= 𝑚 ln(𝑥) + ln(𝑘) 

𝑌 = ln(𝑦) , 
 𝑋 = ln(𝑥) , 
𝑐1 = 𝑚,  𝑐2 = ln (𝑘) 

𝑚 = 𝑐1 
𝑘 = 𝑒𝑐2 

ln(𝑥), ln(𝑦)  

𝑦 = 𝑘 𝑒𝑚 𝑥 ln(𝑦) = 𝑚𝑥 + ln(𝑘) 
𝑌 = ln(𝑦) , 𝑋 = x, 
𝑐1 = 𝑚,  𝑐2 = ln (𝑘) 

𝑚 = 𝑐1 
𝑘 = 𝑒𝑐2 

x, ln(𝑦) 

𝑦 = 𝑘 10𝑚 𝑥 lg(𝑦) = 𝑚𝑥 + lg(𝑘) 
𝑌 = lg(𝑦) , 𝑋 = x, 
𝑐1 = 𝑚,  𝑐2 = lg(𝑘) 

𝑚 = 𝑐1 
𝑘 = 10𝑐2  

x, lg(𝑦) 

𝑦 =  
1

𝑚 𝑥 + 𝑘
 

1

𝑦
= 𝑚𝑥 + 𝑘 

𝑌 = 1 𝑦⁄ , 𝑋 = 𝑥, 

𝑐1 = 𝑚,  𝑐2 = k 

𝑚 = 𝑐1 
𝑘 = 𝑐2 

𝑥,
1

𝑦
 

𝑦 =  
𝑚 𝑥

𝑥 + 𝑘
 

1

𝑦
=
𝑘

𝑚
 
1

𝑥
+ 
1

𝑚
 

𝑌 = 1 𝑦⁄ , 𝑋 = 1 𝑥⁄ , 

𝑐1 =
𝑘
𝑚⁄ ,  𝑐2 =

1
𝑚⁄  

𝑚 = 1 𝑐2⁄  

𝑘 = 𝑐1 𝑐2⁄  

1

𝑥
,
1

𝑦
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NONLINEAR EQUATION OF UNKNOWN TYPE2 

In the previous task, we had a model of what type of function can be used to describe 

the relationship between quantities. However, there may be cases where we do not 

know the type of the function describing the relationship. How can we choose the 

appropriate nonlinear equation to be fitted in such a case? It is advisable to plot the 

points first. Then we calculate the values of the new variables (X,Y in the previous 

table) that can be used for the linearization methods described above. Afterwards, we 

also plot these in separate figures. If there is one for which the points are roughly 

located along a straight line, then choose that function type for the regression! 

Let's look at the previous example, as if we don't know the type of the function we want 

to fit! In Matlab, the function of the natural base logarithm is log, the base 10 logarithm 

is log10 and the exponential function is exp. For plotting, we use the subplot 

command, which allows us to plot several drawings on one figure. The command can 

be called in the form subplot(n,m,i), where n is the number of rows, m is the number 

of columns, and i is the number of the given drawing, counted from left to right and 

from top to bottom. 

 x=h; y = p; 
 figure(3); subplot(2,2,1) 
 plot(log(x),log(y),'r*') 
 subplot(2,2,2); plot(x,log(y),'r*')  
 % approximately straight line 
 subplot(2,2,3); plot(x,log10(y),'r*')  
 % approximately straight line 
 subplot(2,2,4); plot(x,1./y,'r*')  

 

In the second and third images of the drawing above, the image of the points became 

approximately straight when x and ln(𝑦) or log(𝑦) were plotted. Looking at the table, it 

can be seen that even if we do not know the function relationship, it would still be worth 

trying to fit an exponential function. 

NEW FUNCTIONS USED IN THE CHAPTER 

axis - Control axis scaling and appearance 

mean - Average or mean value of a vector 

sum - Sum of elements of a vectos 

corr2 - Linear correlation coefficient 

polyfit - Fit polynomial to data 

polyval - Evaluate polynomial 

bar - Bar graph 

subplot - Create axes in tiled positions 
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