
Matlab graphics
On this lecture we'll focus on the graphical visualizations in Matlab:

2D Visualization
Let us consider a problem in hydraulic engineering. A basic problem in planning of water storage reservoirs is
the morphological characteristic curve of the reservoir, which gives volume and area variation as a function of
water height. Load data from reservoir.txt, separate the variables (the coloumns), and plot the volume and the
surface of the reservoir in function of the water level on one figure.

clc; clear all; close all;
% Loading data
format shortG
data1 = load('tarozas.txt')

data1 = 9×3
 336 0.16 0.05
 504 0.36 0.09
 714 0.79 0.19
 976 1.73 0.37
 1302 3.31 0.62
 1628 5.83 0.9
 1812 7.72 1.05
 1932 8.98 1.16
 2142 11.5 1.27

H = data1(:,1); % water level [cm]
V = data1(:,2); % volume, million cubic meter
F = data1(:,3); % surface, square kilometers
% Visualize the data
figure(1);
plot(H,V,H,F)

1

plot(H,V);
hold on;
h2 = plot(H,F,'om--','LineWidth',2);

get(h2)

 AlignVertexCenters: off
 Annotation: [1×1 matlab.graphics.eventdata.Annotation]
 BeingDeleted: off
 BusyAction: 'queue'
 ButtonDownFcn: ''
 Children: [0×0 GraphicsPlaceholder]
 Clipping: on
 Color: [1 0 1]
 ColorMode: 'manual'
 ContextMenu: [0×0 GraphicsPlaceholder]

2

 CreateFcn: ''
 DataTipTemplate: [1×1 matlab.graphics.datatip.DataTipTemplate]
 DeleteFcn: ''
 DisplayName: ''
 HandleVisibility: 'on'
 HitTest: on
 Interruptible: on
 LineJoin: 'round'
 LineStyle: '--'
 LineStyleMode: 'manual'
 LineWidth: 2
 Marker: 'o'
 MarkerEdgeColor: 'auto'
 MarkerFaceColor: 'none'
 MarkerIndices: [1 2 3 4 5 6 7 8 9]
 MarkerMode: 'manual'
 MarkerSize: 6
 Parent: [1×1 Axes]
 PickableParts: 'visible'
 Selected: off
 SelectionHighlight: on
 SeriesIndex: 2
 Tag: ''
 Type: 'line'
 UserData: []
 Visible: on
 XData: [336 504 714 976 1302 1628 1812 1932 2142]
 XDataMode: 'manual'
 XDataSource: ''
 YData: [1×9 double]
 YDataSource: ''
 ZData: [1×0 double]
 ZDataSource: ''

set(h2,'Color','g','LineWidth',1,'MarkerSize',8,...
 'MarkerEdgeColor','b','MarkerFaceColor', [0.5,0.5,0.5]);
% Titles, legend, coordinate system grid, setting axis limits
xlabel('Water level [cm]')
ylabel('Volume/Surface')
title('Characteristic curve of the water reservoir')
grid on;
axis([300,1000,0,2])
legend('Volume [million m^3]','Surface [km^2]','Location','NW')

3

% legend(h2,'Surface [km^2]')

You can also delete named graphs from your figure with the delete command. Use the close command to close
the current figure, and the close all command to close all.

Plotting functions
The plot function is meant to visualize discrete data series. If you have a mathematical formula, it can only
help if you create a series of points along with the plotted function. If your formula is in an explicit form, the
fplot or ezplot functions do the work (depending on which version you use, the latter might not be supported).
The function fplot can only handle single-variable expressions, if you have a bivariate curve, use the fimplicit
function.

Example:

Earth curvature and refraction:

where the refraction coefficient is k=0.13, and the earths' radius is R = 6378000;

R = 6378000; k = 0.13;
% Function definition as anonymous function:
delta = @(d) (1-k)*d.^2/(2*R)

delta = function_handle with value:

4

 @(d)(1-k)*d.^2/(2*R)

figure(3)
fplot(delta) % OR ezplot(delta)

fplot(delta,[0,1000]) % OR ezplot(delta,[0,1000])
hold on;
plot(xlim,[0.01,0.01]) % OR plot([0,1000],[0.01,0.01])
title('Effect of earth curvature and refraction on trigonometric elevation measurements')
xlabel('Horizontal distance [m]')
ylabel('Magnitude of error effect on height [m]')
% fplot uses the same setting for formatting
fplot(delta,[0,1000],'g--','LineWidth',2)
h3 = ezplot(delta,[0,1000])

h3 =
 Line with properties:

 Color: [0.494 0.184 0.556]
 LineStyle: '-'
 LineWidth: 0.5
 Marker: 'none'
 MarkerSize: 6
 MarkerFaceColor: 'none'
 XData: [1×434 double]
 YData: [1×434 double]
 ZData: [1×0 double]

 Show all properties

% ezplot needs the set function to change the graphical properties

5

set(h3,'Color','g','LineStyle','--','LineWidth',2)

3D Visualizations
So far, we have only used the two-dimensional visualization options, but often there is a need for spatial, 3D
representations as well, be it a representation of a spatial curve or a surface. Let's look at some examples of
these as well.

Representation of a 3D parametric curve
Plot the two spatial spirals given in the following parametric form!

; ;

; ;

In the first case, we will plot the curve given by spatial coordinates with the plot3 command. To do this, we must
first calculate the coordinates of the points of the spiral taken at a given density. We want to draw the two spirals
next to each other in a figure. Take the value of the parameter t between 0 and 4, with 0.01 intervals.

% definition with 3D coordinates
clc; clear; close all;
t = 0:0.01:4;
x1 = cos(2*pi*t);
y1 = sin(2*pi*t);
z1 = t;
figure(); subplot(1,2,1); plot3(x1,y1,z1,'.')

6

Of course, you can also display a spatial curve with parametric functions, using the fplot3 command.

% definition with parametric functions
x2 = @(t) t.*cos(2*pi*t);
y2 = @(t) t.*sin(2*pi*t);
z2 = @(t) t;
subplot(1,2,2)
fplot3(x2,y2,z2,[0,4])

Parametric display of a bivariate function
It may also be necessary to display parametric surfaces, e.g. when displaying a sphere. Show a sphere with
center (3,2,1) and radius R = 5. In this case, 2 parameters will be required, which means two angles, such as
specifying latitude and longitude.

%% Parametric 3D surface
x0 = 3; y0 = 2; z0 = 1; R = 5;
x = @(t,s) x0 + R*sin(t).*cos(s)

x = function_handle with value:
 @(t,s)x0+R*sin(t).*cos(s)

y = @(t,s) y0 + R*sin(t).*sin(s)

y = function_handle with value:
 @(t,s)y0+R*sin(t).*sin(s)

z = @(t,s) z0 + R*cos(t)

7

z = function_handle with value:
 @(t,s)z0+R*cos(t)

figure();
fsurf(x,y,z,[0,pi,-pi,pi])
axis equal

3D Surface Visualization
Let's visualize the following function:

This is a bivariate expression; the easieast way is to represent it as a surface. Use fsurf or ezsurf for this:

clc; close all; clear all;
f = @(x,y) 500 - (x.^2+y-11).^2 - (x+y.^2-7).^2

f = function_handle with value:
 @(x,y)500-(x.^2+y-11).^2-(x+y.^2-7).^2

figure();
fsurf(f,[-5,5,-5,5]) % OR ezsurf(f,[-5,5,-5,5])

8

fsurf(f,[-5,5,-5,5],'ShowContours','on')

In many cases, a purely contouring representation of a bivariate function is much more illustrative. We can also
represent in a contour map form using fcontour (or ezcontour):

figure();
fcontour(f,'LineWidth',2) % vagy ezcontour(f)

9

fcontour(f, [-5,5,-5,5],'LevelList',0:50:600)
% contour line labels can only be displayed with ezcontour
h = ezcontour(f,[-5,5,-5,5])

10

h =
 Contour with properties:

 LineColor: 'flat'
 LineStyle: '-'
 LineWidth: 0.5
 Fill: off
 LevelList: [-300 -200 -100 0 100 200 300 400]
 XData: [60×60 double]
 YData: [60×60 double]
 ZData: [60×60 double]

 Show all properties

set(h,'ShowText','on','LevelList',0:50:600)

Display of sections, surface lines
It is often necessary to take sections on a surface and display them. This is usually done in the simplest way by
taking many points between the two endpoints of the section and calculating the height values at these points.
Consider a S-N section on the previous surface at x = -2.

% Sections, S-N section at x = -2
ym1 = linspace(-5,5,100);
xm1 = -2*ones(size(ym1));
zm1 = f(xm1,ym1); % calculation of heights
figure(1); hold on;
plot3(xm1,ym1,zm1,'r*','LineWidth',2) % the plot

Show the section in the y-z plane in a separate figure.

11

figure(5); plot(ym1,zm1,'r*-')

Similarly, you can add an intersection between two arbitrary points. Let now be the two points: A (-4.3); B (1, -4).
Draw the section between the two points in the spatial figure and in a separate 2D figure as a function of the
horizontal distances for the heights.

% An arbitrary directional section: A(-4,1); B(3,-4)
xm2 = linspace(-4,3,50);
ym2 = linspace(1,-4,50);
zm2 = f(xm2,ym2); % calculation of heights
figure(1); plot3(xm2,ym2,zm2,'k*','LineWidth',2) % the plot

% heights as a function of horizontal distances
dx = diff(xm2); dy = diff(ym2); dt = sqrt(dx.^2+dy.^2);
tav = [0, cumsum(dt)]; % distances from the starting point
figure(6); plot(tav,zm2,'r*-')

12

We can also draw the boundary line of a planned building in the figure. Let this building now be a 4x3 meter
rectangular building with the lower left corner point (-1, -1). Draw the boundary line of the building in both the
contour diagram and the 3D diagram. You can easily draw it in the contour diagram with a command called
rectangle, where you need to specify the coordinates and dimensions of the lower left corner point.

% Placement of a rectangular building
figure(2); hold on; rectangle('Position',[-1,-1,4,3])

Drawing in the 3D figure is already a bit more difficult, as heights would have to be calculated along the
boundary line of the building. This would require condensing the points along the closed shape. This can be
done by fitting a linear spline, that is, a broken line curve, to the points, as in the case of multivalued curves.

% fitting a linear spline to the corner points
% entering corner points from starting point to starting point - closed curve!
x = [-1,3,3,-1,-1]; y = [-1,-1,2,2,-1]; plot(x,y,'r*')
% parameter should be the distance from the starting point
dx = diff(x); dy = diff(y); dt = sqrt(dx.^2+dy.^2);
tav = [0, cumsum(dt)] % distances from the starting point: 0 4 7 11 14

tav = 1×5
 0 4 7 11 14

max(tav) % 14

ans =
 14

xsp = @(t) interp1(tav,x,t)

13

xsp = function_handle with value:
 @(t)interp1(tav,x,t)

ysp = @(t) interp1(tav,y,t)

ysp = function_handle with value:
 @(t)interp1(tav,y,t)

fplot(xsp,ysp,[0,max(tav)],'r--','LineWidth',2)

Using the fitted linear spline functions, we can add points along the side of the building and then calculate the
heights at these points as well. Now add points every half meter around the perimeter of the building!

% Adding points every half meter along the perimeter of the building
ti = 0:0.5:max(tav);
xi = xsp(ti);
yi = ysp(ti);
plot(xi,yi,'ko')

Calculate the heights of the points and draw the outline of the building in the spatial diagram.

% Spatial coordinates
zi = f(xi,yi);
figure(1); plot3(xi,yi,zi,'b','LineWidth',2)

14

Display points given in a regular grid
It is often necessary to represent a surveyed terrain. The surveyed points may be located at points on a regular
grid or irregularly scattered. Usually, the latter is the typical case. Scattered points are typically fitted with an
interpolation or regression method and displayed as a function or interpolated to the grid's corner points, and
this grid is displayed. Multidimensional interpolation and regression will only be discussed later, so now we will
only talk about the display of points in the regular grid.

Let us return to our previous function f(x, y) and calculate the function's values at the points of a regular grid.
Thus we will get three matrices for the X, Y, and Z coordinates. First, create a vector in the x and y directions,
as dense as we want to add the grid, and then use the meshgrid command to generate the X, Y matrices of the
grid. The Z values will be calculated using the function f(x, y). The grid points can be displayed with the plot3
command and the grid itself with the mesh command.

close all
x = -5:0.5:5; y = -5:0.5:5;
[X,Y] = meshgrid(x,y);
Z = f(X,Y)

Z = 21×21
 250 299.69 304 275.69 226 164.69
 341.69 400.88 414.19 394.38 352.69 298.88
 384 452.19 474 462.19 428 381.19
 389.69 466.38 496.19 491.88 464.69 424.38
 370 454.69 492 494.69 474 439.69
 334.69 426.88 471.19 480.38 465.69 436.88
 292 391.19 442 457.19 448 424.19

15

 248.69 354.38 411.19 431.88 427.69 408.38
 210 321.69 384 409.69 410 394.69
 179.69 296.88 364.19 394.38 398.69 386.88

figure();subplot(1,2,1);
plot3(X,Y,Z,'r*')
title('3D points')
subplot(1,2,2);
mesh(X,Y,Z)
title('3D meshgrid')
figure(); subplot(1,2,1)
surf(X,Y,Z)
title('3D surface')
subplot(1,2,2); surf(X,Y,Z,'EdgeColor','none')
title('3D surface withouth the edges')

To represent the contour lines on a discrete dataset, use the contour function.

figure()
contour(X,Y,Z,'ShowText','on','LevelList',0:50:600)

16

It may also be necessary to work with spatial points that meet certain conditions, e.g. above / below a given
height. This can also be done here with logical indexing, which we've also used for univariate regression. Select
all the points above 460 m!

% delecting points above 460 meters
felt = Z>460;
xh = X(felt); yh = Y(felt); zh = Z(felt);
figure(1); subplot(1,2,1); hold on; plot3(xh,yh,zh,'k*')

17

Plotting Finite Element Mesh
In mechanics, a finite element method is often used to determine the stress state and deformation of a statically
loaded element of complex shape. In this case, the body to be modeled is divided into simpler geometric
elements:

- in the case of a plane, for example, triangles or squares;

- in the case of space, columns, or tetrahedra.

In the model, the elements are connected only at their nodes. Based on the nodes, the elements' stiffness
matrix can be written, and then the displacement of the nodes and then the approximate stresses can be
calculated by solving a system of linear equations. Here we do not deal with the problem's solution, only with
the display of a ready-made plane grid and the results.

Load the fem_triangles.mat file into Matlab! There are six matrix variables saved in this file. The nx and ny
column vectors contain the coordinates of the nodes. Here the planar element is divided into triangles; the
matrix T consists of three columns with the sequence number of nodes belonging to triangles. The vector
u contains the magnitude of the resulting node stresses, and the vectors ux, uy contain the gradient of the
solution.

Plot the triangular mesh (triplot command) and the gradient vectors (quiver command) in a plane.

clc; clear all; close all;
load fem_triangles.mat
% T - triangle node numbers

18

% nx,ny - x,y coordinates of the nodes
% u - solution at nodes
% ux,uy - solution gradients
figure(1); triplot(T,nx,ny) % plot the triangular mesh

figure(2); quiver(nx,ny,ux,uy) % display gradient with vectors

19

We can also represent solutions in space, either with a spatial triangular mesh (trimesh command) or as a
surface (trisurf command).

figure(3); trimesh(T,nx,ny,u) % spatial triangular mesh

20

figure(4); trisurf(T,nx,ny,u) % spatial surface from triangles

21

figure(5); trisurf(T,nx,ny,u,'EdgeColor','none')

Display of spatial flow processes
In civil engineering practice, it may be necessary to display not only 2D but also 3D vector fields, for example
when modeling the flow of rivers around structures. Let us now look at such an example of what possibilities we
have in this case. An example is the flow pattern of one of the waders of the Danube above the Mosoni-Danube
with two spurs.

The data can be found in two files. The ‘aramlat.mat’ Matlab data file stores flow velocity vectors (5 meters
x 5 meters x 0.25 m resolution) in a regular rectangular matrix of 217x195x38. The riverbed is irregular, so
there are cells that are out of range. In these, the speed is 0,0,0. ‘Aramlat.txt’ is a simplified text version of the
previous file that contains only non-zero speed elements. In the six columns, the coordinates (x, y, z) and the
components of the velocity vectors (ux, uy, uz).

First, load the text file, which contains significantly less data, so you can display 3D velocity vectors faster.

% 3D vectors
clc; clear all; close all;
adat = load('aramlat.txt');
x1 = adat(:,1);y1 = adat(:,2);z1 = adat(:,3);
ux1 = adat(:,4);uy1 = adat(:,5);uz1 = adat(:,6);
figure(1)
quiver3(x1,y1,z1,ux1,uy1,uz1) % not visible enough, too dense
daspect([25 25 1]) % it is advisable to adjust the axle ratios

22

Unfortunately, with so much data, it's not very clear, it's too dense, and the vectors aren't visible, only if we zoom
in.

We can better visualize flows by drawing streamlines in the figure. However, to display the flow lines, you can
only use data entered in a regular rectangular grid, so let’s now read the data file ‘aramlat.mat’, which contains
6 variables, each given as a 3D grid. Streamlines can be displayed with the streamline command. You need
to specify the coordinates, velocity vectors, and the point from which you want to start the flow line. You can
change its properties (eg color, thickness) with the set command.

% plotting streamlines
load aramlat.mat
streamline(x,y,z,ux,uy,uz,200,1700,105)
h = streamline(x,y,z,ux,uy,uz,480,1400,104.5)

h =
 Line with properties:

 Color: [0 0 1]
 LineStyle: '-'
 LineWidth: 0.5
 Marker: 'none'
 MarkerSize: 6
 MarkerFaceColor: 'none'
 XData: [1×963 double]
 YData: [1×963 double]
 ZData: [1×963 double]

 Show all properties

set(h,'LineWidth',2)

We can see the dynamics of the flow better by taking a starting section and specifying several starting points
there in a grid. Now let this be the intersection at x = 200 m in a 5x7 matrix (every 30 meters in the y direction
and every 1 meter in the z direction).

% Draw multiple streamlines together
x0 = 200

x0 =
 200

y0 = 1650:30:1800 % 5 value

y0 = 1×6
 1650 1680 1710 1740 1770 1800

z0 = 100:1:106 % 7 value

z0 = 1×7
 100 101 102 103 104 105 106

[XV, YV, ZV] = meshgrid(x0,y0,z0);
H = streamline(x,y,z,ux,uy,uz,XV,YV,ZV);
set(H,'LineWidth',2)

23

Another illustrative display method is to use the streamslice command to create sections. Make a section at
a height of 104 meters! The location of the section must be set (of course, not only the z-direction section is
available).

% Making streamline sections
figure(2)
streamslice(x,y,z,ux,uy,uz,[],[],104);

24

You can specify more than one value in a vector:

figure(3)
streamslice(x,y,z,ux,uy,uz,[],[],103:105);
view(0,50)

25

26

