
Numerical integration
Numerical integration means an approximation of the integral, which gives is used to determine the definite

integrals value. There is a wide range of applications, including the calculation of curve length ( ),

area, volume or solving differential equations.

Numerical integration using trapezoidal rule
The most known method is the application of the trapezoidal rule, where the neighbouring points are connected

with a line, and the trapezoid under this line approximates the integral in that region. We apply this both in case

of discrete data points or analytical functions, when the integral function is not known or couldn't be determined.

In the latter case we introduce n number of intermediate points along the region we want to integrate (meaning

n-1 number of segments) and apply the trapezoidal rule on the mentioned points.

In case of a single range:

                            

In case of multiple intervals the area of the trapezoids must be summed up. For   segments:

In the upper formula it is not necessary to let the segments be equally long, but in that case the expression

could be simplified:

if  , then: 

Lets see how this works in an example!

Earth's density (ρ) changes in terms of the radius (R) as we saw earlier, just load earth_density.txt file!

Determine the mass of the Earth using the following integral formula:

                            

For the density data, load earth_density.txt file! 

 % Mass of the Earth
 clc; close all; clear all;
 data = load('earth_density.txt');
 R = data(:,1)*1000; % km to meters
 ro = data(:,2);
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 figure(6); plot(R,ro,'m*-')

Lets calculate the function values for the relevant radius values!

 fx = 4*pi*ro.*R.^2;

To solve this, lets use the built-in Matlab function trapz, which determines the definite integral based on discrete

data points using the trapezoidal rule. It is not necessary for the points to be equally distanced.

         M = trapz(R,fx) %  6.0261e+24 kg

M = 
     6.026095773514430e+24

This means the mass of the Earth is  kg. This is quite a good approximation for the curently

accepted mass of the Earth  kg.

Numerical integral using the Simpson rule
The trapezoidal rule approximates the function between the neighbouring points with a line. A more accurate

result could be achieved using a higher order approximating function. The most known of these method is

using the simpson formula, which applies a second or third order polynomial to approximate the function in the

relevant range (Simpson's 1/3 method, Simpson's 3/8 method). In case of the second order Simpson-formula a

parabola is fitted for three neighbouring points. This can be applied using the Newton's form of the interpolating

polynomials for three points:

                            

Where the coefficients are the following:

In case of equal intervals (h):

Substituting the coefficients into the polynomial results in the following formula for the  three points:

The general form:
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Let the n number of points be equally distanced by h in the given range [a,b]:  . The n number of

points cuts the interval into   number of segments. For applying the Simpson rule we need 3 points to

fit a parabola; we can calculate the integral for two consecutive segments, therefor we should divide the range

always into even number of segments:

The formula for the three points applied on all of the points results in the followings:

Lets calculate the mass of the Earth using the Simpson-rule! For this you can apply the built-in quad function

of Matlab! For this function we should use a function as an input, not discrete data points. Lets define a spline

curve on the density data points for this! We saw earlier that a cubic interpolation would be better then a second

order spline method, due to sharp angles at the connections, so apply a cubic interpolation formula (interp1
function 'cubic' or 'pchip' method).    

% Cubic Hermite interpolation
         ro_cubic = @(x) interp1(R,ro,x,'pchip');
         figure(6); hold on;
         g = ezplot(ro_cubic, [0 6370000]);
         set(g,'Color', 'k','Linestyle','-.','LineWidth',1); 
         legend('Original data','Cubic Hermite interpolation')
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Lets calculate the integral using the quad function (Simpson-rule)! For this define the quantity you wish to

integrate as a function of the radius using the previously fitted interpolating funtion!

         fx_cubic = @(R) 4*pi*ro_cubic(R).*R.^2;
         M2 = quad(fx_cubic,0,6370000) % 5.9658e+24 kg

Warning: Maximum function count exceeded; singularity likely.
M2 = 
     5.965754658784433e+24

The result for the mass of the Earth is  kg. This is a better approximation than the value we got using

the trapezoidal rule.

Remark: The quad function is advised to to replace with the integral function in newer versions of Matlab. This

works better in more complex cases. It uses an adaptive kvadrature instead of the conventional Simpson-rule to

calculate the integral. 

         M3 = integral(fx_cubic,0,6370000) % 6.0541e+24

M3 = 
     6.054113130310109e+24

Calculating multidimensional integrals on regular grid
Calculating two and three dimensional integral is a common task, e.g. calculating area, or volume. A two-

dimensional definite integral could be expressed in the following form:
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In this case the integral consists of two steps: an inner and an outer integral. First we can process the outer

integral using a previously mentioned method (trapezoidal-, Simpson-rule), where each of the terms will contain

an inner integral part, which could be calculated numerically. This way the single-variate numerical integral

could be generalized for a multidimensional case, on a regular grid.

The integral2 function could be used in Matlab to calculate the double-integral on a regular grid, and integral3
to do the same in three-dimensional.

%          q = integral2(fun,xmin,xmax,ymin,ymax)
%          q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax)

For the former we saw earlier an example in case of the topic of 2D interpolation, where we calculated the

volume of a terrain given in a regular grid. But if the integration range is an arbitrary shape, a new aspect should

be applied.

Calculating multidimensional integrals on an irregular range
In an irregular range we can apply for the integration the Monte-Carlo method. It is a stochastic algorithm,

which is using random numbers. The conventional integration methods are usually evaluating the integrandus

on a regular grid, though in this case the function evaluation is processed in random locations. This method

could be presented well on area/volume calculation, but it can be generalized for further applications.

Determining area using the Monte-Carlo method
We determined the boundaries of a catchment area, lets calculate the area based on the boundary points! Load

the catchment.txt, and plot it with equally scaled axis! 

         clc; clear all; close all;
         data = load('catchment.txt');
         x = data(:,1); y = data(:,2);
         figure(7); hold on;
         plot(x,y,'r-','LineWidth',2)
         axis equal

If we want to determine the area using Monte-Carlo method, the main idea is to determine the bounding box of

the area and generate in the specific range N number of random points with normal distribution. Then we count

how many points are inside the region (n) and determine the ratio (ρ) for the inner points and the total number of

points. If we generate enough points, the points approximate well the ratio of the inner and total area:

If we know the area of the bounding box:  , then the area in the arbitrary shaped range (in this case the

catchment area) could be calculated:
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Lets solve the example in Matlab! First draw the bounding box around the shape!

         a = max(x)-min(x) 

a = 6669

         b = max(y)-min(y) 

b = 13169

         rectangle('Position',[min(x),min(y),a,b])         

How would the integral look like if we've a set of points in a regular grid? Let's test it out with 100 intermediate

points!

        h=500;
        [X Y]=meshgrid(min(x):h:max(x), min(y):h:max(y));
        % Representing the grid
        figure(2)
        plot(X,Y,'r+')
        hold on
        plot(x,y,'b')

We can use the inpolygon function in Matlab to determine which points are inside the polygon. It results in a

logical vector, where the ones represent the points, that are inside the shape.

        K=inpolygon(X,Y,x,y); % points inside are set to 1, outside to 0
        plot(X(K),Y(K),'bo') % Selecting points inside the polygon

Plotting the relevant area which will be summerized as a rectangle

        for i=1:size(K,1)
            for j=1:size(K,2)
                if K(i,j)==1
                    rectangle('Position',[X(i,j)-h/2,Y(i,j)-h/2,h,h]);
                end
            end
        end
        Areg=h^2*nnz(K)

Areg = 24250000

        axis equal
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Lets generate random points in the relevant region! For this multiple functions could be used: one of them is the

rand function, that generates pseudo-random numbers; another is using the Halton points (haltonset), that is

based on the van der Corput series. Lets generate with these 1000 points! Both function is working in the range

of [0,1].

         % Generating pseudo random points
         xyr = rand(1000,2);
         figure(8); 
         plot(xyr(:,1),xyr(:,2),'r.')
         title('Pseudo random points')
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         % Generating Halton points
         hs = haltonset(2); % generating two-dimensional Halton series
         xyh = net(hs,1000);
         figure(9); 
         plot(xyh(:,1),xyh(:,2),'r.')
         title('Halton points')
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The previous figures present the pseudo random points, and the Halton points. The latter points are distributed

a bit more equally, therefor we will use it this for our calculations. 

Because the points are in the  [0,1]x[0,1] range, lets transform them to the area of the relevant bounding box.

For this lets shift the points to the starting point, and multiply the side of the rectangle to the proper size!

         % Transforming the Halton points into the range, where the shape is
         xh = xyh(:,1)*a + min(x);
         yh = xyh(:,2)*b + min(y);
         figure(7); 
         plot(xh,yh,'b.')

To apply the Monte-Carlo method, we should determine the number of points inside the relevant shape. We can

use the inpolygon function in Matlab for this, which results in a logical vector, where the ones represent the

points, that are inside the shape. The non-zero elements could be counted using the function nnz.       

         % Calculating area using Monte-Carlo method
         plot(x,y,'b')
         k = inpolygon(xh,yh,x,y);
         axis equal
         plot(xh(k),yh(k),'r.')
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         n = nnz(k) % number of points inside the area: 280

n = 280

         N = length(xh) % total number of points: 1000

N = 1000

         T = a*b % total area: 87824061 m^2

T = 87824061

         t = n/N*T % area of the relevant region: 2.4591e+07 

t = 2.4591e+07

         format long
         t %  2.459073708000000e+07 = 24590737.08e+07 m^2

t = 
     2.459073708000000e+07

To check the result, we can use the formula used in geodesy, that divides the region into trapezoids (

) ! 

         % To check: calculating the area based on the coordinates (trapezoidal method)
         x1 = x([2:end,1]);
         y1 = y([2:end,1]);
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         Tp = sum((y1+y).*(x1-x)/2) %  24591531 m^2

Tp = 
    24591531

The two method have similar results, and if we add more points to the process, it could be more accurate. To

determine the area of an irregular shape, there are several methods, the advantage of the Monte-Carlo method

is that it could be generalized for other cases too. For example, we could calculate the amount of rain  that fell

on the catchment area, if we know the distribution of the rain, e.g. if we have measured on a couple of points

the amount of rain!

The generalized form of the Monte-Carlo method
Lets express the Monte-Carlo method in a generalized form! Let  be interpretable in a  domain,

and we search the definite integral of this function on a V sub-domain  . The integral we are searching:

.

The mean value of the function in the relevant domain could be determined as follows: 

The mean value of the function could be approximated as follows:

where   and n is the number of points in the relevant domain.

By making the expressions equal, the integral could be approximated:

From this the integral could be expressed:

A   tartomány közelítését megkaphatjuk, a területszámításnál is használt módon. Amennyiben a

véletlenszerűen felvett pontok egyenletes eloszlást követnek, akkor kellően sok pont esetén a tartományon

belül lévő pontok száma úgy aránylik az összes ponthoz, mint a   tartomány nagysága az egész   tartományhoz:

ahol n  a tartományba eső, N pedig az összes pont száma. Az integrál közelítése tehát:
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Therefor the integral could be calculated as the product of the function values at the points in the relevant

domain and of the total area/total point ratio. The ratio of the  is determining basically the relevant

elementary area on a single point.

Calculating the rainvolume using Monte-Carlo method
On the catchment area measurements were made to determine the fallen rain of a storm; on the measurement

stations 5-12 mm rain were measured according to the location. The question is the total amount of rain fallen

on the catchment area.

The following second order polynomial function approximates the amount of rain on the stations:

The function above should be integrated for the total catchment area. Lets solve this using Monte-Carlo method!

Solve the function, you can load it from the csap.mat file!

         load precipfun.mat
         pfun % @(x,y)5e-3+6e-07.*x+3e-07.*y-1e-10*x.^2-2e-11.*x.*y+2e-11*y.^2

pfun = function_handle with value:
    @(x,y)5e-3+6e-07.*x+3e-07.*y-1e-10*x.^2-2e-11.*x.*y+2e-11*y.^2

         figure(10)
         h=ezcontour(pfun,[min(x) max(x) min(y) max(y)])

h = 
  Contour with properties:

    LineColor: 'flat'
    LineStyle: '-'
    LineWidth: 0.500000000000000
         Fill: 'off'
    LevelList: [0.004000000000000 0.005000000000000 0.006000000000000 0.007000000000000 0.008000000000000 0.009000000000000 0.010000000000000 0.011000000000000 0.012000000000000 0.013000000000000]
        XData: [60×60 double]
        YData: [60×60 double]
        ZData: [60×60 double]

  Show all properties

         set(h,'Show','on'); hold on
         plot(x,y); axis equal;
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After generating 1000 random points on the relevant area, we can use these too. The total amount of rain could

be calculated, if we determine the average rainfall value at the locations inside the catchment area, and we

multiply it with the relevant area (because we already dcalculated that). 

         xb = xh(k);
         yb = yh(k);
         n = length(xb) % 280

n = 
   280

         % The average rain value in the area
         cs = 1/n*sum(pfun(xb,yb)) % 0.008612820224953 m

cs = 
   0.008612820224953

         % The total amount of rain
         CS = cs*t % 2.117955976691141e+05

CS = 
     2.117955976691141e+05

Or we could use the generalized Monte-Carlo forumla, in this case the calculation of the area of the irregular

shape is not necessaryt, its enough to calculate the area of the bounding box and the total number of points,

and the sum of the function values at the points inside the relevant region.

         % Using the generalized Monte-Carlo method, 
         % if we don't calculate the area separately
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         CS2 = T/N*sum(pfun(xb,yb)) % 2.117955976691141e+05

CS2 = 
     2.117955976691141e+05
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