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15. OPTIMIZATION 

Optimization is the determination of the location of the extreme value of a function. 

This task often occurs in engineering practice, for example the location of the maximum 

displacement of a support structure, the position of a point with the smallest error when 

adjusting geodetic measurements, or the largest contamination when testing water 

quality. 

During optimization, there is a target (or objective) function 𝑓(𝒙),where 𝒙 is the vector 

of the independent variables: 𝒙 = [𝑥1, 𝑥2,⋯ 𝑥𝑛]. During the optimization, we look for the 

place where the objective function has a minimum or a maximum value. There are 

many different methods to solve this problem, most of them were developed for the 

problem of minimizing the function. 

𝑓(𝑥) → 𝑚𝑖𝑛. 

If the extreme value to be determined is not the minimum but the maximum, we can 

still trace the problem of maximization back to the minimization by multiplying with (-1) 

times the original function: 𝑚𝑎𝑥(𝑓(𝑥)) = 𝑚𝑖𝑛(−𝑓(𝑥)). 

The extreme value is always examined in a given interval or range. They can be within 

that range 

 local minima/maxima or 

 a global minimum/maximum. 

Local minima are the places where the function value in any small neighborhood of the 

point is greater than the function value at this point (points 𝑃𝑖 in the figure). If there are 

several local minima in a domain with different function values, then the point 

corresponding to the smallest function value is the global minimum 𝑃2 in the figure). 

 

We can also talk about unconditional and conditional extreme value (or unconstrained 

and constrained optimization). In the case of constrained optimization, we search for 

the minimum of the function in such a way that the points must also satisfy some 

constraint or condition. There can be different cases, one or more conditions given by 

equations or inequalities, these constraints can be linear or non-linear. Different 

methods can be used in different cases (e.g. Lagrange method, penalty function 

method, Karush-Kuhn-Tucker conditions, linear programming). First, we learn about 

the methods developed for unconditional extreme value problems. 
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FINDING THE MINIMUM OF A UNIVARIATE FUNCTION 

Now let's look at an example from elasticity theory, where we are looking for the 

location and value of the maximum deflection! We have a fixed I-beam with a linearly 

distributed load as shown in the figure. 

 

The dimensions and loads of the beam are as follows: 

 Length of the beam: 𝐿 = 3000 𝑚𝑚 

 Moment of inertia: 𝐼 = 5.29 ∙ 107 𝑚𝑚4 

 Modulus of elasticity (Young’s modulus): 𝐸 = 70 000 𝑁/𝑚𝑚2 

 Maximum value of distributed load: 𝑞0 = 15 𝑘𝑁/𝑚 = 15 𝑁/𝑚𝑚 

 The deflection of the beam is given by the following function:: 

𝑦 =
𝑞0

120𝐿𝐸𝐼
(𝑥5 − 5𝐿𝑥4 + 7𝐿2𝑥3 − 3𝐿3𝑥2) 

1) How much is the deflection (in mm) at 1 and 2 m? 

2) Where will the deflection equal to 0.3 mm? 

3) Where is the maximum (along the x-axis) of the deflection (in mm) and what is 

its value? 

First, we define the variables! 

 %% Deflection calculation 
 format longG 
 E = 70000; I = 5.29e7; q0 = 15; L = 3000; EI = E*I; 

It is advisable to merge the variables E and I into the bending stiffness (EI) so that they 

are not confused with the Euler number 'e' (2.71...) and the imaginary unit 'i' (√−1). 

This could cause problems later with symbolic calculations. Next, we can define the 

function of the deflection. Our only variable is the x distance. We can visualize the 

function to get a better idea about the deflection. 

 y = @(x) q0/(120*L*EI)*(x^5-5*L*x^4+7*L^2*x^3-3*L^3*x^2) 
 % plot deflections 
 figure(1); fplot(y,[0 3000])  
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1) How much is the deflection (in mm) at 1 and 2 m?  

The answer to the first question can be given by a simple substitution. Pay attention to 

the fact that everything was defined in millimeters before, so here too the numbers 

must be replaced in mm! 

 y(1000), y(2000) % deflection at 1 or at 2 m: -0.3601 and -0.3151 mm 

2) Where will the deflection equal to 0.3 mm? 

We can no longer solve this question by simple substitution, we have to solve the 

following non-linear equation: 

𝑞0

120𝐿𝐸𝐼
(𝑥5 − 5𝐿𝑥4 + 7𝐿2𝑥3 − 3𝐿3𝑥2) = −0.3 

The deflection values mean negative coordinates! Let's rearrange the equation to zero 

and give the resulting equation a different name: 

ℎ(𝑥) =
𝑞0

120𝐿𝐸𝐼
(𝑥5 − 5𝐿𝑥4 + 7𝐿2𝑥3 − 3𝐿3𝑥2) + 0.3 = 0 

We can solve this task by root finding! There will be two places where the value of the 

y coordinate will be exactly -0.3 mm, for these we can take an initial guess from the 

figure. 

 % Where will the deflection equal to 0.3 mm? 
 h = @(x) y(x)+0.3 
 h1 = fzero(h,1000) % 834.388 
 h2 = fzero(h,2000) % 2040.970 
 % check 
 y(h1) % -0.3 
 y(h2) % -0.3 
 hold on; plot(h1,y(h1),'md',h2,y(h2),'rd') 

 

Before answering the third question, let's look at two methods for determining the 

minimum of a univariate function! 
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INTERVAL METHODS - TERNARY SEARCH ALGORITHM 

The interval method is similar to the closed interval methods used to find the roots of 

a nonlinear equation. We have to specify a certain closed interval [a, b] that contains 

one minimum of the function (in other words, the function is unimodal in the interval), 

but instead of calculating only one function value inside the interval, we will use two 

points (x1, x2). Similar to the closed interval methods, the interval must be narrowed in 

some way until the solution is found. For this, let's examine the function values at two 

interior points (x1, x2)! 

As the function only has one minimum in the interval, its value is monotonically 

decreasing until the minimum and then it is monotonically increasing. If the function 

value at x1 is smaller than that at x2, it means that the minimum is in the interval [a, x2]. 

Similarly, if the function value at x2 is smaller than the function value at x1, then the 

minimum has to be in the interval [x1, b]. Therefore, we can shrunk the interval and 

found our new a and b values. See the figure! We can find a new x1 and x2 in this new 

interval and continue the algorithm while the interval is bigger than some tolerance 

value or we have reached a certain number of iterations. 

 

As long as the function is unimodal in the interval, the method will converge. The more 

interesting question is how to define the most efficient x1 and x2 values (that is, how to 

find the minimum with fewest calculations)? One approach is to distribute the points 

equally, x1 over 1/3 and x2 over 2/3 of the interval. This is called ternary search 

algorithm, which can be implemented in MATLAB with the following code.  

 function [x, i] = ternary(f, a, b, tol) 
 i = 1; 
  x1 = a + 1/3*(b-a); 
  x2 = b - 1/3*(b-a); 
  while abs(x2-x1) > tol  
    if f(x1) < f(x2) 
      b = x2; 
    else 
      a = x1; 
    end 
    i = i+1; 
    x1 = a + 1/3*(b-a); 
    x2 = b - 1/3*(b-a); 
  end   
  x = (x1+x2)/2; 
 end 
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3) Where is the maximum (along the x-axis) of the deflection (in mm) and what is 

its value? 

Let's find the place of maximum deflection using the interval method! Although we talk 

about maximum deflection values, this task is actually a minimum search! If we observe 

the coordinate system in the first figure, we will see that the deflections mean negative 

displacement values, so the maximum deflection means the smallest y coordinate. The 

starting unimodal interval can be [1000, 2000] based on the figure! 

 % interval method – ternary search 
 [x1 i1] = ternary(y,1000,2000,1e-6)  
 % x1 =  1.4259e+03; i1 =  50 
 y1 = y(x1) % -0.4293 
 hold on; plot(x1,y1,'rp') 

So, in a total of 50 iterations, we found the minimum location (the location of the 

maximum deflection) at 1425.9 mm, and its value was -0.4293 mm. 

 

GOLDEN-SECTION SEARCH1 
There is, however, a more efficient method than selecting the third points! We can use 

the golden ratio. This ratio often occurs in nature and is also often used in the arts. 

Using the golden ratio, we can divide a section L into two parts (L=L1+L2) in such a 

way that the ratio of the larger section to the total length is the same as the ratio of the 

smaller section to the larger one. 

𝑅 =  
𝐿2

𝐿
=

𝐿1

𝐿2
 

Let's express L1 and L2 as a function of R and L: 𝐿2 = 𝑅 ∙ 𝐿;  𝐿1 = 𝐿2 ∙ 𝑅 = 𝐿 ∙ 𝑅2 . 

Substitute this into the equation 𝐿 = 𝐿1 + 𝐿2: 

𝐿 =  𝐿 ∙ 𝑅2 +  𝑅 ∙ 𝐿 

Dividing this by L and ordering to 0, we get the next formula: 

𝑅2 +  𝑅 − 1 = 0 

The only positive root of the quadratic equation will be the desired ratio, the golden 

ratio. This is how the smaller and larger section are proportional to each other, and the 

larger section to the total length. 

𝑅 = 
√5 − 1

2
= 0.618 

                                            

1 Supplementary material for home study. 
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Let's see how we can use the golden ratio for a more efficient optimization by modifying 

the selection of interior points of the interval method! 

 

Select the internal points symmetrically so that the two points are at a distance of 

0.618∙L from both ends of the section. In this case too, let's narrow the interval based 

on the function values of the internal points. So the location of the minimum will be in 

the interval between the two neighbors of the point with the smallest function value. 

The difference compared to the previous method is that, due to the properties of the 

golden section, one of the internal points of the new interval will be the same as one 

of the previous internal points. In the figure, the point x2 of the new interval is the same 

as the point x1 of the previous interval! This means that there is no need to recalculate 

the value of the function at this point, it is enough to perform the calculation at the other 

new internal point. This can be a significant time saver, especially for very complex 

functions. Let's see how we could implement this in Matlab (golden.m)! 

 function [x, i] = golden(f, a, b, tol) 
 i = 1; R = (sqrt(5)-1)/2; 
 x1 = b - R*(b-a); 
 x2 = a + R*(b-a); 
 f1 = f(x1); f2 = f(x2); 
   
 while abs(x2-x1)>tol  
   if f1 < f2 
      b = x2; 
      x2 = x1; f2 = f1; % taken from previous iteration 
      x1 = b - R*(b-a); 
      f1 = f(x1);  % this must be evaluated    
   else 
      a = x1; 
      x1 = x2; f1 = f2; % taken from previous iteration 
      x2 = a + R*(b-a); 
      f2 = f(x2);  % this must be evaluated    
   end 
   i = i+1; 
 end   
 x = (x1+x2)/2; 
 end 

In the first iteration, the function values at points x1 and x2 must be calculated, but after 

that it is enough to calculate only one function value at each iteration, the other can be 

taken from the previous iteration! 
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(Note: The interval/golden section method can also be solved with a recursive 

algorithm, see goldenRec.m file.) 

Let's find and plot the place of maximum deflection with this method also!  

 % solution with golden section method 
 [x2 i2] = golden(y,1000,2000,1e-6) 
 % x2 = 1.4259e+03; i2 = 42 
 y2 = y(x2) % -0.4293 
 plot(x2, y2, 'mo') 

 

Now, instead of the previous 50 iterations, 42 iteration steps were enough for the 

solution. Moreover, the difference in terms of the number of function evaluations is 

much larger. When using the ternary search algorithm, 2 function values had to be 

calculated in each iteration, i.e. 50*2=100 function evaluations were performed. In the 

case of the golden ratio, 2 evaluations had to be performed in the first iteration, but 

after that only one evaluation was needed per iteration, i.e. the function value had to 

be calculated a total of 43 times instead of 100! For complex functions, this is a big 

advantage over ternary search. 

NEWTON-METHOD 

If calculating the derivative of the function is not a problem, we can also solve the 

extreme value search by finding the roots of the first derivative. Let's now apply 

Newton's method to find extreme values of a function! In contrast to the root finding of 

a function, instead of solving the equation 𝑓(𝑥) = 0 , we have to solve 𝑓′(𝑥) = 0 . 

Nevertheless, the same algorithm can be used now (see the previous newton.m file). 

 function [x2, i] = newton(f, df, x0, delta, N) 
     x1 = x0; 
     x2 = x1 - f(x1)/df(x1); 
     i = 1; 
     while abs(f(x2))>delta && i<=N 
         x1 = x2; 
         x2 = x1 - f(x1)/df(x1); 
         i = i + 1; 
     end 
 end 

Iteration formula for finding the roots of a function, solving 𝑓(𝑥) = 0:  

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 

Newton's method can be used similarly to find the extreme values, solving 𝑓′(𝑥) = 0 

equation. I this case 𝑓(𝑥) should be replaced with 𝑓′(𝑥), and 𝑓′(𝑥) with 𝑓′′(𝑥): 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓′(𝑥𝑖)

𝑓′′(𝑥𝑖)
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The advantage of Newton's method is that it can be used to find both minimum and 

maximum locations. The disadvantage is that it is necessary to calculate both the first 

and second derivatives! Let's solve the previous problem using Newton's method now! 

Let's choose one of the endpoints of the previous interval (2000) as a starting value! 

The original equation is: 

𝑦 =
𝑞0

120𝐿𝐸𝐼
(𝑥5 − 5𝐿𝑥4 + 7𝐿2𝑥3 − 3𝐿3𝑥2), 

The first (or second) derivative of this equation is not too difficult to determine even 

without a computer, since it is a polynomial. The first derivative: 

𝑓(𝑥) = 𝑦′ =
𝑞0

120𝐿𝐸𝐼
(5𝑥4 − 20𝐿𝑥3 + 21𝐿2𝑥2 − 6𝐿3𝑥), 

Of course, Matlab can also be used to determine the derivative with respect to x, 

symbolically. To compare Matlab’s soluton with the derivation without a computer, first 

convert the variables EI, L, q0, and x to symbols, define the symbolic expression ys 

with them, and then calculate the derivatives symbolically. 

 %% Newton method 
 % Determination of derivatives 
 syms EI L q0 x 
 ys = q0/(120*L*EI)*(x.^5-5*L*x.^4+7*L^2*x.^3-3*L^3*x.^2) 
 dx=diff(ys,x)  
 % -(q0*(6*L^3*x - 21*L^2*x^2 + 20*L*x^3 - 5*x^4))/(120*EI*L) 
 ddx = diff(ys,x,2)  
 % -(q0*(6*L^3 - 42*L^2*x + 60*L*x^2 - 20*x^3))/(120*EI*L) 

For later use, we will need functions instead of symbolic expressions! Let's use the 

matlabFunction command to transform the symbolic expressions! 

 % Let's transform the symbolic expression dx into a function! 
 dxf = matlabFunction(dx) 
 % @(EI,L,q0,x)(q0.*(L.*x.^3.*2.0e+1+L.^3.*x.*6.0-x.^4.*5.0-

L.^2.*x.^2.*2.1e+1).*(-1.0./1.2e+2))./(EI.*L) 

In the result, we see that a four-variable (EI,L,q0,x) function has been created! This is 

due to overriding variables EI,L,q0 when defining them as symbolic. However, we need 

a univariable function. To do this, we need to re-enter the values of the EI, L and q0 

variables, and then we can simply copy the obtained symbolic results after the 

beginning of the function definition using CTRL+C/CTRL+V. 

 % Let's transform the symbolic expressions into function! 
 E = 70000; I = 5.29e7; q0 = 15; L = 3000; EI = E*I; 
 dxf = @(x) -(q0*(6*L^3*x - 21*L^2*x^2 + 20*L*x^3 - 5*x^4))/(120*EI*L) 
 ddxf = @(x) -(q0*(6*L^3 - 42*L^2*x + 60*L*x^2 - 20*x^3))/(120*EI*L) 

Also, with a small change, we can use the matlabFunction command here as well. 

For this, the variables EI, L, q0 must be redefined, and then their values must be 

substituted into the symbolic expressions with the subs command. With the help of the 

subs command, we can replace all the previously defined variables at once as 

numbers, or we can specify the value of any variable. 

 % Another solution with matlabFunction 
 E = 70000; I = 5.29e7; q0 = 15; L = 3000; EI = E*I; 
 dx = subs(dx),ddx = subs(ddx) 
 dxf = matlabFunction(dx) 



Numerical Methods for Civil Engineers 15. Optimization 

 9 Piroska Laky, 2023. 

 ddxf = matlabFunction(ddx) 

Finally, the solution using Newton's method: 

 % solution using Newton's method: 
 [xn in] = newton(dxf, ddxf, 2000, 1e-6, 100)  
 % xn = 1.4257e+03; in = 3 

Now we have reached the solution in only 3 iterations. It can be seen that this method 

converges much faster, if it converges. 

USING A MATLAB BUILT-IN FUNCTION (FMINSEARCH, FMINBND) 

Of course, Matlab also has its own built-in function that can be used to search for a 

minimum, e.g. the fminsearch command. This uses the Nelder-Mead simplex method. 

 % Matlab built-in function - fminsearch 
 E = 70000; I = 5.29e7; q0 = 15; L = 3000; EI = E*I; 
 y = @(x) q0/(120*L*EI)*(x.^5-5*L*x.^4+7*L^2*x.^3-3*L^3*x.^2) 
 xmin = fminsearch(y,2000) % 1.4259e+0 

We can call the fminsearch function to return not only the location of the minimum, 

but also its value and other details. 

 [x,fval,exitflag,output] = fminsearch(y,2000) 
 % x = 1425.9; fval = -0.42935 
 i = output.iterations % i = 25 – number of iteration 
 n = output.funcCount % n = 50 – number of evaluation 

Matlab also has a one-variable optimization command that requires a closed interval: 

fminbnd. You can call this function with an interval [a,b]: fminbnd(function,a,b). 

BIVARIATE OPTIMIZATION 

It is often necessary to determine extreme values, not only for one, but also for multi-

variable tasks. This can be the determination of the location of the smallest or largest 

value of a surface, or even the maximum displacement of certain points of a spatial 

support in the x, y direction. But it is also possible to ideally choose road network 

junctions by minimizing distances. Even in the unconstrained multivariate case, there 

are several solution methods to choose from. We can use, for example, the multivariate  

Newton method, the gradient method, and the Nelder-Mead simplex method. 

Let's first look at the determination of the extreme values of a surface given by a 

function! The surface can be defined with the following function: 

𝑓(𝑥, 𝑦) =
sin(2 ∙ 𝜋 ∙ 𝑥) ∙ cos(5 ∙ 𝑦)

(2 + 𝑥3) ∙ (1 + 2 ∙ 𝑦5)
 

The range where we look for extreme values is: −0.5 ≤ 𝑥 ≤ 0.5; −0.5 ≤ 𝑦 ≤ 1. 

Let's define the surface and plot it in a spatial figure and also with contour lines, labeling 

the contour lines! 

 %% Determination of local extreme values of a bivariate function 
 clc; clear all; close all; format shortG; 
 f = @(x,y) sin(2*pi*x).*cos(5*y)./((2+x.^3).*(1+2*y.^5)) 
 figure(1); fsurf(f,[-0.5 0.5 -0.5 1]) 
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 figure(2); h1 = ezcontour(f,[-0.5 0.5 -0.5 1]) 
 set(h1,'ShowText','on') 

 

We see that there are several local minima and maxima in the given range. How can 

we find them? We can use several methods, for example the Nelder-Mead method 

used by one of Matlab's built-in functions (fminsearch), or the multivariate Newton 

method, which is a generalization of the method used in the univariate case. 

NELDER-MEAD SIMPLEX METHOD 

The Nelder-Mead simplex method was originally published in 1965 (Nelder and Mead, 

19652). This is one of the most well-known methods for multivariate optimization 

without the use of derivatives, a so-called direct search method. It is a heuristic 

algorithm that is simple and easy to apply. 

The algorithm is based on a simplex, which is a geometric shape consisting of n+1 

vertices in an n-dimensional space, a triangle in 2D, and a tetrahedron in 3D. The 

procedure does not require the calculation of gradients, only the determination of the 

values of the peaks. The procedure itself performs various geometric transformations 

on the simplex, e.g. mirroring, stretching, shrinking, expanding, contracting, in order to 

reduce the function values in the vertices. 

During the method, we take a starting polyhedron (simplex), in the 2-dimensional case 

a triangle, and then using various transformations during the procedure (stretching, 

shrinking, mirroring) we change the position of the 3 points so that it always aligns with 

the shape of the surface until it shrinks to the vicinity of the minimum location. To 

understand the procedure, it is worth looking at the following animation as an example: 

https://en.wikipedia.org/wiki/File:Nelder-Mead_Himmelblau.gif. 

SOLUTION USING THE NELDER-MEAD SIMPLEX METHOD IN MATLAB 

Determine the locations of the local extreme value of the given surface using the 

Nelder-Mead simplex method! Matlab's built-in fminsearch procedure uses this 

                                            

2 J. A. Nelder, R. Mead, A Simplex Method for Function Minimization, The Computer Journal, Volume 
7, Issue 4, January 1965, Pages 308–313, https://doi.org/10.1093/comjnl/7.4.308 

https://en.wikipedia.org/wiki/File:Nelder-Mead_Himmelblau.gif
https://doi.org/10.1093/comjnl/7.4.308
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algorithm for optimization. Note that this function can only be used for minimum search, 

not for maximum search (as expected from its name). 

It is very important that, like other Matlab built-in functions, fminsearch can only work 

with vector variable functions, so the function must be vectorized in the first step. The 

contour map shows that there are 2 minima and 2 maxima in the examined range. We 

can easily choose a starting value for them from the figure. The initial values should 

be given in a column vector! 

 F = @(v) f(v(1),v(2)); % conversion to vector variable 
 % initial values for minimum locations: 
 x01 = [-0.2;0]; x02 = [0.2;0.6];  
 % initial values for maximum locations 
 x03 = [0.2;0]; x04 = [-0.2;0.6]; 

First, determine the location and value of the 2 minima and plot them in the contour 

map as well! 

 % Determination of minimum places 
 [sol1 f1] = fminsearch(F,x01) %  -0.25241   8.9111e-06;   -0.504 
 [sol2 f2] = fminsearch(F,x02) %  0.24767      0.58715;   -0.42622 
 hold on; plot(sol1(1),sol1(2),'ro'); plot(sol2(1),sol2(2),'rd') 

Let's find the location and value of the maximum points also! First, let's see what 

happens if we give a starting value to our optimization algorithm near the maximum 

point! 

 % Determination of maximum places 
 [sol3 f3] = fminsearch(F,x03) %  -0.25241   1.7236e-05; -0.504 
 plot(sol3(1),sol3(2),'k+'); 

The obtained value is the same as our first solution, which was a minimum location. 

fminsearch can only be used to find a minimum location. If we want to get a maximum 

location with it, then we have to modify the function definition and define -1 times the 

original function. That is, the problem of maximum search is transformed into minimum 

search. Of course, if we want to get the value of the function back at this point, then 

the maximum location must be substituted back into the original function. 

 Fmax = @(v) -1*F(v) % Defining a function times -1 
 [sol3 f3] = fminsearch(Fmax,x03) %  0.24765  -2.3376e-05; -0.49618 
 plot(sol3(1),sol3(2),'k*'); 
 [sol4 f4] = fminsearch(Fmax,x04) %  0.24765  -2.3376e-05; -0.49618 
 plot(sol4(1),sol4(2),'ks'); 
 % Maximum locations substituted back into the original function 
 f3 = F(sol3) % 0.49618 
 f4 = F(sol4) % 0.43293 
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MULTIVARIATE NEWTON-METHOD3 

Of course, many other optimization methods can also be used. Another method could 

be the multivariate Newton method, which can be easily generalized from the 

univariate case. The advantage of Newton's method is that it can be used to determine 

both minimum and maximum locations, as it searches for the locations where the 

derivative will be zero, i.e. the tangent is horizontal. The disadvantage is that the first 

and second derivatives must also be determined, which is computationally demanding. 

In the univariate case, the iteration formula of Newton's method for finding the extreme 

value was as follows: 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓′(𝑥𝑖)

𝑓′′(𝑥𝑖)
 

This formula can be generalized to the multivariate case, but the gradient vector (∇𝑓) 

of the multivariate function should be used instead of the first derivative, and the Hesse 

matrix (𝐻) should be used instead of the second derivative. Here, too, the several 

variables must be specified in one (𝑥) vector. 

𝑥𝑖+1 = 𝑥𝑖 − 𝐻−1(𝑥𝑖) ∙ ∇𝑓(𝑥𝑖) 

where the Hessian matrix is the matrix of the second partial derivatives of the function 

f(x), and the gradient vector is the vector of the first partial derivatives. For two variables 

f(x,y), the gradient vector and the Hesse matrix will be: 

                                            

3 Supplementary material for home study. 
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∇𝑓(𝑥, 𝑦) =

[
 
 
 
𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦]
 
 
 

;     𝐻(𝑥, 𝑦) =

[
 
 
 
 

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑥 𝜕𝑦

𝜕2𝑓

𝜕𝑦 𝜕𝑥

𝜕2𝑓

𝜕𝑦2 ]
 
 
 
 

 

Previously, we used the Jacobian matrix (containing in a vector the first partial 

derivatives of the equations) for solving nonlinear equation systems. The Hessian 

matrix can also be generated with the Jacobian matrix calculated for the gradient vector 

of the function. 

The function below (gradmulti.m) is the solution of the multivariate Newton method in 

Matlab, where the input is the gradient vector (grad), the Hessian matrix (hesse), an 

initial position (x0), tolerance value for the stopping condition (eps) and a maximum 

iteration number (nmax). Note that the original function F is not needed for the solution, 

only the Hessian matrix and the gradient vector. 

In the output, x1 is the solution itself, i is the iteration number, and X contains the 

successive solutions. 

 function [x i X] = gradmulti(grad, hesse, x0, eps, nmax) 
  
 x1 = x0 - pinv(hesse(x0))*grad(x0); 
 i=1; 
 X=[x0 x1]; 
   
 while and(norm(x1 - x0) > eps, i < nmax) 
     x0 = x1; 
     x1 = x0 - pinv(hesse(x0))*grad(x0); 
     i = i + 1; 
     X = [X x1]; 
 end 
 x = x1; 

Among Matlab's built-in functions, we also find methods that perform gradient-based 

optimization, such as the fminunc function, which uses quasi-Newton minimization. In 

the case of the fminunc function, it is also possible to use the Newton method, if we 

specify the gradient vector and the Hessian matrix as optional inputs. For the exact 

method of calling the function, it is worth looking at the Matlab documentation. 

SOLUTION WITH MULTIVARIATE NEWTON-METHOD4 

We have seen that in the multivariate case, the gradient vector and the Hessian matrix 

will be needed, instead of the first and second derivatives used in the univariate case. 

Let's generate these in Matlab. To create the gradient vector, we can use Matlab's 

gradient command, both numerically and symbolically. For a better visualization, we 

first plot the numerically produced gradient vectors! To do this, create a grid with the 

meshgrid command and calculate the gradient values in this grid, which can be plotted 

with the quiver command! (See the material for the numerical derivation exercise in 

                                            

4 Supplementary material for home study. 



Numerical Methods for Civil Engineers 15. Optimization 

 14 Piroska Laky, 2023. 

detail!) This is presented for illustration purposes only, the numerical gradients are not 

needed for the solution. 

 % Representation of a gradient vector numerically 
 [X,Y] = meshgrid(-0.5:0.1:0.5, -0.5:0.1:1); 
 Z = f(X,Y); % function values in the grid points 
 [px,py] = gradient(Z); % calculation of gradients numerically 
 quiver(X,Y,px,py) 

 

To apply the multivariate Newton method, we need the gradient vector and the Hessian 

matrix in the form of a vector variable function, not a numerical matrix. This can be 

determined by symbolic calculations by applying the gradient and hessian commands 

to the symbolic function f! 

 % Functions symbolically 
 syms x y;  
 fs = f(x,y) % (cos(5*y)*sin(2*pi*x))/((x^3 + 2)*(2*y^5 + 1)) 
 G = gradient(fs) % Gradient vector symbolically 
 % (2*pi*cos(5*y)*cos(2*pi*x))/((x^3 + 2)*(2*y^5 + 1)) - 

(3*x^2*cos(5*y)*sin(2*pi*x))/((x^3 + 2)^2*(2*y^5 + 1)) 
 % - (5*sin(5*y)*sin(2*pi*x))/((x^3 + 2)*(2*y^5 + 1)) - 

(10*y^4*cos(5*y)*sin(2*pi*x))/((x^3 + 2)*(2*y^5 + 1)^2) 
 H = hessian(fs) % Hessian matrix symbolically 
 % Convert H and G into vector variable functions 
 G = matlabFunction(G) % Convert symbolic expression G into function 
 H = matlabFunction(H) % Convert symbolic expression H into function 
 G = @(x) G(x(1),x(2)) % conversion to vector variable 
 H = @(x) H(x(1),x(2)) % conversion to vector variable 

With the method, we can determine either minimum or maximum location. Let's use 

the initial values given earlier to find a minimum and a maximum location! 

 % Search for minimum and maximum location 
 [min1 i M1] = gradmulti(G,H,x01,1e-6,100) % one of the minimum 
 [max1 i M2] = gradmulti(G,H,x03,1e-6,100) % one of the maximum 
 plot([min1(1);max1(1)],[min1(2);max1(2)],'mo','MarkerFaceColor','m')  
 F(min1) % -0.504 
 F(max1) % 0.49618 
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The method converged very quickly, in 3 iterations we reached the minimum location 

within the desired accuracy. 

 

GLOBAL OPTIMIZATION 

As we have seen, several local minima can exist in a given range. The smallest of 

these will be the global minimum (𝑃2 in the figure). The methods described so far, such 

as the interval method, Newton's method, or the Nelder-Mead simplex method used 

by Matlab, require an initial value to be specified and usually "get stuck" at the nearest 

local minimum. In the case of several minima, they must be called with several initial 

values, and then by comparing them we can decide which is the global minimum. 

However, we can use a heuristic approach to approximate the global minimum without 

specifying an initial value, such as the genetic algorithm, which we deal with next. 
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GLOBAL OPTIMIZATION WITH GENETIC ALGORITHM5 

Let the task be to determine the global minimum of a univariate function f(x) in a given 

interval 𝑥 ∈ [𝑎, 𝑏], i.e. 

min
𝑥∈[𝑎,𝑏]

𝑓(𝑥) 

Genetic algorithms are population-based special evolutionary algorithms, heuristic 

search techniques that can be used to search for an optimum. They borrowed their 

techniques and terms from evolutionary biology.  

Genetic algorithms are generally characterized by the fact that the objective function 

to be optimized must satisfy relatively few constraints. For example, unlike traditional 

procedures, it does not have to be formulated in a closed form, linear, or derivable. 

The only assumption these procedures make is that a small change in the value of the 

function's parameters should result in a small change in the value of the function (so 

the "surface" of the function should not be completely random). 

The objective function whose minimum location is sought can also be called a cost 

function or an energy function. Another possible name is the fitness function. 

Genetic algorithms are implemented with computer simulations. The elements of the 

search space make up the individuals of the population, which can be crossed and 

mutated, so that new individuals can be created. During the operation of the genetic 

algorithm, on the one hand, it creates new individuals with the crossover and mutation 

operators, and on the other hand, it filters out individuals with a worse fitness function 

value and removes them from the population.  

Steps of the procedure: 

 Initialization 

The easiest way to generate the initial population is randomly. The size of the 

population depends on the nature of the problem, but most often it consists of a few 

hundred or a few thousand individuals. Traditionally, individuals are evenly distributed 

in the search space. 

 Selection 

In each succeeding generation, a portion of the current population is selected for 

reproduction. It is usually based on fitness, where fitter individuals (according to the 

fitness function) are more likely to be selected. The fitness function measures the 

quality of the individual. 

 Genetic operators 

New individuals can be created from individuals by crossover (or recombination) and 

mutation, these are genetic operators, usually applied randomly. 

 Stop condition 

                                            

5 The theoretical summary of genetic algorithms was prepared based on Sándor Laky's 2012 PhD thesis 
entitled Metaheuristic optimization in geodesy   
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Genetic algorithms usually run until a stopping condition is met. This can be the 

achievement of a certain number of generations, or if the fitness value of the best 

individual no longer improves significantly with each iteration. 

We will not go into the details of genetic algorithms here, they help to solve many 

difficult programming tasks, but they do not guarantee that they will find the optimum. 

Since global minimization is relatively slow and requires many operations, the following 

strategy is appropriate: 

- with a relatively small population and allowing few generations, we get close to the 

global minimum, 

- then, starting from there, we refine it using some local optimization method 

An illustrative example of how genetic algorithms work can also be found on the 

MATLAB YouTube channel: https://www.youtube.com/watch?v=1i8muvzZkPw  

USING GENETIC ALGORITHM IN MATLAB 

Let's determine the global minimum of the previous surface on the given domain using 

a genetic algorithm! We will need the ga (genetic algorithm) function for this, and the 

gaoptimset function for the appropriate settings. 

With the help of gaoptimset, we can set the number of individuals of the initial 

population and the number of generations to be used. Let's now use a population of 

200 elements and 20 generations, and set it to display the iteration steps as well! Let's 

also set the display format of the number to be longer, to more decimal places, so that 

the difference between several runs is visible! 

 % initialization 
 format longG; 
 options = 

gaoptimset('Generations',20,'PopulationSize',200,'Display','iter'); 

The ga algorithm can be called by specifying several parameters, in general the 

command looks like this: 

[x,fval] = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options) 

Among the inputs, fitnessfcn is the objective function to be optimized, nvars is the 

number of variables (in this case 2, since the task is bivariate optimization). 

A,b,Aeq,beq are parameters of linear constraints (inequalities and equations), which 

are not present in this case, if it is necessary to use them, they can significantly slow 

down the running time. LB (lower boundary), UB (upper boundary) contain the lower 

and upper boundaries of the investigated range in one vector. Nonlinear conditions 

could be specified in the nonlcon parameter. The last parameter is the options, where 

we can take into account the values specified in gaoptimset. Instead of the parameters 

we don't want to use, we have to enter an empty matrix, since Matlab expects the data 

in the specified order. It is important that Matlab, like with other built-in commands, 

expects a vector variable function! If the task is to optimize a bivariate function, it must 

first be converted into a vector variable function. We have already done this before, 

when we generated the function F from the function f to be able to use it with 

fminsearch. 

 %% Solution with a genetic algorithm 

https://www.youtube.com/watch?v=1i8muvzZkPw
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 % [x,fval] = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options) 
 A = []; b = []; Aeq = []; beq = []; % linear constraint 
 nlc = []; % nonlinear constraint 
 LB = [-0.5,-0.5]; % lower boundary 
 UB = [0.5,1]; % upper boundary 
 % approximate minimum location with genetic algorithm 
 xga = ga(F,2,A,b,Aeq,beq,LB,UB,nlc,options)  
 % xga = -0.252456968480699     -0.000708545893755685 
 % fga =  -0.503991955761332 

Let's run the algorithm several times! We will see that the solution will be slightly 

different each time, but it will not change in magnitude. 

Refine the result using a local minimum search algorithm, use the minimum determined 

by the genetic algorithm as a starting value! 

 % refine minimum with local optimization algorithm 
 [xy_min zmin]=fminsearch(F,xga)  
 % xy_min = -0.252380312148973     -7.22400617317352e-06 
 % zmin =  -0.503995085159198 
 plot(xy_min(1),xy_min(2),'kd','MarkerSize',10, 'MarkerFaceColor','g')  

 

Let's compare the minimum value found with the genetic algorithm and the value 

refined with the local optimization algorithm! 

 F(xy_min)<F(xga) % logical 1 -> true 

NEW FUNCTIONS USED IN THE CHAPTER 

subs - Substituting specific values into a symbolic variable 

fminsearch - 
Finding the minimum of a single/multivariable function using the 
Nelder-Mead simplex method 

fminunc - 
Unconditional extreme value search using quasi-Newton 
minimization. 

fminbnd - Search for minimum location by specifying an interval 

ga - Optimization using a genetic algorithm 

gaoptimset - Initialization of genetic algorithm, specification of parameters 
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