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16. OPTIMIZATION WITH CO NSTRAINTS 

In the case of optimization with constraints, we search for the minimum of the function 

in such a way that the points must also satisfy some constraint or condition. There can 

be one or more conditions in the task, they can be given by equations or inequalities 

(see the following figure), they can be linear or non-linear. Different methods can be 

used in different cases (e.g. Lagrange method, penalty function method, Karush-Kuhn-

Tucker conditions, linear programming). 

 

1 THE MINIMUM OF THE FUNCTION: P1 – W ITHOUT CONSTRAINTS, P2- W ITH G(X)=0 CONSTRAINT, P3 

– W ITH G(X)<0 CONSTRAINT 

CONSTRAINT GIVEN BY EQUALITY  

Among the constrained optimization problems, select those that have only equality 

conditions and those that have inequality conditions. The solution of the former is much 

simpler, for example it can be done using the Lagrange method or the penalty function 

method. Let's look at an example of this type of task! 

We want to maximize the profit of a factory manufacturing steel objects. The largest 

part of our costs is labor wages, and the cost of steel raw materials. A labor hour costs 

$20 and a ton of steel costs $170. We can give the profit with the following function: 

𝑓(ℎ, 𝑠) = 200 ∙ ℎ2/3 ∙ 𝑠1/3 

where h is the number of working hours and s is the amount of steel in tons. 

In addition, there is a budget available: $25,000. We want to get the maximum profit 

from this budget. We can write the following function for the costs: 

20 ∙ ℎ + 170 ∙ 𝑠 

In order to maximize profit, we use the entire available budget. In this case, the 

following condition must be met: 20 ∙ ℎ + 170 ∙ 𝑠 = 25000 

For the solution, we enter this constraint in zero-ordered form 
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𝑔(ℎ, 𝑠) = 20 ∙ ℎ + 170 ∙ 𝑠 − 25000 = 0 

Note: The constraint is now the equation of a line, that is, we have a linear equality 

condition. The task could be solved in the same way in the case of a condition given 

by a non-linear equation (adjusted to zero). 

Now we want to maximize the value of the bivariate surface f (objective function), so 

that the condition specified in function g is fulfilled. For the solution, we first represent 

the objective function f with contour lines, and the condition g with a curve. 

The objective function can be visualized as a two-variable 3D surface with the fsurf 

command, or in contour map with the fcontour or ezcontour command. When using 

ezcontour, we can label the contour lines using set command, by turning on the 

ShowText property, and the contour line interval can be changed by entering the 

LevelStep or LevelList parameters. 

Our constraint is given in an implicit form, we can draw it with the fimplicit command, 

if it given in a zero-ordered form. 

 clc; clear all; close all; format shortG; 
 % define objective function 
 f = @(h,s) 200*h.^(2/3).*s.^(1/3) 
 % define budget condition: 20$/hour, 170$/ton: 20*h+170*s = 25000$ 
 g = @(h,s) 20*h+170*s-25000 
 % plot labelled contour map 
 figure(1); h1 = ezcontour(f,[0 1200 0 100]) 
 set(h1,'ShowText', 'on','LevelStep', 10000) 
 % plot condition as an implicit function 
 hold on; fimplicit(g,[0 1200 0 100],'r','LineWidth',2) 
 xlabel('Working hours (h)') 
 ylabel('Available raw material in tonnes (s)') 
 title('Profit') 
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LAGRANGE-METHOD 

How can we solve such a problem? Based on the figure, the maximum profit will be 

somewhere around $60-70,000 according to the given condition, where the condition 

is tangent to the contour lines. At this point, the normal of the contour line of the 

objective function, that is, the gradient of the surface, is parallel to the normal of the 

condition. Their size may differ by a proportionality factor λ (see the figure below). In 

the present case, this relationship can be written as follows1:  

∇𝑓(ℎ, 𝑠) = 𝜆 ∙ ∇𝑔(ℎ, 𝑠) 

We rearrange this equation to zero: 

∇𝑓(ℎ, 𝑠) − 𝜆 ∙ ∇𝑔(ℎ, 𝑠) = 0 

In addition to matching the gradients, of 

course the constraints must also be 

fulfilled, i.e. in this case the solution must 

lie on the specified line 

𝑔(ℎ, 𝑠) = 0 

In the case of two variables, if we have one 

constraint, then two equations can be written for matching the gradients and one for 

the constraint. In this case, we will get a system of equations consisting of 3 equations 

with 3 unknowns, where 2 unknowns are the 2 unknown variables, and the third is the 

proportionality factor, 𝜆. 

The Lagrange method is based on this principle, and the proportionality factor λ is 

called the Lagrange multiplier. In addition to the matching of the gradients, the 

condition must also be fulfilled. The beauty of the Lagrange method lies in the fact that 

the parallelism of the gradients and the fulfillment of the conditions can be specified 

with a single formula. 

The Lagrange method can be used to find both constrained minimum and maximum 

locations, but only in the case of constraint(s) given by equality, not in the case of 

inequality. Using Lagrange-method, constrained optimization can be traced back to the 

solution of a system of equations (linear or non-linear). 

Let's look at the Lagrange method in general. Instead of the original task, write the 

unconstrained minimization of the following function: 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆𝑇 ∙ 𝑔(𝑥) = 𝑓(𝑥) − ∑ 𝜆𝑖 ∙ 𝑔𝑖(𝑥)

𝑚

𝑖=1

 

where i are the Lagrange multipliers, and vector 𝑥  contains the unknowns. A 

necessary condition for the minimum is the vanishing of the partial derivatives, i.e. 

                                            

1 Parallelism is not a necessary requirement, only if ∇𝑓 ≠ 0 at the given location. When the condition 
intersects the local extreme value of the surface (where ∇𝑓 = 0), then the condition will not necessarily 
be perpendicular to the contour lines. However, the equation ∇𝑓 = 𝜆 ∙ ∇𝑔 will also be true in this case. 
A good example of this can be found here: 
https://math.stackexchange.com/questions/2578903/lagrange-multipliers-tangency  

https://math.stackexchange.com/questions/2578903/lagrange-multipliers-tangency
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𝑑

𝑑𝑥
𝐿(𝑥, 𝜆) =

𝑑

𝑑𝑥
𝑓(𝑥) − 𝜆𝑇 ∙

𝑑

𝑑𝑥
𝑔(𝑥) = ∇𝑓(𝑥) − ∑ 𝜆𝑖 ∙ ∇𝑔𝑖(𝑥)

𝑚

𝑖=1

= 0 

𝑑

𝑑𝜆𝑖
𝐿(𝑥, 𝜆) = 𝑔

𝑖
(𝑥) = 0 

𝑖 = 1,2, ⋯ , 𝑚, where m is the number of constraints given by equalities. The derivatives 

with respect to the variable 𝑥, will represent the parallelism of the gradients, and the 

derivative with respect to λ will return the original constraint. 

A necessary condition for the extreme value is that the above equations are fulfilled. A 

sufficient condition for the minimum is that the Hessian matrix of the function 𝐿(𝑥, 𝜆) is 

positive definite, i.e. the eigenvalues of the matrix are positive at the location of the 

extreme value. If the Hessian matrix is negative definite at the location of the solution, 

then the function has a local maximum under the given condition. 

Let's solve the constrained problem given in the example using the Lagrange method! 

In the case of the constraint given by the nonlinear equation, we can write the following 

Lagrange function: 

𝐿(ℎ, s, 𝜆) = 200 ∙ ℎ
2
3 ∙ 𝑠

1
3 − 𝜆 ∙ (20 ∙ ℎ + 170 ∙ 𝑠 − 25000) 

A necessary condition for the minimum is the disappearance of the partial derivatives, 

i.e. the solution of the following system of equations: 

𝑑𝐿(ℎ, s, 𝜆)

𝑑ℎ
= 0 

𝑑𝐿(ℎ, s, 𝜆)

𝑑𝑠
= 0 

𝑑𝐿(ℎ, s, 𝜆)

𝑑𝜆
= 0 

After calculating the derivatives, we get the following system of equations: 

400

3
∙

𝑠1/3

ℎ1/3
− 20 ∙ 𝜆 = 0 

200

3
∙

ℎ2/3

𝑠2/3
− 170 ∙ 𝜆 = 0 

20 ∙ ℎ + 170 ∙ 𝑠 − 25000 = 0 

We see that using this formula, we obtained the two conditions for parallelism of the 

gradients (first 2 equations) and the original constraint itself (equation 3). Now we only 

have to solve this system of equations! Of course, Matlab can also be used to 

determine the derivatives using symbolic calculations.  

 % define Lagrange function 
 L = @(h,s,lambda) f(h,s)-lambda*g(h,s); 
 % determine the derivatives using symbolic calculations 
 syms h s lambda 
 LS = L(h,s,lambda)  
 % 200*h^(2/3)*s^(1/3) - lambda*(20*h + 170*s - 25000) 
 dh=diff(LS,h) % (400*s^(1/3))/(3*h^(1/3)) - 20*lambda = 0 
 ds=diff(LS,s) % (200*h^(2/3))/(3*s^(2/3)) - 170*lambda = 0 
 dl=diff(LS,lambda) % 25000 - 170*s - 20*h = 0 

It is a system of nonlinear equations for ℎ, 𝑠, 𝜆 variables. Let's define the system of 

equations in Matlab and solve it using fsolve! First, all the derivatives must be put into 
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a system of equations (column vector), and then the symbolic expressions must be 

transformed back into functions. Please note that fsolve can handle multivariate 

functions only in vector variable form, so the multivariate function must be vectorized 

here as well! 

 % Create system of equation 
 FLsym = [dh;ds;dl] 
 %  (400*s^(1/3))/(3*h^(1/3)) - 20*lambda 
 % (200*h^(2/3))/(3*s^(2/3)) - 170*lambda 
 %                   25000 - 170*s - 20*h 
 % Change symbolic expression to Matlab function 
 FL = matlabFunction(FLsym) % FL = @(h,lambda,s) [lambda.*2.0e+1+... 
 % vectorization of system of nonlinear equation 
 FL = @(v) FL(v(1),v(2),v(3)) % @(h,lambda,s) -> v=[h,lambda,s] 

Initial values are also required for the solution. You must pay attention to the order of 

variables which Matlab created in FL function using matlabFunction command. The 

initial values must also be entered in the same order, to get the final result. Now the 

variables are listed in the order ℎ, 𝜆, 𝑠 in the FL function. With the help of the contour 

map, we can choose a starting value for the ℎ, 𝑠 variables (where the curve approaches 

the contour line with the highest value). We cannot assign an initial value to the lambda 

variable, so let's choose its value as 1.  

 x0 = [800; 1; 50] % intial value for h, lambda, s 
 sol = fsolve(FL,x0,optimset('Display','iter')) 
 h1 = sol(1) % 833.33 
 l1 = sol(2) % 2.5927 
 s1 = sol(3) % 49.02 
 plot(h1,s1,'k*');  
 zopt1 = f(h1,s1) % 64819 

According to the obtained results, our profit will be maximum ($64,819) when we pay 

for 833 working hours and 49 tons of steel from the existing $25,000 budget. What is 

also interesting is that 𝜆  is not merely a proportionality factor (2.59), but can be 

deduced to indicate the magnitude of the change in profit as a function of the invested 

amount. If we invested $1 more than the current budget, our profit would increase by 

$2.59!  
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PENALTY FUNCTION METHOD 

In the case of the solution using the Lagrange method, it was necessary to calculate 

the gradients, which is not always easy to calculate. There are other methods, such as 

the penalty function method, where there is no need to calculate gradients, and we can 

solve the equality-constrained optimization task without it. Let's look at another 

example for this!  

Given the following surface, in the range −0.5 ≤ 𝑥 ≤ 0.5; −0.5 ≤ 𝑦 ≤ 1. 

𝑓(𝑥, 𝑦) =
sin(2 ∙ 𝜋 ∙ 𝑥) ∙ cos (5 ∙ 𝑦)

(2 + 𝑥3) ∙ (1 + 2 ∙ 𝑦5)
 

Determine the minimum along the given line 

𝑦 = 0.6 ∙ 𝑥 + 0.3 

The constraint is an explicitly given linear equality (equation of a line). If we look at the 

objective function f, we see that it is now a much more complicated function than in the 

previous example. Of course, the Lagrange method could also be used here, but we 

would get much more complicated equations after the derivation. Now, however, let’s 

look at a solution method that does not require the calculation of gradients, the penalty 

function method! This solution can be used in the case of constraints given by both 

linear and nonlinear equality, but not in the case of inequality. 

Let's define the objective function and the constraint in Matlab for the representation! 

 clc; clear all; close all; format shortG; 
 % Definition of objective function as a two-variable surface 
 f = @(x,y) sin(2*pi*x).*cos(5*y)./((2+x.^3).*(1+2*y.^5)) 
 % Constraint definition, as an explicit, univariate function 
 e = @(x) 0.6*x+0.3  

3D REPRESENTATION OF OBJECTIVE FUNCTION AND CONSTRAINT2 

The first step of the solution is, of course, to plot the objective function itself with the 

given constraints. We can do this on a spatial figure as a surface or with contour lines. 

In most cases, the contour map is sufficient, but for the sake of a better illustration, let's 

look at the 3D representation! First, we plot the surface of the objective function using 

the fsurf command (in some cases, the previous version, ezsurf, may be necessary).  

 figure(1);  
 fsurf(f,[-0.5 0.5 -0.5 1]) 

Now let's create the 3D figure of the constraint 

also! This can be done in two ways. One is to 

plot the constraint as a vertical surface (with 

fsurf). Another solution is to plot the 3D 

intersection line itself to the surface. For this, 

we define points with a suitable density along 

the condition, and then their corresponding 

heights on the surface is calculated. Finally, 

                                            

2 Supplementary material for home study 
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the spatial curve is plot into the surface (plot3). Let's look at both solutions. Let's start 

with the latter! 

 % plot constraint as spatial curve 
 xi = linspace(-0.5,0.5,50)'; % select 50 points in the range of x 
 yi = e(xi); % calculate y coorinates along the line 
 zi = f(xi,yi); % calculate corresponding surface heigths 
 hold on; plot3(xi,yi,zi,'r','LineWidth',2) 
 view([-10 70]) % point of view setting (azimuth, elevation angle) 

See the result in the figure below on the left! 

The constraint can also be specified as a vertical surface parametrically and plotted 

with the fsurf command (fsurf(funx,funy,funz,uvinterval). Two parameters are 

required, one of them should be the z coordinate itself, we give this to the funz function, 

since every z value must be taken as a vertical surface. Our other parameter is the x 

coordinate, and y can be specified with the equation of the line as a function of x: 𝑦 =
0.6 ∙ 𝑥 + 0.3. The range of the two parameters (x,z), must also be specified. We know 

that −0.5 ≤ 𝑥 ≤ 0.5, but based on the contour map, the values of z also remain within 

the range [-0.5,0.5]. 

 % constraint given with a vertical surface parametrically 
 xp = @(x,z) x 
 yp = @(x,z) 0.6*x+0.3 
 zp = @(x,z) z 
 fsurf(xp,yp,zp,[-0.5,0.5,-0.5,0.5]) 

 

Based on the figures, it is clear that we have two local minima along the curve. If we 

calculate the value of both, we can decide which of the two is smaller, which is the 

global minimum on the range along the given condition. 

CONTOUR MAP REPRESENTATION 

In order to find the solution, a contour map representation is usually sufficient, a spatial 

figure is not necessary. It is easier to choose a starting value from the contour map. If 

there are several local minima, it is also easier to decide which one will be the smallest, 

the global minimum, if the values of the contour lines are labeled. 

First, plot the target function as a contour map! Let’s use a contour interval of 0.05 and 

label the contour lines! After that, plot the constraint in the contour map with a different 

line type. The line given in explicit form can be drawn with the usual fplot command. If 

the constraint was given in an implicit form, we could use the fimplicit command. 

https://localhost:31515/static/help/matlab/ref/fsurf.html?overload=(matlab)%2Ffsurf%20false&snc=CPOZIS&snc=SSZ8RS&searchsource=mw&container=jshelpbrowser#d122e425954
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 figure(2); h1 = ezcontour(f,[-0.5 0.5 -0.5 1]) 
 set(h1,'ShowText','on','LevelStep', 0.05) 
 hold on 
 e = @(x) 0.6*x+0.3 
 fplot(e,[-0.5,0.5],'r','LineWidth',2) 

Of course, it can also be seen from the contour map that the local minimum location 

with the smaller x coordinate will now also be the global minimum, since here the 

constraint passes by the contour line of -0.4, and in the other case by the contour line 

of -0.35. 

 

SOLUTION WITH PENALTY FUNCTION METHOD 

This method, similarly to the Lagrange method, is only suitable for optimization with 

conditions given by equality. The task is given in the following form: 

Target function: 𝑧 = 𝑓(𝑥, 𝑦) 

Constraints with equalities: 𝑔𝑖(𝑥, 𝑦) = 0 

The essence of the method is that it incorporates the conditions into the objective 

function, so we get an unconditional optimization task. Instead of constrained 

minimization, consider the following unconstrained minimization problem: 

𝐹(𝑥, 𝐾) = 𝑓(𝑥) + 𝐾 ∙ 𝑔(𝑥)𝑇 ∙ 𝑔(𝑥) 

where K>0, a new parameter. The higher its value, the more we 'penalize' the deviation 

of the g(x) condition from zero, considering the g(x) condition squared. By increasing 

the value of the parameter K, the solution of the new, unconstrained problem 

converges to the solution of the original problem with the equality constraint. 
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The larger K is, the larger the "penalty" for the deviation of g(x) from zero. This 

quadratic penalty function is called the Courant penalty function. The current task can 

be written in this form: 

𝐹(𝑥, 𝑦, 𝐾) = 𝑓(𝑥, 𝑦) + 𝐾 ∙ 𝑔(𝑥, 𝑦)2 

Note: if we had not only one, but two constraints, we could write the task in the following 

form: 𝐹(𝑥, 𝑦, 𝐾) = 𝑓(𝑥, 𝑦) + 𝐾 ∙ (𝑔1(𝑥, 𝑦)2 + 𝑔2(𝑥, 𝑦)2) 

Let's determine the location of the conditional minimum using the penalty function 

method! Let's try several K parameters and see how the solution changes! The scalar 

parameter of the penalty function should be 10, 100, 1000 and 10000, respectively. 

After reducing the task to an unconditional optimization task, this task can be solved 

either with fminunc, which uses the quasi-Newton method, or fminsearch, which uses 

the simplex method. 

Since in this case the condition is not in a zero-ordered form, we must first rearrange 

it to zero. 

𝑔(𝑥, 𝑦) = 0.6 ∙ 𝑥 + 0.3 − 𝑦 = 0 

The other important aspect that we must pay attention to in Matlab is that we must 

transform both the objective function f and the constraint g into vector variable function! 

 % Penalty function method 
 g = @(x,y) 0.6*x+0.3-y % rearrange to zero 
 F = @(v) f(v(1),v(2)); % vectorization 
 G = @(v) g(v(1),v(2)); % vectorization 
 % penalty function with different K parameters 
 P10 = @(v)  F(v) + 10* G(v).^2; 
 P100 = @(v)  F(v) + 100* G(v).^2; 
 P1000 = @(v)  F(v) + 1000* G(v).^2; 
 P10000 = @(v)  F(v) + 10000* G(v).^2; 
 % the first local minimum for different K values 
 x01 = [-0.25;0.1] % initial values for x,y 
 [sol1 min1] = fminsearch(P10, x01)   
 [sol2 min2] = fminsearch(P100, x01)  
 [sol3 min3] = fminsearch(P1000, x01)   
 [sol4 min4] = fminsearch(P10000, x01)   
 sol = [sol1,sol2,sol3,sol4]  
 %      -0.28493     -0.30019     -0.30239     -0.30239 
 %      0.080633      0.11341       0.1179       0.1179 
 fsol = [min1,min2,min3,min4] 
 %      -0.43069     -0.40224     -0.39835     -0.39835 
 % check the constraint 
 felt = g(sol(1,:),sol(2,:)) 
 %  0.048408    0.0064735   0.00066395   0.00066395 
 % Plot solutions 
 figure(2); plot(sol(1,:),sol(2,:),'k*') 
 axis([-0.33 -0.25 0.05 0.15]) 

It can be seen that by increasing the parameter K, the solution gets closer and closer 

to the condition g(x,y)=0, to the point where the condition touches the level lines of the 

objective function, which we also searched with the Lagrange method. 
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BUILT-IN MATLAB FUNCTION (FMINCON) – CONSTRAINT GIVEN BY LINEAR 
EQUATION 

Of course, Matlab also has its own built-in function for the constrained optimization, 

this is the fmincon function (find minimum of constrained function). We can call it in 

the following form to use with linear equality constraint: 

[x,fval] =  fmincon(fun,x0,A,b,Aeq,beq,lb,ub) 

Here 'fun' is the objective function (with vector variable) and 'x0' is the vector of the 

initial values. Constraints given by linear inequality could be specified in the variables 

A,b, and with linear equalities in variables Aeq,beq, in the following form: 

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞 

The range of the variables can be set by specifying the lower (lb) and upper bounds 

(ub). Let's solve the previous task with the built-in function as well! 

Objective function: 
𝑓(𝑥, 𝑦) =

sin(2 ∙ 𝜋 ∙ 𝑥) ∙ cos (5 ∙ 𝑦)

(2 + 𝑥3) ∙ (1 + 2 ∙ 𝑦5)
 

Constraint given by the equation of the line: 𝑦 = 0.6 ∙ 𝑥 + 0.3 

The specified lower/upper bounds: 𝑥 ∈ [−0.5,0.5]; 𝑦 ∈ [−0.5,1] 

The constraint given by linear equality must be given in the form 𝐴𝑒𝑞 ∙ 𝑣 = 𝑏𝑒𝑞, where 

𝑣 vector contains the unknowns (x,y in this problem), the coefficients of the unknowns 

are in the matrix Aeq, and the constants are in the vector beq. Let's transform the 

constraint into this form! 

0.6 ∙ 𝑥 − 𝑦 = −0.3 𝐴𝑒𝑞 = [0.6 −1];  𝑏𝑒𝑞 = −0.3 

Since we do not have linear constraints given by inequalities, A,b will be empty 

matrices. Lower/upper limits are specified (lb,ub). It is also necessary to enter initial 

values. Now let's find the second local minimum along the condition with the built-in 

function! 
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 % Solution with fmincon  
 axis([-0.5 0.5 -0.5 1]) % zoom to the range 
 x02 = [0.3;0.4] % initial values for x,y 
 A=[]; b=[]; % There is no constraint given by a linear inequality 
 Aeq=[0.6 -1]; beq=[-0.3]; % Constraint with a linear equation 
 % Lower and upper bounds for x,y 
 lb=[-0.5,-0.5]; ub=[0.5,1]; 
 % Solution – F with vector variable! 
 [sol2 fsol2] = fmincon(F,x02,A,b,Aeq,beq,lb,ub) 
 % sol2 =   [0.30431; 0.48259];   fsol2 =  -0.3294 
 plot(sol2(1),sol2(2),'kd','LineWidth',2) 

 

CONSTRAINED OPTIMIZATION INCLUDING INEQUALITIES (FMINCON IN 
GENERAL FORM) 

The fmincon function is a general-purpose constrained optimization algorithm. 

Constraints can be specified not only with equations, but also with inequalities, they 

can be either linear or non-linear, with upper/lower bounds and other options. It can be 

called in the following form (with more/less inputs and outputs): 

[x,fval] =  fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) 

Parameters: 

 fun: objective function 

 x0: initial values 

 A,b: 𝐴 ∙ 𝑥 < 𝑏 constraints given by linear inequalities 

 Aeq,beq: 𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞 constraints given by linear equations 

 lb,ub: 𝑙𝑏 < 𝑥 < 𝑢𝑏, lower/upper bounds 

 nonlcon: nonlinear constraints: 𝑐(𝑥) ≤ 0 and 𝑐𝑒𝑞(𝑥) = 0  

 options 

The conditions must be entered in the specified order, if one type of constraint is 

missing, an empty matrix must be put in its place. 
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Let's solve the previous task with different conditions! Given the following objective 

function in the range −0.5 ≤ 𝑥 ≤ 0.5; −0.5 ≤ 𝑦 ≤ 1. 

𝑓(𝑥, 𝑦) =
sin(2 ∙ 𝜋 ∙ 𝑥) ∙ cos (5 ∙ 𝑦)

(2 + 𝑥3) ∙ (1 + 2 ∙ 𝑦5)
 

Determine the minimum under the given conditions! 

20 ∙ 𝑥 ∙ 𝑦 − 2 ∙ 𝑦 = 1 

𝑦 > 0.6 ∙ 𝑥 + 0.3 

The first constraint is a non-linear equality given in an implicit form, and the second 

constraint is a linear inequality, which tells us to look for the minimum in the area 

located above the previously specified line and in the given nonlinear curve. Let's plot 

in a new figure the contour map and the two constraints! The original contour map and 

the straight line can be taken from the previous example. The nonlinear condition is 

not specified explicitly, but implicitly, so we now use the fimplicit command instead of 

the fplot command to plot it, after reordering the constraint to 0! 

 clc; clear all; close all; format shortG; 
 f = @(x,y) sin(2*pi*x).*cos(5*y)./((2+x.^3).*(1+2*y.^5)) 
 figure(3); hold on;  
 h1 = ezcontour(f,[-0.5 0.5 -0.5 1]) 
 set(h1,'ShowText','on','LevelStep', 0.05) 
 e = @(x) 0.6*x+0.3; 
 fplot(e,[-0.5,0.5],'r','LineWidth',2) 
 g1 = @(x,y) 20*x.*y-2*y-1 
 fimplicit(g1,'k','LineWidth',2) 
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Let's first look at the constraint given by the linear inequality 𝑦 > 0.6 ∙ 𝑥 + 0.3! This 

means that we are looking for the minimum location in the area above the line (𝑦 =
0.6 ∙ 𝑥 + 0.3). The condition should be put in the following form: 

𝐴 ∙ 𝑥 < 𝑏 

Where the unknowns are on the smaller side of the relational sign, and the constant is 

on the larger side (or, in the case of more inequality constraints, the constants are in a 

vector). Let's transform the 𝑦 > 0.6 ∙ 𝑥 + 0.3 inequaliy into this form to determine the 

coefficients A,b! 

0.6 ∙ 𝑥 − 𝑦 < −0.3 𝐴 = [0.6 −1];  𝑏 = −0.3 

Note: if we were to look for the minimum below the line, then the 𝑦 < 0.6 ∙ 𝑥 + 0.3 

inequality should be put in this form: 

−0.6 ∙ 𝑥 + 𝑦 < 0.3 𝐴 = [−0.6 1];  𝑏 = 0.3 

Now we do not have constraint given by linear equations, so Aeq and beq must be 

replaced by an empty matrix. Lower/upper bounds remained the same as before. 

 A=[0.6 -1]; b=-0.3; % linear inequality 
 Aeq=[]; beq=[]; % there is no linear equation constraint 
 lb=[-0.5,-0.5]; ub=[0.5,1]; % Lower/upper bound for x,y  

Now let's look at the nonlinear constraints! The non-linear constraints can also be 

specified with an equation or inequality, these can be specified in the nonlcon 

parameter.  

Inequality: 𝑐(𝑥) ≤ 0 Equation: 𝑐𝑒𝑞(𝑥) = 0 

Here, two types of conditions must be specified in one function (nonlcon). A function 

with two outputs must be generated, this can be done with the deal command. The 

conditions must be specified in the form 𝑐(𝑥) ≤ 0 and 𝑐𝑒𝑞(𝑥) = 0. If we have only one 

of the two types of conditions, the other will be an empty matrix. A vector variable 

function must be defined here as well. 

 % there are nonlinear constraints given by equality 
 c = []; % no inequality 
 ceq = @(x,y) 20*x.*y-2*y-1 % rearranged to zero  
 nonlcon = @(v) deal(c, ceq(v(1),v(2))) % constraint with vector 

variable 

For the solution, the objective function must also have vector variable. We need to 

specify an initial value which can be chosen from the contour map. We have to chose 

a point where the nonlinear constraint is above the line, and it approaches the smallest 

contour line. Optional parameters can also be specified, e.g. displaying the iteration 

steps, determining for example the tolerance for the function value as 10-9. 

 F = @(v) f(v(1),v(2)) % objective function with vector variable 
 x0 = [0.2;0.5] % initial value from the figure 
 opc = optimset('Display','iter','TolFun',1e-9); 
 sol  = fmincon(F,x0,A,b,Aeq,beq,lb,ub,nonlcon,opc) 
 % 0.18693,  0.57515 
 plot(sol(1),sol(2),'r*') 
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What would happen if we looked for the minimum along a horizontal or vertical line? 

For example, along the lines x=-0.2, or y = 0.5? 

𝑥 = −0.2 𝐴 ∙ 𝑥 = 𝑏 alakban: 1 ∙ 𝑥 + 0 ∙ 𝑦 = −0.2 𝐴𝑒𝑞 = [1 0]; 𝑏𝑒𝑞 = 0.2 

𝑦 = 0.5 𝐴 ∙ 𝑥 = 𝑏 alakban:  0 ∙ 𝑥 + 1 ∙ 𝑦 = 0.5 𝐴𝑒𝑞 = [0 1]; 𝑏𝑒𝑞 = 0.5 

In case, e.g. we have the condition given by the inequality x<-0.2, then we can enter 

the values of A,b as described earlier, or we can simply set the upper limit of x to -0.2. 

LINEAR PROGRAMMING PROBLEM3 

Linear programming is a very useful optimization technique for engineering 

applications. The word 'linear' refers to the fact that both the objective function and the 

constraints are only linear functions of non-negative variables. To be able to use this 

method, three conditions must be met: 

1) The objective function is a linear function of the variables 

2) The constraints are also linear functions of the variables 

3) Variables can only take non-negative values 

There are several techniques to solve this kind of problems, e.g. simplex method, 

interior-point method, etc. Now we will not go into details, we will use Matlab's built-in 

linprog command: 

 [x fval] = linprog(f,A,b,Aeq,beq,lb,ub,options) 

We can see that the parameters are very similar to those of the fmincon function. Here 

are the parameters: 

                                            

3 Supplementary material for home study 
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 fun: object function to be minimized given as a vector 

 A,b: 𝐴 ∙ 𝑥 < 𝑏 constraints given by linear inequalities 

 Aeq,beq: 𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞 constraints given by linear equations 

 lb,ub: 𝑙𝑏 < 𝑥 < 𝑢𝑏, lower/upper bound 

 options 

It does not include an initial value, as it is not needed in this case, which is a big 

advantage in many cases. It is also not possible to specify a non-linear condition. 

Specifying the linear conditions works the same as for fmincon, except for the 

objective function to be minimized. Let's look at a simple example! 

Linear objective function to be minimized: 𝑧 = −2 ∙ 𝑥 + 8 ∙ 𝑦 

Linear constraints: 3 ∙ 𝑥 + 4 ∙ 𝑦 ≤ 80 

 −3 ∙ 𝑥 + 4 ∙ 𝑦 ≥ 8 

 𝑥 + 4 ∙ 𝑦 ≥ 40 

 𝑥, 𝑦 ≥ 0 

Specifying the objective function as a vector means specifying the coefficients of the 

unknowns: [-2 8] 

Inequalities must be put in the form 𝐴 ∙ 𝑥 < 𝑏 (as before), where the variables are on 

the smaller side of the relational sign, and the constants on the larger side. 

3 ∙ 𝑥 + 4 ∙ 𝑦 ≤ 80  3 ∙ 𝑥 + 4 ∙ 𝑦 ≤ 80 

−3 ∙ 𝑥 + 4 ∙ 𝑦 ≥ 8  3 ∙ 𝑥 − 4 ∙ 𝑦 ≤ −8 

𝑥 + 4 ∙ 𝑦 ≥ 40  −𝑥 − 4 ∙ 𝑦 ≤ 40 

Let's solve the problem in Matlab! 

 clear all; clc; close all; 
 % coefficient vector of the objective function 
 c=[-2 8]; 
 % Plot constraints 
 g1 = @(x,y) 3*x+4*y-80 
 g2 = @(x,y) -3*x+4*y-8 
 g3 = @(x,y) x+4*y-40 
 figure(1); hold on; fimplicit(g1,[0,20]); fimplicit(g2,[0,20]); 

fimplicit(g3,[0,20]); 
 % Linear constraint with inequality in the form of A*x <= b 
 A = [3 4; 3 -4; -1 -4]; 
 b = [80; -8; -40]; 
 Aeq = []; beq = []; % Linear constraint with equality: none 
 lb = [0 0]; % There is a lower limit for variables 
 ub = [];% Upper limit for variables: none 
 sol = linprog(c,A,b,Aeq,beq,lb,ub,optimset('Display','iter')) 
 % sol = 8 8 
 plot(sol(1),sol(2),'kd') 
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PRACTICE EXERCISES 

PRACTICE EXERCISE 1. – LAGRANGE-METHOD 

Let’s solve the task in the penalty function method subsection with Lagrange method 

now! Given the following surface; in the range −0.5 ≤ 𝑥 ≤ 0.5; −0.5 ≤ 𝑦 ≤ 1. 

𝑓(𝑥, 𝑦) =
sin(2 ∙ 𝜋 ∙ 𝑥) ∙ cos (5 ∙ 𝑦)

(2 + 𝑥3) ∙ (1 + 2 ∙ 𝑦5)
 

Determine the minimum of the surface using the Lagrange method under the following 

constraint: 

𝑦 = 0.6 ∙ 𝑥 + 0.3 

In the case of linear equation constraint, we can write the following Lagrange function 

(first rearranging the constraint to zero): 

𝐿(𝑥, y, 𝜆) =
sin(2 ∙ 𝜋 ∙ 𝑥) ∙ cos (5 ∙ 𝑦)

(2 + 𝑥3) ∙ (1 + 2 ∙ 𝑦5)
− 𝜆 ∙ (0.6 ∙ 𝑥 + 0.3 − 𝑦) 

A necessary condition for the minimum is the disappearance of the partial derivatives, 

i.e. the solution of the following system of equations: 

𝑑𝐿(𝑥, y, 𝜆)

𝑑𝑥
= 0 

𝑑𝐿(𝑥, y, 𝜆)

𝑑𝑦
= 0 

𝑑𝐿(𝑥, y, 𝜆)

𝑑𝜆
= 0 
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After calculating the derivatives, we get the following system of equations: 

cos (5 ∙ 𝑦)

1 + 2 ∙ 𝑦5
∙ (

cos(2 ∙ 𝜋 ∙ 𝑥) ∙ 2 ∙ 𝜋

(2 + 𝑥3)
−

sin(2 ∙ 𝜋 ∙ 𝑥) ∙ 3 ∙ 𝑥2

(2 + 𝑥3)2
) − 0.6 ∙ 𝜆 = 0 

sin(2 ∙ 𝜋 ∙ 𝑥)

(2 + 𝑥3)
∙ (

− sin(5 ∙ 𝑦) ∙ 5

(1 + 2 ∙ 𝑦5)
−

cos(5 ∙ 𝑦) ∙ 10 ∙ 𝑦4

(1 + 2 ∙ 𝑦5)2
) + 𝜆 = 0 

0.6 ∙ 𝑥 + 0.3 − 𝑦 = 0 

In this case, it is not so easy to determine the partial derivatives, but of course, Matlab 

can also be used for this, using symbolic calculations. 

 %% Solution by Lagrange method - linear constraint 
 clc; clear all; close all; format shortG; 
 f = @(x,y) sin(2*pi*x).*cos(5*y)./((2+x.^3).*(1+2*y.^5)) 
 figure(3); hold on;  
 h1 = ezcontour(f,[-0.5 0.5 -0.5 1]) 
 set(h1,'ShowText','on','LevelStep', 0.05) 
 e = @(x) 0.6*x+0.3; 
 fplot(e,[-0.5,0.5],'r','LineWidth',2) 
  
 g = @(x,y) 0.6*x+0.3-y % rearrange to 0! 
 L = @(x,y,lambda) f(x,y)-lambda*g(x,y); 
  
 syms x y lambda 
 dx=diff(L(x,y,lambda),x) 
 % (2*pi*cos(5*y)*cos(2*pi*x))/((x^3 + 2)*(2*y^5 + 1)) - (3*lambda)/5 

- (3*x^2*cos(5*y)*sin(2*pi*x))/((x^3 + 2)^2*(2*y^5 + 1)) 
 dy=diff(L(x,y,lambda),y) 
 % lambda - (5*sin(5*y)*sin(2*pi*x))/((x^3 + 2)*(2*y^5 + 1)) - 

(10*y^4*cos(5*y)*sin(2*pi*x))/((x^3 + 2)*(2*y^5 + 1)^2) 
 dl=diff(L(x,y,lambda),lambda) 
 % y - (3*x)/5 - 3/10 
  
 % Solving systems of nonlinear equations with fsolve 
 FLsym = [dx;dy;dl] 
 FL = matlabFunction(FLsym) % @(lambda,x,y)... 
 % Vectorization of the system of nonlinear equations 
 FL = @(v) FL(v(1),v(2),v(3)) % v = (lambda,x,y) 
  
 % a megoldás 
 x01 = [1; -0.3;0.1];  % 1st initial value, order: lambda,x,y 
 x02 = [1; 0.3;0.5];  % 2nd initial value, order: lambda,x,y 
  
 xyl1 = fsolve(FL,x01,optimset('Display','iter')) 
 % xyl1 = [-1.3387,-0.30265,0.11841]  
 xyl2 = fsolve(FL,x02,optimset('Display','iter')) 
 % xyl2 = [1.3002, 0.30431,0.48259] 
 plot(xyl1(2),xyl1(3),'ko'); plot(xyl2(2),xyl2(3),'k*') 
 zopt1 = f(xyl1(2),xyl1(3)) %  -0.3979 
 zopt2 = f(xyl2(2),xyl2(3)) %  -0.3294 
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PRACTICE EXAMPLE 2. – CONE WITH MINIMUM SURFACE 

We would like to determine the data (radius, height) of a cone with a minimum surface 

and unit volume. 

The surface of the cone: 𝐴 = 𝑟2 ∙ 𝜋 + 𝜋 ∙ 𝑟 ∙ 𝑎 

where 𝑎 is the slant height of the cone, the length of which is: 𝑎 = √𝑟2 + ℎ2 

 

The volume of the cone: 𝑉 =
𝑟2 ∙ 𝜋 ∙ ℎ

3
= 1 

 

a) Write the Matlab function of the surface of the cone depending on the radius 

and height. Also write the Matlab function of the constraint corresponding to 

the unit volume!  

b) Solve the constrained optimization problem for radius and height using 

different methods. In each case, check the fulfillment of the constraint and 

determine what the ratio of the height and the radius will be, and how big the 

resulting surface will be? 

i. using Matlab built-in command  

ii. with Lagrange method  

iii. with penalty function method (K=1000)  
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Solution: 

 %% 1A - cone surface 
 clc; clear all; close all; 
   
 % A=R^2*pi+pi*R*a, a = sqrt(r^2+h^2) 
 % V=pi*r^2*h/3=1; 
 % a)  
 A = @(r,h) r.^2*pi+pi*r.*sqrt(r.^2+h.^2) 
 V = @(r,h) pi*r.^2.*h/3-1 
 A = @(v) A(v(1),v(2)); V = @(u) V(u(1),u(2)); 
   
 % b-i) Matlab built-in function  
 nonlcon = @(u) deal([],V(u)) 
 v0 = [0.5, 0.5] 
 x = fmincon(A,v0,[],[],[],[],[0,0],[],nonlcon) 
 r = x(1) % 0.69632 
 h = x(2) % 1.9695 
 ratio = h/r % 2.8284 
 S = A([r,h]) % 6.0929 
 V([r,h]) %  -4.0023e-10 
   
 % Lagrange method  
 syms r h lam 
 Lfv = A([r h])+lam*V([r h]) 
 % lam*((h*pi*r^2)/3 - 1) + pi*r^2 + pi*r*(h^2 + r^2)^(1/2) 
 F = gradient(Lfv,[r,h,lam]) 
 %   pi*(h^2 + r^2)^(1/2) + 2*pi*r + (pi*r^2)/(h^2 + r^2)^(1/2) + 

(2*pi*h*lam*r)/3 
 %  (pi*lam*r^2)/3 + (pi*h*r)/(h^2 + r^2)^(1/2) 
 %  (h*pi*r^2)/3 - 1 
 sol=solve(F) 
 %       h: [3×1 sym] 
 %     lam: [3×1 sym] 
 %       r: [3×1 sym] 
 double([sol.r sol.h sol.lam]) 
 % 0.69632 + 0i 1.9695 + 0i -4.062 + 0i 
 % 0.34816 - 0.60303i   -0.98475 + 1.7056i   2.031 + 3.5178i 
 % 0.34816 + 0.60303i   -0.98475 - 1.7056i   2.031 - 3.5178i 
 r = double(sol.r(1)) % 0.69632 
 h = double(sol.h(1)) % 1.9695 
 ratio = h/r % 2.8284 
 S = A([r,h]) % 6.0929 
 V([r,h]) % 0 
   
 %b-iii) penalty function method 
 Bfv=@(u) A(u)+1000*V(u).^2 
 x =fminsearch(Bfv,v0) 
 % x =    0.69585       1.9681 
 ratio = x(2)/x(1) % 2.8284 
 S = A(x) % 6.0847 
 V(x) % -0.0020296 
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PRACTICE EXAMPLE  3. – COMPLEX CIVIL ENGINEERING PROBLEM4 

Let's use Matlab's built-in function to solve a more complicated two-variable 

constrained optimization problem, where there is a specified lower/upper limit, and 

constraints given by linear and nonlinear inequalities. 

In order to save energy costs, a building partially in the 

ground should be designed. The total floor area of the 25-

story building must be at least 20,000 m2. The prescribed 

ratio of the width w and length L of the building is w/L = 

1/1.618, and L can be no more than 50 m. The height of each 

floor is 3.5 m. The energy cost of the building is 100$/year/m2 

based on the surface of the part above ground. Total energy 

costs per year must not exceed $225,000. Determine the 

dimensions of the building so that the cost of earthworks 

(which is proportional to the volume of the underground part 

of the building) should be minimal! 

The value of the objective function to be minimized: 

 
2618.1),( wdconswdf  . (cons. = constant = 1/10000) 

The inequality constraints: 

 0w618.12520000)w,d(g 2
1   (total floor area for 25 levels) 

 050w618.1)w,d(g2   (building length) 

 0225000w8.161wd6.523w45815)w,d(g 2
3   (annual total energy costs) 

Lower bounds on the variables: 

 0d    

 0w    

Solution steps: 

1. In order to use MatLab's multivariate constraint optimization mehtod, we 

must specify the necessary linear inequality constraints and the lower bounds 

on the variables 

2. Write a function for the nonlinear inequality constraints. 

3. Starting from the initial values of d = 50, w = 10, we determine the solution of 

the problem using Matlab's built-in procedure 

4. What will be the active inequality constraints? 

 %% optimization with inequality constraints 
 clc; clear all; close all 
   
 % Required parameterization of the built-in fmincon function: 
 %  X = fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) 

                                            

4 From the exercise book by Béla Paláncz (2012) 
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 % min F(X)  subject to: A*X  <= B, Aeq*X  = Beq (linear constraints) 
 %  X                    C(X) <= 0, Ceq(X) = 0 (nonlinear constraints) 
 %                       LB <= X <= UB        (bounds) 
   
 % the objective function (with vector variable):1.618 d w^2 / 10000 
 f = @(x) 1.618*x(1)*x(2)^2/1e4; 
   
 % Linear constraint with inequality: -50 + 1.618 w <= 0 
 A = [0 1.618]; b = [50]; 
   
 % There is no linear constraint with equality 
 Aeq = [ ];  beq = [ ];  
   
 % There is a lower limit for the variables: d > 0 and w > 0 
 lb = [0; 0];  
 % There is no upper limit for variables 
 ub = [ ]; 
   
 % There is no nonlinear equality constraint 
 ceq = [ ];  
 % Nonlinear inequalities: C(X) <= 0 
 g1 = @(d,w) 20000 - 25*1.618*w.^2 
 g2 = @(d,w) 45815*w - 523.6*w.*d + 161.8*w.^2 – 225000 
 % In vector, the two constraints, with vector variables 
 c = @(v) [g1(v(1),v(2)); g2(v(1),v(2))] 
 % Note: 
 % fmincon needs two output values ([c ceq]) generating functions,  
 % so we generate them with the built-in deal function 
 nonlincon = @(v) deal(c(v), ceq) 
 % nonlincon = @(v) deal([20000-25*1.618*v(2)^2; 
 %              45815*v(2)-523.6*v(2)*v(1)+161.8*v(2)^2-225000], []); 
   
 % Alternative solution: separate function in m-file: 
 % function [c ceq] = nonlincon(x) 
 % c = [20000 - 25*1.618*x(2)^2;  
 %      45815*x(2) - 523.6*x(2)*x(1) + 161.8*x(2)^2 - 225000]; 
 % ceq = []; 
 % end 
   
 % The initial value 
 x0 = [50; 10]; 
   
 % The solution is with Matlab's built-in function: 
 x = fmincon(f, x0, A, b, Aeq, beq, lb, ub, nonlincon, optimset 

('Display', 'iter''TolFun',1e-9)) 
 % x = 75.0459; 22.2360 
   
 % Note: if nonlincon is called as an external function, you need 

@nonlincon as a parameter: 
 % fmincon(f, x0, A, b, Aeq, beq, lb, ub, @nonlincon) 
   
 % check the values of the nonlinear constraints: 
 [f1,f2] = nonlincon(x) 
 % f1 =  1.0e-05 * [-0.0113;  -0.5822] 
 % f2 = [] 
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PRACTICE EXERCISES 4. – LINEAR PROGRAMMING IN WATER PURIFICATION5 

A linear programming problem is the case when both the objective function and the 

constraints are linear. Let's look at such an example! There are four water treatment 

plants operating on the river (1-4) and its tributary (2-3) shown in the figure, which 

process P (mg/day) wastewater from the nearby big cities at a ratio of x, i.e. the 

pollution entering the river: 

𝑊 = (1 − 𝑥) ∙ 𝑃 

If xi is the degree of purification of the sewage treatment plant in city i, then the removed 

pollution is 𝑥𝑖 ∙ 𝑃𝑖. 

When the wastewater Wi enters the river, it is assumed that it is completely mixed with 

the pollutant with flow rate Qi,j (ij) and concentration ci arriving with the river. That is, 

the value of the wastewater concentrations (mg/L) after mixing in each section: 

𝑐1 =
1 − 𝑥1

𝑄13
∙ 𝑃1 

𝑐2 =
1 − 𝑥2

𝑄23
∙ 𝑃2 

𝑐3 =
𝑅13 ∙ 𝑄13 ∙ 𝑐1 + 𝑅23 ∙ 𝑄23 ∙ 𝑐2 + (1 − 𝑥3) ∙ 𝑃3

𝑄34
 

𝑐4 =
𝑅34 ∙ 𝑄34 ∙ 𝑐3 + (1 − 𝑥4) ∙ 𝑃4

𝑄45
  

Natural decomposition also occurs in the corresponding (ij) river section. This is 

expressed by the Rij factors. The available data is contained in the table below: 

City 
i 

Wastewater 
load 
Pi (mg/day) 

Wastewater 
treatment cost, 
di (Ft/mg) 

River 
section 

ij 

Flow rate of  
section,  
Qi,j (L/day) 

Natural 
decomposition 
ratio Rij 

Allowable impurity 
concentration, csi 
(mg/L) 

1 1.0 ∙ 109 2 ∙ 10−6 13 1.0 ∙ 107 0.5 20 

2 2.0 ∙ 109 2 ∙ 10−6 23 5.0 ∙ 107 0.35 20 

3 4.0 ∙ 109 4 ∙ 10−6 34 1.1 ∙ 108 0.6 20 

4 2.5 ∙ 109 4 ∙ 10−6 45 2.5 ∙ 108 - 20 

Operating cost of daily wastewater treatment: 

𝑍(𝑥) = ∑ 𝑑𝑖 ∙ 𝑃𝑖 ∙ 𝑥𝑖

4

𝑖=1

 

The optimization task is to determine the degree of cleaning (xi) of each plant in such 

a way that the operating cost (Z) is minimal, but at the same time the concentration of 

pollution in each node does not exceed the permissible level, e.g ci <csi .The objective 

function is linear and so are the constraints. 

                                            

5 Paláncz Béla példatárából (2012) 
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Substituting the appropriate values into the objective function: 

𝑍 = 2000 ∙ 𝑥1 + 4000 ∙ 𝑥2 + 16000 ∙ 𝑥3 + 10000 ∙ 𝑥4 

And the restrictions on concentrations: 

100 ∙ (1 − 𝑥1) ≤ 20 

40 ∙ (1 − 𝑥2) ≤ 20 

47.2727 − 4.54545 ∙ 𝑥1 − 6.36364 ∙ 𝑥2 − 36.3636 ∙ 𝑥3 ≤ 20 

22.48 − 1.2 ∙ 𝑥1 − 1.68 ∙ 𝑥2 − 9.6 ∙ 𝑥3 − 10 ∙ 𝑥4 ≤ 20 

Additional restrictions on the degree of purification: 

0 ≤ 𝑥𝑖 ≤ 1 

The task is therefore a standard linear programming problem! 

 %% linear programming 
 clear all; clc 
 % the coefficient vector of the objective function 
 c=[2000;4000;16000;10000]; 
 % Linear constraint with inequality  
 % A*x <= b  
 A = [-100, 0, 0, 0; 0, -40, 0, 0; - 4.54545,-6.36364,-36.3636,0; -

1.2, -1.68,-9.6, -10]; 
 b = [-80;-20; -27.2727;-2.48]; 
 % There is no linear constraint with equality 
 Aeq = []; beq = []; 
 % Lower limit for variables 
 lb = [0 0 0 0]; 
 % Upper limit for variables 
 ub = [1 1 1 1]; 
 sol = linprog(c,A,b,Aeq,beq,lb,ub,optimset('Display','iter')) 
 % sol = 0.8; 0.5; 0.5625; 0 

 

NEW FUNCTIONS USED IN THE CHAPTER 

fmincon - Find minimum of constrained nonlinear multivariable function 

deal - Distribute inputs to outputs 

linprog - Solve linear programming problems 
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