
Ordinary Differential Equations - Initial value problems

Differential equations
Differential equations are equations containing a function  and its derivatives. The ordinary differential 
equations (ODEs) contain a univariate function and its derivatives. The order of the ODE equals the highest 
order of derivatives in the equation. As opposed to an ODE, there are partial differential equations (PDEs) as 
well that contain a multivariate function's partial derivatives. 

The solution for a differential equation is not a number but a function. In order for the solution to be unique, 
some constraints have to be met by the solution function. One constraint can be that the function and its 
derivative take some value at the beginning of the interval of interest, hence the initial value problem. Another 
constraint would be that at least one of the values the function or its derivative takes is given at the end of the 
interval.

Generally, we have a solution set for a given differential equation. For example, take the following ODE: 

. We are looking for a function that solves this equation. All the functions in the figure below solve 

the equation, so they make up the solution set for the equation. The figure below is also called the trajectory or 
direction field of the ODE.

If we specify the initial conditions for the function and derivative's value at the beginning of our search interval, 
e.g. the function has to go through the point , that we have reduced the solution to a specific 
solution, that is the function given by the red line below:
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There are linear ODE's and nonlinear ones. In a linear ODE, the linear expression of the unknown function and 
its derivatives are given. For example:

  -- This is a linear ODE.

  -- This is a nonlinear ODE.

In the case of many differential equations and systems (especially if they are nonlinear), the solution function 
can only be found numerically. The numeric solution give us the data points of the function computed using 
numeric integration. The aim of these algorithms is to accurately approximate the data points of the solution 
function using as few steps and function evaluations as possible.

Ordinary Differential Equations - The initial value problem
The general form of a first order ODE with the independent variable t:

In the univariate case, we have one independent variable (t) and one dependent variable (y). The derivative of 
the function y is given by . In the case of the initial value problem, we know that the solution goes through 
the ( ) point:

Euler's method
We wish to find the values of the solution function on a given interval using a predefined step size (h). We 
suppose that the slope of the function (m) on the interval defined by the h step size is constant. If we know the 
functions value at the beginning of the interval and the value of its derivative (which denotes the slope of the 
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function) than we can approximate the value of the function at the end of the h step size using a line with slope 
m.

In case of Euler's method, we suppose that the  value is constant for each subinterval ( ) 
where we integrate and its value is given at the beginning of the interval.

where m is the slope at the beginning of each subinterval and its value is constant on the subinterval. The local 
error of the method is , its global error is  meaning that it is a first-order method.

Let's look at an example custom code that implements Euler's method in MATLAB:

function [t,y] = euler (f, y0, a, b, h)
n = round((b - a)/h);
t(1) = a;
y(1) = y0;
for i = 1 : n - 1
    y(i + 1) = y(i) + h*f(t(i), y(i));
    t(i + 1) = t(i) + h;
end
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The inputs to the function above:

1. f - the handle of the function that defines the right-hand side of the ODE.
2. y0 - the initial value of the solution function at the beginning of the search interval.
3. a - the beginning of the search interval.
4. b - the end of the search interval.
5. h - the step size for the computation.

Solving an ODE using Euler's method
Let's look at the following example. A spherical water tank with radius  is drained using a hole on 

its bottom at  height. The hole has a radius . The contains approximately 4000  of water. 
At the beginning of the draining ( ), the height of the water inside the tank is 17.44 m. The coefficient of 
contraption of the hole is .

The water level inside the tank, measured from the bottom is given by the following first-order ODE:

where . We have two questions:

1. How high will be the water level in the tank after 12 hours?
2. How much time does it take to completely drain the tank?

Solving a differential equation always starts with rearranging the equation into a form where we have the 
derivative on side and all the other variables and constant on the other. In our case, the ODE is already given in 
this form, so we can skip this step. The function that is equal to the derivative will be our f function.

We have to define the function in MATLAB and solve it using Euler's method and a step size of 60 seconds. It 
is possible that the derivative function f itself does not contain the independent variable t. Nevertheless, we still 
have to define the function in MATLAB using the independent variable t as well.

Definition of the constants:

R = 10;
r = 0.05;
g = 9.81;
mu = 0.85;

The derivative function:

f = @(t, h) -mu*r^2*sqrt(2*g*h)/(2*h*R - h.^2) % Note that the expression is given as a function of t and h, even though t is not present in the actual expression

f = function_handle with value:
    @(t,h)-mu*r^2*sqrt(2*g*h)/(2*h*R-h.^2)

Defining the initial value, the interval of the solution and the step size:

h0 = 17.44; % initial water level
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t0 = 0; % 0 hours is the beginning of the interval
t1 = 12*3600; % 12 hours is the end of the interval (given in seconds)
s = 60; % step size in seconds

The solution using Euler's method:

[T, H] = euler(f, h0, t0, t1, s);

Plotting the solution:

figure(1);
plot(T, H);
xlabel('Time [s]');
ylabel('Water level [m]');
title('Change in water level through time');

As the computation was carried out to 12 hours, the last element inside the vector H will give us the answer to 
the first question:

H(end)

ans = 2.7810

The water level after 12 hours is ~2.78 m. The method used is a first-order method ( ). Before we try to 
answer the second the question, let's see if we can do better than just a first-order approximation.
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Improvements of Euler's method (Heun's method, midpoint method, Runge-
Kutta method)
A similar approach is used to estimate the function values in all of the methods mentioned in the section title, 
the difference lies in the way of approximating the slope of the function.

In Euler's method, the slope is calculated at the beginning of the step.

In Heun's method, the slope is calculated at the beginning  and at the end of the step interval  as 
well. The final value of the slope that is used is the average of the two computed values. In order to be able to 
calculate the slope at the end of the step size, we have to know the function value there as . 
To be able to achieve this, a so-called predictor step is carried out first using Euler's method and the result of 
the predictor step is used to compute the final slope value:

1. Predictor step (Euler's method): 

2. Corrector step: ,     

3.
Final slope value: 

The local error of the method is , its global error is , which means that the method is a second-order 
method and is a magnitude more accurate than Euler's method.

In case of the midpoint method, the derivative is computed in the midpoint of the step and its value will be 
considered constant for the given step. To achieve this, the preliminary value of the function is computed for the 
midpoint using Euler's method and then the value of the slope is calculated:

1. Function value at the midpoint (Euler's method): 

2. Slope in the midpoint:    

6



3. Function value at the end of the step: 

Euler's method can be further improved if we use even more points to compute the slope and use the weighted 
average of these values. The most common of these methods is the fourth-order Runge-Kutta method which 

has a global truncation error of . In MATLAB, we can use the built-in ode45 command.

The function value at  is computed from the formula:

where:

•   -   the slope at the beginning of the step size, point A is computed using this slope,
•     -   the slope in point A, point B is calculated using this slope,

•     -   the slope in point B, point C is computed using this slope,

•     -   the slope in point C.

The steps of the computation:

1.

2.

3.
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4.

5.

Solution of a first-order ODE using the Runge-Kutta method
In MATLAB, we can use the fourth-order Runge-Kutta method in the following form:

[T, Y] = ode45(odefun, tspan, y0)

where T and Y are the output of the independent variable and the solution, odefun is the function handle for the 
derivative function, tspan is the interval of the independent variable and y0 is the initial value of the function at 
the start of the interval. The value of tspan can be given in two ways:

• as a vector of the start and the end of the interval, in this case, the ode45 algorithm decides the step size 
automatically,

• as a vector of the values of the independent variable, in this case, we decide the step size and define it 
explicitely.

Solution using ode45:

% Letting the algorithm deicde the step size
[T1, H1] = ode45(f, [0, 12*3600], h0);
H1(end) % water level after 12 hours

ans = 2.7779

% Defining the step size explicitely
[T2, H2] = ode45(f, [0:60:12*3600], h0);
H2(end)

ans = 2.7713

Plotting the results:

figure(1);
hold on;
plot(T1, H1, 'r');
plot(T2, H2, 'g');

The difference in the values is very minor, only a couple of millimeters. It is worth noting however, that when the 
algorithm decided the step size, it wasn't constant throughout the whole interval:

figure(2);
plot(diff(T1));
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The step sized varied between 995 and 1165 seconds. Smaller step sizes can usually make the approximation 
more accurate, however, it increases the number of function evaluations. The algorithm itself tries to decide 
when to use a smaller and when to use a bigger step size, depending on the difference between the function 
values.

Let's anwer the second question now: how much time is needed to completely drain the tank?

To answer this, we first have to compute the function values using a longer period than 12 hours, as we have 
seen that after 12 hours, the water level is still higher than 2 meters. Let's use 14 hours (in seconds) for the 
end of our interval. We have to be careful, because of the square root inside the formula, the results become 
complex after the  line is passed. We first have to convert the complex into real ones, fit a spline to our 
solution data and find the intersection of our spline and the horizontal line at :

[T3, H3] = ode45(f, 0:60:14*3600, h0);
figure(1);
H3 = real(H3); % ignoring the imaginary parts
plot(T3, H3, 'k');

Fitting of a spline to the data:

sp = @(t) spline(T3, H3, t);
fplot(sp, [min(T3), max(T3)])
rl = refline(0, 0);
rl.Color = 'r';
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Findig the intersection of the two lines (solution of  equation), the initial guess is from the figure:

h_0 = fzero(sp, 50000)

h_0 = 4.9192e+04

In hours:

h_0 / 3600

ans = 13.6644

What does the draining of the tank looks like if we have different initial water levels? We can visualize this 
by creating the trajectory or direction field of the ODE by solving it using initial values from 1 m to 20 m for 
example:

figure(3);
hold on;

for i = 20:-1:1 % go from 20 to 19, 18, ... 1
    [T, H] = ode45(f, [0, 14*3600], i);
    plot(T, real(H), 'b');
end
axis([0, 14*3600, 0, 20])
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Solution of a system of first-order ODEs
In many cases the phenomenon we are investigating is dependent on multiple variables that can alter each 
other. In such cases we have to solve not a single ODE but a system of ODEs. Let the dependent variables be 

 and the independent variable be t. In a general form, the system of first-order ODEs can be written 
as:

The initial values on the interval :

Some systems of ODEs can be solved using the generalized forms of the explicit methods mentioned before: 
, in case of Euler's method for example:
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The improved methods can be similarly generalized. Let's see the following simple example. We are looking for 
the solution in the interval  using a step size of .

       

We have two equations,  denotes the derivative of the first variable with respect to t and  denotes the same 
for the second variable. Let's use the Runge-Kutta method to solve the system. We have to use vector notation 
when specifying the variables, for example we can use , so that  and .

If the system is not too complicated, we can define it as an anonymous function in MATLAB:

clear all; close all;
odesys = @(t, v) [v(1)*t - v(2); v(2)*t + v(1)];

Before we can solve it, we have to define the interval, the step size and the initial values.

t = 0:0.4:1.2;
init = [1; 0.5];
[T, Y] = ode45(odesys, t, init);
figure(1);
hold on;
plot(T, Y(:, 1), T, Y(:, 2));
legend('x(t)', 'y(t)', 'Location', 'best');
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If the system is more complicated, it is better practice to define it in a separate file as a regular function. Let's do 
this for the above example. We can create a function file called sysdiff.m and define the system:

function dvdt = sysdiff(t, v)
  f1 = v(1)*t - v(2);
  f2 = v(2)*t + v(1);
  dvdt = [f1; f2];
end

If our system is defined in a separate function file, we have to put an "@" symbol before its name when referring 
to it in the solver:

[T, Y] = ode45(@sysdiff, t, init)

T = 4×1
         0
    0.4000
    0.8000
    1.2000
Y = 4×2
    1.0000    0.5000
    0.7868    0.9207
    0.4655    1.4676
   -0.2130    2.2870

Second-order ODEs
Second-order ODEs with independent variable t and dependent variable y can be given in the following general 
form:
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The equation can be solved on the interval  if we have two know values. If these values are given at the 
beginning of the interval, than we call it an initial value problem. The two initial values that have to be given are 

the value of y and  at the beginning of the interval. Let these initial values be denoted using A and B:

        and         

This type of second-order ODE can be transformed into a system of two first-order ODEs that can be solved 
similarly to the previous case. The first step of the solution is to rearrange the equation in such a way that the 

second derivative is expressed as a function of the other variables and constants . Of course, it 

can be the case that the second derivative is not dependent on all of the variables. As t is the independent 

variable, it always has to be specified in MATLAB. We can substitute new variables instead of y and :

       and         

Now, we have to write to equations for the first derivatives of the two new variables and give their initial values:

        

Using these new definitions, the second-order equation is given as a system of two first-order ODEs.

Solution of a second-order ODE in MATLAB
Let's look at the following example. We are simulating the suspension of a vehicle using the following simple 
model, where the vehicle travels through an obstacle with height A. 
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In the modell, m is the mass of the vehicle, k is the spring constant (the force in the spring is proportional to the 
displacement), c is the dampening factor (the dampening force is proportional to the velocity of the mass). The 
following data is used:

•
•

•

•

Summing up the forces in the dampened system, we get the following second-order ODE:

where x is the vertical position of the vehicle,  is the position's first derivative with respect to time (the vertical 
velocity of the vehicle) and  is the second derivative of the position (the vertical acceleration of the vehicle). 
Defining the equation in the vehicle's coordinate system:

The initial values are the vertical displacement of the vehicle at the begining of our interval and the initial verical 
velocity at the beginning of the interval, both are zero:

        and         

The first step is to express the second derivative from the equation:

We have to transform this second-order equation into a system of two first-order ODEs. Before we do this, let's 
introduce two substitutions:

Using these substitutions, we can write two equations and their initial values:

         

We can create our system of ODEs in a separate function file vehicdiff.m. We can use the vector notation 
, so that  is the vertical displacement and  is the vertical velocity.
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function f = vehdiff(t, w)
    % Constants
    m = 1000; k = 1000; A = 0.1; c = 500;
    f1 = w(2);
    f2 = 1/m * (k*A - k*w(1) - c*w(2));
    f = [f1; f2];
end

Note that the variable t is given among the input variables, however, it is not usd explicitely in the equations. 
Let's solve the system using the Runge-Kutta method (ode45 in MATLAB) specifying an absolute and a relative 

tolerance of , on the interval 0-15 seconds.

Optional parameters can be specified for the ode45 solver similarly to previous solvers, using the odeset() 
function. Some of the most relevant parameters:

• RelTol - scalar relative tolerance that is valid for each component of the function y, it measures the error 
relative to the magnitude of each solution function;

• AbsTol - scalar or vector of tolerance values that is valid for all or some of the solution functions, controls 
the step size of the solver; 

• MaxStep - the largest acceptable step size,
• InitialStep - recommended starting step size.

clear all; close all;
options = odeset('RelTol', 1e-4, 'AbsTol', [1e-4, 1e-4]);
x0 = 0; % initial position
v0 = 0; % initial vertical velocity
[T, W] = ode45(@vehdiff, [0, 15], [x0; v0], options);

The first column of the solution vector W contains the values of the position ( ), the second column 

contains the values of the vertical velocity .

Important remark: always include the independent variable (t in our case) as a variable of the function 
file that defines the system of ODEs. If the system is defined in a separate file, always include the '@' 
symbol before its name.

To visualize our results, we can plot the position and the velocity values as functions of time. We can also plot 
the velocity as a function of the position (where time becomes a parameter of the curve), this is called the phase 
portrait of the system of ODEs:

figure(1);
hold on;
x = W(:, 1);
v = W(:, 2);
plot(T, x, T, v);
legend('Position [m]', 'Velocity [m/s]', 'Location', 'best');
title('Position and velocity vs time');
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figure(2);
plot(x, v);
xlabel('Position [m]');
ylabel('Velocity [m/s]');
title('Phase portrait of the system of ODEs');
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N-th order ODEs
When dealing with third-order, fourth-order to even higher order ODEs, let's assume an n-th order ODE,  the 
solutions can be reduced to solving a system of n number of first-order ODEs by introducing new variables. In 
order to solve such an equation, we need n initial values, e.g. in the third-order case 3, in the fourth-order case 
4.

The general form of an n-th order ODE:

     

The initial conditions:

,       ,        ,      ,        

If we introduce n new variables and their initial values, we can write the following system of ODEs:
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As an example, let's solve the following third-order ODE on the interval :

The initial values:

The first step is to express the highest order derivative in the equation:

Next, we can introduce the new variables and write the system of 3 first-order ODEs:

              

In the new system of ODEs, we have to define the derivatives of the new variables:

             

The system is created in a separate file, diff3.m:

function dwdx = diff3(x, w)
    f1 = w(2);
    f2 = w(3);
    f3 = 2*x - 3*w(1) + 4*w(2) + x*w(3);
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    dwdx = [f1; f2; f3];
end

Solution in MATLAB:

clear all; close all;

% Initial values
w10 = 3; w20 = 2; w30 = 7;

% Solution
[X, W] = ode45(@diff3, [0, 1], [w10; w20; w30]);

% Plotting the results
figure(1);
plot(X, W(:, 1), X, W(:, 2), X, W(:, 3));
lgd = legend('y', 'dy/dx', 'd^2y/dx', 'Location', 'best');

N-th order systems of ODEs
Given an n-th order system of ODEs, the solution can be reduced similarly to the example shown above by 
introducing new variables. For the sake of example, take the following general form of a second-order system of 
ODEs:
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We have to define 4 new variables:

                    

Using these new variables, we can write a system of four first-order ODEs:

The solution is analogous to the previous example.
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