Exercises in the field of error propagation

Exercise 1. We have to measure the elevation difference of two points with the mean error of $1,5 \mathrm{~mm}$. We carry out repeated two-way levellings, where the elevation difference computed from a one-way levelling has the mean error of 6 mm . How many times do we have to repeat the two-way levellings to achieve the required accuracy?

The mean error of a one-way levelling:

$$
m_{\text {one-way }}= \pm 6 \mathrm{~mm}
$$

The elevation difference computed from forward and backward levellings:

$$
\Delta h_{t w o-w a y}=\frac{\Delta h_{\text {forward }}-\Delta h_{\text {backward }}}{2}
$$

In order to compute the mean error of a two-way levelling, we apply the law of error propagation:

$$
\begin{aligned}
& \frac{\partial \Delta h_{t w o-w a y}}{\partial \Delta h_{\text {forward }}}=\frac{1}{2}, \text { and } \\
& \frac{\partial \Delta h_{\text {two }-w a y ~}}{\partial \Delta h_{\text {bacward }}}=-\frac{1}{2} .
\end{aligned}
$$

since the mean error of a one-way levelling is given, therefore:

$$
m_{\text {forward }}=m_{\text {backward }}=m_{\text {one-way }} .
$$

According to the law of error propagation:

$$
m_{t w o-w a y}=\sqrt{\left(\frac{1}{2}\right)^{2} m_{\text {forward }}^{2}+\left(-\frac{1}{2}\right)^{2} m_{\text {backward }}^{2}}=\frac{m_{\text {one-way }}}{\sqrt{2}}= \pm 4,2 \mathrm{~mm}
$$

How many times should a two-way levelling be repeated, in order to achieve the required mean error of $\pm 1,5 \mathrm{~mm}$?

The most likely value of the results of repeated observations is computed by the arithmetic mean (average value):

$$
\overline{\Delta h}=\frac{\sum_{i=1}^{n} \Delta h_{i}^{\text {two-way }}}{n} .
$$

When the law of error propagation is applied to the previous formula, the following result is obtained:

$$
m_{\overline{\Delta h}}=\frac{m_{t w o-w a y}}{\sqrt{n}}
$$

Since the required mean error $m_{\overline{\Delta h}}$ is given, and the mean error of a two-way levelling has been already computed, the number of repetition (n) can be determined as well:

$$
\pm 1,5 \mathrm{~mm} \geq \frac{ \pm 4,2 \mathrm{~mm}}{\sqrt{n}}
$$

therefore:

$$
n \geq\left(\frac{ \pm 4,2}{ \pm 1,5}\right)^{2}=8
$$

The two-way levelling should be repeated at least 8 times in order to achieve the required mean error.

Exercise 2. The inner diameter and the height of two cylindrical water towers have been measured. The diameters were $\mathrm{d}=32,12 \mathrm{~m} \pm 5 \mathrm{~cm}$ and the heights were $\mathrm{h}=24,45 \mathrm{~m} \pm 3$ cm . Compute the cummulative volume of the towers and its mean error!

The volume of one cylinder:

$$
V=\frac{d^{2} \pi}{4} h .
$$

Since we have two cylinders, the total volume is:

$$
V=\frac{d^{2} \pi}{2} h=39623,22 \mathrm{~m}^{3}
$$

Applying the law of error propagation to the formula of the volume:

$$
\begin{aligned}
& \frac{\partial V}{\partial d}=d h \pi=2467,199 \mathrm{~m}^{2} \\
& \frac{\partial V}{\partial h}=\frac{d^{2} \pi}{2}=1620,582 \mathrm{~m}^{2}
\end{aligned}
$$

The mean error of the volume is:

$$
m_{V}=\sqrt{\left(\frac{\partial V}{\partial d}\right)^{2} m_{d}^{2}+\left(\frac{\partial V}{\partial h}\right)^{2} m_{h}^{2}}= \pm 132,5 \mathrm{~m}^{3}
$$

Finally the volume of the two towers is: $39623,22 \pm 132,5 \mathrm{~m}^{3}$.

Exercise 3. In order to compute the perimeter of a triangle, we have measured the sides a, b and the angle α. How much is the area of the triangle, and its mean error?

The area of the triangle is:

$$
A=\frac{a b}{2} \sin \alpha=3862,4 \mathrm{~m}^{2}
$$

Let's apply the law of error propagation:

$$
\begin{gathered}
\frac{\partial A}{\partial a}=\frac{b}{2} \sin \alpha=38,54 \mathrm{~m} \\
\frac{\partial A}{\partial b}=\frac{a}{2} \sin \alpha=44,34 \mathrm{~m} \\
\frac{\partial A}{\partial \alpha}=\frac{a b}{2} \cos \alpha=2035,66 \mathrm{~m}^{2}
\end{gathered}
$$

The respective mean error values are:

$$
\begin{gathered}
m_{a}= \pm 0,05 \mathrm{~m} \\
m_{b}= \pm 0,04 m \\
m_{\propto}= \pm 7^{\prime \prime}= \pm \frac{7}{206264,8}[\mathrm{rad}]
\end{gathered}
$$

Please note that the mean error of angular variables must be converted into radian!
The law of error propagation:

$$
\begin{gathered}
m_{A}=\sqrt{\left(\frac{\partial A}{\partial a}\right)^{2} m_{a}^{2}+\left(\frac{\partial A}{\partial b}\right)^{2} m_{b}^{2}+\left(\frac{\partial A}{\partial \alpha}\right)^{2} m_{\alpha}^{2}}= \\
\sqrt{38,54^{2} \cdot 0,05^{2}+44,34^{2} \cdot 0,04^{2}+2035,66^{2} \cdot\left(\frac{7}{206264,8}\right)^{2}}= \pm 2,62 \mathrm{~m}^{2}
\end{gathered}
$$

So the area of the triangle is: $3862,4 \pm 2,62 \mathrm{~m}^{2}$.

