Tantárgyi adatlap

Download PDF

I. Subject Specification

1. Basic Data
1.1 Title
Numerikus módszerek
1.2 Code
BMEEOAFPK51
1.3 Type
Module with associated contact hours
1.4 Contact hours
Type Hours/week / (days)
Lab 1
1.5 Evaluation
Midterm grade
1.6 Credits
4
1.7 Coordinator
name Dr Laky Piroska
academic rank Associate professor
email laky.piroska@emk.bme.hu
1.8 Department
Department of Geodesy and Surveying
1.9 Website
1.10 Language of instruction
hungarian and english
1.11 Curriculum requirements
Compulsory in the Infrastructure Engineering (MSc) programme
1.12 Prerequisites
1.13 Effective date
1 September 2023

2. Objectives and learning outcomes
2.1 Objectives
A tantárgy célja, hogy a hallgatók megismerjék és készség szinten alkalmazzák a mérnöki matematikai feladatok, problémák számítógéppel történő numerikus megoldási lehetőségeit. A számítógépes gyakorlatokon ismertetésre kerülnek a legfontosabb numerikus módszerek alapjai, előnyei és hátrányai, alkalmazhatósági körük. A gyakorlatok során műszaki feladatok megoldására alkalmas matematikai környezet eljárásai és azok grafikus prezentációi kerülnek bemutatásra, lehetőség szerint építőmérnöki példákon keresztül. A tárgy további célja, hogy későbbi önálló kutató munkára is felkészítse a hallgatókat.
2.2 Learning outcomes
Upon successful completion of this subject, the student:
A. Knowledge
  1. Birtokában van egy matematikai környezet készség szintű ismerete
  2. Ismeri az adott matematikai környezet alapvető parancsait, utasításait, ciklusokat, elágazásokat, grafikus megjelenítési lehetőségeket, szöveges adatok beolvasási, fájlba írási lehetőségeit
  3. Különbséget tud tenni a számítások hibái között
  4. Ismer lineáris egyenletrendszerek megoldására szolgáló módszereket
  5. Érti a nemlineáris egyenletrendszerek gyökkeresési eljárásait
  6. Tisztában van az interpolációs és regressziós módszerek közötti különbséggel
  7. Áttekintéssel rendelkezik egyes optimalizációs módszerekről
  8. Tájékozott különböző numerikus deriválás, integrálás eljárásokat illetően
  9. Ismeri a közönséges differenciál egyenletek kezdeti érték és peremfeladatainak néhány megoldási módszerét
B. Skills
  1. Gyakorlottan képes egy matematikai környezetet mérnöki problémák megoldására használni
  2. Képes a felmerülő hibaüzeneteket értelmezni, azok alapján kijavítani hibákat.
  3. Hatékonyan használja a dokumentációt, segítségével megtalálja a számára szükséges parancsokat, értelmezi a parancsok által használt algoritmusokat, paramétereket
  4. Képes szöveges fájlok matematikai környezetbe történő beolvasására
  5. Rutinszerűen készít matematikai környezetben grafikonokat, azokat az elvárásoknak megfelelően paraméterezi
  6. Kiválasztja az adott feladat megoldásához leginkább alkalmas módszereket
  7. Képes mérési adatokra interpolációs vagy regressziós görbét/felületet illeszteni
  8. Gyakorlottan old meg lineáris és nemlineáris egyenletrendszereket
  9. Meg tud oldani feltétel nélküli és megkötéses optimalizációs feladatokat is, egy és több változós esetekben is.
  10. Képes egy adott probléma megoldása során numerikusan deriválni, integrálni
  11. Képes magasabb rendű differenciál egyenletet átalakítani elsőrendű egyenletrendszerré a numerikus megoldáshoz
  12. Meg tud oldani közönséges differenciálegyenleteket, kezdeti érték és peremérték feladat esetén is, egy és kétváltozós esetekben is
C. Attitudes
  1. Törekszik a megoldás során a leghatékonyabb algoritmust kiválasztani
  2. Fogékony az egyszerű és hatékony programkódok iránt,
  3. Igyekszik megfelelő módon, mások számára is érthetően dokumentálni, kommentekkel ellátni a programkódot
D. Autonomy and Responsibility
  1. Önállóan végzi el a házi feladatként kijelölt problémák megoldását
  2. Nyitottan fogadja a megalapozott kritikai észrevételeket, ezeket elfogadja és beépíti további feladat végzésébe
  3. Önállóan utánanéz a feladatok megoldásához szükséges parancsok használatának a dokumentációban
2.3 Methods
Előadások és számítógépes gyakorlatok, konzultációk.
2.4 Course outline
Hét Előadások és gyakorlatok témaköre
1. Bevezetés a numerikus módszerekbe, számítások hibái. Nemlineáris egyenletek gyökei.
2. Lineáris és nemlineáris egyenletrendszerek
3. Egy- és kétváltozós regresszió, interpoláció
4. Numerikus deriválás, integrálás
5. Optimalizálás
6. Differenciálegyenletek - Kezdeti érték problémák
7. Differenciálegyenletek - Peremérték feladatok

The above programme is tentative and subject to changes due to calendar variations and other reasons specific to the actual semester. Consult the effective detailed course schedule of the course on the subject website.
2.5 Study materials
a) Könyvek, online anyagok:
  1. Laky Piroska (2020): Numerikus módszerek építőmérnököknek Matlab-bal, Akadémiai Kiadó, ISBN: 978 963 454 506 4, DOI: 10.1556/9789634545064, URL: https://mersz.hu/kiadvany/703
  2. Matlab dokumentáció - https://www.mathworks.com/help/matlab/
  3. Todd Young and Martin J. Mohlenkamp (2017): Introduction to Numerical Methods and Matlab Programming for Engineers, Department of Mathematics, Ohio University, July 24, 2018, (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License), http://www.ohiouniversityfaculty.com/youngt/IntNumMeth/book.pdf
  4. Faragó István, Horváth Róbert (2013): Numerikus módszerek, http://fizweb.elte.hu/download/Fizika-BSc/Fizika-numerikus-modszerei-1/BME-Farago-Horvath-Numerikus-modszerek.pdf
b) Oktatási keretrendszerben található jegyzet, bemutatók, leírások, feladatok
2.6 Other information
Órai munka során megengedett a saját laptop használata, a gyakorlaton használt szoftverek megléte esetén
2.7 Consultation
Konzultációs időpontok:
a tanszék honlapján megadottak szerint, vagy a tantárgy oktatóival e-mail-ben egyeztetve
This Subject Datasheet is valid for:
Nem induló tárgyak

II. Subject requirements

Assessment and evaluation of the learning outcomes
3.1 General rules
A 2.2. pontban megfogalmazott tanulási eredmények értékelése gyakorló kis házi feladatokkal és két évközi számítógépes teljesítménymérés alapján történik.
3.2 Assessment methods
Teljesítményértékelés neve (típus) Jele Értékelt tanulási eredmények
Gyakorló feladatok (kis házi feladatok, részteljesítmény értékelés) F A.1-A.9; B.1-B.12; C.1-C.3; D.1-D.3
1. zárthelyi dolgozat (összegző értékelés) ZH1 A.1-A.6; B.1-B.8; C.1-C.3
2. zárthelyi dolgozat (összegző értékelés) ZH2 A.6-A.9; B.1-B.12; C.1-C.3

A szorgalmi időszakban tartott értékelések pontos idejét, a házi feladatok ki- és beadási határ-idejét a „Részletes féléves ütemterv” tartalmazza, mely elérhető a tantárgy honlapján.


The dates of deadlines of assignments/homework can be found in the detailed course schedule on the subject’s website.
3.3 Evaluation system
Jele Részarány
F 30%
ZH1 35%
ZH2 35%
Összesen 100%
A félév közbeni gyakorló feladatokra 0-30%-t, a zárthelyi dolgozatokra egyenként 0-35 %-ot lehet kapni. A tantárgy sikeres teljesítésének feltétele a zárthelyi dolgozatok mindegyikéből legalább 15 pontos eredmény elérése 35 pontból (~42%) és az összpontszám 50 %-ának elérése.
3.4 Requirements and validity of signature
A tárgyból nem szerezhető aláírás.
3.5 Grading system
ÉrdemjegyPontszám (P)
jeles (5)86<=P
jó (4)73<=P<86
közepes (3)60<=P<73
elégséges (2)50<=P<60
elégtelen (1)P<50
3.6 Retake and repeat
  1. Mindkét zárthelyit egyszer lehet pótolni/javítani a részletes féléves ütemtervben megadott időpontokban. Az utoljára megírt dolgozat eredménye számít.
3.7 Estimated workload
Tevékenység Óra/félév
részvétel a kontakt tanórákon 7×2=14
félévközi készülés a gyakorlatokra 7×6=42
felkészülés a teljesítményértékelésre 2×24=48
gyakorló feladatok elkészítése 16
Összesen 120
3.8 Effective date
1 September 2023
This Subject Datasheet is valid for:
Nem induló tárgyak