I. Tantárgyleírás # 1. Alapadatok 1.1 Tantárgy neve # BASICS OF ENVIRONMENTAL ENGINEERING 1.2 Azonosító (tantárgykód) ## **BMEEOVKAT41** 1.3 Tantárgy jellege Kontaktórás tanegység 1.4 Óraszámok | Típus | Óraszám / (nap) | |-------------------|-----------------| | Előadás (elmélet) | 2 | ## 1.5 Tanulmányi teljesítményértékelés (minőségi értékelés) típusa Félévközi érdemjegy 1.6 Kreditszám 3 ## 1.7 Tárgyfelelős | név | Dr. Zsolt KOZMA | |----------|------------------------| | beosztás | Egyetemi docens | | email | kozma.zsolt@emk.bme.hu | ## 1.8 Tantárgyat gondozó oktatási szervezeti egység Vízi Közmű és Környezetmérnöki Tanszék 1.9 A tantárgy weblapja https://epito.bme.hu/BMEEOVKAT41 https://edu.epito.bme.hu/course/view.php?id=459 1.10 Az oktatás nyelve magyar és angol 1.11 Tantárgy típusa Kötelező az építőmérnöki (BSc) szakon ## 1.12 Előkövetelmények ## 1.13 Tantárgyleírás érvényessége 2020. február 5. #### 2. Célkitűzések és tanulási eredmények #### 2.1 Célkitűzések The aim of the course is to provide basic scientific and engineering background for further studies in environmental engineering. Main topics: the relationship of humanity and its environment, system dynamics, introduction to various environmental issues associated with human activities (such as classic water, air and soil pollution cases, disturbance of material cycles, climate change), ecosystem services, externalities, sustainability, environmental indices, energy consumption patterns and energy production technologies (with special focus on the renewables). ### 2.2 Tanulási eredmények A tantárgy sikeres teljesítése utána a hallgató #### A. Tudás - 1. will be able to describe the relations between humans and the environment, as well as the relation between economy and the environment - 2. will understand the working mechanism and building blocks of dynamic systems - 3. will learn about the main geochemical material cycles and the effect of human activities on them - 4. will learn about the most important pollutants, the process of pollution and the evolution of possible reactions to environment pollution - 5. will know about the major water and air pollution issues - 6. will understand the role and the importance of ecological systems and ecosystem services - 7. will gain information about the evaluation of environmental disasters - 8. will learn about the basic goals and the applicable tools of environmental management - 9. will be informed about the environmental aspects of energy production and utilization ## B. Képesség - 1. will be able to understand and differentiate various indicators used to characterize the state of the environment and well-being of human societies - 2. will be able to identify the different types of smog and point out the primary causes that lead to their formation #### C. Attitűd - 1. will realize the importance of the effects of human activities on the environment - 2. will broaden knowledge also by gathering information from various sources, including extracullicular sources (i.e. the Internet) as well # D. Önállóság és felelősség 1. will apply a systematic approach in accomplishing tasks #### 2.3 Oktatási módszertan Lectures, exercises, written and oral communications, application of IT tools and techniques. #### 2.4 Részletes tárgyprogram | Week | Topics of lectures and/or exercise classes | |------|---| | 1. | Introduction. The relation of humanity and the | | | environment. Economy and the environment. Symptoms | | | of a global environmental crisis, the birth of | | | environment protection. The limits to growth, the idea | | | of sustainability. The "Great acceleration" and the | | | Holocene-Anthropocene transition. | | 2. | System dynamics. Building blocks, working | | | mechanism and limitation of dynamic systems. System | | | stability and transition between different stable states. | Links between environment, sustainability and system | | dynamics. Planetary boundaries. | |----------|--| | 3. | Materials management. Selected material flows and | | <u></u> | their management issues. Anthropogenic perturbation of | | | the nitrogen, phosphorus, carbon and water cycles and | | | associated environmental issues. | | 4. | Pollution (first part). Definitions. The pollution | | T• | process and its indicators. The evolution of | | | environmental protection paradigms through examples | | | of water pollution: plagues and sanitation, dissolved | | | oxygen problem in rivers and wastewater treatment, | | | eutrophication of water bodies and watershed | | | management. Mixing and dilution of pollutants in water. | | 5. | Pollution (second part). Classification and sources of | | j. | air pollutant substances. Health-related and | | | environmental effects of air pollution. The evolution of | | | environmental protection paradigms through examples | | | of air pollution: dispersion of air pollutants from point | | | sources, the effect of atmospheric stability, smog types. | | | A summary of end-of-pipe solutions (flue gas cleaning) | | | and the global success story of source-control measures: | | | stopping the depletion of the stratospheric ozone layer. | | 6. | Partial summary and conclusion. | | 7 | Ecology and ecosystem services. The importance of | | , | protecting ecological systems. What are the ecosystem | | | services? What is the theory behind and what are the | | | actual experiences? Types of ecosystem services | | | illustrated by examples. Answering the question: what | | | should be protected and why? | | 8. | Environmental disasters. Environmental problems | | | resulting in catastrophic events – how do we interpret | | | them? What are the common properties of | | | environmental disasters? Spatial and temporal scales. | | | Rethinking the usual classification based on causes and | | | effects: "extraordinary" pondering on the extraordinary. | | 9. | Benchmarking of environmental effects and well- | | | being. From economic to environmental indices. HDI | | | and SDG as new socio-economic indicators of human | | | well-being. The ecological, water and carbon footprints | | | as integrated indicators of the effect of human activities | | | on the environment. Introduction to ecological footprint | | | analysis. Presentation and evaluation of global and local | | | ecological footprints. Conclusions and criticism. Where | | | we now and where are we heading? | | 10. | Environmental regulations and management. | | | Externalities, regulatory toolset, legislative milestones, | | | environmental impact assessment, life cycle analysis, | | | voluntary decisions, "green washing". | | | | | 11. | Energy and the environment (first part). The | | 11. | | | 11. | Energy and the environment (first part). The | | 11. | Energy and the environment (first part). The evolution, status and future of the "carbon economy". | | 11. | Energy and the environment (first part). The evolution, status and future of the "carbon economy". The alternatives of carbon-based sources: nuclear | | 11. | Energy and the environment (first part). The evolution, status and future of the "carbon economy". The alternatives of carbon-based sources: nuclear energy and renewable resources. Discussion of | | | Discussion of solar, biomass and geothermal energy | |-----|---| | | utilization technologies in electricity generation and in | | | direct forms. Possibilities of decreasing the carbon | | | dependence of households. | | 13. | Climate change. Discussion about the role and | | | magnitude of human activities in forming the Earth's | | | Holocene climate system. What is known and how sure | | | that knowledge is? What kind of reactions are possible | | | and which of these are implemented? What are the | | | possible outcomes in the future? | | 14. | Final summary and conclusion. | A félév közbeni munkaszüneti napok miatt a program csak tájékoztató jellegű, a pontos időpontokat a tárgy honlapján elérhető "Részletes féléves ütemterv" tartalmazza. ## 2.5 Tanulástámogató anyagok - Textbooks - 1. Dr. Péter Budai Dr. Zsolt Kozma: Basics of Environmental Engineering (electronic textbook, 2017) - 2. BME Department of Sanitary and Environmental Engineering (2021): Basics of Environmental Engineering Textbook for Civil Engineer (BMEEOVKAT41) and Environmental Engineer (BMEEOVKAKM1) students (electronic textbook) - Online materials - 1. WWF Living Planet Report (2016) - 2. WWF Living Planet Report (2018) - 3. Lecture slides ## 2.6 Egyéb tudnivalók #### 2.7 Konzultációs lehetőségek The instructors are available for consultation during their office hours, as advertised on the department website. Special appointments can be requested via e-mail from the lecturers: kardos.mate@epito.bme.hu, kozma.zsolt@epito.bme.hu Jelen TAD az alábbi félévre érvényes: ### II. Tárgykövetelmények ## 3. A tanulmányi teljesítmény ellenőrzése és értékelése ### 3.1 Általános szabályok The assessment of the learning outcomes specified in clause 2.2. above and the evaluation of student performance occurs via student's presentation (SP). ### 3.2 Teljesítményértékelési módszerek | Evaluation form | Abbreviation | Assessed learning outcomes | |----------------------|--------------|--------------------------------| | student presentation | SP | A.1-A.9; B.1-B.2; C.1-C.2; D.1 | | midterm test | MT | A.1-A.9; B.1-B.2; C.1-C.2; D.1 | A szorgalmi időszakban tartott értékelések pontos idejét, a házi feladatok ki- és beadási határidejét a "Részletes féléves ütemterv" tartalmazza, mely elérhető a tárgy honlapján. ## 3.3 Teljesítményértékelések részaránya a minősítésben | Abbreviation | Score | |--------------|-------| | SP | 100% | | MT | 100% | | Sum | 100% | Criterion for completion of the subject is to collect at least 50% of the total points of the written test (WT1). 3.4 Az aláírás megszerzésének feltétele, az aláírás érvényessége Signature can't be obtained. ## 3.5 Érdemjegy megállapítása | If the student satisfies the attendance criteria, his/her mark will be determined as follows. | Grade | Points (P) | |---|-------------|------------| | | excellent | 80%<=P | | | (5) | | | | good (4) | 70%<=P< | | | | 80% | | | satisfactor | 60%<=P< | | | y (3) | 70% | | | passed (2) | 50%<=P< | | | | 60% | | | failed (1) | P<50% | The final mark is calculated based on the midter test (MT) or the student's presentation (SP) according to the student's choice. ## 3.6 Javítás és pótlás The student's presentation can not be repeated. In case the presentation fails, the student will be evaluated according to the MT assessment method. Students failing at the SP have to do a midterm test (one occassion). If the MT is unsatisfactory (failed), then the subject is failed. # 3.7 A tantárgy elvégzéséhez szükséges tanulmányi munka | Activity | Hours/semester | |---|----------------| | contact hours | 14×2=28 | | preparation for the courses | 14×1=14 | | home studying / preparation | 18 | | preparation for the test / presentation | 30 | | Sum | 90 | # 3.8 A tárgykövetelmények érvényessége Jelen TAD az alábbi félévre érvényes: