Subject Datasheet

PDF letöltése

I. Tantárgyleírás

1. Alapadatok
1.1 Tantárgy neve
Stability of Structures
1.2 Azonosító (tantárgykód)
BMEEOHSMT-2
1.3 Tantárgy jellege
Kontaktórás tanegység
1.4 Óraszámok
Típus Óraszám / (nap)
Előadás (elmélet) 2
Gyakorlat 1
1.5 Tanulmányi teljesítményértékelés (minőségi értékelés) típusa
Vizsga
1.6 Kreditszám
4
1.7 Tárgyfelelős
név Dr. Kövesdi Balázs Géza
beosztás Egyetemi docens
email kovesdi.balazs@emk.bme.hu
1.8 Tantárgyat gondozó oktatási szervezeti egység
Hidak és Szerkezetek Tanszék
1.9 A tantárgy weblapja
1.10 Az oktatás nyelve
magyar és angol
1.11 Tantárgy típusa
Kötelező a Szerkezet-építőmérnök (MSc) szak Numerikus modellezés specializációján
Kötelező a Szerkezet-építőmérnök (MSc) szak Tartószerkezetek specializációján
Szabadon választható a Szerkezet-építőmérnök (MSc) szakon
1.12 Előkövetelmények
Recommended prerequisites:
  • Structures 1 (BMEEOHSMS51)
1.13 Tantárgyleírás érvényessége
2020. február 5.

2. Célkitűzések és tanulási eredmények
2.1 Célkitűzések
The objective of the subject is the presentation of the most important problems in the stability analysis and stability design of steel structures. The student will learn the terminology of theory of engineering stability and theory of torsion of thin-walled members, as well as their practical importance and applicability. The most relevant modes of instabilities of engineering steel structures will be presented (flexural buckling, flexural-torsional buckling, lateral-torsional buckling, plate buckling). To each instability mode the student will learn the background and mathematical bases, as well as the Eurocode design procedures and their practical applications.
2.2 Tanulási eredmények
A tantárgy sikeres teljesítése utána a hallgató
A. Tudás
  1. will know the terminology of engineering stability theory,
  2. will know the basics of engineering torsion theory of thin-walled members,
  3. will know the two- and three-dimensional instability phenomena typical to columns and beams,
  4. will know the design procedures for the determination of the resistance of columns/beams against stability,
  5. will know the stability behaviour and post-critical behaviour of unstiffened plates,
  6. will know the stability behaviour and post-critical behaviour of stiffened plates,
  7. will know the specialities of the design of unstiffened plates.
B. Képesség
  1. will be able to calculate stresses from St.Venant and Vlasov torsion theories,
  2. will be able to calculate the critical loads for simple structures made of rigid bodies and elastic springs,
  3. will be able to calculate the buckling resistance to flexural-torsional buckling of columns with mono-symmetric thin-walled cross-sections,
  4. will be able to determine the critical load parameters to plate buckling and to global buckling of structural members,
  5. will be able to calculate the critical moment to lateral-torsional buckling of beams with arbitrary thin-walled cross-sections,
  6. will be able to calculate the plate buckling resistance of longitudinally stiffened plates subjected to membrane loading effects,
  7. will be able to apply finite element and finite strip based computer software to calculate critical load parameter.
C. Attitűd
  1. cooperates with the tutor/lecturer and with fellow students,
  2. is ready to apply numerical computational tools,
  3. is intent on learning and applying the relevant tools of stability design,
  4. is intent on precise and error-free problem solving,
D. Önállóság és felelősség
  1. able to autonomously evaluate instability phenomena and able to autonomously complete design calculations based on the literature,
  2. is open to new design procedures, and autonomously evaluates the correctness and applicability of new design procedures.
2.3 Oktatási módszertan
Lectures, exercises, written and oral communications, application of IT tools and techniques, assignments solved individually or, optionally, in teams.
2.4 Részletes tárgyprogram
Week Topics of lectures and/or exercise classes
1. Basics of engineering stability theory.
2. Engineering torsion theory of thin-walled members, consideration of warping
3. Stability analysis of compressed columns (elastic buckling).
4. Stability analysis and EC3-based design of compressed columns.
5. Elastic restraints. Compressed members on elastic foundation.
6. Analysis of and design for flexural-torsional buckling of columns.
7. Analysis of and design for lateral-torsional buckling of beams.
8. Linear buckling analysis of frames. Geometric stiffness matrix of frames.
9. Elastic buckling and post-critical behaviour of single plates.
10. Elastic buckling and post-critical behaviour of plated structures.
11. Stability design for unstiffened and stiffened plates.
12. Stability design for unstiffened and stiffened plated structures.
13. Reduced stress method and its practical application.
14. Current research topics of plated structures.

A félév közbeni munkaszüneti napok miatt a program csak tájékoztató jellegű, a pontos időpontokat a tárgy honlapján elérhető "Részletes féléves ütemterv" tartalmazza.
2.5 Tanulástámogató anyagok
a) Textbooks:
  1. Kollár L: A mérnöki stabilitáselmélet különleges problémái
  2. Iványi Miklós: Stabilitástan
  3. ECCS: Commentary and worked examples to EN 1993-1-5 „Plated Structural Elements”
  4. Ádány S, Dulácska E., Dunai L., Fernezelyi S., Horváth L., Kövesdi B: Acélszerkezetek, Tervezés az Eurocode alapján – Általános eljárások,
  5. Ádány S, Dulácska E., Dunai L., Fernezelyi S., Horváth L.: Acélszerkezetek, Tervezés az Eurocode alapján
    – Speciális eljárások
  6. Yu Wei-Wen: Cold-formed steel design, 2000
  7. Timoshenko, Gere: Theory of elastic stability.
b) Online materials:
  1. Papp F: Stabilitáselmélet – egyetemi jegyzet
  2. órai anyagok, előadásfóliák
  3. Ádány, Dunai, Kövesdi: Lecture notes.
2.6 Egyéb tudnivalók
1) Attendance to lectures and exercise classes is compulsory. The signature and credits from the subject will be refused to students missing more than allowed by the Code of Studies and Exams of BME.
2) Students are evaluated based on their actual individual performance. Students are required to show evidence of their own knowledge and skills. Submitting a work of others, obtaining or giving unauthorized help (e.g. during an exam or test) cheating and plagiarism in any form is unacceptable. Whoever violate the respective Regulations of the University will be given a failing grade (1), without the possibility of retake and repeat, and will be reported to the Dean’s Office.
2.7 Konzultációs lehetőségek

The instructors are available for consultation during their office hours, as advertised on the department website.  Special appointments can be requested via e-mail.

Jelen TAD az alábbi félévre érvényes:
2023/2024 semester II

II. Tárgykövetelmények

3. A tanulmányi teljesítmény ellenőrzése és értékelése
3.1 Általános szabályok
The student performance will be evaluated, based on the learning outcomes specified in clause 2.2., via a test, a homework assignment, and examination.
3.2 Teljesítményértékelési módszerek
Evaluation form Abbreviation Assessed learning outcomes
Test #1 ZH1 A.1-A.4; B.1-B.3
Assignment #1 HF1 A.5-A.7; B.4, B.6-B.7; C.1-C.4
Oral exam V A.1-A.7; B.1-B.7; D.1-D.2

A szorgalmi időszakban tartott értékelések pontos idejét, a házi feladatok ki- és beadási határidejét a "Részletes féléves ütemterv" tartalmazza, mely elérhető a tárgy honlapján.
3.3 Teljesítményértékelések részaránya a minősítésben
Abbreviation Score
Test #1 20%
Assignment #1 20%
During the semester 40%
Exam 60%
Altogether 100%
Criterion for completion of the subject is to collect at least 50% of the total points of the Test, and at least 50% of the total points of the Assignment. Moreover, unsatisfactory performance during the Exam will lead to a final mark 'failed' (1) independently of the results of the Test and Assignment.
3.4 Az aláírás megszerzésének feltétele, az aláírás érvényessége
Criterion for the signature is to collect at least 50% of the total points of the Test, and at least 50% of the total points of the Assignment.
Results of the Test and Assignment can be considered in the determination of the final mark for maximum 6 semesters.
3.5 Érdemjegy megállapítása
GradePoints (P)
excellent (5)80<=P
good (4)70<=P<80%
satisfactory (3)60<=P<70%
passed (2)50<=P<60%
failed (1)P<50%
3.6 Javítás és pótlás
  1. The midterm test can be repeated – once without fee – at a previously determined date given in the course schedule.
  2. In case of repetition of the test, the better result will be taken into account for the calculation of the final grade.
  3. If the first repetition is also unsatisfactory (failed), then the test can be repeated once more on the repetition week by paying a fee.
3.7 A tantárgy elvégzéséhez szükséges tanulmányi munka
Activity Hours/semester
contact hours 14×3=42
preparation for the courses 14×1=14
preparation for the tests 1×8=8
homework 24
home studying of the written material 8
preparation for the examination 24
Sum 120
3.8 A tárgykövetelmények érvényessége
2020. február 5.
Jelen TAD az alábbi félévre érvényes:
2023/2024 semester II