Subject Datasheet

PDF letöltése

I. Tantárgyleírás

1. Alapadatok
1.1 Tantárgy neve
Dynamics of Structures
1.2 Azonosító (tantárgykód)
BMEEOTMAS43
1.3 Tantárgy jellege
Kontaktórás tanegység
1.4 Óraszámok
Típus Óraszám / (nap)
Előadás (elmélet) 2
1.5 Tanulmányi teljesítményértékelés (minőségi értékelés) típusa
Félévközi érdemjegy
1.6 Kreditszám
3
1.7 Tárgyfelelős
név Dr. Németh Róbert
beosztás Egyetemi docens
email nemeth.robert@emk.bme.hu
1.8 Tantárgyat gondozó oktatási szervezeti egység
Tartószerkezetek Mechanikája Tanszék
1.9 A tantárgy weblapja
1.10 Az oktatás nyelve
magyar és angol
1.11 Tantárgy típusa
Kötelező az építőmérnöki (BSc) szakon
1.12 Előkövetelmények
Weak prerequisites:
  • Structural Analysis I. (BMEEOTMAT43)
  • Mathematics A2a - Vector Functions (BMETE90AX02)
Recommended prerequisites:
  • Structural Analysis II. (BMEEOTMAS42)
  • Matematics A3 for civil engineers (BMETE90AX07)
1.13 Tantárgyleírás érvényessége
2020. február 5.

2. Célkitűzések és tanulási eredmények
2.1 Célkitűzések
The aim of the subject is to introduce the basic concepts of mechanical vibration analysis of civil engineering structures, analysis of free and excited vibrations of SDOF, MDOF, and continuum structures using manual or computer methods, especially the mechanical background of support vibration and earthquake analysis.
2.2 Tanulási eredmények
A tantárgy sikeres teljesítése utána a hallgató
A. Tudás
  1. knows the terms used in the analysis of mechanical vibrations,
  2. knows the differential equations describing the vibrations of SDOF, MDOF, and continuum systems, and the physical meaning of the quantities within,
  3. knows the equations describing the free motions of systems, the concept of free vibration and the solution of the differential equation,
  4. knows the equations describing the motion of systems subjected to harmonic excitation, the concept of harmonic vibration and the solution of the differential equation for systems with single or multi degrees of freedom,
  5. knows the equations describing the motion of systems subjected to arbitrary excitation in time, the concept of arbitrary vibration and the solution of the differential equation for systems with single degree of freedom,
  6. knows the equations describing the motion of systems subjected to variable displacement of supports in time, the concept of vibration due to support movement and the solution of the differential equation with respect to displacements and deformations for systems with single or multi degrees of freedom,
  7. clearly understands the mechanical meaning of concepts related to earthquake analysis,
  8. clearly understands the concept of equivalent static loads.
B. Képesség
  1. is able to model real systems as systems with single or multi degrees of freedom,
  2. calculates the equivalent quantities (mass, stiffness) of the mechanical model in the case of small number of degrees of freedom,
  3. calculates the eigenfrequencies and vibration modes of the mechanical model in the case of small number of degrees of freedom,
  4. calculates the responce of the mechanical system to dynamic loads in the case of small number of degrees of freedom,
  5. is able to solve complex, computationally demanding problems using his/her IT knowledge,
  6. is able to express his/her thoughts in an organized way,
C. Attitűd
  1. aims at learning and routinely using tools required for solving mechanical vibration problems,
  2. aims at accurate and flawless problem solving,
D. Önállóság és felelősség
  1. is able to individually analyse dynamics problems and tasks and to solve them using the given resources,
  2. is open to valid criticism,
  3. applies a systematic approach in his/her reasoning.
2.3 Oktatási módszertan
Lectures, solution of practice problems in individual or team work.
2.4 Részletes tárgyprogram
Week Topics of lectures and/or exercise classes
1. Structures with single degree of freedom: modelling, free vibration
2. Structures with single degree of freedom: harmonic excitation
3. Structures with single degree of freedom: damped vibration
4. Structures with single degree of freedom: support vibration
5. Partial summary
6. Structures with multi degree of freedom: modelling, system matrices
7. Structures with multi degree of freedom: free vibration
8. Structures with multi degree of freedom: excited vibrations
9. Structures with multi degree of freedom: support vibration
10. Partial summary
11. Vibration of bar structures: finite element modelling
12. Vibration of bar structures: continuum vibration
13. Vibration of bar structures, repetition
14. Summary

A félév közbeni munkaszüneti napok miatt a program csak tájékoztató jellegű, a pontos időpontokat a tárgy honlapján elérhető "Részletes féléves ütemterv" tartalmazza.
2.5 Tanulástámogató anyagok
Books: Györgyi J.: Dinamika (Műegyetemi Kiadó, 2003)
Online materials: Németh R.: Lecture slides (https://edu.epito.bme.hu/course/view.php?id=1378)
2.6 Egyéb tudnivalók
2.7 Konzultációs lehetőségek

The instructors are available for consultation during their office hours, as advertised on the department website. Special appointments can be requested via e-mail: nemeth.robert@epito.bme.hu.

Jelen TAD az alábbi félévre érvényes:
2024/2025 semester I

II. Tárgykövetelmények

3. A tanulmányi teljesítmény ellenőrzése és értékelése
3.1 Általános szabályok
  • Evaluation of learning outcomes described in Section 2.2. is based on two mid-term checks and three individual assignments.
  • The duration of each mid-term check is 90 minutes.
  • There are a 16 hours time span for the submission of each individual assignment, with an estimated workload of 60 min.
  • There is no consultation on the topic of the HW between the issue and the due date.
  • The dates of the checks can be found in the "Detailed semester schedule" on the website of the subject.
3.2 Teljesítményértékelési módszerek
Evaluation form Abbreviation Assessed learning outcomes
1st mid-term test (summarizing check) ZH1 A.1-A.7; B.1-B.4; C.1-C.2; D.1-D.3
2nd mid-term test (summarizing check) ZH2 A.1-A.8; B.1-B.6; C.1-C.2; D.1-D.3
1st individual assignment (formative assessment) IA1 A.1-A.5; B.1-B.4; C.1-C.2; D.1-D.3
2nd individual assignment (formative assessment) IA2 A.1-A.6; B.1-B.6; C.1-C.2; D.1-D.3
3rd individual assignment (formative assessment) IA3 A.1-A.8; B.1-B.6; C.1-C.2; D.1-D.3

A szorgalmi időszakban tartott értékelések pontos idejét, a házi feladatok ki- és beadási határidejét a "Részletes féléves ütemterv" tartalmazza, mely elérhető a tárgy honlapján.
3.3 Teljesítményértékelések részaránya a minősítésben
Abbreviation Score
ZH1 40%
ZH2 40%
IA1 10%
IA2 10%
IA3 10%
Sum 100%
Only the best two individual assignments are considered (that is why the sum of the weights above is not 100%).
3.4 Az aláírás megszerzésének feltétele, az aláírás érvényessége
There is no signature from the subject.
3.5 Érdemjegy megállapítása
  • No requirements are made on the successfulness of the tests.
  • An individual assignment is regarded as successful if it reaches at least 50%.
  • The semester performance is determined by the results of the mid-term checks and the best two individual assignments.
  • The final result is computed by the weighted average A of the mid-term checks and the best two individual assignments as in section 3.3.:
GradePoints (A)
excellent (5)90%≤A
good (4)75%≤A<90%
satisfactory (3)65%≤A<75%
passed (2)50%≤A<65%
failed (1)A<50%
3.6 Javítás és pótlás
  • There is no delayed submission of the individual assignments.
  • The mid-semester checks can be retaken at the date announced at the beginning of the semester in one single summarizing retake (from the topics of the whole semester). The result of the retake overwrites the earlier result of both mid-term checks.
  • There is no second retake in the subject.
3.7 A tantárgy elvégzéséhez szükséges tanulmányi munka
ActivityHours/semester
contact lessons14×2=28
preparation for lessons during the semester14×1=14
preparation for the checks5×4=20
study of the assigned written sources22
checks and assignments6
Sum90
3.8 A tárgykövetelmények érvényessége
2021. szeptember 1.
Jelen TAD az alábbi félévre érvényes:
2024/2025 semester I