Subject Datasheet
PDF letöltéseI. Tantárgyleírás
1. Alapadatok
1.1 Tantárgy neve
Physical Geodesy and Gravimetry
1.2 Azonosító (tantárgykód)
BMEEOAFMF61
1.3 Tantárgy jellege
Kontaktórás tanegység
1.4 Óraszámok
Típus | Óraszám / (nap) |
Előadás (elmélet) | 2 |
Gyakorlat | 1 |
1.5 Tanulmányi teljesítményértékelés (minőségi értékelés) típusa
Félévközi érdemjegy
1.6 Kreditszám
4
1.7 Tárgyfelelős
név | Dr. Földváry Lóránt |
beosztás | Egyetemi docens |
foeldvary.lorant@emk.bme.hu |
1.8 Tantárgyat gondozó oktatási szervezeti egység
Általános- és Felsőgeodézia Tanszék
1.9 A tantárgy weblapja
1.10 Az oktatás nyelve
angol
1.11 Tantárgy típusa
Kötelezően választható a Földmérő- és térinformatikai mérnök (MSc) szakon
1.12 Előkövetelmények
1.13 Tantárgyleírás érvényessége
2022. szeptember 1.
2. Célkitűzések és tanulási eredmények
2.1 Célkitűzések
The determination of the gravity field of the Earth provides a tool for understanding its spatial structure based on terrestrial and satellite-borne gravity measurements. The subject aims to acquire knowledge on the theoretical and practical aspects of gravimetric observations, the corresponding processing techniques, available gravity data base, the global geoid, and the determination of the fine structure of the gravity field. Information on the geoid can be derived by determination of the equipotential surfaces of the Earth based on gravity observations using terrestrial, air-borne and satellite-borne methods of gravimetry and grafiometry. By completing this course, the students will be familiar with the most up-to-date physical geodetic methods of the determination of the geoid.
2.2 Tanulási eredmények
A tantárgy sikeres teljesítése utána a hallgató
A. Tudás
- Familiar with the technical terms of physical geodesy.
- Knows the concept of absolute and relative gravimetry, gradiometry, and the calibration of the instruments.
- Knows the observation concept of the air-borne and satellite-borne gravimetric missions (CHAMP, GRACE, GOCE).
- Knows the theory of the operation of the torsion balance.
- Knows about the temporal non-tidal variations of the gravity field.
- Knows the physical geodetic methods of the geoid determination.
- Familiar with the geodetic reference frames.
- Knows the different descriptions of the geoid making use of the spherical harmonics, Stokes-series, and calculation of the absolute defelection of the vertical.
- Familiar with the practical applications of the gradiometry.
- Knows the combined methods of geoid determination.
- Knows the fundamentals of the gravimetric levelling.
- Familiar with the methods of interpolation of the deflection of the vertical.
- Familiar with the inversion methods of gravity field determination.
- Has an overview of the software used in physical geodesy.
- Familiar with the basics of space-borne quantum gravimetry.
B. Képesség
- Able to perform terrestrial gravimetric measurements, process and adjust the measurements.
- Able to determine the parameters of a geodetic reference frame based on graviry measurements.
- Able to apply the Fast Fourier Transformation (FFT) method in physical geodesy.
C. Attitűd
- Recognises the potential of modern computational techniques in physical geodesy.
- Recognises the relevance of knowledge of gravity fields and the importance of geoid determination.
D. Önállóság és felelősség
- Independently investigates problems raised in lectures and exercises.
2.3 Oktatási módszertan
Lectures, and practicals with measurement and computations.
2.4 Részletes tárgyprogram
Hét | Előadások és gyakorlatok témaköre |
1. | The gravity field generated by gravitation, centrifugal and tidal forces. Gravity field and acceleration. The relevance of gravity field in geodesy. |
2. | Absolute and relative gravimetry. Calibration of gravimeters. Gradiometry. practical: terrestrial gravimetry measurement. |
3. | Air-borne and satellite-borne gravimetry and gradiometry (CHAMP, GRACE, GOCE), basic concepts. |
4. | Processing and adjustment of terrestrial gravimetric measurements. practical: measurement with torsion balance. |
5. | Temporal non-tidal variations of the gravity field. |
6. | Mathematical and physical background of physical geodesy. Physical geodetic methods of geoid determination. pracctical: 1st mid-term test. |
7. | Geodetic reference frames. Determination of the parameters of a geodetic reference frame. |
8. | Description of the geoid by spherical harmonics, Stokes-series, calculation of the absolute defelection of the vertical. practical: determination of the parameters of a geodetic reference frame using gravity data. |
9. | Application of the measurements of gradiometry. |
10. | Combined methods of geoid determination. Fundamentals of the gravimetric levelling. practial: interpolation of the deflection of the vertical. |
11. | Application of the Fast Fourier Transformation (FFT) method in physical geodesy. |
12. | Inversion methods of gravity field determination. practical: overview of the software used in physical geodesy. |
13. | Basics of space-borne quantum gravimetry. |
14. | Summary. practical: 2nd mid-term test. |
A félév közbeni munkaszüneti napok miatt a program csak tájékoztató jellegű, a pontos időpontokat a tárgy honlapján elérhető "Részletes féléves ütemterv" tartalmazza.
2.5 Tanulástámogató anyagok
- Heiskanen - Moritz: Physical Geodesy
- Torge - Müller: Geodesy
- Torge: Gravimetry
2.6 Egyéb tudnivalók
- Attendance at the lectures is compulsory. Students who miss four or more lectures will not receive ECTS for the course.
- All students are required to submit original work (their own) for the assignments and tests. Copying, cheating, plagiarism in any form is not acceptable. Anyone who violates the relevant provisions of the BME Code of Conduct will receive an unsatisfactory(1) final grade, will not be allowed to make up the course and will be reported to the Dean's Office.
2.7 Konzultációs lehetőségek
As indicated on the department's website or by e-mail with the lecturer; e-mail: foldvary.lorant@epito.bme.hu
Jelen TAD az alábbi félévre érvényes:
2024/2025 semester I
II. Tárgykövetelmények
3. A tanulmányi teljesítmény ellenőrzése és értékelése
3.1 Általános szabályok
The assessment is done in accordance with 2.2, and is based on the result of 2 tests and the homework assignment.
3.2 Teljesítményértékelési módszerek
Teljesítményértékelés neve (típus) | Jele | Értékelt tanulási eredmények |
Home Work | HW | B.2 |
Activity on field measurement | FM | A |
1st midterm-test | MT1 | A.1-A.5; B.1 |
2nd midterm-test | MT2 | A.6-A.15; B.2-B.3; C.1-C.2; D.1 |
A szorgalmi időszakban tartott értékelések pontos idejét, a házi feladatok ki- és beadási határidejét a "Részletes féléves ütemterv" tartalmazza, mely elérhető a tárgy honlapján.
3.3 Teljesítményértékelések részaránya a minősítésben
Jele | Részarány |
HW | completion |
FM | active attendace |
MT1 | 33% |
MT2 | 67% |
Összesen | 100% |
3.4 Az aláírás megszerzésének feltétele, az aláírás érvényessége
The signature can be obtained
- by attending 79% of the lectures and 79% of the exercises,
- by active participation in the Field Measurement (as described in point 3.3),
- and by successfully solving the Home Work.
- by attending 79% of the lectures and 79% of the exercises,
- by active participation in the Field Measurement (as described in point 3.3),
- and by successfully solving the Home Work.
3.5 Érdemjegy megállapítása
Érdemjegy | Pontszám (P) |
jeles (5) | 85-100% |
jó (4) | 72.5-85% |
közepes (3) | 65-72.5% |
elégséges (2) | 50-65% |
elégtelen (1) | below 50% |
3.6 Javítás és pótlás
- Retake of MTs is possible during the repetition week, which is free of charge for the first attempt.
- If the student fails the retake, he/she may attend a re-retake of MTs for a fee specified in the regulations.
- HW submitted and accepted before the deadline can be corrected for free of charge.
- HW can be submitted with some delay until 16:00 on the last day of the repetition week or sent electronically until 23:59, s for a fee specified in the regulations.
- HW with late submission and without showing it at the last class may be graded of satisfactory.
- Due to the nature of the assessment, FM cannot be substituted or corrected.
3.7 A tantárgy elvégzéséhez szükséges tanulmányi munka
Tevékenység | Óra/félév |
attendace | 14×3=42 |
preparation for classes | 14×2=28 |
completion of HW | 5 |
preparation for MTs | 15+30=45 |
Összesen | 120 |
3.8 A tárgykövetelmények érvényessége
2022. szeptember 1.
Jelen TAD az alábbi félévre érvényes:
2024/2025 semester I